1
|
Maldonado-Taipe N, Rey E, Tester M, Jung C, Emrani N. Leaf and shoot apical meristem transcriptomes of quinoa (Chenopodium quinoa Willd.) in response to photoperiod and plant development. PLANT, CELL & ENVIRONMENT 2024; 47:2027-2043. [PMID: 38391415 DOI: 10.1111/pce.14864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/29/2024] [Accepted: 02/12/2024] [Indexed: 02/24/2024]
Abstract
Understanding the regulation of flowering time is crucial for adaptation of crops to new environment. In this study, we examined the timing of floral transition and analysed transcriptomes in leaf and shoot apical meristems of photoperiod-sensitive and -insensitive quinoa accessions. Histological analysis showed that floral transition in quinoa initiates 2-3 weeks after sowing. We found four groups of differentially expressed genes in quinoa genome that responded to plant development and floral transition: (i) 222 genes responsive to photoperiod in leaves, (ii) 1812 genes differentially expressed between accessions under long-day conditions in leaves, (iii) 57 genes responding to developmental changes under short-day conditions in leaves and (iv) 911 genes responding to floral transition within the shoot apical meristem. Interestingly, among numerous candidate genes, two putative FT orthologs together with other genes (e.g. SOC1, COL, AP1) were previously reported as key regulators of flowering time in other species. Additionally, we used coexpression networks to associate novel transcripts to a putative biological process based on the annotated genes within the same coexpression cluster. The candidate genes in this study would benefit quinoa breeding by identifying and integrating their beneficial haplotypes in crossing programs to develop adapted cultivars to diverse environmental conditions.
Collapse
Affiliation(s)
| | - Elodie Rey
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Mark Tester
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Christian Jung
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Nazgol Emrani
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, Kiel, Germany
| |
Collapse
|
2
|
Liang N, Cheng D, Zhao L, Lu H, Xu L, Bi Y. Identification of the Genes Encoding B3 Domain-Containing Proteins Related to Vernalization of Beta vulgaris. Genes (Basel) 2022; 13:genes13122217. [PMID: 36553484 PMCID: PMC9778101 DOI: 10.3390/genes13122217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Vernalization is the process of exposure to low temperatures, which is crucial for the transition from vegetative to reproductive growth of plants. In this study, the global landscape vernalization-related mRNAs and long noncoding RNAs (lncRNAs) were identified in Beta vulgaris. A total of 22,159 differentially expressed mRNAs and 4418 differentially expressed lncRNAs were uncovered between the vernalized and nonvernalized samples. Various regulatory proteins, such as zinc finger CCCH domain-containing proteins, F-box proteins, flowering-time-related proteins FY and FPA, PHD finger protein EHD3 and B3 domain proteins were identified. Intriguingly, a novel vernalization-related lncRNA-mRNA target-gene co-expression regulatory network and the candidate vernalization genes, VRN1, VRN1-like, VAL1 and VAL2, encoding B3 domain-containing proteins were also unveiled. The results of this study pave the way for further illumination of the molecular mechanisms underlying the vernalization of B. vulgaris.
Collapse
Affiliation(s)
- Naiguo Liang
- School of Life Sciences and Food Engineering, Huaiyin Institute of Technology, Huaian 223001, China
- Correspondence:
| | - Dayou Cheng
- School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Li Zhao
- School of Life Sciences and Food Engineering, Huaiyin Institute of Technology, Huaian 223001, China
| | - Hedong Lu
- School of Life Sciences and Food Engineering, Huaiyin Institute of Technology, Huaian 223001, China
| | - Lei Xu
- School of Life Sciences and Food Engineering, Huaiyin Institute of Technology, Huaian 223001, China
| | - Yanhong Bi
- School of Life Sciences and Food Engineering, Huaiyin Institute of Technology, Huaian 223001, China
| |
Collapse
|
3
|
Li X, He W, Fang J, Liang Y, Zhang H, Chen D, Wu X, Zhang Z, Wang L, Han P, Zhang B, Xue T, Zheng W, He J, Bai C. Genomic and transcriptomic-based analysis of agronomic traits in sugar beet ( Beta vulgaris L.) pure line IMA1. FRONTIERS IN PLANT SCIENCE 2022; 13:1028885. [PMID: 36311117 PMCID: PMC9608375 DOI: 10.3389/fpls.2022.1028885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Sugar beet (Beta vulgaris L.) is an important sugar-producing and energy crop worldwide. The sugar beet pure line IMA1 independently bred by Chinese scientists is a standard diploid parent material that is widely used in hybrid-breeding programs. In this study, a high-quality, chromosome-level genome assembly for IMA1was conducted, and 99.1% of genome sequences were assigned to nine chromosomes. A total of 35,003 protein-coding genes were annotated, with 91.56% functionally annotated by public databases. Compared with previously released sugar beet assemblies, the new genome was larger with at least 1.6 times larger N50 size, thereby substantially improving the completeness and continuity of the sugar beet genome. A Genome-Wide Association Studies analysis identified 10 disease-resistance genes associated with three important beet diseases and five genes associated with sugar yield per hectare, which could be key targets to improve sugar productivity. Nine highly expressed genes associated with pollen fertility of sugar beet were also identified. The results of this study provide valuable information to identify and dissect functional genes affecting sugar beet agronomic traits, which can increase sugar beet production and help screen for excellent sugar beet breeding materials. In addition, information is provided that can precisely incorporate biotechnology tools into breeding efforts.
Collapse
Affiliation(s)
- Xiaodong Li
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Wenjin He
- Life Science College of Fujian Normal University, Fuzhou, China
| | - Jingping Fang
- Life Science College of Fujian Normal University, Fuzhou, China
| | - Yahui Liang
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
- Inner Mongolia Key Laboratory of Sugarbeet Genetics & Germplasm Enhancement, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Huizhong Zhang
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
- Inner Mongolia Key Laboratory of Sugarbeet Genetics & Germplasm Enhancement, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Duo Chen
- Life Science College of Fujian Normal University, Fuzhou, China
| | - Xingrong Wu
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
- Inner Mongolia Key Laboratory of Sugarbeet Genetics & Germplasm Enhancement, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Ziqiang Zhang
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
- Inner Mongolia Key Laboratory of Sugarbeet Genetics & Germplasm Enhancement, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Liang Wang
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
- Inner Mongolia Key Laboratory of Sugarbeet Genetics & Germplasm Enhancement, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Pingan Han
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
- Inner Mongolia Key Laboratory of Sugarbeet Genetics & Germplasm Enhancement, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Bizhou Zhang
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
- Inner Mongolia Key Laboratory of Sugarbeet Genetics & Germplasm Enhancement, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Ting Xue
- Life Science College of Fujian Normal University, Fuzhou, China
| | - Wenzhe Zheng
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
- Inner Mongolia Key Laboratory of Sugarbeet Genetics & Germplasm Enhancement, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Jiangfeng He
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
- Inner Mongolia Key Laboratory of Sugarbeet Genetics & Germplasm Enhancement, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Chen Bai
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
- Inner Mongolia Key Laboratory of Sugarbeet Genetics & Germplasm Enhancement, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| |
Collapse
|
4
|
Long J, Xing W, Wang Y, Wu Z, Li W, Zou Y, Sun J, Zhang F, Pi Z. Comparative proteomic analysis on chloroplast proteins provides new insights into the effects of low temperature in sugar beet. BOTANICAL STUDIES 2022; 63:18. [PMID: 35670889 PMCID: PMC9174413 DOI: 10.1186/s40529-022-00349-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Low temperature, which is one of the main environmental factors that limits geographical distribution and sucrose yield, is a common abiotic stress during the growth and development of sugar beet. As a regulatory hub of plant response to abiotic stress, activity in the chloroplasts is related to many molecular and physiological processes, particularly in response to low temperature stress. RESULTS The contents of chlorophyll (Chl) and malondialdehyde (MDA), relative electrical conductivity (REL), and superoxide dismutase (SOD) activity were measured. The results showed that sugar beet could manage low temperature stress by regulating the levels of Chl, REL and MDA, and the activity of SOD. The physiological responses indicated that sugar beets respond positively to low temperature treatments and are not significantly damaged. Moreover, to determine the precise time to response low temperature in sugar beet, well-known abiotic stresses-responsive transcript factor family, namely DEHYDRATION RESPONSIVE ELEMENT BINDING PROTEIN (DREB), was selected as the marker gene. The results of phylogenetic analyses showed that BvDREBA1 and BvDREBA4 were in the same branch as the cold- and drought-responsive AtDREB gene. In addition, the expression of BvDREBs reached its maximum level at 24 h after low temperature by RNA-Seq and qRT-PCR analysis. Furthermore, the changes in chloroplast proteome after low temperature at 24 h were detected using a label-free technique. A total of 416 differentially expressed proteins were identified. GO enrichment analysis showed that 16 GO terms were significantly enriched, particularly chloroplast stroma, chloroplast envelope, and chloroplast thylakoid membrane. It is notable that the transport of photosynthetic proteins (BvLTD and BvTOC100), the formation of starch granules (BvPU1, BvISA3, and BvGWD3) and the scavenging of reactive oxygen species (BvCu/Zn-SOD, BvCAT, BvPrx, and BvTrx) were the pathways used by sugar beets to respond to low temperatures at an early stage. CONCLUSIONS These results provide a preliminarily analysis of how chloroplasts of sugar beet respond to low temperature stress at the translational level and provide a theoretical basis for breeding low temperature resistant varieties of sugar beet.
Collapse
Affiliation(s)
- Jiali Long
- School of Life Sciences, Heilongjiang University, Harbin, 150080, Heilongjiang, China
| | - Wang Xing
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, Heilongjiang, China
| | - Yuguang Wang
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, Heilongjiang, China
| | - Zedong Wu
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, Heilongjiang, China
| | - Wenjing Li
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, Heilongjiang, China
| | - Yi Zou
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, Heilongjiang, China
| | - Jiaping Sun
- School of Life Sciences, Heilongjiang University, Harbin, 150080, Heilongjiang, China
| | - Fushun Zhang
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, Heilongjiang, China.
| | - Zhi Pi
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, Heilongjiang, China.
| |
Collapse
|
5
|
Liu B, Liu J, Yu J, Wang Z, Sun Y, Li S, Lin YCJ, Chiang VL, Li W, Wang JP. Transcriptional reprogramming of xylem cell wall biosynthesis in tension wood. PLANT PHYSIOLOGY 2021; 186:250-269. [PMID: 33793955 PMCID: PMC8154086 DOI: 10.1093/plphys/kiab038] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/04/2021] [Indexed: 05/02/2023]
Abstract
Tension wood (TW) is a specialized xylem tissue developed under mechanical/tension stress in angiosperm trees. TW development involves transregulation of secondary cell wall genes, which leads to altered wood properties for stress adaptation. We induced TW in the stems of black cottonwood (Populus trichocarpa, Nisqually-1) and identified two significantly repressed transcription factor (TF) genes: class B3 heat-shock TF (HSFB3-1) and MYB092. Transcriptomic analysis and chromatin immunoprecipitation (ChIP) were used to identify direct TF-DNA interactions in P. trichocarpa xylem protoplasts overexpressing the TFs. This analysis established a transcriptional regulatory network in which PtrHSFB3-1 and PtrMYB092 directly activate 8 and 11 monolignol genes, respectively. The TF-DNA interactions were verified for their specificity and transactivator roles in 35 independent CRISPR-based biallelic mutants and overexpression transgenic lines of PtrHSFB3-1 and PtrMYB092 in P. trichocarpa. The gene-edited trees (mimicking the repressed PtrHSFB3-1 and PtrMYB092 under tension stress) have stem wood composition resembling that of TW during normal growth and under tension stress (i.e., low lignin and high cellulose), whereas the overexpressors showed an opposite effect (high lignin and low cellulose). Individual overexpression of the TFs impeded lignin reduction under tension stress and restored high levels of lignin biosynthesis in the TW. This study offers biological insights to further uncover how metabolism, growth, and stress adaptation are coordinately regulated in trees.
Collapse
Affiliation(s)
- Baoguang Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
- Department of Forestry, Beihua University, Jilin 132013, China
| | - Juan Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Jing Yu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Zhifeng Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Yi Sun
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Shuang Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Ying-Chung Jimmy Lin
- Department of Life Sciences, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Vincent L Chiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, North Carolina 27695
| | - Wei Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Jack P Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, North Carolina 27695
- Author for communication:
| |
Collapse
|
6
|
Zou C, Liu D, Wu P, Wang Y, Gai Z, Liu L, Yang F, Li C, Guo G. Transcriptome analysis of sugar beet (Beta vulgaris L.) in response to alkaline stress. PLANT MOLECULAR BIOLOGY 2020; 102:645-657. [PMID: 32040759 DOI: 10.1007/s11103-020-00971-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 01/18/2020] [Indexed: 05/20/2023]
Abstract
RNA-seq was used to analyze the transcriptional changes in sugar beet (Beta vulgaris L.) triggered by alkaline solution to elucidate the molecular mechanism underlying alkaline tolerance in sugar beet. Several differentially expressed genes related to stress tolerance were identified. Our results provide a valuable resource for the breeding of new germplasms with high alkaline tolerance. Alkalinity is a highly stressful environmental factor that limits plant growth and production. Sugar beet own the ability to acclimate to various abiotic stresses, especially salt and alkaline stress. Although substantial previous studies on response of sugar beet to saline stress has been conducted, the expressions of alkali-responsive genes in sugar beet have not been comprehensively investigated. In this study, we conducted transcriptome analysis of leaves in sugar beet seedlings treated with alkaline solutions for 0 day (control, C), 3 days (short-term alkaline treatment, ST) and 7 days (long-term alkaline treatment, LT). The clean reads were obtained and assembled into 25,507 unigenes. Among them, 975 and 383 differentially expressed genes (DEGs) were identified in the comparison groups ST_vs_C and LT_vs_C, respectively. Gene ontology (GO) analysis revealed that oxidation-reduction process and lipid metabolic process were the most enriched GO term among the DEGs in ST_vs_C and LT_vs_C, respectively. According to Kyoto Encyclopedia of Genes and Genomes pathway, carbon fixation in photosynthetic organisms pathway were significantly enriched under alkaline stress. Besides, expression level of genes encoding D-3-phosphoglycerate dehydrogenase 1, glutamyl-tRNA reductase 1, fatty acid hydroperoxide lyase, ethylene-insensitive protein 2, metal tolerance protein 11 and magnesium-chelatase subunit ChlI, etc., were significantly altered under alkaline stress. Additionally, among the DEGs, 136 were non-annotated genes and 24 occurred with differential alternative splicing. Our results provide a valuable resource on alkali-responsive genes and should benefit the improvement of alkaline stress tolerance in sugar beet.
Collapse
Affiliation(s)
- Chunlei Zou
- College of Agronomy, Northeast Agricultural University, Harbin, China
| | - Dan Liu
- College of Agronomy, Northeast Agricultural University, Harbin, China
| | - Peiran Wu
- College of Agronomy, Northeast Agricultural University, Harbin, China
| | - Yubo Wang
- College of Agronomy, Northeast Agricultural University, Harbin, China
| | - Zhijia Gai
- Jiamusi Branch, Heilongjiang Academy of Agricultural Sciences, Jiamusi, China
| | - Lei Liu
- College of Agronomy, Northeast Agricultural University, Harbin, China
| | - Fangfang Yang
- College of Agronomy, Northeast Agricultural University, Harbin, China
| | - Caifeng Li
- College of Agronomy, Northeast Agricultural University, Harbin, China.
| | - Guanghao Guo
- College of Agronomy, Northeast Agricultural University, Harbin, China
| |
Collapse
|
7
|
Mechanisms of Sugar Beet Response to Biotic and Abiotic Stresses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1241:167-194. [PMID: 32383121 DOI: 10.1007/978-3-030-41283-8_10] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Sugar beet is used not only in the sugar production, but also in a wide range of industries including the production of bioethanol as a source of renewable energy, extraction of pectin and production of molasses. The red beetroot has attracted much attention as health-promoting and disease-preventing functional food. The negative effects of environmental stresses, including abiotic and biotic ones, significantly decrease the cash crop sugar beet productivity. In this paper, we outline the mechanisms of sugar beet response to biotic and abiotic stresses at the levels of physiological change, the genes' functions, transcription and translation. Regarding the physiological changes, most research has been carried out on salt and drought stress. The functions of genes from sugar beet in response to salt, cold and heavy metal stresses were mainly investigated by transgenic technologies. At the transcriptional level, the transcriptome analysis of sugar beet in response to salt, cold and biotic stresses were conducted by RNA-Seq or SSH methods. At the translational level, more than 800 differentially expressed proteins in response to salt, K+/Na+ ratio, iron deficiency and resupply and heavy metal (zinc) stress were identified by quantitative proteomics techniques. Understanding how sugar beet respond and tolerate biotic and abiotic stresses is important for boosting sugar beet productivity under these challenging conditions. In order to minimize the negative impact of these stresses, studying how the sugar beet has evolved stress coping mechanisms will provide new insights and lead to novel strategies for improving the breeding of stress-resistant sugar beet and other crops.
Collapse
|
8
|
Gao B, Bian XC, Yang F, Chen MX, Das D, Zhu XR, Jiang Y, Zhang J, Cao YY, Wu CF. Comprehensive transcriptome analysis of faba bean in response to vernalization. PLANTA 2019; 251:22. [PMID: 31781953 DOI: 10.1007/s00425-019-03308-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 11/02/2019] [Indexed: 05/20/2023]
Abstract
This study unravels the transcriptional response of a highly productive faba bean cultivar under vernalization treatment. Faba bean (Vicia faba L.) is a member of the Leguminosae family and an important food crop worldwide providing valuable nutrients for humans. However, genome-wide studies and comprehensive sequencing resources of faba bean remain limited. Vernalization is crucial for enhanced yields in a number of winter-sown crops. However, the effects of vernalization on faba bean remain unknown. In this study, we generated a high-quality transcriptome assembly and functional annotation source for vernalized faba bean (Vicia faba L.) cv. Tongxian-2, a domesticated cultivar from southern China. A total of 369.9 million clean Illumina paired-end RNA-Seq reads were generated, and the transcriptome was assembled into 68,683 unigene sequences, with an average length of 1018 bp and an N50 of 1652 bp. Comprehensive functional annotation provided putative functional descriptions for more than 70% of the faba bean transcripts. We annotated a total of 1560 faba bean transcripts encoding transcription factors (TFs) belonging to 55 distinct TF families. The bHLH (168 transcripts), ERF (123 transcripts) and WRKY (105 transcripts) contained the largest number of TFs in response to vernalization. Genome-wide transcript changes comparing vernalized and unvernalized seedlings were investigated using bioinformatics approaches, which revealed a strong repression of photosynthesis and carbon metabolism, while genes participating in 'response to stress' were significantly induced. We also specifically identified vernalization-induced twenty-two 'pollen-pistil interaction' genes. A detailed functional annotation and expression profile analyses unveiled a number of protein kinases, which were specifically induced in vernalized seedlings. We also identified a total of 6852 simple sequence repeats (SSRs) in 6552 transcripts, representing a valuable genomic molecular marker resource for faba bean. In summary, this study provides new insights into the vernalization process in this economically valuable crop. The transcriptome data obtained provides us with a valuable candidate gene resource for future functional and molecular breeding studies. These data will contribute to the genome annotation for ensuing genome projects.
Collapse
Affiliation(s)
- Bei Gao
- Jiangsu Yanjiang Institute of Agricultural Sciences, Nantong, China
- College of Life Sciences, Nantong University, Nantong, China
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiao-Chun Bian
- Jiangsu Yanjiang Institute of Agricultural Sciences, Nantong, China
| | - Feng Yang
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Mo-Xian Chen
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Debatosh Das
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Xiu-Ru Zhu
- College of Life Sciences, Nantong University, Nantong, China
| | - Yong Jiang
- National Oceanographic Center, Qingdao, China
| | - Jianhua Zhang
- Department of Biology, Hong Kong Baptist University and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Yun-Ying Cao
- College of Life Sciences, Nantong University, Nantong, China.
| | - Chun-Fang Wu
- Jiangsu Yanjiang Institute of Agricultural Sciences, Nantong, China.
| |
Collapse
|
9
|
Pipatchartlearnwong K, Juntawong P, Wonnapinij P, Apisitwanich S, Vuttipongchaikij S. Towards sex identification of Asian Palmyra palm ( Borassus flabellifer L.) by DNA fingerprinting, suppression subtractive hybridization and de novo transcriptome sequencing. PeerJ 2019; 7:e7268. [PMID: 31333909 PMCID: PMC6626516 DOI: 10.7717/peerj.7268] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 06/06/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Asian Palmyra palm, the source of palm-sugar, is dioecious with a long juvenile period requiring at least 12 years to reach its maturity. To date, there is no reliable molecular marker for identifying sexes before the first bloom, limiting crop designs and utilization. We aimed to identify sex-linked markers for this palm using PCR-based DNA fingerprinting, suppression subtractive hybridization (SSH) and transcriptome sequencing. METHODS DNA fingerprints were generated between males and females based on RAPD, AFLP, SCoT, modified SCoT, ILP, and SSR techniques. Large-scale cloning and screening of SSH libraries and de novo transcriptome sequencing of male and female cDNA from inflorescences were performed to identify sex-specific genes for developing sex-linked markers. RESULTS Through extensive screening and re-testing of the DNA fingerprints (up to 1,204 primer pairs) and transcripts from SSH (>10,000 clones) and transcriptome data, however, no sex-linked marker was identified. Although de novo transcriptome sequencing of male and female inflorescences provided ∼32 million reads and 187,083 assembled transcripts, PCR analysis of selected sex-highly represented transcripts did not yield any sex-linked marker. This result may suggest the complexity and small sex-determining region of the Asian Palmyra palm. To this end, we provide the first global transcripts of male and female inflorescences of Asian Palmyra palm. Interestingly, sequence annotation revealed a large proportion of transcripts related to sucrose metabolism, which corresponds to the sucrose-rich sap produced in the inflorescences, and these transcripts will be useful for further understanding of sucrose production in sugar crop plants. Provided lists of sex-specific and differential-expressed transcripts would be beneficial to the further study of sexual development and sex-linked markers in palms and related species.
Collapse
Affiliation(s)
| | - Piyada Juntawong
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand.,Center of Advanced studies for Tropical Natural Resources, Kasetsart University, Bangkok, Thailand.,Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok, Thailand
| | - Passorn Wonnapinij
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand.,Center of Advanced studies for Tropical Natural Resources, Kasetsart University, Bangkok, Thailand.,Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok, Thailand
| | - Somsak Apisitwanich
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand.,Center of Advanced studies for Tropical Natural Resources, Kasetsart University, Bangkok, Thailand
| | - Supachai Vuttipongchaikij
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand.,Center of Advanced studies for Tropical Natural Resources, Kasetsart University, Bangkok, Thailand.,Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok, Thailand
| |
Collapse
|
10
|
Wang Y, Wang X, Deng D, Wang Y. Maize transcriptomic repertoires respond to gibberellin stimulation. Mol Biol Rep 2019; 46:4409-4421. [PMID: 31144186 DOI: 10.1007/s11033-019-04896-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 05/24/2019] [Indexed: 12/31/2022]
Abstract
Phytohormone gibberellin (GA) serves as hub modulator of diverse biological events. Understanding the transcriptomic features of GA-mediated processes has scientific significance. The transcriptomic landscapes of cereal crops upon GA stimulation remains largely unknown. Herein, to reveal the transcriptomic changes in cereal crop maize under GA treatment, we first selected normal height and GA-sensitive maize dwarf plants from advanced backcross population for GA treatment. RNA-seq analysis discovered multiple protein-coding transcripts that were differentially expressed in GA-treated samples compared to distilled water-treated ones. Some differentially expressed transcripts, namely GA-responsive transcripts in this study, encoded the components of GA pathway, including CPS, KS, and KO enzymes for GA biosynthesis, GA2ox enzymes for GA degradation, DELLA repressors and GID1 receptor for GA signaling. A total of 214 shared GA-responsive transcripts were identified both in GA3-treated normal height and GA-sensitive dwarf samples. Shared GA-responsive transcripts were involved in GA signaling, auxin biosynthesis, ethylene response, the composition and structure of cell wall, chlorophyll biogenesis, and sugar homeostasis. In addition, the convergence and divergence in expression of shared GA-responsive transcripts were observed in GA3-treated normal height and GA-sensitive dwarf plants. Interaction network modeling indicated that some shared GA-responsive transcripts tended to be co-regulated, which increases the complexity of GA-triggered regulation at transcriptomic layer. Results presented here will extend our knowledge of GA-mediated regulatory cascade, and enhance our ability to apply hormone GA knowledge in agricultural practice.
Collapse
Affiliation(s)
- Yali Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Xin Wang
- College of Agriculture, Anhui Science and Technology University, Fengyang, 233100, China
| | - Dexiang Deng
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Yijun Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China.
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
11
|
Vong M, Manny AR, Smith KL, Gao W, Nibert ML. Beta vulgaris mitovirus 1 in diverse cultivars of beet and chard. Virus Res 2019; 265:80-87. [PMID: 30853586 DOI: 10.1016/j.virusres.2019.02.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/15/2019] [Accepted: 02/17/2019] [Indexed: 01/04/2023]
Abstract
Recent results indicate that mitoviruses, which replicate persistently in host mitochondria, are not restricted to fungi, but instead are found also in plants. Beta vulgaris mitovirus 1 (BevuMV1) is an example first discovered in sugar beet cultivars. For the current study, complete coding sequences of 42 BevuMV1 strains were newly determined, derived from not only sugar beet but also fodder beet, table beet, and Swiss chard cultivars of Beta vulgaris, as well as wild sea beet. BevuMV1 is thus a common phytobiome component of this valuable crop species. Most of the new BevuMV1 sequences originated from RNA extracted from B. vulgaris seed clusters, consistent with vertical transmission of this virus. Results suggest that BevuMV1 entered the B. vulgaris lineage prior to human cultivation and also provides a marker for tracing the maternal ancestry of B. vulgaris cultivars. Especially notable is the monophyletic relationship and limited sequence divergence among BevuMV1 strains from cultivars that are thought or shown to share the "Owen" trait for cytoplasmic male sterility, which is transmitted by maternal mitochondria and has been broadly established in commercial breeding lines of B. vulgaris since the mid-20th century.
Collapse
Affiliation(s)
- Minh Vong
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Austin R Manny
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Kathryn L Smith
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - William Gao
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Max L Nibert
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
12
|
Cai M, Huang H, Ni F, Tong Z, Lin E, Zhu M. RNA-Seq analysis of differential gene expression in Betula luminifera xylem during the early stages of tension wood formation. PeerJ 2018; 6:e5427. [PMID: 30155351 PMCID: PMC6108316 DOI: 10.7717/peerj.5427] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 07/20/2018] [Indexed: 01/09/2023] Open
Abstract
Background Betula luminifera H. Winkler, which is widely distributed in southern China, is an economically important broadleaf tree species. However, little genomic information of B. luminifera is available, and little is known about the molecular mechanisms of wood formation in this species. Meanwhile, few efforts have focused on investigating the early transcriptional changes during tension wood formation in woody plants. Results A reference transcriptome dataset was first generated containing 45,700 Unigenes, and 35,135 (76.9%) Unigenes were annotated by a BLAST similarity search against four public databases. Then, based on an anatomical investigation, the global gene expression changes during the early stages of tension wood formation were analyzed. Gene expression profiling showed that a total of 13,273 Unigenes were differentially regulated during the early stages of tension wood formation. Most genes involved in cellulose and lignin biosynthesis were highlighted to reveal their biological importance in tension wood formation. In addition, the transcription levels of many genes involved in the auxin response pathway were significantly changed during the early stages of tension wood formation. Furthermore, 18 TFs co-expressed with key enzymes of cellulose synthesis were identified. Conclusions Our results revealed the transcriptional changes associated with TW formation and identified potential key genes in the regulation of this process. These results will help to dissect the molecular mechanism of wood formation and provide key candidate genes for marker-assisted selection in B. luminifera.
Collapse
Affiliation(s)
- Miaomiao Cai
- The State Key Laboratory of Subtropical Silviculture, Institute of Biotechnology, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Huahong Huang
- The State Key Laboratory of Subtropical Silviculture, Institute of Biotechnology, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Fei Ni
- The State Key Laboratory of Subtropical Silviculture, Institute of Biotechnology, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Zaikang Tong
- The State Key Laboratory of Subtropical Silviculture, Institute of Biotechnology, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Erpei Lin
- The State Key Laboratory of Subtropical Silviculture, Institute of Biotechnology, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Muyuan Zhu
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Institute of Genetics, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
13
|
Nibert ML, Vong M, Fugate KK, Debat HJ. Evidence for contemporary plant mitoviruses. Virology 2018; 518:14-24. [PMID: 29438872 PMCID: PMC6668999 DOI: 10.1016/j.virol.2018.02.005] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 02/02/2018] [Accepted: 02/03/2018] [Indexed: 10/18/2022]
Abstract
Mitoviruses have small RNA(+) genomes, replicate in mitochondria, and have been shown to infect only fungi to date. For this report, sequences that appear to represent nearly complete plant mitovirus genomes were recovered from publicly available transcriptome data. Twenty of the refined sequences, 2684-2898 nt long and derived from 10 different species of land plants, appear to encompass the complete coding regions of contemporary plant mitoviruses, which furthermore constitute a monophyletic cluster within genus Mitovirus. Complete coding sequences of several of these viruses were recovered from multiple transcriptome (but not genome) studies of the same plant species and also from multiple plant tissues. Crop plants among implicated hosts include beet and hemp. Other new results suggest that such genuine plant mitoviruses were immediate ancestors to endogenized mitovirus elements now widespread in land plant genomes. Whether these mitoviruses are wholly cryptic with regard to plant health remains to be investigated.
Collapse
Affiliation(s)
- Max L Nibert
- Department of Microbiology & Immunobiology, Harvard Medical School, Boston, MA 02115, USA.
| | - Minh Vong
- Department of Microbiology & Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Karen K Fugate
- Sugarbeet and Potato Research, United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Red River Valley Agricultural Research Center, Fargo, ND 58102, USA
| | - Humberto J Debat
- Instituto de Patología Vegetal, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria (IPAVE-CIAP-INTA), X5020ICA, Córdoba, Argentina
| |
Collapse
|
14
|
He D, Guo P, Gugger PF, Guo Y, Liu X, Chen J. Investigating the molecular basis for heterophylly in the aquatic plant Potamogeton octandrus (Potamogetonaceae) with comparative transcriptomics. PeerJ 2018; 6:e4448. [PMID: 29507839 PMCID: PMC5834931 DOI: 10.7717/peerj.4448] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 02/13/2018] [Indexed: 12/15/2022] Open
Abstract
Many plant species exhibit different leaf morphologies within a single plant, or heterophylly. The molecular mechanisms regulating this phenomenon, however, have remained elusive. In this study, the transcriptomes of submerged and floating leaves of an aquatic heterophyllous plant, Potamogeton octandrus Poir, at different stages of development, were sequenced using high-throughput sequencing (RNA-Seq), in order to aid gene discovery and functional studies of genes involved in heterophylly. A total of 81,103 unigenes were identified in submerged and floating leaves and 6,822 differentially expressed genes (DEGs) were identified by comparing samples at differing time points of development. KEGG pathway enrichment analysis categorized these unigenes into 128 pathways. A total of 24,025 differentially expressed genes were involved in carbon metabolic pathways, biosynthesis of amino acids, ribosomal processes, and plant-pathogen interactions. In particular, KEGG pathway enrichment analysis categorized a total of 70 DEGs into plant hormone signal transduction pathways. The high-throughput transcriptomic results presented here highlight the potential for understanding the molecular mechanisms underlying heterophylly, which is still poorly understood. Further, these data provide a framework to better understand heterophyllous leaf development in P. octandrus via targeted studies utilizing gene cloning and functional analyses.
Collapse
Affiliation(s)
- Dingxuan He
- Laboratory of Plant Systematics and Evolutionary Biology, College of life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Pin Guo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Paul F Gugger
- Appalachian Laboratory, University of Maryland Center for Environmental Science, Frostburg, MD, USA
| | - Youhao Guo
- Laboratory of Plant Systematics and Evolutionary Biology, College of life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Xing Liu
- Laboratory of Plant Systematics and Evolutionary Biology, College of life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Jinming Chen
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
15
|
Liang N, Cheng D, Liu Q, Cui J, Luo C. Difference of proteomics vernalization-induced in bolting and flowering transitions of Beta vulgaris. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 123:222-232. [PMID: 29253800 DOI: 10.1016/j.plaphy.2017.12.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 11/30/2017] [Accepted: 12/08/2017] [Indexed: 06/07/2023]
Abstract
Sugar beet (Beta vulgaris) is a biennial crop that accounts for 30% sugar production of the world. Vernalization is an essential factor for sugar beet reproductative growth under long days. Although genes association with bolting and flowering were well explored, the difference of proteomics in the two growth stages were still poorly understood. To address the molecular mechanism at the level of proteins, an isobaric tags for relative and absolute quantification (iTRAQ)-based quantitative proteomics approach was employed to the three different growth stages (germination, bolting, flowering) of vernalized samples and the corresponding stage germination (17W weeks), 19W and 20W of nonvernalized samples. A total of 1110 peptides, 842 unique peptides and 570 proteins were identified. Most of them were assigned to phenylpropanoid biosynthesis, hormone metabolism and protein processing pathway. IAA and Gibberellins (GA3) promoted growth and development in a threshold manner at growth stage germination after vernalization. A novel discovery was that IAA biosynthetic pathway of sugar beet was the Trp-dependent. In addition, two predominant pathways of protein processing association with vernalization were also identified in sugar beet at growth stage flowering. This study provided an in-depth understanding of the molecular mechanism of vernalization at the level of proteomics.
Collapse
Affiliation(s)
- Naiguo Liang
- School of Chemical Engineering & Technology, Harbin Institute of Technology, HarBin, 150001, China
| | - Dayou Cheng
- School of Chemical Engineering & Technology, Harbin Institute of Technology, HarBin, 150001, China.
| | - Qiaohong Liu
- School of Chemical Engineering & Technology, Harbin Institute of Technology, HarBin, 150001, China
| | - Jie Cui
- School of Chemical Engineering & Technology, Harbin Institute of Technology, HarBin, 150001, China
| | - Chengfei Luo
- School of Chemical Engineering & Technology, Harbin Institute of Technology, HarBin, 150001, China
| |
Collapse
|
16
|
Cao N, Li W, Li B, Tian Y, Xu D. Transcriptome profiling reveals the immune response of goose T cells under selenium stimuli. Anim Sci J 2017; 88:2001-2009. [PMID: 28749043 DOI: 10.1111/asj.12861] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 05/16/2017] [Indexed: 12/29/2022]
Abstract
The goose is an economically important poultry species and a principal natural host of avian viruses. This study aimed to determine the effects of selenium on the immune response of geese. Under selenium stimulation, gene expression profiling was investigated using transcriptome sequencing. The selenoproteins were promoted by selenium stimulation, while the heat shock proteins, interleukin and interferons were mainly down-regulated. After comparison, 2228 differentially expressed genes were primarily involved in immune and environmental response, and infectious disease and genetic information processing related pathways were identified. Specifically, the enzymes of the lysosomes which acted as a safeguard in preventing pathogens were mostly up-regulated and six randomly selected differentially expressed genes were validated by quantitative polymerase chain reaction. In addition, the most proportional increased transcription factor family basic helix-loop-helix (bHLH) located in the 5' flank of selenoprotein P-like protein for selenium metabolism was identified by response to the selenium stimulation in this study. These analyses show that selenium can promote immune function by activating selenoproteins, transcript factors and lysosome pathway related genes, while weakening cytokine content genes in geese.
Collapse
Affiliation(s)
- Nan Cao
- Institute of Animal Nutrition, Genetics and Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Wanyan Li
- Institute of Animal Nutrition, Genetics and Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Bingxin Li
- Institute of Animal Nutrition, Genetics and Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yunbo Tian
- Institute of Animal Nutrition, Genetics and Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Danning Xu
- Institute of Animal Nutrition, Genetics and Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| |
Collapse
|
17
|
Liang N, Cheng D, Cui J, Dai C, Luo C, Liu T, Li J. Vernalisation mediated LncRNA-like gene expression in Beta vulgaris. FUNCTIONAL PLANT BIOLOGY : FPB 2017; 44:720-726. [PMID: 32480601 DOI: 10.1071/fp16301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 04/06/2017] [Indexed: 06/11/2023]
Abstract
Sugar beet (Beta vulgaris L.) cannot form reproductive shoots during the first year of their life cycle. Flowering only occurs if plants are vernalised and are subsequently exposed to long days. However, the vernalisation mechanism remains poorly understood in sugar beet. Three putative lncRNAs associated with vernalisation (AGL15X1, AGL15X2 and CAULIFLOWER A) were investigated and the hypothesis that their expression occurred in response to vernalisation was experimentally tested. The regulation mechanisms of BvRAV1-like, lncRNA-like genes, BvFT1 and BvFT2 were also examined. The BvRAV1-like gene associated with vernalisation in sugar beet was validated for the first time. Our data confirmed the hypothesis that AGLX2 was the first candidate lncRNA of sugar beet and the BvRAV1-like gene was expressed in response to vernalisation. BvRAV1-like and AGLX2 genes might be coordinated with BvFT2 to promote reproductive growth by repressing BvFT1 during cold exposure followed by long day conditions. A new complementary flowering model of sugar beet was proposed. Our findings opened up new possibility for future studies and further illuminated the molecular mechanism of vernalisation in sugar beet.
Collapse
Affiliation(s)
- Naiguo Liang
- School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Dayou Cheng
- School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Jie Cui
- School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Cuihong Dai
- School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Chengfei Luo
- School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Tianjiao Liu
- School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Junliang Li
- School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
18
|
Ou CG, Mao JH, Liu LJ, Li CJ, Ren HF, Zhao ZW, Zhuang FY. Characterising genes associated with flowering time in carrot (Daucus carota L.) using transcriptome analysis. PLANT BIOLOGY (STUTTGART, GERMANY) 2017; 19:286-297. [PMID: 27775866 DOI: 10.1111/plb.12519] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 10/19/2016] [Indexed: 05/24/2023]
Abstract
Carrot is generally regarded as a biennial plant with an obligatory vernalization requirement. Early spring cultivation makes plants vulnerable to premature bolting, which results in a loss of commercial value. However, our knowledge of flowering time genes and flowering mechanisms in carrot remain limited. Bolting behavior of D. carota ssp. carota 'Songzi', a wild species sensitive to flower induction by vernalization and photoperiod, and orange cultivar 'Amsterdam forcing', and their offspring were investigated in different growing conditions. We performed RNA-seq to identify the flowering time genes, and digital gene expression (DGE) analysis to examine their expression levels. The circadian patterns of related genes were identified by qPCR. The results showed bolting behavior of carrot was influenced by low temperature, illumination intensity and photoperiod. A total of 45 flowering time-related unigenes were identified, which were classified into five categories including photoperiod, vernalization, autonomous and gibberellin pathway, and floral integrators. Homologs of LATE ELONGATED HYPOCOTYL (LHY) and CONSTANS-LIKE 2 (COL2) were more highly expressed under short day condition than under long day condition. Homologs of COL2, CONSTANS-LIKE 5 (COL5), SUPPRESSION OF OVEREXPRESSION OF CONSTANS 1 (SOC1), FLOWERING LOCUS C (FLC) and GIBBERELLIC ACID INSENSITIVE (GAI) were differentially expressed between 'Songzi' and 'Amsterdam forcing'. The homolog of COL2 (Dct43207) was repressed by light, but that of COL5 (Dct20940) was induced. A preliminary model of genetic network controlling flowering time was constructed by associating the results of DGE analysis with correlation coefficients between genes. This study provides useful information for further investigating the genetic mechanism of flowering in carrot.
Collapse
Affiliation(s)
- C-G Ou
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, Beijing, China
| | - J-H Mao
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, Beijing, China
| | - L-J Liu
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, Beijing, China
| | - C-J Li
- Suzhou Academy of Agricultural Science, Suzhou, Anhui, China
| | - H-F Ren
- Suzhou Academy of Agricultural Science, Suzhou, Anhui, China
| | - Z-W Zhao
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, Beijing, China
| | - F-Y Zhuang
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, Beijing, China
| |
Collapse
|
19
|
Bouché F, Woods DP, Amasino RM. Winter Memory throughout the Plant Kingdom: Different Paths to Flowering. PLANT PHYSIOLOGY 2017; 173:27-35. [PMID: 27756819 PMCID: PMC5210730 DOI: 10.1104/pp.16.01322] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 09/21/2016] [Indexed: 05/18/2023]
Abstract
Molecular mechanisms contribute to the memory of winter in different plant groups.
Collapse
Affiliation(s)
- Frédéric Bouché
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706 (F.B., D.P.W., R.M.A.); and
- United States Department of Energy Great Lakes Bioenergy Research Center, Madison, Wisconsin 53726 (D.P.W., R.M.A.)
| | - Daniel P Woods
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706 (F.B., D.P.W., R.M.A.); and
- United States Department of Energy Great Lakes Bioenergy Research Center, Madison, Wisconsin 53726 (D.P.W., R.M.A.)
| | - Richard M Amasino
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706 (F.B., D.P.W., R.M.A.); and
- United States Department of Energy Great Lakes Bioenergy Research Center, Madison, Wisconsin 53726 (D.P.W., R.M.A.)
| |
Collapse
|
20
|
Xie J, Tian J, Du Q, Chen J, Li Y, Yang X, Li B, Zhang D. Association genetics and transcriptome analysis reveal a gibberellin-responsive pathway involved in regulating photosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3325-38. [PMID: 27091876 DOI: 10.1093/jxb/erw151] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Gibberellins (GAs) regulate a wide range of important processes in plant growth and development, including photosynthesis. However, the mechanism by which GAs regulate photosynthesis remains to be understood. Here, we used multi-gene association to investigate the effect of genes in the GA-responsive pathway, as constructed by RNA sequencing, on photosynthesis, growth, and wood property traits, in a population of 435 Populus tomentosa By analyzing changes in the transcriptome following GA treatment, we identified many key photosynthetic genes, in agreement with the observed increase in measurements of photosynthesis. Regulatory motif enrichment analysis revealed that 37 differentially expressed genes related to photosynthesis shared two essential GA-related cis-regulatory elements, the GA response element and the pyrimidine box. Thus, we constructed a GA-responsive pathway consisting of 47 genes involved in regulating photosynthesis, including GID1, RGA, GID2, MYBGa, and 37 photosynthetic differentially expressed genes. Single nucleotide polymorphism (SNP)-based association analysis showed that 142 SNPs, representing 40 candidate genes in this pathway, were significantly associated with photosynthesis, growth, and wood property traits. Epistasis analysis uncovered interactions between 310 SNP-SNP pairs from 37 genes in this pathway, revealing possible genetic interactions. Moreover, a structural gene-gene matrix based on a time-course of transcript abundances provided a better understanding of the multi-gene pathway affecting photosynthesis. The results imply a functional role for these genes in mediating photosynthesis, growth, and wood properties, demonstrating the potential of combining transcriptome-based regulatory pathway construction and genetic association approaches to detect the complex genetic networks underlying quantitative traits.
Collapse
Affiliation(s)
- Jianbo Xie
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
| | - Jiaxing Tian
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
| | - Qingzhang Du
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
| | - Jinhui Chen
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
| | - Ying Li
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
| | - Xiaohui Yang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
| | - Bailian Li
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China Department of Forestry, North Carolina State University, Raleigh, NC 27695-8203, USA
| | - Deqiang Zhang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
| |
Collapse
|
21
|
Skorupa M, Gołębiewski M, Domagalski K, Kurnik K, Abu Nahia K, Złoch M, Tretyn A, Tyburski J. Transcriptomic profiling of the salt stress response in excised leaves of the halophyte Beta vulgaris ssp. maritima. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 243:56-70. [PMID: 26795151 DOI: 10.1016/j.plantsci.2015.11.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 11/20/2015] [Accepted: 11/21/2015] [Indexed: 05/21/2023]
Abstract
Beta vulgaris ssp. maritima is a halophytic relative of cultivated beets. In the present work a transcriptome response to acute salt stress imposed to excised leaves of sea beet was investigated. Salt treatments consisted of adding NaCl directly to the transpiration stream by immersing the petioles of excised leaves into the salt solutions. Sequencing libraries were generated from leaves subjected to either moderate or strong salt stress. Control libraries were constructed from untreated leaves. Sequencing was performed using the Illumina MiSeq platform. We obtained 32970 unigenes by assembling the pooled reads from all the libraries with Trinity software. Screening the nr database returned 18,362 sequences with functional annotation. Using the reference transcriptome we identified 1,246 genes that were differentially expressed after 48 h of NaCl stress. Genes related to several cellular functions such as membrane transport, osmoprotection, molecular chaperoning, redox metabolism or protein synthesis were differentially expressed in response to salt stress. The response of sea beet leaves to salt treatments was marked out by transcriptomic up-regulation of genes related to photosynthetic carbon fixation, ribosome biogenesis, cell wall-building and cell wall expansion. Furthermore, several novel and undescribed transcripts were responsive to salinity in leaves of sea beet.
Collapse
Affiliation(s)
- Monika Skorupa
- Chair of Plant Physiology and Biotechnology, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland
| | - Marcin Gołębiewski
- Chair of Plant Physiology and Biotechnology, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland; Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Toruń, Poland
| | - Krzysztof Domagalski
- Chair of Plant Physiology and Biotechnology, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland; Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Toruń, Poland
| | - Katarzyna Kurnik
- Chair of Plant Physiology and Biotechnology, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland
| | - Karim Abu Nahia
- Chair of Plant Physiology and Biotechnology, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland
| | - Michał Złoch
- Department of Microbiology, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland
| | - Andrzej Tretyn
- Chair of Plant Physiology and Biotechnology, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland; Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Toruń, Poland
| | - Jarosław Tyburski
- Chair of Plant Physiology and Biotechnology, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland; Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Toruń, Poland.
| |
Collapse
|
22
|
Hébrard C, Peterson DG, Willems G, Delaunay A, Jesson B, Lefèbvre M, Barnes S, Maury S. Epigenomics and bolting tolerance in sugar beet genotypes. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:207-25. [PMID: 26463996 PMCID: PMC4682430 DOI: 10.1093/jxb/erv449] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In sugar beet (Beta vulgaris altissima), bolting tolerance is an essential agronomic trait reflecting the bolting response of genotypes after vernalization. Genes involved in induction of sugar beet bolting have now been identified, and evidence suggests that epigenetic factors are involved in their control. Indeed, the time course and amplitude of DNA methylation variations in the shoot apical meristem have been shown to be critical in inducing sugar beet bolting, and a few functional targets of DNA methylation during vernalization have been identified. However, molecular mechanisms controlling bolting tolerance levels among genotypes are still poorly understood. Here, gene expression and DNA methylation profiles were compared in shoot apical meristems of three bolting-resistant and three bolting-sensitive genotypes after vernalization. Using Cot fractionation followed by 454 sequencing of the isolated low-copy DNA, 6231 contigs were obtained that were used along with public sugar beet DNA sequences to design custom Agilent microarrays for expression (56k) and methylation (244k) analyses. A total of 169 differentially expressed genes and 111 differentially methylated regions were identified between resistant and sensitive vernalized genotypes. Fourteen sequences were both differentially expressed and differentially methylated, with a negative correlation between their methylation and expression levels. Genes involved in cold perception, phytohormone signalling, and flowering induction were over-represented and collectively represent an integrative gene network from environmental perception to bolting induction. Altogether, the data suggest that the genotype-dependent control of DNA methylation and expression of an integrative gene network participate in bolting tolerance in sugar beet, opening up perspectives for crop improvement.
Collapse
Affiliation(s)
- Claire Hébrard
- Université d'Orléans, Faculté des Sciences, Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), UPRES EA 1207, 45067 Orléans, France INRA, USC1328 Arbres et Réponses aux Contraintes Hydriques et Environnementales (ARCHE), 45067 Orléans, France SESVanderHave N.V./S.A., Soldatenplein Z2 nr15, Industriepark, B-3300 Tienen, Belgium
| | - Daniel G Peterson
- Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, 2 Research Blvd., Box 9627, Mississippi State, MS 39762, USA
| | - Glenda Willems
- SESVanderHave N.V./S.A., Soldatenplein Z2 nr15, Industriepark, B-3300 Tienen, Belgium
| | - Alain Delaunay
- Université d'Orléans, Faculté des Sciences, Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), UPRES EA 1207, 45067 Orléans, France INRA, USC1328 Arbres et Réponses aux Contraintes Hydriques et Environnementales (ARCHE), 45067 Orléans, France
| | - Béline Jesson
- IMAXIO/HELIXIO, Biopôle Clermont-Limagne, Saint-Beauzire, F-63360, France
| | - Marc Lefèbvre
- SESVanderHave N.V./S.A., Soldatenplein Z2 nr15, Industriepark, B-3300 Tienen, Belgium
| | - Steve Barnes
- SESVanderHave N.V./S.A., Soldatenplein Z2 nr15, Industriepark, B-3300 Tienen, Belgium
| | - Stéphane Maury
- Université d'Orléans, Faculté des Sciences, Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), UPRES EA 1207, 45067 Orléans, France INRA, USC1328 Arbres et Réponses aux Contraintes Hydriques et Environnementales (ARCHE), 45067 Orléans, France
| |
Collapse
|
23
|
Neller KCM, Klenov A, Hudak KA. The Pokeweed Leaf mRNA Transcriptome and Its Regulation by Jasmonic Acid. FRONTIERS IN PLANT SCIENCE 2016; 7:283. [PMID: 27014307 PMCID: PMC4792876 DOI: 10.3389/fpls.2016.00283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 02/22/2016] [Indexed: 05/16/2023]
Abstract
The American pokeweed plant, Phytolacca americana, is recognized for synthesizing pokeweed antiviral protein (PAP), a ribosome inactivating protein (RIP) that inhibits the replication of several plant and animal viruses. The plant is also a heavy metal accumulator with applications in soil remediation. However, little is known about pokeweed stress responses, as large-scale sequencing projects have not been performed for this species. Here, we sequenced the mRNA transcriptome of pokeweed in the presence and absence of jasmonic acid (JA), a hormone mediating plant defense. Trinity-based de novo assembly of mRNA from leaf tissue and BLASTx homology searches against public sequence databases resulted in the annotation of 59 096 transcripts. Differential expression analysis identified JA-responsive genes that may be involved in defense against pathogen infection and herbivory. We confirmed the existence of several PAP isoforms and cloned a potentially novel isoform of PAP. Expression analysis indicated that PAP isoforms are differentially responsive to JA, perhaps indicating specialized roles within the plant. Finally, we identified 52 305 natural antisense transcript pairs, four of which comprised PAP isoforms, suggesting a novel form of RIP gene regulation. This transcriptome-wide study of a Phytolaccaceae family member provides a source of new genes that may be involved in stress tolerance in this plant. The sequences generated in our study have been deposited in the SRA database under project # SRP069141.
Collapse
|
24
|
Zhan C, Li X, Zhao Z, Yang T, Wang X, Luo B, Zhang Q, Hu Y, Hu X. Comprehensive Analysis of the Triterpenoid Saponins Biosynthetic Pathway in Anemone flaccida by Transcriptome and Proteome Profiling. FRONTIERS IN PLANT SCIENCE 2016; 7:1094. [PMID: 27504115 PMCID: PMC4958654 DOI: 10.3389/fpls.2016.01094] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 07/11/2016] [Indexed: 05/08/2023]
Abstract
BACKGROUND Anemone flaccida Fr. Shmidt (Ranunculaceae), commonly known as 'Di Wu' in China, is a perennial herb with limited distribution. The rhizome of A. flaccida has long been used to treat arthritis as a tradition in China. Studies disclosed that the plant contains a rich source of triterpenoid saponins. However, little is known about triterpenoid saponins biosynthesis in A. flaccida. RESULTS In this study, we conducted the tandem transcriptome and proteome profiling of a non-model medicinal plant, A. flaccida. Using Illumina HiSeq 2000 sequencing and iTRAQ technique, a total of 46,962 high-quality unigenes were obtained with an average sequence length of 1,310 bp, along with 1473 unique proteins from A. flaccida. Among the A. flaccida transcripts, 36,617 (77.97%) showed significant similarity (E-value < 1e (-5)) to the known proteins in the public database. Of the total 46,962 unigenes, 36,617 open reading frame (ORFs) were predicted. By the fragments per kilobases per million reads (FPKM) statistics, 14,004 isoforms/unigenes were found to be upregulated, and 14,090 isoforms/unigenes were down-regulated in the rhizomes as compared to those in the leaves. Based on the bioinformatics analysis, all possible enzymes involved in the triterpenoid saponins biosynthetic pathway of A. flaccida were identified, including cytosolic mevalonate pathway (MVA) and the plastidial methylerythritol pathway (MEP). Additionally, a total of 126 putative cytochrome P450 (CYP450) and 32 putative UDP glycosyltransferases were selected as the candidates of triterpenoid saponins modifiers. Among them, four of them were annotated as the gene of CYP716A subfamily, the key enzyme in the oleanane-type triterpenoid saponins biosynthetic pathway. Furthermore, based on RNA-Seq and proteome analysis, as well as quantitative RT-PCR verification, the expression level of gene and protein committed to triterpenoids biosynthesis in the leaf versus the rhizome was compared. CONCLUSION A combination of the de novo transcriptome and proteome profiling based on the Illumina HiSeq 2000 sequencing platform and iTRAQ technique was shown to be a powerful method for the discovery of candidate genes, which encoded enzymes that were responsible for the biosynthesis of novel secondary metabolites in a non-model plant. The transcriptome data of our study provides a very important resource for the understanding of the triterpenoid saponins biosynthesis of A. flaccida.
Collapse
Affiliation(s)
- Chuansong Zhan
- Department of Medicinal Plant, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
- Center for Plant Functional Components, Huazhong Agricultural UniversityWuhan, China
- National and Local Joint Engineering Research Center (Hubei) for Medicinal Plant Breeding and CultivationWuhan, China
- The Hubei Provincial Engineering Research Center for Medicinal PlantsWuhan, China
| | - Xiaohua Li
- Department of Medicinal Plant, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
- Center for Plant Functional Components, Huazhong Agricultural UniversityWuhan, China
- National and Local Joint Engineering Research Center (Hubei) for Medicinal Plant Breeding and CultivationWuhan, China
- The Hubei Provincial Engineering Research Center for Medicinal PlantsWuhan, China
| | - Zeying Zhao
- Department of Medicinal Plant, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
- National and Local Joint Engineering Research Center (Hubei) for Medicinal Plant Breeding and CultivationWuhan, China
- The Hubei Provincial Engineering Research Center for Medicinal PlantsWuhan, China
| | - Tewu Yang
- Department of Medicinal Plant, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
- National and Local Joint Engineering Research Center (Hubei) for Medicinal Plant Breeding and CultivationWuhan, China
- The Hubei Provincial Engineering Research Center for Medicinal PlantsWuhan, China
| | - Xuekui Wang
- Department of Medicinal Plant, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
- National and Local Joint Engineering Research Center (Hubei) for Medicinal Plant Breeding and CultivationWuhan, China
- The Hubei Provincial Engineering Research Center for Medicinal PlantsWuhan, China
| | - Biaobiao Luo
- Department of Medicinal Plant, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
- Center for Plant Functional Components, Huazhong Agricultural UniversityWuhan, China
- National and Local Joint Engineering Research Center (Hubei) for Medicinal Plant Breeding and CultivationWuhan, China
- The Hubei Provincial Engineering Research Center for Medicinal PlantsWuhan, China
| | - Qiyun Zhang
- Department of Medicinal Plant, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
- Center for Plant Functional Components, Huazhong Agricultural UniversityWuhan, China
- National and Local Joint Engineering Research Center (Hubei) for Medicinal Plant Breeding and CultivationWuhan, China
- The Hubei Provincial Engineering Research Center for Medicinal PlantsWuhan, China
| | - Yanru Hu
- Department of Medicinal Plant, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
- Center for Plant Functional Components, Huazhong Agricultural UniversityWuhan, China
- National and Local Joint Engineering Research Center (Hubei) for Medicinal Plant Breeding and CultivationWuhan, China
- The Hubei Provincial Engineering Research Center for Medicinal PlantsWuhan, China
| | - Xuebo Hu
- Department of Medicinal Plant, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
- Center for Plant Functional Components, Huazhong Agricultural UniversityWuhan, China
- National and Local Joint Engineering Research Center (Hubei) for Medicinal Plant Breeding and CultivationWuhan, China
- The Hubei Provincial Engineering Research Center for Medicinal PlantsWuhan, China
- *Correspondence: Xuebo Hu,
| |
Collapse
|
25
|
Mittal A, Jiang Y, Ritchie GL, Burke JJ, Rock CD. AtRAV1 and AtRAV2 overexpression in cotton increases fiber length differentially under drought stress and delays flowering. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 241:78-95. [PMID: 26706061 DOI: 10.1016/j.plantsci.2015.09.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 09/11/2015] [Accepted: 09/16/2015] [Indexed: 05/23/2023]
Abstract
There is a longstanding problem of an inverse relationship between cotton fiber qualities versus high yields. To better understand drought stress signaling and adaptation in cotton (Gossypium hirsutum) fiber development, we expressed the Arabidopsis transcription factors RELATED_TO_ABA-INSENSITIVE3/VIVIPAROUS1/(RAV1) and AtRAV2, which encode APETALA2-Basic3 domain proteins shown to repress transcription of FLOWERING_LOCUS_T (FT) and to promote stomatal opening cell-autonomously. In three years of field trials, we show that AtRAV1 and AtRAV2-overexpressing cotton had ∼5% significantly longer fibers with only marginal decreases in yields under well-watered or drought stress conditions that resulted in 40-60% yield penalties and 3-7% fiber length penalties in control plants. The longer transgenic fibers from drought-stressed transgenics could be spun into yarn which was measurably stronger and more uniform than that from well-watered control fibers. The transgenic AtRAV1 and AtRAV2 lines flowered later and retained bolls at higher nodes, which correlated with repression of endogenous GhFT-Like (FTL) transcript accumulation. Elevated expression early in development of ovules was observed for GhRAV2L, GhMYB25-Like (MYB25L) involved in fiber initiation, and GhMYB2 and GhMYB25 involved in fiber elongation. Altered expression of RAVs controlling critical nodes in developmental and environmental signaling hierarchies has the potential for phenotypic modification of crops.
Collapse
Affiliation(s)
- Amandeep Mittal
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409-3131, United States.
| | - Yingwen Jiang
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409-3131, United States.
| | - Glen L Ritchie
- Department of Plant and Soils Science, Texas Tech University, Lubbock, TX 79409-2122, United States.
| | - John J Burke
- USDA-ARS Plant Stress and Germplasm Laboratory, Lubbock, TX 79415, United States.
| | - Christopher D Rock
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409-3131, United States.
| |
Collapse
|
26
|
Vitali V, Bellati J, Soto G, Ayub ND, Amodeo G. Root hydraulic conductivity and adjustments in stomatal conductance: hydraulic strategy in response to salt stress in a halotolerant species. AOB PLANTS 2015; 7:plv136. [PMID: 26602985 PMCID: PMC4683980 DOI: 10.1093/aobpla/plv136] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 11/07/2015] [Indexed: 05/23/2023]
Abstract
Recent advances at the molecular level are introducing a new scenario that needs to be integrated into the analysis of plant hydraulic properties. Although it is not yet clear to what extent this scenario alters the current proposal for the hydraulic circuit models, it introduces new insights when studying plants that are able to easily overcome water restrictions. In this context, our aim was to explore water adjustments in a halotolerant model (Beta vulgaris) by studying the coordination between the root in terms of root hydraulic conductivity (Lpr) and the shoot as reflected in the stomatal conductance (gs). The root water pathways were also analysed in terms of root suberization (apoplastic barrier) and aquaporin transcript levels (cell-to-cell pathway). Beta vulgaris showed the ability to rapidly lose (4 h) and gain (24 h) turgor when submitted to salt stress (200 mM). The reduction profile observed in Lpr and gs was consistent with a coupled process. The tuning of the root water flow involved small variations in the studied aquaporin's transcripts before anatomical modifications occurred. Exploring Lpr enhancement after halting the stress contributed to show not only a different profile in restoring Lpr but also the capacity to uncouple Lpr from gs. Beta vulgaris root plays a key role and can anticipate water loss before the aerial water status is affected.
Collapse
Affiliation(s)
- Victoria Vitali
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Instituto de Biodiversidad y Biología Experimental, Universidad de Buenos Aires and Consejo Nacional de Investigaciones Científicas y Técnicas, C1428EGA Buenos Aires, Argentina
| | - Jorge Bellati
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Instituto de Biodiversidad y Biología Experimental, Universidad de Buenos Aires and Consejo Nacional de Investigaciones Científicas y Técnicas, C1428EGA Buenos Aires, Argentina
| | - Gabriela Soto
- Instituto de Genética "Ewald A. Favret", CICVyA, INTA-Castelar and Consejo Nacional de Investigaciones Científicas y Técnicas, 1686 Buenos Aires, Argentina
| | - Nicolás D Ayub
- Instituto de Genética "Ewald A. Favret", CICVyA, INTA-Castelar and Consejo Nacional de Investigaciones Científicas y Técnicas, 1686 Buenos Aires, Argentina
| | - Gabriela Amodeo
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Instituto de Biodiversidad y Biología Experimental, Universidad de Buenos Aires and Consejo Nacional de Investigaciones Científicas y Técnicas, C1428EGA Buenos Aires, Argentina
| |
Collapse
|
27
|
Minoche AE, Dohm JC, Schneider J, Holtgräwe D, Viehöver P, Montfort M, Sörensen TR, Weisshaar B, Himmelbauer H. Exploiting single-molecule transcript sequencing for eukaryotic gene prediction. Genome Biol 2015; 16:184. [PMID: 26328666 PMCID: PMC4556409 DOI: 10.1186/s13059-015-0729-7] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 07/22/2015] [Indexed: 12/20/2022] Open
Abstract
We develop a method to predict and validate gene models using PacBio single-molecule, real-time (SMRT) cDNA reads. Ninety-eight percent of full-insert SMRT reads span complete open reading frames. Gene model validation using SMRT reads is developed as automated process. Optimized training and prediction settings and mRNA-seq noise reduction of assisting Illumina reads results in increased gene prediction sensitivity and precision. Additionally, we present an improved gene set for sugar beet (Beta vulgaris) and the first genome-wide gene set for spinach (Spinacia oleracea). The workflow and guidelines are a valuable resource to obtain comprehensive gene sets for newly sequenced genomes of non-model eukaryotes.
Collapse
Affiliation(s)
- André E Minoche
- Max Planck Institute for Molecular Genetics, Berlin, Germany.,Centre for Genomic Regulation (CRG), Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Juliane C Dohm
- Max Planck Institute for Molecular Genetics, Berlin, Germany.,Centre for Genomic Regulation (CRG), Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190, Vienna, Austria
| | - Jessica Schneider
- Department of Biology/Center for Biotechnology, Bielefeld University, 33615, Bielefeld, Germany
| | - Daniela Holtgräwe
- Department of Biology/Center for Biotechnology, Bielefeld University, 33615, Bielefeld, Germany
| | - Prisca Viehöver
- Department of Biology/Center for Biotechnology, Bielefeld University, 33615, Bielefeld, Germany
| | - Magda Montfort
- Centre for Genomic Regulation (CRG), Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Thomas Rosleff Sörensen
- Department of Biology/Center for Biotechnology, Bielefeld University, 33615, Bielefeld, Germany
| | - Bernd Weisshaar
- Department of Biology/Center for Biotechnology, Bielefeld University, 33615, Bielefeld, Germany.
| | - Heinz Himmelbauer
- Max Planck Institute for Molecular Genetics, Berlin, Germany. .,Centre for Genomic Regulation (CRG), Barcelona, Spain. .,Universitat Pompeu Fabra (UPF), Barcelona, Spain. .,University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190, Vienna, Austria.
| |
Collapse
|
28
|
Villacorta-Martin C, Núñez de Cáceres González FF, de Haan J, Huijben K, Passarinho P, Lugassi-Ben Hamo M, Zaccai M. Whole transcriptome profiling of the vernalization process in Lilium longiflorum (cultivar White Heaven) bulbs. BMC Genomics 2015. [PMID: 26216467 PMCID: PMC4515921 DOI: 10.1186/s12864-015-1675-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background Vernalization is an obligatory requirement of extended exposure to low temperatures to induce flowering in certain plants. It is the most important factor affecting flowering time and quality in Easter lily (Lilium longiflorum). Exposing the bulbs to 4 °C gradually decreases flowering time up to 50 % compared to non-vernalized plants. We aim to understand the molecular regulation of vernalization in Easter lily, for which we characterized the global expression in lily bulb meristems after 0, 2, 5, 7 and 9 weeks of incubation at 4 °C. Results We assembled de-novo a transcriptome which, after filtering, yielded 121,572 transcripts and 42,430 genes which hold 15,414 annotated genes, with up to 3,657 GO terms. This extensive annotation was mapped to the more general GO slim plant with a total of 94 terms. The response to cold exposure was summarized in 6 expression clusters, providing useful patterns for dissecting the dynamics of vernalization in lily. The functional annotation (GO and GO slim plant) was used to group transcripts in gene sets. Analysis of these gene sets and profiles revealed that most of the enriched functions among genes up-regulated by cold exposure were related to epigenetic processes and chromatin remodeling. Candidate vernalization genes in lily were selected based on their sequence similarity to known regulators of flowering in other species. Conclusions We present a detailed analysis of gene expression dynamics during vernalization in Lilium, covering several time points and accounting for biological variation by the use of replicates. The resulting collection of transcripts and novel isoforms provides a useful resource for studying the changes occurring during vernalization at a fine level. The selected potential candidate genes can shed light on the regulation of this process. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1675-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Francisco F Núñez de Cáceres González
- Department of Life Sciences, Ben Gurion University of the Negev, P.O. Box 653, Beersheva, 84105, Israel. .,Present address: Centro de Investigaciones Biológicas, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km. 4.5, C. P. 42184, Mineral de la Reforma, Hidalgo, Mexico.
| | - Jorn de Haan
- Genetwister Technologies B.V., P.O. Box 193, NL6700 AD, Wageningen, The Netherlands.
| | - Kitty Huijben
- Genetwister Technologies B.V., P.O. Box 193, NL6700 AD, Wageningen, The Netherlands.
| | - Paul Passarinho
- Genetwister Technologies B.V., P.O. Box 193, NL6700 AD, Wageningen, The Netherlands.
| | - Maya Lugassi-Ben Hamo
- Department of Life Sciences, Ben Gurion University of the Negev, P.O. Box 653, Beersheva, 84105, Israel.
| | - Michele Zaccai
- Department of Life Sciences, Ben Gurion University of the Negev, P.O. Box 653, Beersheva, 84105, Israel.
| |
Collapse
|
29
|
Moliterni VMC, Paris R, Onofri C, Orrù L, Cattivelli L, Pacifico D, Avanzato C, Ferrarini A, Delledonne M, Mandolino G. Early transcriptional changes in Beta vulgaris in response to low temperature. PLANTA 2015; 242:187-201. [PMID: 25893871 DOI: 10.1007/s00425-015-2299-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 04/07/2015] [Indexed: 05/07/2023]
Abstract
Major metabolic pathways and genes affected by low-temperature treatment were identified and a thorough picture of the early transcriptional changes in sugar beet plantlets upon cold stress was given. Sugar beet (Beta vulgaris L.) is an important source of sugar and bioethanol production in temperate areas worldwide. In these areas, plantlet survival and sucrose yield of mature plants can be seriously limited by low temperatures, especially when plantlets are exposed to freezing temperatures (below 0 °C) at the early developmental stages. This frequently occurs when the crop is sown in early spring or even in autumn (autumn sowing) to escape drought at maturity and pathogen outbreaks. The knowledge of molecular responses induced in plantlets early upon exposure to low temperature is necessary to understand mechanisms that allow the plant to survive and to identify reactions that can influence other late-appearing traits. In this work, a wide study of sugar beet transcriptome modulation after a short exposure to a cold stress, mimicking what is experienced in vivo by young plantlets when temperature drops in the early spring nights, was carried out by high-throughput sequencing of leaves and root RNAs (RNA-Seq). A significant picture of the earliest events of temperature sensing was achieved for the first time for sugar beet: the retrieval of a great amount of transcription factors and the intensity of modulation of a large number of genes involved in several metabolic pathways suggest a fast and deep rearrangement of sugar beet plantlets metabolism as early response to cold stress, with both similarities and specificities between the two organs.
Collapse
Affiliation(s)
- Vita Maria Cristiana Moliterni
- Consiglio per la ricerca e la sperimentazione in agricoltura e l'analisi dell'economia agraria, Centro di ricerca per la genomica vegetale, via San Protaso 302, 29017, Fiorenzuola d'Arda, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Holtgräwe D, Sörensen TR, Viehöver P, Schneider J, Schulz B, Borchardt D, Kraft T, Himmelbauer H, Weisshaar B. Reliable in silico identification of sequence polymorphisms and their application for extending the genetic map of sugar beet (Beta vulgaris). PLoS One 2014; 9:e110113. [PMID: 25302600 PMCID: PMC4193868 DOI: 10.1371/journal.pone.0110113] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 09/07/2014] [Indexed: 02/03/2023] Open
Abstract
Molecular markers are a highly valuable tool for creating genetic maps. Like in many other crops, sugar beet (Beta vulgaris L.) breeding is increasingly supported by the application of such genetic markers. Single nucleotide polymorphism (SNP) based markers have a high potential for automated analysis and high-throughput genotyping. We developed a bioinformatics workflow that uses Sanger and 2nd-generation sequence data for detection, evaluation and verification of new transcript-associated SNPs from sugar beet. RNAseq data from one parent of an established mapping population were produced by 454-FLX sequencing and compared to Sanger ESTs derived from the other parent. The workflow established for SNP detection considers the quality values of both types of reads, provides polymorphic alignments as well as selection criteria for reliable SNP detection and allows painless generation of new genetic markers within genes. We obtained a total of 14,323 genic SNPs and InDels. According to empirically optimised settings for the quality parameters, we classified these SNPs into four usability categories. Validation of a subset of the in silico detected SNPs by genotyping the mapping population indicated a high success rate of the SNP detection. Finally, a total of 307 new markers were integrated with existing data into a new genetic map of sugar beet which offers improved resolution and the integration of terminal markers.
Collapse
Affiliation(s)
- Daniela Holtgräwe
- CeBiTec & Department of Biology, University of Bielefeld, Bielefeld, Germany
- * E-mail:
| | | | - Prisca Viehöver
- CeBiTec & Department of Biology, University of Bielefeld, Bielefeld, Germany
| | - Jessica Schneider
- CeBiTec & Department of Biology, University of Bielefeld, Bielefeld, Germany
| | - Britta Schulz
- Molecular Breeding Sugarbeet, KWS Saat AG, Einbeck, Germany
| | | | | | - Heinz Himmelbauer
- Max Planck Institute for Molecular Genetics, Berlin, Germany
- Centre for Genomic Regulation, Barcelona, Spain
| | - Bernd Weisshaar
- CeBiTec & Department of Biology, University of Bielefeld, Bielefeld, Germany
| |
Collapse
|
31
|
Zhao X, Zhang J, Chen C, Yang J, Zhu H, Liu M, Lv F. Deep sequencing-based comparative transcriptional profiles of Cymbidium hybridum roots in response to mycorrhizal and non-mycorrhizal beneficial fungi. BMC Genomics 2014; 15:747. [PMID: 25174959 PMCID: PMC4162972 DOI: 10.1186/1471-2164-15-747] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 08/22/2014] [Indexed: 02/01/2023] Open
Abstract
Background The Orchidaceae is one of the largest families in the plant kingdom and orchid mycorrhizae (OM) are indispensable in the life cycle of all orchids under natural conditions. In spite of this, little is known concerning the mechanisms underlying orchid- mycorrhizal fungi interactions. Our previous work demonstrated that the non-mycorrhizal fungus Umbelopsis nana ZH3A-3 could improve the symbiotic effects of orchid mycorrhizal fungus Epulorhiza repens ML01 by co-cultivation with Cymbidium hybridum plantlets. Thus, we investigated the C. hybridum transcript profile associated with different beneficial fungi. Results More than 54,993,972 clean reads were obtained from un-normalized cDNA library prepared from fungal- and mock- treated Cymbidium roots at four time points using RNA-seq technology. These reads were assembled into 16,798 unique transcripts, with a mean length of 1127 bp. A total of 10,971 (65.31%) sequences were annotated based on BLASTX results and over ninety percent of which were assigned to plant origin. The digital gene expression profiles in Cymbidium root at 15 days post inoculation revealed that 1674, 845 and 1743 genes were sigificantly regulated in response to ML01, ZH3A-3 and ML01+ ZH3A-3 treatments, respectively. Twenty-six genes in different regulation patterns were validated using quantitative RT-PCR. Our analysis showed that general defense responses were co- induced by three treatments, including cell wall modification, reactive oxygen species detoxification, secondary biosynthesis and hormone balance. Genes involved in phosphate transport and root morphogenesis were also detected to be up-regulated collectively. Among the OM specifically induced transcripts, genes related to signaling, protein metabolism and processing, defense, transport and auxin response were identifed. Aside from these orchid transcripts, some putative fungal genes were also identified in symbiotic roots related to plant cell wall degradation, remodeling the fungal cell wall and nutrient transport. Conclusion The orchid root transcriptome will facilitate our understanding of orchid - associated biological mechanism. The comparative expression profiling revealed that the transcriptional reprogramming by OM symbiosis generally overlapped that of arbuscular mycorrhizas and ectomycorrhizas. The molecular basis of OM formation and function will improve our knowledge of plant- mycorrhzial fungi interactions, and their effects on plant and fungal growth, development and differentiation. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-747) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fubing Lv
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, East 1st Street 1, Jinying Road, Tianhe District, Guangzhou 510640, People's Republic of China.
| |
Collapse
|
32
|
Zhang Y, Sun Y, Cole JR. A scalable and accurate targeted gene assembly tool (SAT-Assembler) for next-generation sequencing data. PLoS Comput Biol 2014; 10:e1003737. [PMID: 25122209 PMCID: PMC4133164 DOI: 10.1371/journal.pcbi.1003737] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 06/05/2014] [Indexed: 11/21/2022] Open
Abstract
Gene assembly, which recovers gene segments from short reads, is an important step in functional analysis of next-generation sequencing data. Lacking quality reference genomes, de novo assembly is commonly used for RNA-Seq data of non-model organisms and metagenomic data. However, heterogeneous sequence coverage caused by heterogeneous expression or species abundance, similarity between isoforms or homologous genes, and large data size all pose challenges to de novo assembly. As a result, existing assembly tools tend to output fragmented contigs or chimeric contigs, or have high memory footprint. In this work, we introduce a targeted gene assembly program SAT-Assembler, which aims to recover gene families of particular interest to biologists. It addresses the above challenges by conducting family-specific homology search, homology-guided overlap graph construction, and careful graph traversal. It can be applied to both RNA-Seq and metagenomic data. Our experimental results on an Arabidopsis RNA-Seq data set and two metagenomic data sets show that SAT-Assembler has smaller memory usage, comparable or better gene coverage, and lower chimera rate for assembling a set of genes from one or multiple pathways compared with other assembly tools. Moreover, the family-specific design and rapid homology search allow SAT-Assembler to be naturally compatible with parallel computing platforms. The source code of SAT-Assembler is available at https://sourceforge.net/projects/sat-assembler/. The data sets and experimental settings can be found in supplementary material. Next-generation sequencing (NGS) provides an efficient and affordable way to sequence the genomes or transcriptomes of a large amount of organisms. With fast accumulation of the sequencing data from various NGS projects, the bottleneck is to efficiently mine useful knowledge from the data. As NGS platforms usually generate short and fragmented sequences (reads), one key step to annotate NGS data is to assemble short reads into longer contigs, which are then used to recover functional elements such as protein-coding genes. Short read assembly remains one of the most difficult computational problems in genomics. In particular, the performance of existing assembly tools is not satisfactory on complicated NGS data sets. They cannot reliably separate genes of high similarity, recover under-represented genes, and incur high computational time and memory usage. Hence, we propose a targeted gene assembly tool, SAT-Assembler, to assemble genes of interest directly from NGS data with low memory usage and high accuracy. Our experimental results on a transcriptomic data set and two microbial community data sets showed that SAT-Assembler used less memory and recovered more target genes with better accuracy than existing tools.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Computer Science and Engineering, Michigan State University, East Lansing, Michigan, United States of America
| | - Yanni Sun
- Department of Computer Science and Engineering, Michigan State University, East Lansing, Michigan, United States of America
- * E-mail:
| | - James R. Cole
- Center for Microbial Ecology, Michigan State University, East Lansing, Michigan, United States of America
| |
Collapse
|
33
|
Valluru R, Reynolds MP, Salse J. Genetic and molecular bases of yield-associated traits: a translational biology approach between rice and wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:1463-89. [PMID: 24913362 DOI: 10.1007/s00122-014-2332-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Accepted: 05/15/2014] [Indexed: 05/21/2023]
Abstract
Transferring the knowledge bases between related species may assist in enlarging the yield potential of crop plants. Being cereals, rice and wheat share a high level of gene conservation; however, they differ at metabolic levels as a part of the environmental adaptation resulting in different yield capacities. This review focuses on the current understanding of genetic and molecular regulation of yield-associated traits in both crop species, highlights the similarities and differences and presents the putative knowledge gaps. We focus on the traits associated with phenology, photosynthesis, and assimilate partitioning and lodging resistance; the most important drivers of yield potential. Currently, there are large knowledge gaps in the genetic and molecular control of such major biological processes that can be filled in a translational biology approach in transferring genomics and genetics informations between rice and wheat.
Collapse
Affiliation(s)
- Ravi Valluru
- Wheat Physiology, Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT), 56130, Mexico DF, Mexico,
| | | | | |
Collapse
|
34
|
Mittal A, Gampala SSL, Ritchie GL, Payton P, Burke JJ, Rock CD. Related to ABA-Insensitive3(ABI3)/Viviparous1 and AtABI5 transcription factor coexpression in cotton enhances drought stress adaptation. PLANT BIOTECHNOLOGY JOURNAL 2014; 12:578-89. [PMID: 24483851 PMCID: PMC4043863 DOI: 10.1111/pbi.12162] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Revised: 11/24/2013] [Accepted: 12/02/2013] [Indexed: 05/18/2023]
Abstract
Drought tolerance is an important trait being pursued by the agbiotech industry. Abscisic acid (ABA) is a stress hormone that mediates a multitude of processes in growth and development, water use efficiency (WUE) and gene expression during seed development and in response to environmental stresses. Arabidopsis B3-domain transcription factor Related to ABA-Insensitive3 (ABI3)/Viviparous1 (namely AtRAV2) and basic leucine zipper (bZIPs) AtABI5 or AtABF3 transactivated ABA-inducible promoter:GUS reporter expression in a maize mesophyll protoplast transient assay and showed synergies in reporter transactivation when coexpressed. Transgenic cotton (Gossypium hirsutum) expressing AtRAV1/2 and/or AtABI5 showed resistance to imposed drought stress under field and greenhouse conditions and exhibited improved photosynthesis and WUEs associated with absorption through larger root system and greater leaf area. We observed synergy for root biomass accumulation in the greenhouse, intrinsic WUE in the field and drought tolerance in stacked AtRAV and AtABI5 double-transgenic cotton. We assessed AtABI5 and AtRAV1/2 involvement in drought stress adaptations through reactive oxygen species scavenging and osmotic adjustment by marker gene expression in cotton. Deficit irrigation-grown AtRAV1/2 and AtABI5 transgenics had 'less-stressed' molecular and physiological phenotypes under drought, likely due to improved photoassimilation and root and shoot sink strengths and enhanced expression of endogenous GhRAV and genes for antioxidant and osmolyte biosynthesis. Overexpression of bZIP and RAV TFs could impact sustainable cotton agriculture and potentially other crops under limited irrigation conditions.
Collapse
Affiliation(s)
- Amandeep Mittal
- Department of Biological Sciences, Texas Tech University, Lubbock TX 79409-3131
| | | | - Glen L. Ritchie
- Department of Plant and Soil Science, Texas Tech University, Lubbock TX 79409-2122
| | - Paxton Payton
- USDA-ARS Plant Stress and Germplasm Lab, Lubbock, TX 79415
| | - John J. Burke
- USDA-ARS Plant Stress and Germplasm Lab, Lubbock, TX 79415
| | - Christopher D. Rock
- Department of Biological Sciences, Texas Tech University, Lubbock TX 79409-3131
- The author responsible for distribution of materials integral to the findings presented in this article is: (). Ph. (806) 742-3722 x271; fax (806) 742-2963
| |
Collapse
|
35
|
Chow KS, Ghazali AK, Hoh CC, Mohd-Zainuddin Z. RNA sequencing read depth requirement for optimal transcriptome coverage in Hevea brasiliensis. BMC Res Notes 2014; 7:69. [PMID: 24484543 PMCID: PMC3926681 DOI: 10.1186/1756-0500-7-69] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 01/17/2014] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND One of the concerns of assembling de novo transcriptomes is determining the amount of read sequences required to ensure a comprehensive coverage of genes expressed in a particular sample. In this report, we describe the use of Illumina paired-end RNA-Seq (PE RNA-Seq) reads from Hevea brasiliensis (rubber tree) bark to devise a transcript mapping approach for the estimation of the read amount needed for deep transcriptome coverage. FINDINGS We optimized the assembly of a Hevea bark transcriptome based on 16 Gb Illumina PE RNA-Seq reads using the Oases assembler across a range of k-mer sizes. We then assessed assembly quality based on transcript N50 length and transcript mapping statistics in relation to (a) known Hevea cDNAs with complete open reading frames, (b) a set of core eukaryotic genes and (c) Hevea genome scaffolds. This was followed by a systematic transcript mapping process where sub-assemblies from a series of incremental amounts of bark transcripts were aligned to transcripts from the entire bark transcriptome assembly. The exercise served to relate read amounts to the degree of transcript mapping level, the latter being an indicator of the coverage of gene transcripts expressed in the sample. As read amounts or datasize increased toward 16 Gb, the number of transcripts mapped to the entire bark assembly approached saturation. A colour matrix was subsequently generated to illustrate sequencing depth requirement in relation to the degree of coverage of total sample transcripts. CONCLUSIONS We devised a procedure, the "transcript mapping saturation test", to estimate the amount of RNA-Seq reads needed for deep coverage of transcriptomes. For Hevea de novo assembly, we propose generating between 5-8 Gb reads, whereby around 90% transcript coverage could be achieved with optimized k-mers and transcript N50 length. The principle behind this methodology may also be applied to other non-model plants, or with reads from other second generation sequencing platforms.
Collapse
MESH Headings
- Databases, Genetic
- Gene Expression Profiling/methods
- Gene Expression Regulation, Plant
- Gene Library
- Genes, Plant
- Hevea/chemistry
- Hevea/genetics
- High-Throughput Nucleotide Sequencing
- Open Reading Frames
- Plant Bark/metabolism
- Plant Leaves/metabolism
- Plant Proteins/genetics
- RNA, Messenger/biosynthesis
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/isolation & purification
- RNA, Plant/biosynthesis
- RNA, Plant/chemistry
- RNA, Plant/genetics
- RNA, Plant/isolation & purification
- Reproducibility of Results
- Transcriptome
Collapse
Affiliation(s)
- Keng-See Chow
- Biotechnology Unit, Malaysian Rubber Board, Rubber Research Institute of Malaysia, Experiment Station, Kuala Lumpur 47000, Sungai Buloh, Selangor, Malaysia
| | - Ahmad-Kamal Ghazali
- Codon Genomics SB, No. 26, Jalan Dutamas 7, Taman Dutamas, Balakong 43200, Seri Kembangan Balakong, Selangor, Malaysia
| | - Chee-Choong Hoh
- Codon Genomics SB, No. 26, Jalan Dutamas 7, Taman Dutamas, Balakong 43200, Seri Kembangan Balakong, Selangor, Malaysia
| | - Zainorlina Mohd-Zainuddin
- Biotechnology Unit, Malaysian Rubber Board, Rubber Research Institute of Malaysia, Experiment Station, Kuala Lumpur 47000, Sungai Buloh, Selangor, Malaysia
| |
Collapse
|
36
|
Huan Q, Mao Z, Zhang J, Xu Y, Chong K. Transcriptome-wide analysis of vernalization reveals conserved and species-specific mechanisms in Brachypodium. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2013; 55:696-709. [PMID: 23551346 DOI: 10.1111/jipb.12050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 03/07/2013] [Indexed: 05/08/2023]
Abstract
Several temperate cereals need vernalization to promote flowering. Little, however, is known about the vernalization-memory-related genes, and almost no comparative analysis has been performed. Here, RNA-Seq was used for transcriptome analysis in non-vernalized, vernalized and post-vernalized Brachypodium distachyon (L.) Beauv. seedlings. In total, the expression of 1,665 genes showed significant changes (fold change ≥4) in response to vernalization. Among them, 674 putative vernalization-memory-related genes with a constant response to vernalization were significantly enriched in transcriptional regulation and monooxygenase-mediated biological processes. Comparative analysis of vernalization-memory-related genes with barley demonstrated that the oxidative-stress response was the most conserved pathway between these two plant species. Moreover, Brachypodium preferred to regulate transcription and protein phosphorylation processes, while vernalization-memory-related genes, whose products are cytoplasmic membrane-bound-vesicle-located proteins, were preferred to be regulated in barley. Correlation analysis of the vernalization-related genes with barley revealed that the vernalization mechanism was conserved between these two plant species. In summary, vernalization, including its memory mechanism, is conserved between Brachypodium and barley, although several species-specific features also exist. The data reported here will provide primary resources for subsequent functional research in vernalization.
Collapse
Affiliation(s)
- Qing Huan
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | | | | | | | | |
Collapse
|
37
|
Zhao Q, Zou J, Meng J, Mei S, Wang J. Tracing the transcriptomic changes in synthetic Trigenomic allohexaploids of Brassica using an RNA-Seq approach. PLoS One 2013; 8:e68883. [PMID: 23874799 PMCID: PMC3708896 DOI: 10.1371/journal.pone.0068883] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 06/02/2013] [Indexed: 01/07/2023] Open
Abstract
Polyploidization has played an important role in plant evolution and speciation, and newly formed allopolyploids have experienced rapid transcriptomic changes. Here, we compared the transcriptomic differences between a synthetic Brassica allohexaploid and its parents using a high-throughput RNA-Seq method. A total of 35,644,409 sequence reads were generated, and 32,642 genes were aligned from the data. Totals of 29,260, 29,060, and 29,697 genes were identified in Brassicarapa, Brassicacarinata, and Brassica allohexaploid, respectively. We compared 7,397 differentially expressed genes (DEGs) between Brassica hexaploid and its parents, as well as 2,545 nonadditive genes of Brassica hexaploid. We hypothesized that the higher ploidy level as well as secondary polyploidy might have influenced these changes. The majority of the 3,184 DEGs between Brassica hexaploid and its paternal parent, B. rapa, were involved in the biosynthesis of secondary metabolites, plant–pathogen interactions, photosynthesis, and circadian rhythm. Among the 2,233 DEGs between Brassica hexaploid and its maternal parent, B. carinata, several played roles in plant–pathogen interactions, plant hormone signal transduction, ribosomes, limonene and pinene degradation, photosynthesis, and biosynthesis of secondary metabolites. There were more significant differences in gene expression between the allohexaploid and its paternal parent than between it and its maternal parent, possibly partly because of cytoplasmic and maternal effects. Specific functional categories were enriched among the 2,545 nonadditive genes of Brassica hexaploid compared with the additive genes; the categories included response to stimulus, immune system process, cellular process, metabolic process, rhythmic process, and pigmentation. Many transcription factor genes, methyltransferases, and methylation genes showed differential expression between Brassica hexaploid and its parents. Our results demonstrate that the Brassica allohexaploid can generate extensive transcriptomic diversity compared with its parents. These changes may contribute to the normal growth and reproduction of allohexaploids.
Collapse
Affiliation(s)
- Qin Zhao
- National Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jun Zou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Jinling Meng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Shiyong Mei
- Hubei Academy of Agricultural Science, Wuhan, China
| | - Jianbo Wang
- National Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
- * E-mail:
| |
Collapse
|
38
|
Gutierrez-Gonzalez JJ, Tu ZJ, Garvin DF. Analysis and annotation of the hexaploid oat seed transcriptome. BMC Genomics 2013; 14:471. [PMID: 23845136 PMCID: PMC3720263 DOI: 10.1186/1471-2164-14-471] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 07/06/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Next generation sequencing provides new opportunities to explore transcriptomes. However, challenges remain for accurate differentiation of homoeoalleles and paralogs, particularly in polyploid organisms with no supporting genome sequence. In this study, RNA-Seq was employed to generate and characterize the first gene expression atlas for hexaploid oat. RESULTS The software packages Trinity and Oases were used to produce a transcript assembly from nearly 134 million 100-bp paired-end reads from developing oat seeds. Based on the quality-parameters employed, Oases assemblies were superior. The Oases 67-kmer assembly, denoted dnOST (de novo Oat Seed Transcriptome), is over 55 million nucleotides in length and the average transcript length is 1,043 nucleotides. The 74.8× sequencing depth was adequate to differentiate a large proportion of putative homoeoalleles and paralogs. To assess the robustness of dnOST, we successfully identified gene transcripts associated with the biosynthetic pathways of three compounds with health-promoting properties (avenanthramides, tocols, β-glucans), and quantified their expression. CONCLUSIONS To our knowledge, this study provides the first direct performance comparison between two major assemblers in a polyploid organism. The workflow we developed provides a useful guide for comparable analyses in other organisms. The transcript assembly developed here is a major advance. It expands the number of oat ESTs 3-fold, and constitutes the first comprehensive transcriptome study in oat. This resource will be a useful new tool both for analysis of genes relevant to nutritional enhancement of oat, and for improvement of this crop in general.
Collapse
Affiliation(s)
- Juan J Gutierrez-Gonzalez
- USDA-ARS Plant Science Research Unit and Department of Agronomy and Plant Genetics, University of Minnesota, St Paul, MN 55108, USA
| | | | | |
Collapse
|
39
|
Zhang Y, Sun Y, Cole JR. A Sensitive and Accurate protein domain cLassification Tool (SALT) for short reads. Bioinformatics 2013; 29:2103-11. [DOI: 10.1093/bioinformatics/btt357] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
40
|
Preston JC, Sandve SR. Adaptation to seasonality and the winter freeze. FRONTIERS IN PLANT SCIENCE 2013; 4:167. [PMID: 23761798 PMCID: PMC3669742 DOI: 10.3389/fpls.2013.00167] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 05/13/2013] [Indexed: 05/20/2023]
Abstract
Flowering plants initially diversified during the Mesozoic era at least 140 million years ago in regions of the world where temperate seasonal environments were not encountered. Since then several cooling events resulted in the contraction of warm and wet environments and the establishment of novel temperate zones in both hemispheres. In response, less than half of modern angiosperm families have members that evolved specific adaptations to cold seasonal climates, including cold acclimation, freezing tolerance, endodormancy, and vernalization responsiveness. Despite compelling evidence for multiple independent origins, the level of genetic constraint on the evolution of adaptations to seasonal cold is not well understood. However, the recent increase in molecular genetic studies examining the response of model and crop species to seasonal cold offers new insight into the evolutionary lability of these traits. This insight has major implications for our understanding of complex trait evolution, and the potential role of local adaptation in response to past and future climate change. In this review, we discuss the biochemical, morphological, and developmental basis of adaptations to seasonal cold, and synthesize recent literature on the genetic basis of these traits in a phylogenomic context. We find evidence for multiple genetic links between distinct physiological responses to cold, possibly reinforcing the coordinated expression of these traits. Furthermore, repeated recruitment of the same or similar ancestral pathways suggests that land plants might be somewhat pre-adapted to dealing with temperature stress, perhaps making inducible cold traits relatively easy to evolve.
Collapse
Affiliation(s)
- Jill C. Preston
- Department of Plant Biology, University of VermontBurlington, VT, USA
| | | |
Collapse
|
41
|
Systems metabolic engineering in an industrial setting. Appl Microbiol Biotechnol 2013; 97:2319-26. [DOI: 10.1007/s00253-013-4738-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 01/22/2013] [Accepted: 01/23/2013] [Indexed: 10/27/2022]
|
42
|
Increasing Food Production in Africa by Boosting the Productivity of Understudied Crops. AGRONOMY-BASEL 2012. [DOI: 10.3390/agronomy2040240] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
43
|
Schliesky S, Gowik U, Weber APM, Bräutigam A. RNA-Seq Assembly - Are We There Yet? FRONTIERS IN PLANT SCIENCE 2012; 3:220. [PMID: 23056003 PMCID: PMC3457010 DOI: 10.3389/fpls.2012.00220] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 09/05/2012] [Indexed: 05/20/2023]
Abstract
Transcriptomic sequence resources represent invaluable assets for research, in particular for non-model species without a sequenced genome. To date, the Next Generation Sequencing technologies 454/Roche and Illumina have been used to generate transcriptome sequence databases by mRNA-Seq for more than fifty different plant species. While some of the databases were successfully used for downstream applications, such as proteomics, the assembly parameters indicate that the assemblies do not yet accurately reflect the actual plant transcriptomes. Two different assembly strategies have been used, overlap consensus based assemblers for long reads and Eulerian path/de Bruijn graph assembler for short reads. In this review, we discuss the challenges and solutions to the transcriptome assembly problem. A list of quality control parameters and the necessary scripts to produce them are provided.
Collapse
Affiliation(s)
- Simon Schliesky
- Center of Excellence on Plant Sciences (CEPLAS), Institute for Plant Biochemistry, Heinrich Heine UniversityDüsseldorf, Germany
| | - Udo Gowik
- Center of Excellence on Plant Sciences (CEPLAS), Institute for Plant Developmental and Molecular Biology, Heinrich Heine UniversityDüsseldorf, Germany
| | - Andreas P. M. Weber
- Center of Excellence on Plant Sciences (CEPLAS), Institute for Plant Biochemistry, Heinrich Heine UniversityDüsseldorf, Germany
| | - Andrea Bräutigam
- Center of Excellence on Plant Sciences (CEPLAS), Institute for Plant Biochemistry, Heinrich Heine UniversityDüsseldorf, Germany
- *Correspondence: Andrea Bräutigam, Institute for Plant Biochemistry, 26.03.01.Room 32, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany. e-mail:
| |
Collapse
|