1
|
Aloryi KD, Okpala NE, Amenyogbe MK, Bimpong D, Karikari B, Guo H, Bello SF, Akaba S, Yeboah A, Ahmed AR, Ngegba PM, Kamara N, Anyanwu JN, Essandoh DA, Qiu X, Tian X, Wang G, An T. Whole-genome meta-analysis coupled with haplotype analysis reveal new genes and functional haplotypes conferring pre-harvest sprouting in rice. BMC PLANT BIOLOGY 2025; 25:527. [PMID: 40275165 PMCID: PMC12023606 DOI: 10.1186/s12870-025-06551-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 04/14/2025] [Indexed: 04/26/2025]
Abstract
BACKGROUND Pre-harvest sprouting (PHS), which adversely impacts grain yield and quality, is controlled by seed dormancy genes. However, only a few dormancy-related genes have been characterized, and the effects of allelic variation in genes and the genetic basis of seed dormancy in rice remain largely unknown. Here, we performed a whole-genome meta-quantitative trait loci study to elucidate the genetic basis of seed dormancy in rice. RESULT One hundred and sixty-seven QTL were identified for PHS from which 134 were successfully projected onto the reference map yielding 20 consensus regions, meta-QTL (mQTL). The mean confidence interval of the mQTL was narrower (9.56-fold reduction) than that of the initial QTL. Six of the 20 identified mQTL were designated as breeders' mQTL based on their small confidence intervals, large phenotypic variance explained, and the involvement of high number of QTL. Further, we retrieved 559 high-confidence genes from breeders' mQTL regions conferring resistance to PHS. Comparative analysis of genes found in breeders' mQTL loci and an RNA-seq-based transcriptomic dataset discovered 34 common genes. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed a significant enrichment of the common genes in amino sugar and nucleotide sugar metabolism, carbon metabolism, and carbon fixation in photosynthetic organs. Combined in silico expression profiling and qRT-PCR validation showed that LOC_Os10g18364, LOC_Os10g21940, LOC_Os10g22590, and LOC_Os10g25140 exhibited high fold-change expression in PHS resistant cultivar (23xS-261) than PHS susceptible cultivar (23xS-262). Association analysis of these genes with germination rate index demonstrated that LOC_Os10g18364Hap1, LOC_Os10g21940Hap1, LOC_Os10g22590Hap1, and LOC_Os10g25140Hap1/Hap3 exhibited low germination rate (GR) in cultivars carrying these haplotypes. CONCLUSION In summary, this study delineates the genetic basis of PHS and provides a new set of target genes for improving PHS resistance. The natural variants identified in these genes and markers associated with breeders' mQTL serve as potential resources for incorporating PHS resistance in rice.
Collapse
Affiliation(s)
- Kelvin Dodzi Aloryi
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, 264003, China
- Horticultural Science Department, University of Florida, Gainesville, FL, 32611, USA
| | - Nnaemeka Emmanuel Okpala
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Mawuli Korsi Amenyogbe
- Hubei Collaborative Innovation Centre for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Daniel Bimpong
- Hubei Collaborative Innovation Centre for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Benjamin Karikari
- Département de phytologie, Université Laval, Québec, QC, Canada
- Department of Agricultural Biotechnology, Faculty of Agriculture, Food and Consumer Sciences, University for Development Studies, Tamale, Ghana
| | - Hong Guo
- Zhejiang Industry Polytechnic College, Shaoxing, China
| | - Semiu Folaniyi Bello
- Agriculture Research Group, Organization of African Academic Doctors (OAAD), P. O. Box 25305-00100, Langata, Nairobi, Kenya
| | - Selorm Akaba
- School of Agriculture, University of Cape Coast, Cape Coast, Ghana
| | - Akwasi Yeboah
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, 32603, USA
| | - Abdul Razak Ahmed
- Department of Plant Protection, Akdeniz University Dumlupinar Bulvari, Antalya, 07058, Türkiye
| | - Patrick Maada Ngegba
- Sierra Leone Agricultural Research Institute, P.M.B 1313, Tower Hill, Freetown, 47235, Sierra Leone
| | - Nabieu Kamara
- Sierra Leone Agricultural Research Institute, P.M.B 1313, Tower Hill, Freetown, 47235, Sierra Leone
| | | | - Danielle Ama Essandoh
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, 30602, USA
| | - Xianjin Qiu
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Xiaohai Tian
- Hubei Collaborative Innovation Centre for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Guoli Wang
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Tianyue An
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, 264003, China.
| |
Collapse
|
2
|
Ekaette E, Nwofia E, Okocha P, Nnnabue I, Eluwa K, Obidiegwu J, Agre PA. Exploring the genetic diversity and population structure of aerial yams (Dioscorea bulbifera L.) DArT-seq and agronomic traits. PLoS One 2024; 19:e0306631. [PMID: 39178185 PMCID: PMC11343425 DOI: 10.1371/journal.pone.0306631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 06/20/2024] [Indexed: 08/25/2024] Open
Abstract
Dioscorea bulbifera is an edible yam specie with aerial bulbils. Assessing the genetic diversity of D. bulbifera accession for cultivation and breeding purposes is essential for it genetic improvement, especially where the crop faces minimal attention. The aims of this study was to assess the genetic diversity of Dioscorea bulbifera accessions collected from Nigeria and accessions maintained at the genebank of International Institute of Tropical Agriculture (IITA) Ibadan. Accessions were profiled using quatitative and qualitative phenotypic traits and Diversity Array Technology SNP-markers. Multivariate analysis based phenotypic traits revealed high variability among the evaluated accessions and all phenotypic traits assessed were useful in discriminating the aerial yam accessions. Clustering analysis based phenotypic traits revealed the presence of two well defined clusters. Using DArT-Seq marker, the 94 accessions were classified into three genetic group through the admixture and the phylogeny analysis. The comparision of phenotypic and genotypic clustering revealed inconsistency membership across the two clustering methods. The study established a baseline for the selection of parental lines from the genetic groups for genetic improvement of the D. bulbifera.
Collapse
Affiliation(s)
- Eunice Ekaette
- Department of Agronomy, Michael Okpara University of Agriculture, Umudike, Abia, Nigeria
- National Biotechnology Development Agency, Lugbe, Abuja, Nigeria
| | - Emeka Nwofia
- Department of Agronomy, Michael Okpara University of Agriculture, Umudike, Abia, Nigeria
| | - Peter Okocha
- Department of Agronomy, Michael Okpara University of Agriculture, Umudike, Abia, Nigeria
| | - Ikenna Nnnabue
- National Root Crops Research Institute, Umudike, Abia State, Nigeria
| | - Kenneth Eluwa
- National Root Crops Research Institute, Umudike, Abia State, Nigeria
| | - Jude Obidiegwu
- National Root Crops Research Institute, Umudike, Abia State, Nigeria
| | - Paterne A. Agre
- International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
| |
Collapse
|
3
|
Uba CU, Oselebe HO, Tesfaye AA, Abtew WG. Association mapping in bambara groundnut [Vigna subterranea (L.) Verdc.] reveals loci associated with agro-morphological traits. BMC Genomics 2023; 24:593. [PMID: 37803263 PMCID: PMC10557193 DOI: 10.1186/s12864-023-09684-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 09/19/2023] [Indexed: 10/08/2023] Open
Abstract
BACKGROUND Genome-wide association studies (GWAS) are important for the acceleration of crop improvement through knowledge of marker-trait association (MTA). This report used DArT SNP markers to successfully perform GWAS on agro-morphological traits using 270 bambara groundnut [Vigna subterranea (L.) Verdc.] landraces sourced from diverse origins. The study aimed to identify marker traits association for nine agronomic traits using GWAS and their candidate genes. The experiment was conducted at two different locations laid out in alpha lattice design. The cowpea [Vigna unguiculata (L.) Walp.] reference genome (i.e. legume genome most closely related to bambara groundnut) assisted in the identification of candidate genes. RESULTS The analyses showed that linkage disequilibrium was found to decay rapidly with an average genetic distance of 148 kb. The broadsense heritability was relatively high and ranged from 48.39% (terminal leaf length) to 79.39% (number of pods per plant). The GWAS identified a total of 27 significant marker-trait associations (MTAs) for the nine studied traits explaining 5.27% to 24.86% of phenotypic variations. Among studied traits, the highest number of MTAs was obtained from seed coat colour (6) followed by days to flowering (5), while the least is days to maturity (1), explaining 5.76% to 11.03%, 14.5% to 19.49%, and 11.66% phenotypic variations, respectively. Also, a total of 17 candidate genes were identified, varying in number for different traits; seed coat colour (6), days to flowering (3), terminal leaf length (2), terminal leaf width (2), number of seed per pod (2), pod width (1) and days to maturity (1). CONCLUSION These results revealed the prospect of GWAS in identification of SNP variations associated with agronomic traits in bambara groundnut. Also, its present new opportunity to explore GWAS and marker assisted strategies in breeding of bambara groundnut for acceleration of the crop improvement.
Collapse
Affiliation(s)
- Charles U Uba
- Department of Horticulture and Plant Science, Jimma University, Jimma, Ethiopia.
| | | | - Abush A Tesfaye
- International Institute of Tropical Agriculture, Ibadan, Nigeria
| | - Wosene G Abtew
- Department of Horticulture and Plant Science, Jimma University, Jimma, Ethiopia
| |
Collapse
|
4
|
Ge H, Li G, Wan S, Zhao A, Huang Y, Ma R, Zhang R, Song Y, Sha G. Whole genome re-sequencing and transcriptome reveal an alteration in hormone signal transduction in a more-branching mutant of apple. Gene 2022; 818:146214. [PMID: 35066064 DOI: 10.1016/j.gene.2022.146214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 12/07/2021] [Accepted: 01/13/2022] [Indexed: 11/15/2022]
Abstract
Branch number is an important trait in grafted apple breeding and cultivation. To provide new information on molecular mechanisms of apple branching, whole reduced-representation genomes and transcriptome of a wild-type (WT) apple (Malus spectabilis) and its more-branching (MB) mutant at the branching stage were examined in this study. Comparison of WT and MB genomes against the Malus domestica reference genome identified 14,908,939 single nucleotide polymorphisms (SNPs) and 173,315 insertions and deletions (InDels) in WT and 1,483,221 SNPs and 1,725,977 InDels in MB. Analysis of the genetic variation between MB and WT revealed 1,048,575 SNPs and 37,327 InDels. Among them, 24,303 SNPs and 891 InDels mapped to coding regions of 5,072 and 596 genes, respectively. GO and KEGG functional annotation of 3,846 and 944 genes, respectively, identified 32 variant genes related to plant hormone signal transduction that were involved in auxin, cytokinin, gibberellin, abscisic acid, ethylene, and brassinosteroid pathways. The transcriptome pathways of plant hormone signal transduction and zeatin biosynthesis were also significantly enriched during MB branching. Furthermore, transcriptome data suggested the regulatory roles of auxin signaling, increase of cytokinin and genes of cytokinin synthesis and signaling, and the suppressed abscisic acid signaling. Our findings suggest that branching development in apple is regulated by plant hormone signal transduction.
Collapse
Affiliation(s)
- Hongjuan Ge
- Academy of Agricultural Sciences of Qingdao, Qingdao, Shandong 266100, China.
| | - Guofang Li
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei 071001, China.
| | - Shuwei Wan
- Academy of Agricultural Sciences of Qingdao, Qingdao, Shandong 266100, China.
| | - Aihong Zhao
- Academy of Agricultural Sciences of Qingdao, Qingdao, Shandong 266100, China.
| | - Yue Huang
- Academy of Agricultural Sciences of Qingdao, Qingdao, Shandong 266100, China.
| | - Rongqun Ma
- Academy of Agricultural Sciences of Qingdao, Qingdao, Shandong 266100, China.
| | - Ruifen Zhang
- Academy of Agricultural Sciences of Qingdao, Qingdao, Shandong 266100, China.
| | - Yongjun Song
- Academy of Agricultural Sciences of Qingdao, Qingdao, Shandong 266100, China.
| | - Guangli Sha
- Academy of Agricultural Sciences of Qingdao, Qingdao, Shandong 266100, China.
| |
Collapse
|
5
|
Wambugu PW, Henry R. Supporting in situ conservation of the genetic diversity of crop wild relatives using genomic technologies. Mol Ecol 2022; 31:2207-2222. [PMID: 35170117 PMCID: PMC9303585 DOI: 10.1111/mec.16402] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/08/2022] [Accepted: 02/11/2022] [Indexed: 11/27/2022]
Abstract
The last decade has witnessed huge technological advances in genomics, particularly in DNA sequencing. Here, we review the actual and potential application of genomics in supporting in situ conservation of crop wild relatives (CWRs). In addition to helping in prioritization of protection of CWR taxa and in situ conservation sites, genome analysis is allowing the identification of novel alleles that need to be prioritized for conservation. Genomics is enabling the identification of potential sources of important adaptive traits that can guide the establishment or enrichment of in situ genetic reserves. Genomic tools also have the potential for developing a robust framework for monitoring and reporting genome‐based indicators of genetic diversity changes associated with factors such as land use or climate change. These tools have been demonstrated to have an important role in managing the conservation of populations, supporting sustainable access and utilization of CWR diversity, enhancing accelerated domestication of new crops and forensic genomics thus preventing misappropriation of genetic resources. Despite this great potential, many policy makers and conservation managers have failed to recognize and appreciate the need to accelerate the application of genomics to support the conservation and management of biodiversity in CWRs to underpin global food security. Funding and inadequate genomic expertise among conservation practitioners also remain major hindrances to the widespread application of genomics in conservation.
Collapse
Affiliation(s)
- Peterson W Wambugu
- Kenya Agricultural and Livestock Research Organization, Genetic Resources Research Institute, P.O. Box 30148, 00100, Nairobi, Kenya
| | - Robert Henry
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD, 4072, Australia.,ARC Centre of Excellence for Plant Success in Nature and Agriculture, University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
6
|
Negawo AT, Muktar MS, Assefa Y, Hanson J, Sartie AM, Habte E, Jones CS. Genetic Diversity and Population Structure of a Rhodes Grass ( Chloris gayana) Collection. Genes (Basel) 2021; 12:1233. [PMID: 34440407 PMCID: PMC8394257 DOI: 10.3390/genes12081233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/23/2021] [Accepted: 08/05/2021] [Indexed: 11/30/2022] Open
Abstract
Rhodes grass (Chloris gayana Kunth) is one of the most important forage grasses used throughout the tropical and subtropical regions of the world. Enhancing the conservation and use of genetic resources requires the development of knowledge and understanding about the existing global diversity of the species. In this study, 104 Rhodes grass accessions, held in trust in the ILRI forage genebank, were characterized using DArTSeq markers to evaluate the genetic diversity and population structure, and to develop representative subsets, of the collection. The genotyping produced 193,988 SNP and 142,522 SilicoDArT markers with an average polymorphic information content of 0.18 and 0.26, respectively. Hierarchical clustering using selected informative markers showed the presence of two and three main clusters using SNP and SilicoDArT markers, respectively, with a cophenetic correction coefficient of 82%. Bayesian population structure analysis also showed the presence of two main subpopulations using both marker types indicating the existence of significant genetic variation in the collection. A representative subset, containing 21 accessions from diverse origins, was developed using the SNP markers. In general, the results revealed substantial genetic diversity in the Rhodes grass collection, and the generated molecular information, together with the developed subset, should help enhance the management, use and improvement of Rhodes grass germplasm in the future.
Collapse
Affiliation(s)
- Alemayehu Teressa Negawo
- Feed and Forage Development Program, International Livestock Research Institute, Addis Ababa P.O. Box 5689, Ethiopia; (A.T.N.); (M.S.M.); (Y.A.); (J.H.); (A.M.S.); (E.H.)
| | - Meki S. Muktar
- Feed and Forage Development Program, International Livestock Research Institute, Addis Ababa P.O. Box 5689, Ethiopia; (A.T.N.); (M.S.M.); (Y.A.); (J.H.); (A.M.S.); (E.H.)
| | - Yilikal Assefa
- Feed and Forage Development Program, International Livestock Research Institute, Addis Ababa P.O. Box 5689, Ethiopia; (A.T.N.); (M.S.M.); (Y.A.); (J.H.); (A.M.S.); (E.H.)
| | - Jean Hanson
- Feed and Forage Development Program, International Livestock Research Institute, Addis Ababa P.O. Box 5689, Ethiopia; (A.T.N.); (M.S.M.); (Y.A.); (J.H.); (A.M.S.); (E.H.)
| | - Alieu M. Sartie
- Feed and Forage Development Program, International Livestock Research Institute, Addis Ababa P.O. Box 5689, Ethiopia; (A.T.N.); (M.S.M.); (Y.A.); (J.H.); (A.M.S.); (E.H.)
- The Pacific Community (SPC), Private Mail Bag, Suva, Fiji
| | - Ermias Habte
- Feed and Forage Development Program, International Livestock Research Institute, Addis Ababa P.O. Box 5689, Ethiopia; (A.T.N.); (M.S.M.); (Y.A.); (J.H.); (A.M.S.); (E.H.)
| | - Chris S. Jones
- Feed and Forage Development Program, International Livestock Research Institute, Addis Ababa P.O. Box 5689, Ethiopia; (A.T.N.); (M.S.M.); (Y.A.); (J.H.); (A.M.S.); (E.H.)
- Feed and Forage Development Program, International Livestock Research Institute, Nairobi 00100, Kenya
| |
Collapse
|
7
|
Giri J, Parida SK, Raghuvanshi S, Tyagi AK. Emerging Molecular Strategies for Improving Rice Drought Tolerance. Curr Genomics 2021; 22:16-25. [PMID: 34045921 PMCID: PMC8142347 DOI: 10.2174/1389202921999201231205024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 10/27/2020] [Accepted: 11/04/2020] [Indexed: 12/13/2022] Open
Abstract
Rice occupies a pre-eminent position as a food crop in the world. Its production, how- ever, entails up to 3000 liters of water per kilogram of grain produced. Such high demand makes rice prone to drought easily. Sustainable rice cultivation with limited water resources requires the deployment of a suitable strategy for better water use efficiency and improved drought tolerance. Several drought-related genes have been evaluated in rice for their mode of action in conferring drought tolerance. Manipulation of components of abscisic acid signal transduction, stomatal density, deposition of cuticular wax, and protein modification pathways are emerging as priority targets. Gene reprogramming by microRNAs is also being explored to achieve drought tolerance. Genetically dissected Quantitative Trait Loci (QTLs) and their constituent genes are being deployed to develop drought-tolerant rice varieties. Progressive research and challenges include a better understanding of crucial components of drought response and search for new targets and the deployment of improved varieties in the field.
Collapse
Affiliation(s)
- Jitender Giri
- 1National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India; 2Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| | - Swarup K Parida
- 1National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India; 2Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| | - Saurabh Raghuvanshi
- 1National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India; 2Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| | - Akhilesh K Tyagi
- 1National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India; 2Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| |
Collapse
|
8
|
Hyun DY, Sebastin R, Lee KJ, Lee GA, Shin MJ, Kim SH, Lee JR, Cho GT. Genotyping-by-Sequencing Derived Single Nucleotide Polymorphisms Provide the First Well-Resolved Phylogeny for the Genus Triticum (Poaceae). FRONTIERS IN PLANT SCIENCE 2020; 11:688. [PMID: 32625218 PMCID: PMC7311657 DOI: 10.3389/fpls.2020.00688] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/30/2020] [Indexed: 05/17/2023]
Abstract
Wheat (Triticum spp.) has been an important staple food crop for mankind since the beginning of agriculture. The genus Triticum L. is composed of diploid, tetraploid, and hexaploid species, majority of which have not yet been discriminated clearly, and hence their phylogeny and classification remain unresolved. Genotyping-by-sequencing (GBS) is an easy and affordable method that allows us to generate genome-wide single nucleotide polymorphism (SNP) markers. In this study, we used GBS to obtain SNPs covering all seven chromosomes from 283 accessions of Triticum-related genera. After filtering low-quality and redundant SNPs based on haplotype information, the GBS assay provided 14,188 high-quality SNPs that were distributed across the A (71%), B (26%), and D (2.4%) genomes. Cluster analysis and discriminant analysis of principal components (DAPC) allowed us to distinguish six distinct groups that matched well with Triticum species complexity. We constructed a Bayesian phylogenetic tree using 14,188 SNPs, in which 17 Triticum species and subspecies were discriminated. Dendrogram analysis revealed that the polyploid wheat species could be divided into groups according to the presence of A, B, D, and G genomes with strong nodal support and provided new insight into the evolution of spelt wheat. A total of 2,692 species-specific SNPs were identified to discriminate the common (T. aestivum) and durum (T. turgidum) wheat cultivar and landraces. In principal component analysis grouping, the two wheat species formed individual clusters and the SNPs were able to distinguish up to nine groups of 10 subspecies. This study demonstrated that GBS-derived SNPs could be used efficiently in genebank management to classify Triticum species and subspecies that are very difficult to distinguish by their morphological characters.
Collapse
|
9
|
Zhang S, Cai Y, Guo J, Li K, Peng R, Liu F, Roberts JA, Miao Y, Zhang X. Genotyping-by-Sequencing of Gossypium hirsutum Races and Cultivars Uncovers Novel Patterns of Genetic Relationships and Domestication Footprints. Evol Bioinform Online 2019; 15:1176934319889948. [PMID: 31798299 PMCID: PMC6868568 DOI: 10.1177/1176934319889948] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 10/30/2019] [Indexed: 11/16/2022] Open
Abstract
Determining the genetic rearrangement and domestication footprints in Gossypium hirsutum cultivars and primitive race genotypes are essential for effective gene conservation efforts and the development of advanced breeding molecular markers for marker-assisted breeding. In this study, 94 accessions representing the 7 primitive races of G hirsutum, along with 9 G hirsutum and 12 Gossypium barbadense cultivated accessions were evaluated. The genotyping-by-sequencing (GBS) approach was employed and 146 558 single nucleotide polymorphisms (SNP) were generated. Distinct SNP signatures were identified through the combination of selection scans and association analyses. Phylogenetic analyses were also conducted, and we concluded that the Latifolium, Richmondi, and Marie-Galante race accessions were more genetically related to the G hirsutum cultivars and tend to cluster together. Fifty-four outlier SNP loci were identified by selection-scan analysis, and 3 SNPs were located in genes related to the processes of plant responding to stress conditions and confirmed through further genome-wide signals of marker-phenotype association analysis, which indicate a clear selection signature for such trait. These results identified useful candidate gene locus for cotton breeding programs.
Collapse
Affiliation(s)
- Shulin Zhang
- College of Biology and Food Engineering, Innovation and Practice Base for Postdoctors, Anyang Institute of Technology, Anyang, China
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Henan University, Kaifeng, China
| | - Yaling Cai
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Henan University, Kaifeng, China
| | - Jinggong Guo
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Henan University, Kaifeng, China
| | - Kun Li
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Henan University, Kaifeng, China
| | - Renhai Peng
- College of Biology and Food Engineering, Innovation and Practice Base for Postdoctors, Anyang Institute of Technology, Anyang, China
| | - Fang Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, China
| | - Jeremy A Roberts
- School of Biological and Marine Sciences, Faculty of Science and Engineering, University of Plymouth, Devon, UK
| | - Yuchen Miao
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Henan University, Kaifeng, China
| | - Xuebin Zhang
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Henan University, Kaifeng, China
| |
Collapse
|
10
|
Discovery of Functional SNPs via Genome-Wide Exploration of Malaysian Pigmented Rice Varieties. Int J Genomics 2019; 2019:4168045. [PMID: 31687375 PMCID: PMC6811786 DOI: 10.1155/2019/4168045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 08/01/2019] [Accepted: 08/19/2019] [Indexed: 01/30/2023] Open
Abstract
Recently, rice breeding program has shown increased interests on the pigmented rice varieties due to their benefits to human health. However, the genetic variation of pigmented rice varieties is still scarce and remains unexplored. Hence, we performed genome-wide SNP analysis from the genome resequencing of four Malaysian pigmented rice varieties, representing two black and two red rice varieties. The genome of four pigmented varieties was mapped against Nipponbare reference genome sequences, and 1.9 million SNPs were discovered. Of these, 622 SNPs with polymorphic sites were identified in 258 protein-coding genes related to metabolism, stress response, and transporter. Comparative analysis of 622 SNPs with polymorphic sites against six rice SNP datasets from the Ensembl Plants variation database was performed, and 70 SNPs were identified as novel SNPs. Analysis of SNPs in the flavonoid biosynthetic genes revealed 40 nonsynonymous SNPs, which has potential as molecular markers for rice seed colour identification. The highlighted SNPs in this study show effort in producing valuable genomic resources for application in the rice breeding program, towards the genetic improvement of new and improved pigmented rice varieties.
Collapse
|
11
|
Genetic diversity and population structure analysis of Asian and African aromatic rice (Oryza sativa L.) genotypes. J Genet 2019. [DOI: 10.1007/s12041-019-1131-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
12
|
Mishra A, Kumar P, Shamim M, Tiwari KK, Fatima P, Srivastava D, Singh R, Yadav P. Genetic diversity and population structure analysis of Asian and African aromatic rice ( Oryza sativa L.) genotypes. J Genet 2019; 98:92. [PMID: 31544788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Rice germplasms collected from different regions could be used as valuable resources for the future breeding programme. For the utilization of such collections, knowledge about the level and distribution of genetic diversity among these collections will facilitate the breeder. In this study, we report the phenotypic correlation, biochemical quality parameters and population genetic analysis of 35 rice accessions including 34 aromatic rice from different countries and a nonaromatic, Nagina 22, a well-known drought resistance variety. Further biochemical quality analysis, gel consistency test, molecular diversity analysis with 55 simple sequence repeat markers, population structure analysis and pair wise FST analysis were also conducted to assess the genetic diversity. The collected rice genotypes showed significant variability in different agronomic traits, i.e. spikelet per panicle, branches per panicle etc. Results obtained from the above tests demonstrated the importance of regional genetic studies for understanding the diversification of aromatic rice in Asian and African rice.
Collapse
Affiliation(s)
- Anurag Mishra
- Division of Genetics, Indian Agricultural Research Institute, New Delhi 110 012, India.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Mahender A, Ali J, Prahalada GD, Sevilla MAL, Balachiranjeevi CH, Md J, Maqsood U, Li Z. Genetic dissection of developmental responses of agro-morphological traits under different doses of nutrient fertilizers using high-density SNP markers. PLoS One 2019; 14:e0220066. [PMID: 31335882 PMCID: PMC6650078 DOI: 10.1371/journal.pone.0220066] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 07/07/2019] [Indexed: 11/19/2022] Open
Abstract
The production and productivity of rice (Oryza sativa L.) are primarily influenced by the application of the critical nutrients nitrogen (N), phosphorus (P), and potassium (K). However, excessive application of these fertilizers is detrimental to the environment and increases the cost of production. Hence, there is a need to develop varieties that simultaneously increase yields under both optimal and suboptimal rates of fertilizer application by maximizing nutrient use efficiency (NuUE). To unravel the hidden genetic variation and understand the molecular and physiological mechanisms of NuUE, three different mapping populations (MPs; BC1F5) derived from three donors (Haoannong, Cheng-Hui 448, and Zhong 413) and recipient Weed Tolerant Rice 1 were developed. A total of three favorable agronomic traits (FATs) were considered as the measure of NuUE. Analysis of variance and descriptive statistics indicated the existence of genetic variation for NuUE and quantitative inheritance of FATs. The genotypic data from single-nucleotide polymorphism (SNP) markers from Tunable Genotyping-By-Sequencing (tGBS) and phenotypic values were used for locating the genomic regions conferring NuUE. A total of 19 quantitative trait loci (QTLs) were detected, out of which 11 QTLs were putative on eight chromosomes, which individually explained 17.02% to 34.85% of the phenotypic variation. Notably, qLC-II_1 and qLC-II_11 detected at zero fertilizer application showed higher performance for LC under zero percentage of NPK fertilizer. The remarkable findings of the present study are that the detected QTLs were associated in building tolerance to low/no nutrient application and six candidate genes on chromosomes 2 and 5 within these putative QTLs were found associated with low nutrient tolerance and related to several physiological and metabolic pathways involved in abiotic stress tolerance. The identified superior introgressed lines (ILs) and trait-associated genetic regions can be effectively used in marker-assisted selection (MAS) for NuUE breeding programs.
Collapse
Affiliation(s)
- Anumalla Mahender
- Rice Breeding Platform, International Rice Research Institute, Los Baños, Manila, Philippines
| | - Jauhar Ali
- Rice Breeding Platform, International Rice Research Institute, Los Baños, Manila, Philippines
- * E-mail:
| | - G. D. Prahalada
- Strategic Innovation Platform, International Rice Research Institute, Los Baños, Manila, Philippines
| | - Ma. Anna Lynn Sevilla
- Rice Breeding Platform, International Rice Research Institute, Los Baños, Manila, Philippines
| | - C. H. Balachiranjeevi
- Rice Breeding Platform, International Rice Research Institute, Los Baños, Manila, Philippines
| | - Jamaloddin Md
- Rice Breeding Platform, International Rice Research Institute, Los Baños, Manila, Philippines
| | - Umer Maqsood
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Pakistan
| | - Zhikang Li
- Chinese Academy of Agricultural Sciences, Haidian District, P.R. China
| |
Collapse
|
14
|
Wambugu PW, Ndjiondjop MN, Henry RJ. Role of genomics in promoting the utilization of plant genetic resources in genebanks. Brief Funct Genomics 2019; 17:198-206. [PMID: 29688255 PMCID: PMC5967547 DOI: 10.1093/bfgp/ely014] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Global efforts have seen the world's plant genetic resources (PGRs) conserved in about 1625 germ plasm repositories. Utility of these resources is important in increasing the resilience and productivity of agricultural production systems. However, despite their importance, utility of these resources has been poor. This article reviews the real and potential application of the current advances in genomic technologies in improving the utilization of these resources. The actual and potential application of these genomic approaches in plant identification, phylogenetic analysis, analysing the genetic value of germ plasm, facilitating germ plasm selection in genebanks as well as instilling confidence in international germ plasm exchange system is discussed. We note that if genebanks are to benefit from this genomic revolution, there is need for fundamental changes in the way genebanks are managed, perceived, organized and funded. Increased collaboration between genebank managers and the user community is also recommended.
Collapse
Affiliation(s)
- Peterson W Wambugu
- Corresponding author: Robert Henry, Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD 4072, Australia. Tel.: ±61733460551; Fax: ±61733460555; E-mail:
| | | | | |
Collapse
|
15
|
Azaiez A, Pavy N, Gérardi S, Laroche J, Boyle B, Gagnon F, Mottet MJ, Beaulieu J, Bousquet J. A catalog of annotated high-confidence SNPs from exome capture and sequencing reveals highly polymorphic genes in Norway spruce (Picea abies). BMC Genomics 2018; 19:942. [PMID: 30558528 PMCID: PMC6296092 DOI: 10.1186/s12864-018-5247-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 11/14/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Norway spruce [Picea abies (L.) Karst.] is ecologically and economically one of the most important conifer worldwide. Our main goal was to develop a large catalog of annotated high confidence gene SNPs that should sustain the development of genomic tools for the conservation of natural and domesticated genetic diversity resources, and hasten tree breeding efforts in this species. RESULTS Targeted sequencing was achieved by capturing P. abies exome with probes previously designed from the sequenced transcriptome of white spruce (Picea glauca (Moench) Voss). Capture efficiency was high (74.5%) given a high level of exome conservation between the two species. Using stringent criteria, we delimited a set of 61,771 high-confidence SNPs across 13,543 genes. To validate SNPs, a high-throughput genotyping array was developed for a subset of 5571 predicted SNPs representing as many different gene loci, and was used to genotype over 1000 trees. The estimated true positive rate of the resource was 84.2%, which was comparable with the genotyping success rate obtained for P. abies control SNPs recycled from previous genotyping efforts. We also analyzed SNP abundance across various gene functional categories. Several GO terms and gene families involved in stress response were found over-represented in highly polymorphic genes. CONCLUSION The annotated high-confidence SNP catalog developed herein represents a valuable genomic resource, being representative of over 13 K genes distributed across the P. abies genome. This resource should serve a variety of population genomics and breeding applications in Norway spruce.
Collapse
Affiliation(s)
- Aïda Azaiez
- Canada Research Chair in Forest Genomics, Forest Research Centre, Université Laval, Québec, Québec G1V 0A6 Canada
- Institute of Integrative Biology and Systems, Université Laval, Québec, Québec G1V 0A6 Canada
| | - Nathalie Pavy
- Canada Research Chair in Forest Genomics, Forest Research Centre, Université Laval, Québec, Québec G1V 0A6 Canada
- Institute of Integrative Biology and Systems, Université Laval, Québec, Québec G1V 0A6 Canada
| | - Sébastien Gérardi
- Canada Research Chair in Forest Genomics, Forest Research Centre, Université Laval, Québec, Québec G1V 0A6 Canada
- Institute of Integrative Biology and Systems, Université Laval, Québec, Québec G1V 0A6 Canada
| | - Jérôme Laroche
- Institute of Integrative Biology and Systems, Université Laval, Québec, Québec G1V 0A6 Canada
| | - Brian Boyle
- Institute of Integrative Biology and Systems, Université Laval, Québec, Québec G1V 0A6 Canada
| | - France Gagnon
- Canada Research Chair in Forest Genomics, Forest Research Centre, Université Laval, Québec, Québec G1V 0A6 Canada
- Institute of Integrative Biology and Systems, Université Laval, Québec, Québec G1V 0A6 Canada
| | - Marie-Josée Mottet
- Direction de la recherche forestière, Ministère des Forêts, de la Faune et des Parcs du Québec, 2700 Einstein, Québec, Québec G1P 3W8 Canada
| | - Jean Beaulieu
- Canada Research Chair in Forest Genomics, Forest Research Centre, Université Laval, Québec, Québec G1V 0A6 Canada
- Institute of Integrative Biology and Systems, Université Laval, Québec, Québec G1V 0A6 Canada
| | - Jean Bousquet
- Canada Research Chair in Forest Genomics, Forest Research Centre, Université Laval, Québec, Québec G1V 0A6 Canada
- Institute of Integrative Biology and Systems, Université Laval, Québec, Québec G1V 0A6 Canada
| |
Collapse
|
16
|
Genomics-Assisted Identification and Characterization of the Genetic Variants Underlying Differential Nitrogen Use Efficiencies in Allotetraploid Rapeseed Genotypes. G3-GENES GENOMES GENETICS 2018; 8:2757-2771. [PMID: 29967053 PMCID: PMC6071586 DOI: 10.1534/g3.118.200481] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Nitrogen (N) is a non-mineral macronutrient essential for plant growth and development. Oilseed rape (AnAnCnCn, 2n = 4x = 38) has a high requirement for N nutrients whereas showing the lowest N use efficiency (NUE) among crops. The mechanisms underlying NUE regulation in Brassica napus remain unclear because of genome complexity. In this study, we performed high-depth and -coverage whole-genome re-sequencing (WGS) of an N-efficient (higher NUE) genotype “XY15” and an N-inefficient (lower NUE) genotype “814” of rapeseed. More than 687 million 150-bp paired-end reads were generated, which provided about 93% coverage and 50× depth of the rapeseed genome. Applying stringent parameters, we identified a total of 1,449,157 single-nucleotide polymorphisms (SNPs), 335,228 InDels, 175,602 structure variations (SVs) and 86,280 copy number variations (CNVs) between the N-efficient and -inefficient genotypes. The largest proportion of various DNA polymorphisms occurred in the inter-genic regions. Unlike CNVs, the SNP/InDel and SV polymorphisms showed variation bias of the An and Cn subgenomes, respectively. Gene ontology analysis showed the genetic variants were mapped onto the genes involving N compound transport and ATPase complex metabolism, but not including N assimilation-related genes. On basis of identification of N-starvation responsive genes through high-throughput expression profiling, we also mapped these variants onto some key NUE-regulating genes, and validated their significantly differential expression between the N-efficient and -inefficient genotypes through qRT-PCR assays. Our data provide genome-wide high resolution DNA variants underlying NUE divergence in allotetraploid rapeseed genotypes, which would expedite the effective identification and functional validation of key NUE-regulating genes through genomics-assisted improvement of crop nutrient efficiency.
Collapse
|
17
|
Roorkiwal M, Jain A, Kale SM, Doddamani D, Chitikineni A, Thudi M, Varshney RK. Development and evaluation of high-density Axiom ® CicerSNP Array for high-resolution genetic mapping and breeding applications in chickpea. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:890-901. [PMID: 28913885 PMCID: PMC5866945 DOI: 10.1111/pbi.12836] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/06/2017] [Accepted: 09/10/2017] [Indexed: 05/04/2023]
Abstract
To accelerate genomics research and molecular breeding applications in chickpea, a high-throughput SNP genotyping platform 'Axiom® CicerSNP Array' has been designed, developed and validated. Screening of whole-genome resequencing data from 429 chickpea lines identified 4.9 million SNPs, from which a subset of 70 463 high-quality nonredundant SNPs was selected using different stringent filter criteria. This was further narrowed down to 61 174 SNPs based on p-convert score ≥0.3, of which 50 590 SNPs could be tiled on array. Among these tiled SNPs, a total of 11 245 SNPs (22.23%) were from the coding regions of 3673 different genes. The developed Axiom® CicerSNP Array was used for genotyping two recombinant inbred line populations, namely ICCRIL03 (ICC 4958 × ICC 1882) and ICCRIL04 (ICC 283 × ICC 8261). Genotyping data reflected high success and polymorphic rate, with 15 140 (29.93%; ICCRIL03) and 20 018 (39.57%; ICCRIL04) polymorphic SNPs. High-density genetic maps comprising 13 679 SNPs spanning 1033.67 cM and 7769 SNPs spanning 1076.35 cM were developed for ICCRIL03 and ICCRIL04 populations, respectively. QTL analysis using multilocation, multiseason phenotyping data on these RILs identified 70 (ICCRIL03) and 120 (ICCRIL04) main-effect QTLs on genetic map. Higher precision and potential of this array is expected to advance chickpea genetics and breeding applications.
Collapse
Affiliation(s)
- Manish Roorkiwal
- International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadIndia
| | - Ankit Jain
- International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadIndia
| | - Sandip M. Kale
- International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadIndia
| | | | - Annapurna Chitikineni
- International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadIndia
| | - Mahendar Thudi
- International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadIndia
| | - Rajeev K. Varshney
- International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadIndia
- School of Agriculture and Environment & Institute of AgricultureThe University of Western AustraliaCrawleyPerthAustralia
| |
Collapse
|
18
|
Chen W, Hou L, Zhang Z, Pang X, Li Y. Genetic Diversity, Population Structure, and Linkage Disequilibrium of a Core Collection of Ziziphus jujuba Assessed with Genome-wide SNPs Developed by Genotyping-by-sequencing and SSR Markers. FRONTIERS IN PLANT SCIENCE 2017; 8:575. [PMID: 28458680 PMCID: PMC5394126 DOI: 10.3389/fpls.2017.00575] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 03/30/2017] [Indexed: 05/24/2023]
Abstract
Chinese jujube (Ziziphus jujuba Mill) is an economically important fruit species native to China with high nutritious and medicinal value. Genotyping-by-sequencing was used to detect and genotype single nucleotide polymorphisms (SNPs) in a core collection of 150 Chinese jujube accessions and further to characterize their genetic diversity, population structure, and linkage disequilibrium (LD). A total of 4,680 high-quality SNPs were identified, of which 38 sets of tri-allelic SNPs were detected. The average polymorphism information content (PIC) values based on bi-allelic SNPs and tri-allelic SNPs were 0.27 and 0.38, respectively. STRUCTURE and principal coordinate analyses based on SNPs revealed that the 150 accessions could be clustered into two groups. However, neighbor-joining trees indicated the accessions should be grouped into three major clusters. Our data confirm that the resolving power for genetic diversity was similar for the SSRs and SNPs. In contrast, regarding population structure, the resolving power was higher for SSRs than for SNPs. The LD pattern in Chinese jujube was investigated for the first time. We observed a relatively rapid LD decay with a short range (∼10 kb) for all pseudo-chromosomes and for individual pseudo-chromosomes. Our findings provide important information for future genome-wide association analyses and marker-assisted selective breeding of Chinese jujube.
Collapse
Affiliation(s)
- Wu Chen
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
| | - Lu Hou
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
| | - Zhiyong Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry UniversityBeijing, China
| | - Xiaoming Pang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
| | - Yingyue Li
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
| |
Collapse
|
19
|
Bhardwaj A, Dhar YV, Asif MH, Bag SK. In Silico identification of SNP diversity in cultivated and wild tomato species: insight from molecular simulations. Sci Rep 2016; 6:38715. [PMID: 27929054 PMCID: PMC5144076 DOI: 10.1038/srep38715] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 11/15/2016] [Indexed: 12/12/2022] Open
Abstract
Single Nucleotide Polymorphisms (SNPs), an important source of genetic variations, are often used in crop improvement programme. The present study represented comprehensive In silico analysis of nucleotide polymorphisms in wild (Solanum habrochaites) and cultivated (Solanum lycopersicum) species of tomato to explore the consequence of substitutions both at sequence and structure level. A total of 8978 SNPs having Ts/Tv (Transition/Transversion) ratio 1.75 were identified from the Expressed Sequence Tag (EST) and Next Generation Sequence (NGS) data of both the species available in public databases. Out of these, 1838 SNPs were non-synonymous and distributed in 988 protein coding genes. Among these, 23 genes containing 96 SNPs were involved in traits markedly different between the two species. Furthermore, there were 28 deleterious SNPs distributed in 27 genes and a few of these genes were involved in plant pathogen interaction and plant hormone pathways. Molecular docking and simulations of several selected proteins showed the effect of SNPs in terms of compactness, conformation and interaction ability. Observed SNPs exhibited various types of motif binding effects due to nucleotide changes. SNPs that provide the evidence of differential motif binding and interaction behaviour could be effectively used for the crop improvement program.
Collapse
Affiliation(s)
- Archana Bhardwaj
- Academy of Scientific and Innovative Research (AcSIR), CSIR-NBRI Campus, Lucknow, India
- Council of Scientific and Industrial Research - National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India
| | - Yogeshwar Vikram Dhar
- Academy of Scientific and Innovative Research (AcSIR), CSIR-NBRI Campus, Lucknow, India
- Council of Scientific and Industrial Research - National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India
| | - Mehar Hasan Asif
- Council of Scientific and Industrial Research - National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India
| | - Sumit K Bag
- Academy of Scientific and Innovative Research (AcSIR), CSIR-NBRI Campus, Lucknow, India
- Council of Scientific and Industrial Research - National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India
| |
Collapse
|
20
|
Agarwal P, Parida SK, Raghuvanshi S, Kapoor S, Khurana P, Khurana JP, Tyagi AK. Rice Improvement Through Genome-Based Functional Analysis and Molecular Breeding in India. RICE (NEW YORK, N.Y.) 2016; 9:1. [PMID: 26743769 PMCID: PMC4705060 DOI: 10.1186/s12284-015-0073-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 12/22/2015] [Indexed: 05/05/2023]
Abstract
Rice is one of the main pillars of food security in India. Its improvement for higher yield in sustainable agriculture system is also vital to provide energy and nutritional needs of growing world population, expected to reach more than 9 billion by 2050. The high quality genome sequence of rice has provided a rich resource to mine information about diversity of genes and alleles which can contribute to improvement of useful agronomic traits. Defining the function of each gene and regulatory element of rice remains a challenge for the rice community in the coming years. Subsequent to participation in IRGSP, India has continued to contribute in the areas of diversity analysis, transcriptomics, functional genomics, marker development, QTL mapping and molecular breeding, through national and multi-national research programs. These efforts have helped generate resources for rice improvement, some of which have already been deployed to mitigate loss due to environmental stress and pathogens. With renewed efforts, Indian researchers are making new strides, along with the international scientific community, in both basic research and realization of its translational impact.
Collapse
Affiliation(s)
- Pinky Agarwal
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Swarup K Parida
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Saurabh Raghuvanshi
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi, 110021, India
| | - Sanjay Kapoor
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi, 110021, India
| | - Paramjit Khurana
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi, 110021, India
| | - Jitendra P Khurana
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi, 110021, India
| | - Akhilesh K Tyagi
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India.
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi, 110021, India.
| |
Collapse
|
21
|
Impact of SNPs on Protein Phosphorylation Status in Rice (Oryza sativa L.). Int J Mol Sci 2016; 17:ijms17111738. [PMID: 27845739 PMCID: PMC5133773 DOI: 10.3390/ijms17111738] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 10/04/2016] [Accepted: 10/11/2016] [Indexed: 11/16/2022] Open
Abstract
Single nucleotide polymorphisms (SNPs) are widely used in functional genomics and genetics research work. The high-quality sequence of rice genome has provided a genome-wide SNP and proteome resource. However, the impact of SNPs on protein phosphorylation status in rice is not fully understood. In this paper, we firstly updated rice SNP resource based on the new rice genome Ver. 7.0, then systematically analyzed the potential impact of Non-synonymous SNPs (nsSNPs) on the protein phosphorylation status. There were 3,897,312 SNPs in Ver. 7.0 rice genome, among which 9.9% was nsSNPs. Whilst, a total 2,508,261 phosphorylated sites were predicted in rice proteome. Interestingly, we observed that 150,197 (39.1%) nsSNPs could influence protein phosphorylation status, among which 52.2% might induce changes of protein kinase (PK) types for adjacent phosphorylation sites. We constructed a database, SNP_rice, to deposit the updated rice SNP resource and phosSNPs information. It was freely available to academic researchers at http://bioinformatics.fafu.edu.cn. As a case study, we detected five nsSNPs that potentially influenced heterotrimeric G proteins phosphorylation status in rice, indicating that genetic polymorphisms showed impact on the signal transduction by influencing the phosphorylation status of heterotrimeric G proteins. The results in this work could be a useful resource for future experimental identification and provide interesting information for better rice breeding.
Collapse
|
22
|
Seol YJ, Won SY, Shin Y, Lee JY, Chun JS, Kim YK, Kim CK. A Multilayered Screening Method for the Identification of Regulatory Genes in Rice by Agronomic Traits. Evol Bioinform Online 2016; 12:253-262. [PMID: 27840573 PMCID: PMC5094579 DOI: 10.4137/ebo.s40622] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/22/2016] [Accepted: 09/30/2016] [Indexed: 12/22/2022] Open
Abstract
We developed a multilayered screening method that integrates both genome and transcriptome data to effectively identify regulatory genes in rice (Oryza sativa). We tested our method using eight rice accessions that differed in three important nutritional and agricultural traits, anthocyanin biosynthesis, amylose content, and heading date. In the genome resequencing of eight rice accessions with 24 RNA sequencing experiments, 98% of the preprocessed reads could be uniquely mapped to the reference genome, resulting in the identification of 42,699 unique transcripts. Comparison between black and white rice cultivars showed evidence of intensive selective sweeps in chromosomes 3, 10, and 12. A total of 131 genes were differentially expressed among the black rice cultivars and found to be associated with three Gene Ontology terms (secondary metabolic process, biosynthetic process, and response to stimulus). We identified nonsynonymous Single Nucleotide Polymorphism (SNP) that likely play an important role in determining the agronomic traits differences, two upregulated and three downregulated genes in the black cultivars, and two downregulated genes in the white cultivars. The three agronomic traits were clearly grouped together by the developmental stages, regardless of any other traits, suggesting that the developmental stage is the most important factor that triggers global changes in gene expression. Interestingly, glutinous and nonglutinous black rice cultivars were distinguished from one another by different heading dates.
Collapse
Affiliation(s)
- Young-Joo Seol
- Genomics Division, National Institute of Agricultural Sciences, Jeonju, Republic of Korea
| | - So Youn Won
- Genomics Division, National Institute of Agricultural Sciences, Jeonju, Republic of Korea
| | - Younhee Shin
- Codes Division, Insilicogen Inc., Suwon, Gyeonggi-do, Korea
| | - Jong-Yeol Lee
- Functional Biomaterial Division, National Academy of Agricultural Science, Jeonju, Korea
| | - Jong-Sik Chun
- School of Biological Sciences and Bioinformatics Institute, Seoul National University, Seoul, Korea
| | - Yong-Kab Kim
- School of Electrical Information Communication Engineering, Wonkwang University, Iksan, Korea
| | - Chang-Kug Kim
- Genomics Division, National Institute of Agricultural Sciences, Jeonju, Republic of Korea
| |
Collapse
|
23
|
Dey A, Samanta MK, Gayen S, Maiti MK. The sucrose non-fermenting 1-related kinase 2 gene SAPK9 improves drought tolerance and grain yield in rice by modulating cellular osmotic potential, stomatal closure and stress-responsive gene expression. BMC PLANT BIOLOGY 2016; 16:158. [PMID: 27411911 PMCID: PMC4944446 DOI: 10.1186/s12870-016-0845-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 07/05/2016] [Indexed: 05/05/2023]
Abstract
BACKGROUND Family members of sucrose non-fermenting 1-related kinase 2 (SnRK2), being plant-specific serine/threonine protein kinases, constitute the central core of abscisic acid (ABA)-dependent and ABA-independent signaling pathways, and are key regulators of abiotic stress adaptation in plants. We report here the functional characterization of SAPK9 gene, one of the 10 SnRK2s of rice, through developing gain-of-function and loss-of-function phenotypes by transgenesis. RESULTS The gene expression profiling revealed that the abundance of single gene-derived SAPK9 transcript was significantly higher in drought-tolerant rice genotypes than the drought-sensitive ones, and its expression was comparatively greater in reproductive stage than the vegetative stage. The highest expression of SAPK9 gene in drought-tolerant Oryza rufipogon prompted us to clone and characterise the CDS of this allele in details. The SAPK9 transcript expression was found to be highest in leaf and upregulated during drought stress and ABA treatment. In silico homology modelling of SAPK9 with Arabidopsis OST1 protein showed the bilobal kinase fold structure of SAPK9, which upon bacterial expression was able to phosphorylate itself, histone III and OsbZIP23 as substrates in vitro. Transgenic overexpression (OE) of SAPK9 CDS from O. rufipogon in a drought-sensitive indica rice genotype exhibited significantly improved drought tolerance in comparison to transgenic silencing (RNAi) lines and non-transgenic (NT) plants. In contrast to RNAi and NT plants, the enhanced drought tolerance of OE lines was concurrently supported by the upgraded physiological indices with respect to water retention capacity, soluble sugar and proline content, stomatal closure, membrane stability, and cellular detoxification. Upregulated transcript expressions of six ABA-dependent stress-responsive genes and increased sensitivity to exogenous ABA of OE lines indicate that the SAPK9 is a positive regulator of ABA-mediated stress signaling pathways in rice. The yield-related traits of OE lines were augmented significantly, which resulted from the highest percentage of fertile pollens in OE lines when compared with RNAi and NT plants. CONCLUSION The present study establishes the functional role of SAPK9 as transactivating kinase and potential transcriptional activator in drought stress adaptation of rice plant. The SAPK9 gene has potential usefulness in transgenic breeding for improving drought tolerance and grain yield in crop plants.
Collapse
Affiliation(s)
- Avishek Dey
- />Advanced Laboratory for Plant Genetic Engineering, Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, Kharagpur, 721302 India
| | - Milan Kumar Samanta
- />Advanced Laboratory for Plant Genetic Engineering, Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, Kharagpur, 721302 India
| | - Srimonta Gayen
- />Advanced Laboratory for Plant Genetic Engineering, Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, Kharagpur, 721302 India
- />Present address: Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109 USA
| | - Mrinal K. Maiti
- />Advanced Laboratory for Plant Genetic Engineering, Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, Kharagpur, 721302 India
- />Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302 India
| |
Collapse
|
24
|
Upadhyaya HD, Bajaj D, Das S, Kumar V, Gowda CLL, Sharma S, Tyagi AK, Parida SK. Genetic dissection of seed-iron and zinc concentrations in chickpea. Sci Rep 2016; 6:24050. [PMID: 27063651 PMCID: PMC4827059 DOI: 10.1038/srep24050] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 03/18/2016] [Indexed: 02/07/2023] Open
Abstract
The SNP-based high-resolution QTL mapping mapped eight major genomic regions harbouring robust QTLs governing seed-Fe and Zn concentrations (39.4% combined phenotypic variation explained/PVE) on six chromosomes of an intra-specific high-density genetic linkage map (1.56 cM map-density). 24620 SNPs discovered from genome-wide GBS (genotyping-by-sequencing) and 13 known cloned Fe and Zn contents-related chickpea gene-orthologs were genotyped in a structured population of 92 sequenced desi and kabuli accessions. The large-scale 16591 SNP genotyping- and phenotyping-based GWAS (genome-wide association study) identified 16 genomic loci/genes associated (29% combined PVE) with seed-Fe and Zn concentrations. Of these, 11 trait-associated SNPs in the genes linked tightly with eight QTLs were validated by QTL mapping. The seed-specific expression, including pronounced differential-regulation of 16 trait-associated genes particularly in accessions/mapping individuals with contrasting level of seed-Fe and Zn contents was apparent. Collectively, the aforementioned rapid integrated genomic strategy led to delineate novel functional non-synonymous and regulatory SNP allelic-variants from 16 known/candidate genes, including three strong trait-associated genes (encoding late embryogenesis abundant and yellow stripe-like 1 protein, and vacuolar protein sorting-associated protein) and eight major QTLs regulating seed-Fe and Zn concentrations in chickpea. These essential inputs thus have potential to be deployed in marker-assisted genetic enhancement for developing nutritionally-rich iron/zinc-biofortified chickpea cultivars.
Collapse
Affiliation(s)
- Hari D Upadhyaya
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502324, Telangana, India
| | - Deepak Bajaj
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Shouvik Das
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Vinod Kumar
- National Research Centre on Plant Biotechnology (NRCPB), New Delhi 110012, India
| | - C L L Gowda
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502324, Telangana, India
| | - Shivali Sharma
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502324, Telangana, India
| | - Akhilesh K Tyagi
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Swarup K Parida
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
25
|
Genome-wide generation and use of informative intron-spanning and intron-length polymorphism markers for high-throughput genetic analysis in rice. Sci Rep 2016; 6:23765. [PMID: 27032371 PMCID: PMC4817136 DOI: 10.1038/srep23765] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 03/11/2016] [Indexed: 12/13/2022] Open
Abstract
We developed genome-wide 84634 ISM (intron-spanning marker) and 16510 InDel-fragment length polymorphism-based ILP (intron-length polymorphism) markers from genes physically mapped on 12 rice chromosomes. These genic markers revealed much higher amplification-efficiency (80%) and polymorphic-potential (66%) among rice accessions even by a cost-effective agarose gel-based assay. A wider level of functional molecular diversity (17-79%) and well-defined precise admixed genetic structure was assayed by 3052 genome-wide markers in a structured population of indica, japonica, aromatic and wild rice. Six major grain weight QTLs (11.9-21.6% phenotypic variation explained) were mapped on five rice chromosomes of a high-density (inter-marker distance: 0.98 cM) genetic linkage map (IR 64 x Sonasal) anchored with 2785 known/candidate gene-derived ISM and ILP markers. The designing of multiple ISM and ILP markers (2 to 4 markers/gene) in an individual gene will broaden the user-preference to select suitable primer combination for efficient assaying of functional allelic variation/diversity and realistic estimation of differential gene expression profiles among rice accessions. The genomic information generated in our study is made publicly accessible through a user-friendly web-resource, "Oryza ISM-ILP marker" database. The known/candidate gene-derived ISM and ILP markers can be enormously deployed to identify functionally relevant trait-associated molecular tags by optimal-resource expenses, leading towards genomics-assisted crop improvement in rice.
Collapse
|
26
|
Huq A, Akter S, Nou IS, Kim HT, Jung YJ, Kang KK. Identification of functional SNPs in genes and their effects on plant phenotypes. ACTA ACUST UNITED AC 2016. [DOI: 10.5010/jpb.2016.43.1.1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Amdadul Huq
- Department of Horticulture, Hankyong National University, Ansung City, Gyeonggi-do, 17579, Republic of Korea
| | - Shahina Akter
- Department of Horticulture, Hankyong National University, Ansung City, Gyeonggi-do, 17579, Republic of Korea
| | - Ill Sup Nou
- Department of Horticulture, Sunchon National University, 255, Jungang-ro, Suncheon, Jeonam-do, 57922, Korea
| | - Hoy Taek Kim
- Department of Horticulture, Sunchon National University, 255, Jungang-ro, Suncheon, Jeonam-do, 57922, Korea
| | - Yu Jin Jung
- Department of Horticulture, Hankyong National University, Ansung City, Gyeonggi-do, 17579, Republic of Korea
| | - Kwon Kyoo Kang
- Department of Horticulture, Hankyong National University, Ansung City, Gyeonggi-do, 17579, Republic of Korea
| |
Collapse
|
27
|
Dey A, Samanta MK, Gayen S, Sen SK, Maiti MK. Enhanced Gene Expression Rather than Natural Polymorphism in Coding Sequence of the OsbZIP23 Determines Drought Tolerance and Yield Improvement in Rice Genotypes. PLoS One 2016; 11:e0150763. [PMID: 26959651 PMCID: PMC4784890 DOI: 10.1371/journal.pone.0150763] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 02/18/2016] [Indexed: 11/19/2022] Open
Abstract
Drought is one of the major limiting factors for productivity of crops including rice (Oryza sativa L.). Understanding the role of allelic variations of key regulatory genes involved in stress-tolerance is essential for developing an effective strategy to combat drought. The bZIP transcription factors play a crucial role in abiotic-stress adaptation in plants via abscisic acid (ABA) signaling pathway. The present study aimed to search for allelic polymorphism in the OsbZIP23 gene across selected drought-tolerant and drought-sensitive rice genotypes, and to characterize the new allele through overexpression (OE) and gene-silencing (RNAi). Analyses of the coding DNA sequence (CDS) of the cloned OsbZIP23 gene revealed single nucleotide polymorphism at four places and a 15-nucleotide deletion at one place. The single-copy OsbZIP23 gene is expressed at relatively higher level in leaf tissues of drought-tolerant genotypes, and its abundance is more in reproductive stage. Cloning and sequence analyses of the OsbZIP23-promoter from drought-tolerant O. rufipogon and drought-sensitive IR20 cultivar showed variation in the number of stress-responsive cis-elements and a 35-nucleotide deletion at 5’-UTR in IR20. Analysis of the GFP reporter gene function revealed that the promoter activity of O. rufipogon is comparatively higher than that of IR20. The overexpression of any of the two polymorphic forms (1083 bp and 1068 bp CDS) of OsbZIP23 improved drought tolerance and yield-related traits significantly by retaining higher content of cellular water, soluble sugar and proline; and exhibited decrease in membrane lipid peroxidation in comparison to RNAi lines and non-transgenic plants. The OE lines showed higher expression of target genes-OsRab16B, OsRab21 and OsLEA3-1 and increased ABA sensitivity; indicating that OsbZIP23 is a positive transcriptional-regulator of the ABA-signaling pathway. Taken together, the present study concludes that the enhanced gene expression rather than natural polymorphism in coding sequence of OsbZIP23 is accountable for improved drought tolerance and yield performance in rice genotypes.
Collapse
MESH Headings
- Abscisic Acid/pharmacology
- Adaptation, Physiological/genetics
- Alleles
- Base Sequence
- Cloning, Molecular
- Droughts
- Gene Dosage
- Gene Expression Regulation, Plant/drug effects
- Gene Silencing/drug effects
- Genes, Plant
- Genes, Reporter
- Genotype
- Germination/drug effects
- Green Fluorescent Proteins/metabolism
- Molecular Sequence Data
- Open Reading Frames/genetics
- Oryza/drug effects
- Oryza/genetics
- Oryza/growth & development
- Oxidative Stress/drug effects
- Oxidative Stress/genetics
- Plant Leaves/drug effects
- Plant Leaves/physiology
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Plants, Genetically Modified
- Polymorphism, Genetic
- Promoter Regions, Genetic
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Stress, Physiological/drug effects
- Stress, Physiological/genetics
- Water
Collapse
Affiliation(s)
- Avishek Dey
- Adv. Lab. for Plant Genetic Engineering, Advanced Technology Development Center, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Milan Kumar Samanta
- Adv. Lab. for Plant Genetic Engineering, Advanced Technology Development Center, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Srimonta Gayen
- Adv. Lab. for Plant Genetic Engineering, Advanced Technology Development Center, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Soumitra K. Sen
- Adv. Lab. for Plant Genetic Engineering, Advanced Technology Development Center, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
- * E-mail: (SKS); ; (MKM)
| | - Mrinal K. Maiti
- Adv. Lab. for Plant Genetic Engineering, Advanced Technology Development Center, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
- * E-mail: (SKS); ; (MKM)
| |
Collapse
|
28
|
Patil G, Do T, Vuong TD, Valliyodan B, Lee JD, Chaudhary J, Shannon JG, Nguyen HT. Genomic-assisted haplotype analysis and the development of high-throughput SNP markers for salinity tolerance in soybean. Sci Rep 2016; 6:19199. [PMID: 26781337 PMCID: PMC4726057 DOI: 10.1038/srep19199] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 12/07/2015] [Indexed: 01/12/2023] Open
Abstract
Soil salinity is a limiting factor of crop yield. The soybean is sensitive to soil salinity, and a dominant gene, Glyma03g32900 is primarily responsible for salt-tolerance. The identification of high throughput and robust markers as well as the deployment of salt-tolerant cultivars are effective approaches to minimize yield loss under saline conditions. We utilized high quality (15x) whole-genome resequencing (WGRS) on 106 diverse soybean lines and identified three major structural variants and allelic variation in the promoter and genic regions of the GmCHX1 gene. The discovery of single nucleotide polymorphisms (SNPs) associated with structural variants facilitated the design of six KASPar assays. Additionally, haplotype analysis and pedigree tracking of 93 U.S. ancestral lines were performed using publically available WGRS datasets. Identified SNP markers were validated, and a strong correlation was observed between the genotype and salt treatment phenotype (leaf scorch, chlorophyll content and Na(+) accumulation) using a panel of 104 soybean lines and, an interspecific bi-parental population (F8) from PI483463 x Hutcheson. These markers precisely identified salt-tolerant/sensitive genotypes (>91%), and different structural-variants (>98%). These SNP assays, supported by accurate phenotyping, haplotype analyses and pedigree tracking information, will accelerate marker-assisted selection programs to enhance the development of salt-tolerant soybean cultivars.
Collapse
Affiliation(s)
- Gunvant Patil
- National Center for Soybean Biotechnology and Division of Plant Sciences, University of Missouri, Columbia, 65211, MO, USA
| | - Tuyen Do
- National Center for Soybean Biotechnology and Division of Plant Sciences, University of Missouri, Columbia, 65211, MO, USA
| | - Tri D. Vuong
- National Center for Soybean Biotechnology and Division of Plant Sciences, University of Missouri, Columbia, 65211, MO, USA
| | - Babu Valliyodan
- National Center for Soybean Biotechnology and Division of Plant Sciences, University of Missouri, Columbia, 65211, MO, USA
| | - Jeong-Dong Lee
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Juhi Chaudhary
- National Center for Soybean Biotechnology and Division of Plant Sciences, University of Missouri, Columbia, 65211, MO, USA
| | - J. Grover Shannon
- National Center for Soybean Biotechnology and Division of Plant Sciences, University of Missouri, Columbia, 65211, MO, USA
| | - Henry T. Nguyen
- National Center for Soybean Biotechnology and Division of Plant Sciences, University of Missouri, Columbia, 65211, MO, USA
| |
Collapse
|
29
|
Comparative transcriptome analysis highlights the crucial roles of photosynthetic system in drought stress adaptation in upland rice. Sci Rep 2016; 6:19349. [PMID: 26777777 PMCID: PMC4726002 DOI: 10.1038/srep19349] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 12/01/2015] [Indexed: 11/19/2022] Open
Abstract
Drought stress is one of the major adverse environmental factors reducing plant growth. With the aim to elucidate the underlying molecular basis of rice response to drought stress, comparative transcriptome analysis was conducted between drought susceptible rice cultivar Zhenshan97 and tolerant cultivar IRAT109 at the seedling stage. 436 genes showed differential expression and mainly enriched in the Gene Ontology (GO) terms of stress defence. A large number of variations exist between these two genotypes including 2564 high-quality insertion and deletions (INDELs) and 70,264 single nucleotide polymorphism (SNPs). 1041 orthologous gene pairs show the ratio of nonsynonymous nucleotide substitution rate to synonymous nucleotide substitutions rate (Ka/Ks) larger than 1.5, indicating the rapid adaptation to different environments during domestication. GO and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of positive selection genes suggested that photosynthesis represents the most significant category. The collocation of positively selected genes with the QTLs of photosynthesis and the different photosynthesis performance of these two cultivars further illuminate the crucial function of photosynthesis in rice adaptation to drought stress. Our results also provide fruitful functional markers and candidate genes for future genetic research and improvement of drought tolerance in rice.
Collapse
|
30
|
Daware A, Das S, Srivastava R, Badoni S, Singh AK, Agarwal P, Parida SK, Tyagi AK. An Efficient Strategy Combining SSR Markers- and Advanced QTL-seq-driven QTL Mapping Unravels Candidate Genes Regulating Grain Weight in Rice. FRONTIERS IN PLANT SCIENCE 2016; 7:1535. [PMID: 27833617 PMCID: PMC5080349 DOI: 10.3389/fpls.2016.01535] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 09/29/2016] [Indexed: 05/05/2023]
Abstract
Development and use of genome-wide informative simple sequence repeat (SSR) markers and novel integrated genomic strategies are vital to drive genomics-assisted breeding applications and for efficient dissection of quantitative trait loci (QTLs) underlying complex traits in rice. The present study developed 6244 genome-wide informative SSR markers exhibiting in silico fragment length polymorphism based on repeat-unit variations among genomic sequences of 11 indica, japonica, aus, and wild rice accessions. These markers were mapped on diverse coding and non-coding sequence components of known cloned/candidate genes annotated from 12 chromosomes and revealed a much higher amplification (97%) and polymorphic potential (88%) along with wider genetic/functional diversity level (16-74% with a mean 53%) especially among accessions belonging to indica cultivar group, suggesting their utility in large-scale genomics-assisted breeding applications in rice. A high-density 3791 SSR markers-anchored genetic linkage map (IR 64 × Sonasal) spanning 2060 cM total map-length with an average inter-marker distance of 0.54 cM was generated. This reference genetic map identified six major genomic regions harboring robust QTLs (31% combined phenotypic variation explained with a 5.7-8.7 LOD) governing grain weight on six rice chromosomes. One strong grain weight major QTL region (OsqGW5.1) was narrowed-down by integrating traditional QTL mapping with high-resolution QTL region-specific integrated SSR and single nucleotide polymorphism markers-based QTL-seq analysis and differential expression profiling. This led us to delineate two natural allelic variants in two known cis-regulatory elements (RAV1AAT and CARGCW8GAT) of glycosyl hydrolase and serine carboxypeptidase genes exhibiting pronounced seed-specific differential regulation in low (Sonasal) and high (IR 64) grain weight mapping parental accessions. Our genome-wide SSR marker resource (polymorphic within/between diverse cultivar groups) and integrated genomic strategy can efficiently scan functionally relevant potential molecular tags (markers, candidate genes and alleles) regulating complex agronomic traits (grain weight) and expedite marker-assisted genetic enhancement in rice.
Collapse
Affiliation(s)
- Anurag Daware
- National Institute of Plant Genome Research (NIPGR)New Delhi, India
| | - Sweta Das
- National Institute of Plant Genome Research (NIPGR)New Delhi, India
| | - Rishi Srivastava
- National Institute of Plant Genome Research (NIPGR)New Delhi, India
| | - Saurabh Badoni
- National Institute of Plant Genome Research (NIPGR)New Delhi, India
| | - Ashok K. Singh
- Rice Section, Division of Genetics, Indian Agricultural Research Institute (IARI)New Delhi, India
| | - Pinky Agarwal
- National Institute of Plant Genome Research (NIPGR)New Delhi, India
| | - Swarup K. Parida
- National Institute of Plant Genome Research (NIPGR)New Delhi, India
- *Correspondence: Akhilesh K. Tyagi, Swarup K. Parida, ;
| | - Akhilesh K. Tyagi
- National Institute of Plant Genome Research (NIPGR)New Delhi, India
- *Correspondence: Akhilesh K. Tyagi, Swarup K. Parida, ;
| |
Collapse
|
31
|
Upadhyaya HD, Bajaj D, Narnoliya L, Das S, Kumar V, Gowda CLL, Sharma S, Tyagi AK, Parida SK. Genome-Wide Scans for Delineation of Candidate Genes Regulating Seed-Protein Content in Chickpea. FRONTIERS IN PLANT SCIENCE 2016; 7:302. [PMID: 27047499 PMCID: PMC4803732 DOI: 10.3389/fpls.2016.00302] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 02/25/2016] [Indexed: 05/17/2023]
Abstract
Identification of potential genes/alleles governing complex seed-protein content (SPC) is essential in marker-assisted breeding for quality trait improvement of chickpea. Henceforth, the present study utilized an integrated genomics-assisted breeding strategy encompassing trait association analysis, selective genotyping in traditional bi-parental mapping population and differential expression profiling for the first-time to understand the complex genetic architecture of quantitative SPC trait in chickpea. For GWAS (genome-wide association study), high-throughput genotyping information of 16376 genome-based SNPs (single nucleotide polymorphism) discovered from a structured population of 336 sequenced desi and kabuli accessions [with 150-200 kb LD (linkage disequilibrium) decay] was utilized. This led to identification of seven most effective genomic loci (genes) associated [10-20% with 41% combined PVE (phenotypic variation explained)] with SPC trait in chickpea. Regardless of the diverse desi and kabuli genetic backgrounds, a comparable level of association potential of the identified seven genomic loci with SPC trait was observed. Five SPC-associated genes were validated successfully in parental accessions and homozygous individuals of an intra-specific desi RIL (recombinant inbred line) mapping population (ICC 12299 × ICC 4958) by selective genotyping. The seed-specific expression, including differential up-regulation (>four fold) of six SPC-associated genes particularly in accessions, parents and homozygous individuals of the aforementioned mapping population with a high level of contrasting SPC (21-22%) was evident. Collectively, the integrated genomic approach delineated diverse naturally occurring novel functional SNP allelic variants in six potential candidate genes regulating SPC trait in chickpea. Of these, a non-synonymous SNP allele-carrying zinc finger transcription factor gene exhibiting strong association with SPC trait was found to be the most promising in chickpea. The informative functionally relevant molecular tags scaled-down essentially have potential to accelerate marker-assisted genetic improvement by developing nutritionally rich chickpea cultivars with enhanced SPC.
Collapse
Affiliation(s)
- Hari D. Upadhyaya
- International Crops Research Institute for the Semi-Arid TropicsPatancheru, India
| | - Deepak Bajaj
- National Institute of Plant Genome ResearchNew Delhi, India
| | | | - Shouvik Das
- National Institute of Plant Genome ResearchNew Delhi, India
| | - Vinod Kumar
- National Research Centre on Plant BiotechnologyNew Delhi, India
| | - C. L. L. Gowda
- International Crops Research Institute for the Semi-Arid TropicsPatancheru, India
| | - Shivali Sharma
- International Crops Research Institute for the Semi-Arid TropicsPatancheru, India
| | | | - Swarup K. Parida
- National Institute of Plant Genome ResearchNew Delhi, India
- *Correspondence: Swarup K. Parida, ;
| |
Collapse
|
32
|
Xing L, Zhang D, Song X, Weng K, Shen Y, Li Y, Zhao C, Ma J, An N, Han M. Genome-Wide Sequence Variation Identification and Floral-Associated Trait Comparisons Based on the Re-sequencing of the 'Nagafu No. 2' and 'Qinguan' Varieties of Apple (Malus domestica Borkh.). FRONTIERS IN PLANT SCIENCE 2016; 7:908. [PMID: 27446138 PMCID: PMC4921462 DOI: 10.3389/fpls.2016.00908] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 06/08/2016] [Indexed: 05/14/2023]
Abstract
Apple (Malus domestica Borkh.) is a commercially important fruit worldwide. Detailed information on genomic DNA polymorphisms, which are important for understanding phenotypic traits, is lacking for the apple. We re-sequenced two elite apple varieties, 'Nagafu No. 2' and 'Qinguan,' which have different characteristics. We identified many genomic variations, including 2,771,129 single nucleotide polymorphisms (SNPs), 82,663 structural variations (SVs), and 1,572,803 insertion/deletions (INDELs) in 'Nagafu No. 2' and 2,262,888 SNPs, 63,764 SVs, and 1,294,060 INDELs in 'Qinguan.' The 'SNP,' 'INDEL,' and 'SV' distributions were non-random, with variation-rich or -poor regions throughout the genomes. In 'Nagafu No. 2' and 'Qinguan' there were 171,520 and 147,090 non-synonymous SNPs spanning 23,111 and 21,400 genes, respectively; 3,963 and 3,196 SVs in 3,431 and 2,815 genes, respectively; and 1,834 and 1,451 INDELs in 1,681 and 1,345 genes, respectively. Genetic linkage maps of 190 flowering genes associated with multiple flowering pathways in 'Nagafu No. 2,' 'Qinguan,' and 'Golden Delicious,' identified complex regulatory mechanisms involved in floral induction, flower bud formation, and flowering characteristics, which might reflect the genetic variation of the flowering genes. Expression profiling of key flowering genes in buds and leaves suggested that the photoperiod and autonomous flowering pathways are major contributors to the different floral-associated traits between 'Nagafu No. 2' and 'Qinguan.' The genome variation data provided a foundation for the further exploration of apple diversity and gene-phenotype relationships, and for future research on molecular breeding to improve apple and related species.
Collapse
|
33
|
Bajaj D, Das S, Upadhyaya HD, Ranjan R, Badoni S, Kumar V, Tripathi S, Gowda CLL, Sharma S, Singh S, Tyagi AK, Parida SK. A Genome-wide Combinatorial Strategy Dissects Complex Genetic Architecture of Seed Coat Color in Chickpea. FRONTIERS IN PLANT SCIENCE 2015; 6:979. [PMID: 26635822 PMCID: PMC4647070 DOI: 10.3389/fpls.2015.00979] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Accepted: 10/26/2015] [Indexed: 05/29/2023]
Abstract
The study identified 9045 high-quality SNPs employing both genome-wide GBS- and candidate gene-based SNP genotyping assays in 172, including 93 cultivated (desi and kabuli) and 79 wild chickpea accessions. The GWAS in a structured population of 93 sequenced accessions detected 15 major genomic loci exhibiting significant association with seed coat color. Five seed color-associated major genomic loci underlying robust QTLs mapped on a high-density intra-specific genetic linkage map were validated by QTL mapping. The integration of association and QTL mapping with gene haplotype-specific LD mapping and transcript profiling identified novel allelic variants (non-synonymous SNPs) and haplotypes in a MATE secondary transporter gene regulating light/yellow brown and beige seed coat color differentiation in chickpea. The down-regulation and decreased transcript expression of beige seed coat color-associated MATE gene haplotype was correlated with reduced proanthocyanidins accumulation in the mature seed coats of beige than light/yellow brown seed colored desi and kabuli accessions for their coloration/pigmentation. This seed color-regulating MATE gene revealed strong purifying selection pressure primarily in LB/YB seed colored desi and wild Cicer reticulatum accessions compared with the BE seed colored kabuli accessions. The functionally relevant molecular tags identified have potential to decipher the complex transcriptional regulatory gene function of seed coat coloration and for understanding the selective sweep-based seed color trait evolutionary pattern in cultivated and wild accessions during chickpea domestication. The genome-wide integrated approach employed will expedite marker-assisted genetic enhancement for developing cultivars with desirable seed coat color types in chickpea.
Collapse
Affiliation(s)
- Deepak Bajaj
- National Institute of Plant Genome ResearchNew Delhi, India
| | - Shouvik Das
- National Institute of Plant Genome ResearchNew Delhi, India
| | - Hari D. Upadhyaya
- International Crops Research Institute for the Semi-Arid TropicsTelangana, India
| | - Rajeev Ranjan
- National Institute of Plant Genome ResearchNew Delhi, India
| | - Saurabh Badoni
- National Institute of Plant Genome ResearchNew Delhi, India
| | - Vinod Kumar
- National Research Centre on Plant BiotechnologyNew Delhi, India
| | - Shailesh Tripathi
- Division of Genetics, Indian Agricultural Research InstituteNew Delhi, India
| | | | - Shivali Sharma
- International Crops Research Institute for the Semi-Arid TropicsTelangana, India
| | - Sube Singh
- International Crops Research Institute for the Semi-Arid TropicsTelangana, India
| | | | | |
Collapse
|
34
|
da Silva JM, Giachetto PF, da Silva LOC, Cintra LC, Paiva SR, Caetano AR, Yamagishi MEB. Genomic Variants Revealed by Invariably Missing Genotypes in Nelore Cattle. PLoS One 2015; 10:e0136035. [PMID: 26305794 PMCID: PMC4549312 DOI: 10.1371/journal.pone.0136035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 07/29/2015] [Indexed: 12/18/2022] Open
Abstract
High density genotyping panels have been used in a wide range of applications. From population genetics to genome-wide association studies, this technology still offers the lowest cost and the most consistent solution for generating SNP data. However, in spite of the application, part of the generated data is always discarded from final datasets based on quality control criteria used to remove unreliable markers. Some discarded data consists of markers that failed to generate genotypes, labeled as missing genotypes. A subset of missing genotypes that occur in the whole population under study may be caused by technical issues but can also be explained by the presence of genomic variations that are in the vicinity of the assayed SNP and that prevent genotyping probes from annealing. The latter case may contain relevant information because these missing genotypes might be used to identify population-specific genomic variants. In order to assess which case is more prevalent, we used Illumina HD Bovine chip genotypes from 1,709 Nelore (Bos indicus) samples. We found 3,200 missing genotypes among the whole population. NGS re-sequencing data from 8 sires were used to verify the presence of genomic variations within their flanking regions in 81.56% of these missing genotypes. Furthermore, we discovered 3,300 novel SNPs/Indels, 31% of which are located in genes that may affect traits of importance for the genetic improvement of cattle production.
Collapse
Affiliation(s)
- Joaquim Manoel da Silva
- Faculdade de Ciências Agrárias, Biológicas e Sociais Aplicadas, Universidade do Estado de Mato Grosso (UNEMAT), Nova Xavantina, Mato Grosso, Brazil
- Programa de Pós-Graduação em Genética e Biologia Molecular–Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
- * E-mail:
| | - Poliana Fernanda Giachetto
- Laboratório Multiusuário de Bioinformática (LMB)—Embrapa Informática Agropecuária, Campinas, São Paulo, Brazil
| | | | - Leandro Carrijo Cintra
- Laboratório Multiusuário de Bioinformática (LMB)—Embrapa Informática Agropecuária, Campinas, São Paulo, Brazil
| | - Samuel Rezende Paiva
- Embrapa–Secretaria de Relações Internacionais, Brasília, Distrito Federal, Brazil
| | | | | |
Collapse
|
35
|
Mehra P, Pandey BK, Giri J. Genome-wide DNA polymorphisms in low Phosphate tolerant and sensitive rice genotypes. Sci Rep 2015; 5:13090. [PMID: 26278778 PMCID: PMC4538390 DOI: 10.1038/srep13090] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 07/17/2015] [Indexed: 12/30/2022] Open
Abstract
Soil Phosphorus (P) deficiency is one of the major challenges to rice crop world-wide. Modern rice genotypes are highly P-responsive and rely on high input of P fertilizers. However, low P tolerant traditional cultivars and landraces have genetic potential to sustain well under low P. Identification of high resolution DNA polymorphisms (SNPs and InDels) in such contrasting genotypes is largely missing for low P response at gene levels. Here, we report high quality DNA polymorphisms in low P sensitive genotype, PB1 and tolerant traditional genotype, Dular. We performed whole genome resequencing using Illumina NGS platform and identified a total of 5,157,939 sequence variants in PB1 and Dular with reference to Nipponbare genome. We have identified approximately 2.3 million and 2.9 million high quality polymorphisms in PB1 and Dular, respectively, with an average read depth of ≥24X. We further mapped several DNA polymorphisms (non-synonymous and regulatory variants) having potential functional significance to key Phosphate Starvation Responsive (PSR) and root architecture genes in Dular and Kasalath using a compiled list of low P responsive genes. These identified variants can serve as a useful source of genetic variability for improving low P tolerance and root architecture of high yielding modern genotypes.
Collapse
Affiliation(s)
- Poonam Mehra
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Bipin K Pandey
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Jitender Giri
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| |
Collapse
|
36
|
Kujur A, Bajaj D, Upadhyaya HD, Das S, Ranjan R, Shree T, Saxena MS, Badoni S, Kumar V, Tripathi S, Gowda CLL, Sharma S, Singh S, Tyagi AK, Parida SK. A genome-wide SNP scan accelerates trait-regulatory genomic loci identification in chickpea. Sci Rep 2015; 5:11166. [PMID: 26058368 PMCID: PMC4461920 DOI: 10.1038/srep11166] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 05/18/2015] [Indexed: 01/09/2023] Open
Abstract
We identified 44844 high-quality SNPs by sequencing 92 diverse chickpea accessions belonging to a seed and pod trait-specific association panel using reference genome- and de novo-based GBS (genotyping-by-sequencing) assays. A GWAS (genome-wide association study) in an association panel of 211, including the 92 sequenced accessions, identified 22 major genomic loci showing significant association (explaining 23-47% phenotypic variation) with pod and seed number/plant and 100-seed weight. Eighteen trait-regulatory major genomic loci underlying 13 robust QTLs were validated and mapped on an intra-specific genetic linkage map by QTL mapping. A combinatorial approach of GWAS, QTL mapping and gene haplotype-specific LD mapping and transcript profiling uncovered one superior haplotype and favourable natural allelic variants in the upstream regulatory region of a CesA-type cellulose synthase (Ca_Kabuli_CesA3) gene regulating high pod and seed number/plant (explaining 47% phenotypic variation) in chickpea. The up-regulation of this superior gene haplotype correlated with increased transcript expression of Ca_Kabuli_CesA3 gene in the pollen and pod of high pod/seed number accession, resulting in higher cellulose accumulation for normal pollen and pollen tube growth. A rapid combinatorial genome-wide SNP genotyping-based approach has potential to dissect complex quantitative agronomic traits and delineate trait-regulatory genomic loci (candidate genes) for genetic enhancement in crop plants, including chickpea.
Collapse
Affiliation(s)
- Alice Kujur
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Deepak Bajaj
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Hari D Upadhyaya
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502324, Andhra Pradesh, India
| | - Shouvik Das
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Rajeev Ranjan
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Tanima Shree
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Maneesha S Saxena
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Saurabh Badoni
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Vinod Kumar
- National Research Centre on Plant Biotechnology (NRCPB), New Delhi 110012, India
| | - Shailesh Tripathi
- Division of Genetics, Indian Agricultural Research Institute (IARI), New Delhi 110012, India
| | - C L L Gowda
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502324, Andhra Pradesh, India
| | - Shivali Sharma
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502324, Andhra Pradesh, India
| | - Sube Singh
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502324, Andhra Pradesh, India
| | - Akhilesh K Tyagi
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Swarup K Parida
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
37
|
Das S, Upadhyaya HD, Bajaj D, Kujur A, Badoni S, Laxmi, Kumar V, Tripathi S, Gowda CLL, Sharma S, Singh S, Tyagi AK, Parida SK. Deploying QTL-seq for rapid delineation of a potential candidate gene underlying major trait-associated QTL in chickpea. DNA Res 2015; 22:193-203. [PMID: 25922536 PMCID: PMC4463844 DOI: 10.1093/dnares/dsv004] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 03/20/2015] [Indexed: 11/24/2022] Open
Abstract
A rapid high-resolution genome-wide strategy for molecular mapping of major QTL(s)/gene(s) regulating important agronomic traits is vital for in-depth dissection of complex quantitative traits and genetic enhancement in chickpea. The present study for the first time employed a NGS-based whole-genome QTL-seq strategy to identify one major genomic region harbouring a robust 100-seed weight QTL using an intra-specific 221 chickpea mapping population (desi cv. ICC 7184 × desi cv. ICC 15061). The QTL-seq-derived major SW QTL (CaqSW1.1) was further validated by single-nucleotide polymorphism (SNP) and simple sequence repeat (SSR) marker-based traditional QTL mapping (47.6% R2 at higher LOD >19). This reflects the reliability and efficacy of QTL-seq as a strategy for rapid genome-wide scanning and fine mapping of major trait regulatory QTLs in chickpea. The use of QTL-seq and classical QTL mapping in combination narrowed down the 1.37 Mb (comprising 177 genes) major SW QTL (CaqSW1.1) region into a 35 kb genomic interval on desi chickpea chromosome 1 containing six genes. One coding SNP (G/A)-carrying constitutive photomorphogenic9 (COP9) signalosome complex subunit 8 (CSN8) gene of these exhibited seed-specific expression, including pronounced differential up-/down-regulation in low and high seed weight mapping parents and homozygous individuals during seed development. The coding SNP mined in this potential seed weight-governing candidate CSN8 gene was found to be present exclusively in all cultivated species/genotypes, but not in any wild species/genotypes of primary, secondary and tertiary gene pools. This indicates the effect of strong artificial and/or natural selection pressure on target SW locus during chickpea domestication. The proposed QTL-seq-driven integrated genome-wide strategy has potential to delineate major candidate gene(s) harbouring a robust trait regulatory QTL rapidly with optimal use of resources. This will further assist us to extrapolate the molecular mechanism underlying complex quantitative traits at a genome-wide scale leading to fast-paced marker-assisted genetic improvement in diverse crop plants, including chickpea.
Collapse
Affiliation(s)
- Shouvik Das
- National Institute of Plant Genome Research (NIPGR), New Delhi 110067, India
| | - Hari D Upadhyaya
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana 502324, India
| | - Deepak Bajaj
- National Institute of Plant Genome Research (NIPGR), New Delhi 110067, India
| | - Alice Kujur
- National Institute of Plant Genome Research (NIPGR), New Delhi 110067, India
| | - Saurabh Badoni
- National Institute of Plant Genome Research (NIPGR), New Delhi 110067, India
| | - Laxmi
- National Institute of Plant Genome Research (NIPGR), New Delhi 110067, India
| | - Vinod Kumar
- National Research Centre on Plant Biotechnology (NRCPB), New Delhi 110012, India
| | - Shailesh Tripathi
- Division of Genetics, Indian Agricultural Research Institute (IARI), New Delhi 110012, India
| | - C L Laxmipathi Gowda
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana 502324, India
| | - Shivali Sharma
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana 502324, India
| | - Sube Singh
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana 502324, India
| | - Akhilesh K Tyagi
- National Institute of Plant Genome Research (NIPGR), New Delhi 110067, India
| | - Swarup K Parida
- National Institute of Plant Genome Research (NIPGR), New Delhi 110067, India
| |
Collapse
|
38
|
Kujur A, Bajaj D, Upadhyaya HD, Das S, Ranjan R, Shree T, Saxena MS, Badoni S, Kumar V, Tripathi S, Gowda CLL, Sharma S, Singh S, Tyagi AK, Parida SK. Employing genome-wide SNP discovery and genotyping strategy to extrapolate the natural allelic diversity and domestication patterns in chickpea. FRONTIERS IN PLANT SCIENCE 2015; 6:162. [PMID: 25873920 PMCID: PMC4379880 DOI: 10.3389/fpls.2015.00162] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 03/01/2015] [Indexed: 05/19/2023]
Abstract
The genome-wide discovery and high-throughput genotyping of SNPs in chickpea natural germplasm lines is indispensable to extrapolate their natural allelic diversity, domestication, and linkage disequilibrium (LD) patterns leading to the genetic enhancement of this vital legume crop. We discovered 44,844 high-quality SNPs by sequencing of 93 diverse cultivated desi, kabuli, and wild chickpea accessions using reference genome- and de novo-based GBS (genotyping-by-sequencing) assays that were physically mapped across eight chromosomes of desi and kabuli. Of these, 22,542 SNPs were structurally annotated in different coding and non-coding sequence components of genes. Genes with 3296 non-synonymous and 269 regulatory SNPs could functionally differentiate accessions based on their contrasting agronomic traits. A high experimental validation success rate (92%) and reproducibility (100%) along with strong sensitivity (93-96%) and specificity (99%) of GBS-based SNPs was observed. This infers the robustness of GBS as a high-throughput assay for rapid large-scale mining and genotyping of genome-wide SNPs in chickpea with sub-optimal use of resources. With 23,798 genome-wide SNPs, a relatively high intra-specific polymorphic potential (49.5%) and broader molecular diversity (13-89%)/functional allelic diversity (18-77%) was apparent among 93 chickpea accessions, suggesting their tremendous applicability in rapid selection of desirable diverse accessions/inter-specific hybrids in chickpea crossbred varietal improvement program. The genome-wide SNPs revealed complex admixed domestication pattern, extensive LD estimates (0.54-0.68) and extended LD decay (400-500 kb) in a structured population inclusive of 93 accessions. These findings reflect the utility of our identified SNPs for subsequent genome-wide association study (GWAS) and selective sweep-based domestication trait dissection analysis to identify potential genomic loci (gene-associated targets) specifically regulating important complex quantitative agronomic traits in chickpea. The numerous informative genome-wide SNPs, natural allelic diversity-led domestication pattern, and LD-based information generated in our study have got multidimensional applicability with respect to chickpea genomics-assisted breeding.
Collapse
Affiliation(s)
- Alice Kujur
- National Institute of Plant Genome Research (NIPGR)New Delhi, India
| | - Deepak Bajaj
- National Institute of Plant Genome Research (NIPGR)New Delhi, India
| | - Hari D. Upadhyaya
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)Telangana, India
| | - Shouvik Das
- National Institute of Plant Genome Research (NIPGR)New Delhi, India
| | - Rajeev Ranjan
- National Institute of Plant Genome Research (NIPGR)New Delhi, India
| | - Tanima Shree
- National Institute of Plant Genome Research (NIPGR)New Delhi, India
| | | | - Saurabh Badoni
- National Institute of Plant Genome Research (NIPGR)New Delhi, India
| | - Vinod Kumar
- National Research Centre on Plant Biotechnology (NRCPB)New Delhi, India
| | - Shailesh Tripathi
- Division of Genetics, Indian Agricultural Research Institute (IARI)New Delhi, India
| | - C. L. L. Gowda
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)Telangana, India
| | - Shivali Sharma
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)Telangana, India
| | - Sube Singh
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)Telangana, India
| | | | - Swarup K. Parida
- National Institute of Plant Genome Research (NIPGR)New Delhi, India
| |
Collapse
|
39
|
Bajaj D, Upadhyaya HD, Khan Y, Das S, Badoni S, Shree T, Kumar V, Tripathi S, Gowda CLL, Singh S, Sharma S, Tyagi AK, Chattopdhyay D, Parida SK. A combinatorial approach of comprehensive QTL-based comparative genome mapping and transcript profiling identified a seed weight-regulating candidate gene in chickpea. Sci Rep 2015; 5:9264. [PMID: 25786576 PMCID: PMC4365403 DOI: 10.1038/srep09264] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 02/13/2015] [Indexed: 01/02/2023] Open
Abstract
High experimental validation/genotyping success rate (94-96%) and intra-specific polymorphic potential (82-96%) of 1536 SNP and 472 SSR markers showing in silico polymorphism between desi ICC 4958 and kabuli ICC 12968 chickpea was obtained in a 190 mapping population (ICC 4958 × ICC 12968) and 92 diverse desi and kabuli genotypes. A high-density 2001 marker-based intra-specific genetic linkage map comprising of eight LGs constructed is comparatively much saturated (mean map-density: 0.94 cM) in contrast to existing intra-specific genetic maps in chickpea. Fifteen robust QTLs (PVE: 8.8-25.8% with LOD: 7.0-13.8) associated with pod and seed number/plant (PN and SN) and 100 seed weight (SW) were identified and mapped on 10 major genomic regions of eight LGs. One of 126.8 kb major genomic region harbouring a strong SW-associated robust QTL (Caq'SW1.1: 169.1-171.3 cM) has been delineated by integrating high-resolution QTL mapping with comprehensive marker-based comparative genome mapping and differential expression profiling. This identified one potential regulatory SNP (G/A) in the cis-acting element of candidate ERF (ethylene responsive factor) TF (transcription factor) gene governing seed weight in chickpea. The functionally relevant molecular tags identified have potential to be utilized for marker-assisted genetic improvement of chickpea.
Collapse
Affiliation(s)
- Deepak Bajaj
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Hari D. Upadhyaya
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502324, Telangana, India
| | - Yusuf Khan
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Shouvik Das
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Saurabh Badoni
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Tanima Shree
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Vinod Kumar
- National Research Centre on Plant Biotechnology (NRCPB), New Delhi 110012, India
| | - Shailesh Tripathi
- Division of Genetics, Indian Agricultural Research Institute (IARI), New Delhi 110012, India
| | - C. L. L. Gowda
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502324, Telangana, India
| | - Sube Singh
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502324, Telangana, India
| | - Shivali Sharma
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502324, Telangana, India
| | - Akhilesh K. Tyagi
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Debasis Chattopdhyay
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Swarup K. Parida
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
40
|
Kumar V, Singh A, Mithra SVA, Krishnamurthy SL, Parida SK, Jain S, Tiwari KK, Kumar P, Rao AR, Sharma SK, Khurana JP, Singh NK, Mohapatra T. Genome-wide association mapping of salinity tolerance in rice (Oryza sativa). DNA Res 2015; 22:133-45. [PMID: 25627243 PMCID: PMC4401324 DOI: 10.1093/dnares/dsu046] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 12/26/2014] [Indexed: 02/07/2023] Open
Abstract
Salinity tolerance in rice is highly desirable to sustain production in areas rendered saline due to various reasons. It is a complex quantitative trait having different components, which can be dissected effectively by genome-wide association study (GWAS). Here, we implemented GWAS to identify loci controlling salinity tolerance in rice. A custom-designed array based on 6,000 single nucleotide polymorphisms (SNPs) in as many stress-responsive genes, distributed at an average physical interval of <100 kb on 12 rice chromosomes, was used to genotype 220 rice accessions using Infinium high-throughput assay. Genetic association was analysed with 12 different traits recorded on these accessions under field conditions at reproductive stage. We identified 20 SNPs (loci) significantly associated with Na+/K+ ratio, and 44 SNPs with other traits observed under stress condition. The loci identified for various salinity indices through GWAS explained 5–18% of the phenotypic variance. The region harbouring Saltol, a major quantitative trait loci (QTLs) on chromosome 1 in rice, which is known to control salinity tolerance at seedling stage, was detected as a major association with Na+/K+ ratio measured at reproductive stage in our study. In addition to Saltol, we also found GWAS peaks representing new QTLs on chromosomes 4, 6 and 7. The current association mapping panel contained mostly indica accessions that can serve as source of novel salt tolerance genes and alleles. The gene-based SNP array used in this study was found cost-effective and efficient in unveiling genomic regions/candidate genes regulating salinity stress tolerance in rice.
Collapse
Affiliation(s)
- Vinod Kumar
- National Research Centre on Plant Biotechnology, New Delhi 110012, India
| | - Anshuman Singh
- National Research Centre on Plant Biotechnology, New Delhi 110012, India
| | - S V Amitha Mithra
- National Research Centre on Plant Biotechnology, New Delhi 110012, India
| | - S L Krishnamurthy
- Central Soil Salinity Research Institute, Karnal, Haryana 132001, India
| | - Swarup K Parida
- National Research Centre on Plant Biotechnology, New Delhi 110012, India
| | - Sourabh Jain
- National Research Centre on Plant Biotechnology, New Delhi 110012, India
| | - Kapil K Tiwari
- National Research Centre on Plant Biotechnology, New Delhi 110012, India
| | - Pankaj Kumar
- National Research Centre on Plant Biotechnology, New Delhi 110012, India
| | - Atmakuri R Rao
- Indian Agricultural Statistics Research Institute, New Delhi 110012, India
| | - S K Sharma
- Central Soil Salinity Research Institute, Karnal, Haryana 132001, India
| | | | - Nagendra K Singh
- National Research Centre on Plant Biotechnology, New Delhi 110012, India
| | - Trilochan Mohapatra
- National Research Centre on Plant Biotechnology, New Delhi 110012, India Central Rice Research Institute, Cuttack, Odisha 753006, India
| |
Collapse
|
41
|
Singh AP, Pandey BK, Deveshwar P, Narnoliya L, Parida SK, Giri J. JAZ Repressors: Potential Involvement in Nutrients Deficiency Response in Rice and Chickpea. FRONTIERS IN PLANT SCIENCE 2015; 6:975. [PMID: 26617618 PMCID: PMC4639613 DOI: 10.3389/fpls.2015.00975] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 10/25/2015] [Indexed: 05/20/2023]
Abstract
Jasmonates (JA) are well-known phytohormones which play important roles in plant development and defense against pathogens. Jasmonate ZIM domain (JAZ) proteins are plant-specific proteins and act as transcriptional repressors of JA-responsive genes. JA regulates both biotic and abiotic stress responses in plants; however, its role in nutrient deficiency responses is very elusive. Although, JA is well-known for root growth inhibition, little is known about behavior of JAZ genes in response to nutrient deficiencies, under which root architectural alteration is an important adaptation. Using protein sequence homology and a conserved-domains approach, here we identify 10 novel JAZ genes from the recently sequenced Chickpea genome, which is one of the most nutrient efficient crops. Both rice and chickpea JAZ genes express in tissue- and stimuli-specific manners. Many of which are preferentially expressed in root. Our analysis further showed differential expression of JAZ genes under macro (NPK) and micronutrients (Zn, Fe) deficiency in rice and chickpea roots. While both rice and chickpea JAZ genes showed a certain level of specificity toward type of nutrient deficiency, generally majority of them showed induction under K deficiency. Generally, JAZ genes showed an induction at early stages of stress and expression declined at later stages of macro-nutrient deficiency. Our results suggest that JAZ genes might play a role in early nutrient deficiency response both in monocot and dicot roots, and information generated here can be further used for understanding the possible roles of JA in root architectural alterations for nutrient deficiency adaptations.
Collapse
Affiliation(s)
- Ajit P. Singh
- National Institute of Plant Genome Research, Jawaharlal Nehru UniversityNew Delhi, India
| | - Bipin K. Pandey
- National Institute of Plant Genome Research, Jawaharlal Nehru UniversityNew Delhi, India
| | - Priyanka Deveshwar
- National Institute of Plant Genome Research, Jawaharlal Nehru UniversityNew Delhi, India
- Department of Botany, Sri Aurobindo College, University of DelhiNew Delhi, India
| | - Laxmi Narnoliya
- National Institute of Plant Genome Research, Jawaharlal Nehru UniversityNew Delhi, India
| | - Swarup K. Parida
- National Institute of Plant Genome Research, Jawaharlal Nehru UniversityNew Delhi, India
| | - Jitender Giri
- National Institute of Plant Genome Research, Jawaharlal Nehru UniversityNew Delhi, India
- *Correspondence: Jitender Giri
| |
Collapse
|
42
|
Agarwal P, Parida SK, Mahto A, Das S, Mathew IE, Malik N, Tyagi AK. Expanding frontiers in plant transcriptomics in aid of functional genomics and molecular breeding. Biotechnol J 2014; 9:1480-92. [PMID: 25349922 DOI: 10.1002/biot.201400063] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 09/02/2014] [Accepted: 10/01/2014] [Indexed: 12/30/2022]
Abstract
The transcript pool of a plant part, under any given condition, is a collection of mRNAs that will pave the way for a biochemical reaction of the plant to stimuli. Over the past decades, transcriptome study has advanced from Northern blotting to RNA sequencing (RNA-seq), through other techniques, of which real-time quantitative polymerase chain reaction (PCR) and microarray are the most significant ones. The questions being addressed by such studies have also matured from a solitary process to expression atlas and marker-assisted genetic enhancement. Not only genes and their networks involved in various developmental processes of plant parts have been elucidated, but also stress tolerant genes have been highlighted. The transcriptome of a plant with altered expression of a target gene has given information about the downstream genes. Marker information has been used for breeding improved varieties. Fortunately, the data generated by transcriptome analysis has been made freely available for ample utilization and comparison. The review discusses this wide variety of transcriptome data being generated in plants, which includes developmental stages, abiotic and biotic stress, effect of altered gene expression, as well as comparative transcriptomics, with a special emphasis on microarray and RNA-seq. Such data can be used to determine the regulatory gene networks, which can subsequently be utilized for generating improved plant varieties.
Collapse
Affiliation(s)
- Pinky Agarwal
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | | | | | | | | | | | | |
Collapse
|
43
|
Saxena MS, Bajaj D, Das S, Kujur A, Kumar V, Singh M, Bansal KC, Tyagi AK, Parida SK. An integrated genomic approach for rapid delineation of candidate genes regulating agro-morphological traits in chickpea. DNA Res 2014; 21:695-710. [PMID: 25335477 PMCID: PMC4263302 DOI: 10.1093/dnares/dsu031] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The identification and fine mapping of robust quantitative trait loci (QTLs)/genes governing important agro-morphological traits in chickpea still lacks systematic efforts at a genome-wide scale involving wild Cicer accessions. In this context, an 834 simple sequence repeat and single-nucleotide polymorphism marker-based high-density genetic linkage map between cultivated and wild parental accessions (Cicer arietinum desi cv. ICC 4958 and Cicer reticulatum wild cv. ICC 17160) was constructed. This inter-specific genetic map comprising eight linkage groups spanned a map length of 949.4 cM with an average inter-marker distance of 1.14 cM. Eleven novel major genomic regions harbouring 15 robust QTLs (15.6–39.8% R2 at 4.2–15.7 logarithm of odds) associated with four agro-morphological traits (100-seed weight, pod and branch number/plant and plant hairiness) were identified and mapped on chickpea chromosomes. Most of these QTLs showed positive additive gene effects with effective allelic contribution from ICC 4958, particularly for increasing seed weight (SW) and pod and branch number. One robust SW-influencing major QTL region (qSW4.2) has been narrowed down by combining QTL mapping with high-resolution QTL region-specific association analysis, differential expression profiling and gene haplotype-based association/LD mapping. This enabled to delineate a strong SW-regulating ABI3VP1 transcription factor (TF) gene at trait-specific QTL interval and consequently identified favourable natural allelic variants and superior high seed weight-specific haplotypes in the upstream regulatory region of this gene showing increased transcript expression during seed development. The genes (TFs) harbouring diverse trait-regulating QTLs, once validated and fine-mapped by our developed rapid integrated genomic approach and through gene/QTL map-based cloning, can be utilized as potential candidates for marker-assisted genetic enhancement of chickpea.
Collapse
Affiliation(s)
- Maneesha S Saxena
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Deepak Bajaj
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Shouvik Das
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Alice Kujur
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Vinod Kumar
- National Research Centre on Plant Biotechnology (NRCPB), New Delhi 110012, India
| | - Mohar Singh
- National Bureau of Plant Genetic Resources (NBPGR), New Delhi 110012, India
| | - Kailash C Bansal
- National Bureau of Plant Genetic Resources (NBPGR), New Delhi 110012, India
| | - Akhilesh K Tyagi
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Swarup K Parida
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
44
|
Deokar AA, Ramsay L, Sharpe AG, Diapari M, Sindhu A, Bett K, Warkentin TD, Tar'an B. Genome wide SNP identification in chickpea for use in development of a high density genetic map and improvement of chickpea reference genome assembly. BMC Genomics 2014; 15:708. [PMID: 25150411 PMCID: PMC4158123 DOI: 10.1186/1471-2164-15-708] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 07/31/2014] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND In the whole genome sequencing, genetic map provides an essential framework for accurate and efficient genome assembly and validation. The main objectives of this study were to develop a high-density genetic map using RAD-Seq (Restriction-site Associated DNA Sequencing) genotyping-by-sequencing (RAD-Seq GBS) and Illumina GoldenGate assays, and to examine the alignment of the current map with the kabuli chickpea genome assembly. RESULTS Genic single nucleotide polymorphisms (SNPs) totaling 51,632 SNPs were identified by 454 transcriptome sequencing of Cicer arietinum and Cicer reticulatum genotypes. Subsequently, an Illumina GoldenGate assay for 1,536 SNPs was developed. A total of 1,519 SNPs were successfully assayed across 92 recombinant inbred lines (RILs), of which 761 SNPs were polymorphic between the two parents. In addition, the next generation sequencing (NGS)-based GBS was applied to the same population generating 29,464 high quality SNPs. These SNPs were clustered into 626 recombination bins based on common segregation patterns. Data from the two approaches were used for the construction of a genetic map using a population derived from an intraspecific cross. The map consisted of 1,336 SNPs including 604 RAD recombination bins and 732 SNPs from Illumina GoldenGate assay. The map covered 653 cM of the chickpea genome with an average distance between adjacent markers of 0.5 cM. To date, this is the most extensive genetic map of chickpea using an intraspecific population. The alignment of the map with the CDC Frontier genome assembly revealed an overall conserved marker order; however, a few local inconsistencies within the Cicer arietinum pseudochromosome 1 (Ca1), Ca5 and Ca8 were detected. The map enabled the alignment of 215 unplaced scaffolds from the CDC Frontier draft genome assembly. The alignment also revealed varying degrees of recombination rates and hotspots across the chickpea genome. CONCLUSIONS A high-density genetic map using RAD-Seq GBS and Illumina GoldenGate assay was developed and aligned with the existing kabuli chickpea draft genome sequence. The analysis revealed an overall conserved marker order, although some localized inversions between draft genome assembly and the genetic map were detected. The current analysis provides an insight of the recombination rates and hotspots across the chickpea genome.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Bunyamin Tar'an
- Crop Development Centre, Department of Plant Sciences, University of Saskatchewan, 51 Campus Dr, Saskatoon, SK S7N 5A8, Canada.
| |
Collapse
|
45
|
Jain M, Moharana KC, Shankar R, Kumari R, Garg R. Genomewide discovery of DNA polymorphisms in rice cultivars with contrasting drought and salinity stress response and their functional relevance. PLANT BIOTECHNOLOGY JOURNAL 2014; 12:253-64. [PMID: 24460890 DOI: 10.1111/pbi.12133] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Revised: 09/10/2013] [Accepted: 09/12/2013] [Indexed: 05/04/2023]
Abstract
Next-generation sequencing technologies provide opportunities to understand the genetic basis of phenotypic differences, such as abiotic stress response, even in the closely related cultivars via identification of large number of DNA polymorphisms. We performed whole-genome resequencing of three rice cultivars with contrasting responses to drought and salinity stress (sensitive IR64, drought-tolerant Nagina 22 and salinity-tolerant Pokkali). More than 356 million 90-bp paired-end reads were generated, which provided about 85% coverage of the rice genome. Applying stringent parameters, we identified a total of 1 784 583 nonredundant single-nucleotide polymorphisms (SNPs) and 154 275 InDels between reference (Nipponbare) and the three resequenced cultivars. We detected 401 683 and 662 509 SNPs between IR64 and Pokkali, and IR64 and N22 cultivars, respectively. The distribution of DNA polymorphisms was found to be uneven across and within the rice chromosomes. One-fourth of the SNPs and InDels were detected in genic regions, and about 3.5% of the total SNPs resulted in nonsynonymous changes. Large-effect SNPs and InDels, which affect the integrity of the encoded protein, were also identified. Further, we identified DNA polymorphisms present in the differentially expressed genes within the known quantitative trait loci. Among these, a total of 548 SNPs in 232 genes, located in the conserved functional domains, were identified. The data presented in this study provide functional markers and promising target genes for salinity and drought tolerance and present a valuable resource for high-throughput genotyping and molecular breeding for abiotic stress traits in rice.
Collapse
Affiliation(s)
- Mukesh Jain
- Functional and Applied Genomics Laboratory, National Institute of Plant Genome Research (NIPGR), New Delhi, India
| | | | | | | | | |
Collapse
|
46
|
Chen W, Chen H, Zheng T, Yu R, Terzaghi WB, Li Z, Deng XW, Xu J, He H. Highly efficient genotyping of rice biparental populations by GoldenGate assays based on parental resequencing. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:297-307. [PMID: 24190103 DOI: 10.1007/s00122-013-2218-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Accepted: 10/14/2013] [Indexed: 05/04/2023]
Abstract
A new time- and cost-effective strategy was developed for medium-density SNP genotyping of rice biparental populations, using GoldenGate assays based on parental resequencing. Since the advent of molecular markers, crop researchers and breeders have dedicated huge amounts of effort to detecting quantitative trait loci (QTL) in biparental populations for genetic analysis and marker-assisted selection (MAS). In this study, we developed a new time- and cost-effective strategy for genotyping a population of progeny from a rice cross using medium-density single nucleotide polymorphisms (SNPs). Using this strategy, 728,362 "high quality" SNPs were identified by resequencing Teqing and Lemont, the parents of the population. We selected 384 informative SNPs that were evenly distributed across the genome for genotyping the biparental population using the Illumina GoldenGate assay. 335 (87.2 %) validated SNPs were used for further genetic analyses. After removing segregation distortion markers, 321 SNPs were used for linkage map construction and QTL mapping. This strategy generated SNP markers distributed more evenly across the genome than previous SSR assays. Taking the GW5 gene that controls grain shape as an example, our strategy provided higher accuracy (0.8 Mb) and significance (LOD 5.5 and 10.1) in QTL mapping than SSR analysis. Our study thus provides a rapid and efficient strategy for genetic studies and QTL mapping using SNP genotyping assays.
Collapse
Affiliation(s)
- Wei Chen
- Peking-Yale Joint Center for Plant Molecular Genetics and Agro-Biotechnology, National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing, 100871, China
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Miah G, Rafii MY, Ismail MR, Puteh AB, Rahim HA, Islam KN, Latif MA. A review of microsatellite markers and their applications in rice breeding programs to improve blast disease resistance. Int J Mol Sci 2013; 14:22499-528. [PMID: 24240810 PMCID: PMC3856076 DOI: 10.3390/ijms141122499] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 09/26/2013] [Accepted: 10/16/2013] [Indexed: 11/16/2022] Open
Abstract
Over the last few decades, the use of molecular markers has played an increasing role in rice breeding and genetics. Of the different types of molecular markers, microsatellites have been utilized most extensively, because they can be readily amplified by PCR and the large amount of allelic variation at each locus. Microsatellites are also known as simple sequence repeats (SSR), and they are typically composed of 1-6 nucleotide repeats. These markers are abundant, distributed throughout the genome and are highly polymorphic compared with other genetic markers, as well as being species-specific and co-dominant. For these reasons, they have become increasingly important genetic markers in rice breeding programs. The evolution of new biotypes of pests and diseases as well as the pressures of climate change pose serious challenges to rice breeders, who would like to increase rice production by introducing resistance to multiple biotic and abiotic stresses. Recent advances in rice genomics have now made it possible to identify and map a number of genes through linkage to existing DNA markers. Among the more noteworthy examples of genes that have been tightly linked to molecular markers in rice are those that confer resistance or tolerance to blast. Therefore, in combination with conventional breeding approaches, marker-assisted selection (MAS) can be used to monitor the presence or lack of these genes in breeding populations. For example, marker-assisted backcross breeding has been used to integrate important genes with significant biological effects into a number of commonly grown rice varieties. The use of cost-effective, finely mapped microsatellite markers and MAS strategies should provide opportunities for breeders to develop high-yield, blast resistance rice cultivars. The aim of this review is to summarize the current knowledge concerning the linkage of microsatellite markers to rice blast resistance genes, as well as to explore the use of MAS in rice breeding programs aimed at improving blast resistance in this species. We also discuss the various advantages, disadvantages and uses of microsatellite markers relative to other molecular marker types.
Collapse
Affiliation(s)
- Gous Miah
- Laboratory of Food Crops, Institute of Tropical Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; E-Mails: (G.M.); (M.R.I.)
| | - Mohd Y. Rafii
- Laboratory of Food Crops, Institute of Tropical Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; E-Mails: (G.M.); (M.R.I.)
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; E-Mails: (A.B.P.); (M.A.L.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +603-8947-1149
| | - Mohd R. Ismail
- Laboratory of Food Crops, Institute of Tropical Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; E-Mails: (G.M.); (M.R.I.)
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; E-Mails: (A.B.P.); (M.A.L.)
| | - Adam B. Puteh
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; E-Mails: (A.B.P.); (M.A.L.)
| | - Harun A. Rahim
- Agrotechnology and Bioscience Division, Malaysian Nuclear Agency, 43000 Kajang, Selangor, Malaysia; E-Mail:
| | - Kh. Nurul Islam
- Laboratory of Anatomy and Histology, Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; E-Mail:
| | - Mohammad Abdul Latif
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; E-Mails: (A.B.P.); (M.A.L.)
- Bangladesh Rice Research Institute, Gazipur 1701, Bangladesh
| |
Collapse
|
48
|
Kujur A, Saxena MS, Bajaj D, Laxmi, Parida SK. Integrated genomics and molecular breeding approaches for dissecting the complex quantitative traits in crop plants. J Biosci 2013; 38:971-87. [DOI: 10.1007/s12038-013-9388-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
49
|
Koepke T, Schaeffer S, Harper A, Dicenta F, Edwards M, Henry RJ, Møller BL, Meisel L, Oraguzie N, Silva H, Sánchez-Pérez R, Dhingra A. Comparative genomics analysis in Prunoideae to identify biologically relevant polymorphisms. PLANT BIOTECHNOLOGY JOURNAL 2013; 11:883-93. [PMID: 23763653 PMCID: PMC3775899 DOI: 10.1111/pbi.12081] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 03/27/2013] [Accepted: 04/08/2013] [Indexed: 05/08/2023]
Abstract
Prunus is an economically important genus with a wide range of physiological and biological variability. Using the peach genome as a reference, sequencing reads from four almond accessions and one sweet cherry cultivar were used for comparative analysis of these three Prunus species. Reference mapping enabled the identification of many biological relevant polymorphisms within the individuals. Examining the depth of the polymorphisms and the overall scaffold coverage, we identified many potentially interesting regions including hundreds of small scaffolds with no coverage from any individual. Non-sense mutations account for about 70 000 of the 13 million identified single nucleotide polymorphisms (SNPs). Blast2GO analyses on these non-sense SNPs revealed several interesting results. First, non-sense SNPs were not evenly distributed across all gene ontology terms. Specifically, in comparison with peach, sweet cherry is found to have non-sense SNPs in two 1-aminocyclopropane-1-carboxylate synthase (ACS) genes and two 1-aminocyclopropane-1-carboxylate oxidase (ACO) genes. These polymorphisms may be at the root of the nonclimacteric ripening of sweet cherry. A set of candidate genes associated with bitterness in almond were identified by comparing sweet and bitter almond sequences. To the best of our knowledge, this is the first report in plants of non-sense SNP abundance in a genus being linked to specific GO terms.
Collapse
Affiliation(s)
- Tyson Koepke
- Department of Horticulture, Washington State University, Pullman WA, USA
- Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA, USA
| | - Scott Schaeffer
- Department of Horticulture, Washington State University, Pullman WA, USA
- Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA, USA
| | - Artemus Harper
- Department of Horticulture, Washington State University, Pullman WA, USA
| | - Federico Dicenta
- Department of Plant Breeding, CEBAS-CSIC, PO BOX 164, 30100 Espinardo, Murcia, Spain
| | - Mark Edwards
- Southern Cross University, Lismore NSW 2480, Australia
| | - Robert J. Henry
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia QLD 4072
| | - Birger Lindberg Møller
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Denmark
| | - Lee Meisel
- INTA-Universidad de Chile, Santiago, Chile
| | - Nnadozie Oraguzie
- IAREC, Department of Horticulture, Washington State University, Prosser, WA, USA
| | - Herman Silva
- Laboratorio de Genómica Funcional & Bioinformática, Departamento de Producción Agrícola, Facultad de Ciencias Agronómicas, Universidad de Chile, 8820808, La Pintana Santiago, Chile
| | - Raquel Sánchez-Pérez
- Department of Plant Breeding, CEBAS-CSIC, PO BOX 164, 30100 Espinardo, Murcia, Spain
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Denmark
- Corresponding authors:
| | - Amit Dhingra
- Department of Horticulture, Washington State University, Pullman WA, USA
- Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA, USA
- Corresponding authors:
| |
Collapse
|
50
|
Cruz RPD, Sperotto RA, Cargnelutti D, Adamski JM, FreitasTerra T, Fett JP. Avoiding damage and achieving cold tolerance in rice plants. Food Energy Secur 2013. [DOI: 10.1002/fes3.25] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
| | - Raul Antonio Sperotto
- Centro de Ciências Biológicas e da Saúde (CCBS) Programa de Pós‐Graduação em Biotecnologia (PPGBiotec) Centro Universitário UNIVATES Lajeado Rio Grande do Sul Brazil
| | - Denise Cargnelutti
- Universidade Federal da Fronteira Sul (UFFS) Erechim Rio Grande do Sul Brazil
| | - Janete Mariza Adamski
- Departamento de Botânica Universidade Federal do Rio Grande do Sul (UFRGS) Porto Alegre Rio Grande do Sul Brazil
| | - Tatiana FreitasTerra
- Departamento de Botânica Universidade Federal do Rio Grande do Sul (UFRGS) Porto Alegre Rio Grande do Sul Brazil
| | - Janette Palma Fett
- Departamento de Botânica Universidade Federal do Rio Grande do Sul (UFRGS) Porto Alegre Rio Grande do Sul Brazil
- Centro de Biotecnologia Universidade Federal do Rio Grande do Sul (UFRGS) Porto Alegre Rio Grande do Sul Brazil
| |
Collapse
|