1
|
Desvignes T, Sydes J, Montfort J, Bobe J, Postlethwait JH. Evolution after Whole-Genome Duplication: Teleost MicroRNAs. Mol Biol Evol 2021; 38:3308-3331. [PMID: 33871629 PMCID: PMC8321539 DOI: 10.1093/molbev/msab105] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are important gene expression regulators implicated in many biological processes, but we lack a global understanding of how miRNA genes evolve and contribute to developmental canalization and phenotypic diversification. Whole-genome duplication events likely provide a substrate for species divergence and phenotypic change by increasing gene numbers and relaxing evolutionary pressures. To understand the consequences of genome duplication on miRNA evolution, we studied miRNA genes following the teleost genome duplication (TGD). Analysis of miRNA genes in four teleosts and in spotted gar, whose lineage diverged before the TGD, revealed that miRNA genes were retained in ohnologous pairs more frequently than protein-coding genes, and that gene losses occurred rapidly after the TGD. Genomic context influenced retention rates, with clustered miRNA genes retained more often than nonclustered miRNA genes and intergenic miRNA genes retained more frequently than intragenic miRNA genes, which often shared the evolutionary fate of their protein-coding host. Expression analyses revealed both conserved and divergent expression patterns across species in line with miRNA functions in phenotypic canalization and diversification, respectively. Finally, major strands of miRNA genes experienced stronger purifying selection, especially in their seeds and 3'-complementary regions, compared with minor strands, which nonetheless also displayed evolutionary features compatible with constrained function. This study provides the first genome-wide, multispecies analysis of the mechanisms influencing metazoan miRNA evolution after whole-genome duplication.
Collapse
Affiliation(s)
- Thomas Desvignes
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | - Jason Sydes
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | | | | | | |
Collapse
|
2
|
Desvignes T, Batzel P, Sydes J, Eames BF, Postlethwait JH. miRNA analysis with Prost! reveals evolutionary conservation of organ-enriched expression and post-transcriptional modifications in three-spined stickleback and zebrafish. Sci Rep 2019; 9:3913. [PMID: 30850632 PMCID: PMC6408482 DOI: 10.1038/s41598-019-40361-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 02/15/2019] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs) can have organ-specific expression and functions; they can originate from dedicated miRNA genes, from non-canonical miRNA genes, or from mirror-miRNA genes and can also experience post-transcriptional variation. It remains unclear, however, which mechanisms of miRNA production or modification are organ-specific and the extent of their evolutionary conservation. To address these issues, we developed the software Prost! (PRocessing Of Short Transcripts), which, among other features, helps quantify mature miRNAs, accounts for post-transcriptional processing, such as nucleotide editing, and identifies mirror-miRNAs. Here, we applied Prost! to annotate and analyze miRNAs in three-spined stickleback (Gasterosteus aculeatus), a model fish for evolutionary biology reported to have a miRNome larger than most teleost fish. Zebrafish (Danio rerio), a distantly related teleost with a well-known miRNome, served as comparator. Our results provided evidence for the existence of 286 miRNA genes and 382 unique mature miRNAs (excluding mir430 gene duplicates and the vaultRNA-derived mir733), which doesn't represent a miRNAome larger than other teleost miRNomes. In addition, small RNA sequencing data from brain, heart, testis, and ovary in both stickleback and zebrafish identified suites of mature miRNAs that display organ-specific enrichment, many of which are evolutionarily-conserved in the brain and heart in both species. These data also supported the hypothesis that evolutionarily-conserved, organ-specific mechanisms may regulate post-transcriptional variations in miRNA sequence. In both stickleback and zebrafish, miR2188-5p was edited frequently with similar nucleotide changes in the seed sequence with organ specific editing rates, highest in the brain. In summary, Prost! is a new tool to identify and understand small RNAs, to help clarify a species' miRNA biology as shown here for an important model for the evolution of developmental mechanisms, and to provide insight into organ-enriched expression and the evolutionary conservation of miRNA post-transcriptional modifications.
Collapse
Affiliation(s)
- Thomas Desvignes
- Institute of Neuroscience, University of Oregon, Eugene, OR, 97403, USA.
| | - Peter Batzel
- Institute of Neuroscience, University of Oregon, Eugene, OR, 97403, USA
| | - Jason Sydes
- Institute of Neuroscience, University of Oregon, Eugene, OR, 97403, USA
| | - B Frank Eames
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | | |
Collapse
|
3
|
Differential miRNA expression in the three-spined stickleback, response to environmental changes. Sci Rep 2017; 7:18089. [PMID: 29273769 PMCID: PMC5741757 DOI: 10.1038/s41598-017-18128-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 12/01/2017] [Indexed: 12/13/2022] Open
Abstract
miRNAs play important role in the various physiological and evolutionary processes, however, there is no data allowing comparison of evolutionary differences between various ecotypes adapted to different environmental conditions and specimen demonstrating immediate physiological response to the environmental changes. We compared miRNA expression profiles between marine and freshwater stickleback populations of the three-spined stickleback to identify the evolutionary differences. To study the immediate physiological response to foreign environment, we explored the changes induced by transfer of marine sticklebacks into freshwater environment and vice versa. Comparative analysis of changes in miRNA expression suggested that they are driven by three independent factors: (1) non-specific changes in miRNA expression under different environmental conditions; (2) specific response to freshwater conditions in the marine stickleback ecotype; (3) specific response to extreme osmotic conditions for both marine and freshwater ecotypes during the contact with non-native environment. Gene Ontology enrichment analysis of differential expressed miRNA targets supports our current hypothesis.
Collapse
|
4
|
Balao F, Trucchi E, Wolfe TM, Hao B, Lorenzo MT, Baar J, Sedman L, Kosiol C, Amman F, Chase MW, Hedrén M, Paun O. Adaptive sequence evolution is driven by biotic stress in a pair of orchid species (Dactylorhiza) with distinct ecological optima. Mol Ecol 2017; 26:3649-3662. [PMID: 28370647 PMCID: PMC5518283 DOI: 10.1111/mec.14123] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 02/24/2017] [Accepted: 03/15/2017] [Indexed: 12/23/2022]
Abstract
The orchid family is the largest in the angiosperms, but little is known about the molecular basis of the significant variation they exhibit. We investigate here the transcriptomic divergence between two European terrestrial orchids, Dactylorhiza incarnata and Dactylorhiza fuchsii, and integrate these results in the context of their distinct ecologies that we also document. Clear signals of lineage-specific adaptive evolution of protein-coding sequences are identified, notably targeting elements of biotic defence, including both physical and chemical adaptations in the context of divergent pools of pathogens and herbivores. In turn, a substantial regulatory divergence between the two species appears linked to adaptation/acclimation to abiotic conditions. Several of the pathways affected by differential expression are also targeted by deviating post-transcriptional regulation via sRNAs. Finally, D. incarnata appears to suffer from insufficient sRNA control over the activity of RNA-dependent DNA polymerase, resulting in increased activity of class I transposable elements and, over time, in larger genome size than that of D. fuchsii. The extensive molecular divergence between the two species suggests significant genomic and transcriptomic shock in their hybrids and offers insights into the difficulty of coexistence at the homoploid level. Altogether, biological response to selection, accumulated during the history of these orchids, appears governed by their microenvironmental context, in which biotic and abiotic pressures act synergistically to shape transcriptome structure, expression and regulation.
Collapse
Affiliation(s)
- Francisco Balao
- Department of Botany and Biodiversity ResearchUniversity of ViennaViennaAustria
- Departamento de Biología Vegetal y EcologíaUniversity of SevilleSevillaSpain
| | - Emiliano Trucchi
- Department of Botany and Biodiversity ResearchUniversity of ViennaViennaAustria
- Department of Life Sciences and BiotechnologiesUniversity of FerraraFerraraItaly
| | - Thomas M. Wolfe
- Department of Botany and Biodiversity ResearchUniversity of ViennaViennaAustria
- Vienna Graduate School of Population GeneticsViennaAustria
| | - Bao‐Hai Hao
- Department of Botany and Biodiversity ResearchUniversity of ViennaViennaAustria
| | - Maria Teresa Lorenzo
- Department of Botany and Biodiversity ResearchUniversity of ViennaViennaAustria
- Departamento de Biología Vegetal y EcologíaUniversity of SevilleSevillaSpain
| | - Juliane Baar
- Department of Botany and Biodiversity ResearchUniversity of ViennaViennaAustria
| | - Laura Sedman
- Gregor Mendel Institute for Plant Molecular BiologyViennaAustria
| | - Carolin Kosiol
- Institut für PopulationsgenetikVetmeduni ViennaViennaAustria
- Centre of Biological DiversitySchool of BiologyUniversity of St AndrewsSt AndrewsUK
| | - Fabian Amman
- Department of Chromosome BiologyUniversity of ViennaViennaAustria
| | - Mark W. Chase
- Royal Botanic Gardens KewRichmondUK
- School of Plant BiologyUniversity of Western AustraliaCrawley, PerthWAAustralia
| | | | - Ovidiu Paun
- Department of Botany and Biodiversity ResearchUniversity of ViennaViennaAustria
| |
Collapse
|
5
|
Marques DA, Lucek K, Haesler MP, Feller AF, Meier JI, Wagner CE, Excoffier L, Seehausen O. Genomic landscape of early ecological speciation initiated by selection on nuptial colour. Mol Ecol 2016; 26:7-24. [DOI: 10.1111/mec.13774] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 06/30/2016] [Accepted: 07/14/2016] [Indexed: 12/12/2022]
Affiliation(s)
- David Alexander Marques
- Institute of Ecology & Evolution; University of Bern; Bern Switzerland
- Eawag: Swiss Federal Institute of Aquatic Science and Technology; Kastanienbaum Switzerland
| | - Kay Lucek
- Institute of Ecology & Evolution; University of Bern; Bern Switzerland
- Eawag: Swiss Federal Institute of Aquatic Science and Technology; Kastanienbaum Switzerland
- University of Sheffield; Sheffield UK
| | - Marcel Philipp Haesler
- Institute of Ecology & Evolution; University of Bern; Bern Switzerland
- Eawag: Swiss Federal Institute of Aquatic Science and Technology; Kastanienbaum Switzerland
| | - Anna Fiona Feller
- Institute of Ecology & Evolution; University of Bern; Bern Switzerland
- Eawag: Swiss Federal Institute of Aquatic Science and Technology; Kastanienbaum Switzerland
| | - Joana Isabel Meier
- Institute of Ecology & Evolution; University of Bern; Bern Switzerland
- Eawag: Swiss Federal Institute of Aquatic Science and Technology; Kastanienbaum Switzerland
| | - Catherine E. Wagner
- Institute of Ecology & Evolution; University of Bern; Bern Switzerland
- Eawag: Swiss Federal Institute of Aquatic Science and Technology; Kastanienbaum Switzerland
- Department of Botany, Biodiversity Institute; University of Wyoming; Laramie WY USA
| | - Laurent Excoffier
- Institute of Ecology & Evolution; University of Bern; Bern Switzerland
- Swiss Institute of Bioinformatics; Lausanne Switzerland
| | - Ole Seehausen
- Institute of Ecology & Evolution; University of Bern; Bern Switzerland
- Eawag: Swiss Federal Institute of Aquatic Science and Technology; Kastanienbaum Switzerland
| |
Collapse
|
6
|
Rastorguev SM, Nedoluzhko AV, Sharko FS, Boulygina ES, Sokolov AS, Gruzdeva NM, Skryabin KG, Prokhortchouk EB. Identification of novel microRNA genes in freshwater and marine ecotypes of the three-spined stickleback (Gasterosteus aculeatus). Mol Ecol Resour 2016; 16:1491-1498. [PMID: 27238497 DOI: 10.1111/1755-0998.12545] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 04/26/2016] [Accepted: 05/13/2016] [Indexed: 11/30/2022]
Abstract
The three-spined stickleback (Gasterosteus aculeatus L.) is an important model organism for studying the molecular mechanisms of speciation and adaptation to salinity. Despite increased interest to microRNA discovery and recent publication on microRNA prediction in the three-spined stickleback using bioinformatics approaches, there is still a lack of experimental support for these data. In this paper, high-throughput sequencing technology was applied to identify microRNA genes in gills of the three-spined stickleback. In total, 595 miRNA genes were discovered; half of them were predicted in previous computational studies and were confirmed here as microRNAs expressed in gill tissue. Moreover, 298 novel microRNA genes were identified. The presence of miRNA genes in selected 'divergence islands' was analysed and 10 miRNA genes were identified as not randomly located in 'divergence islands'. Regulatory regions of miRNA genes were found enriched with selective SNPs that may play a role in freshwater adaptation.
Collapse
Affiliation(s)
- S M Rastorguev
- National Research Center 'Kurchatov Institute', Kurchatov sq. 1, Moscow, 123182, Russia. .,Russian Federal Research Institute of Fisheries and Oceanography, (VNIRO) V. Krasnoselskaya str. 17, Moscow, 107140, Russia.
| | - A V Nedoluzhko
- National Research Center 'Kurchatov Institute', Kurchatov sq. 1, Moscow, 123182, Russia
| | - F S Sharko
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2 Leninsky Ave., Moscow, 119071, Russia
| | - E S Boulygina
- National Research Center 'Kurchatov Institute', Kurchatov sq. 1, Moscow, 123182, Russia
| | - A S Sokolov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2 Leninsky Ave., Moscow, 119071, Russia
| | - N M Gruzdeva
- National Research Center 'Kurchatov Institute', Kurchatov sq. 1, Moscow, 123182, Russia
| | - K G Skryabin
- National Research Center 'Kurchatov Institute', Kurchatov sq. 1, Moscow, 123182, Russia.,Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2 Leninsky Ave., Moscow, 119071, Russia.,Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1-12, Moscow, 119991, Russia
| | - E B Prokhortchouk
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2 Leninsky Ave., Moscow, 119071, Russia.,Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1-12, Moscow, 119991, Russia
| |
Collapse
|
7
|
High throughput sequencing of small RNAs transcriptomes in two Crassostrea oysters identifies microRNAs involved in osmotic stress response. Sci Rep 2016; 6:22687. [PMID: 26940974 PMCID: PMC4778033 DOI: 10.1038/srep22687] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 02/17/2016] [Indexed: 11/21/2022] Open
Abstract
Increasing evidence suggests that microRNAs post-transcriptionally regulate gene expression and are involved in responses to biotic and abiotic stress. However, the role of miRNAs involved in osmotic plasticity remains largely unknown in marine bivalves. In the present study, we performed low salinity challenge with two Crassostrea species (C. gigas and C. hongkongensis), and conducted high-throughput sequencing of four small RNA libraries constructed from the gill tissues. A total of 202 and 87 miRNAs were identified from C. gigas and C. hongkongensis, respectively. Six miRNAs in C. gigas and two in C. hongkongensis were differentially expressed in response to osmotic stress. The expression profiles of these eight miRNAs were validated by qRT-PCR. Based on GO enrichment and KEGG pathway analysis, genes associated with microtubule-based process and cellular component movement were enriched in both species. In addition, five miRNA-mRNA interaction pairs that showed opposite expression patterns were identified in the C. hongkongensis, Differential expression analysis identified the miRNAs that play important regulatory roles in response to low salinity stress, providing insights into molecular mechanisms that are essential for salinity tolerance in marine bivalves.
Collapse
|
8
|
Marques DA, Lucek K, Meier JI, Mwaiko S, Wagner CE, Excoffier L, Seehausen O. Genomics of Rapid Incipient Speciation in Sympatric Threespine Stickleback. PLoS Genet 2016; 12:e1005887. [PMID: 26925837 PMCID: PMC4771382 DOI: 10.1371/journal.pgen.1005887] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 01/29/2016] [Indexed: 01/18/2023] Open
Abstract
Ecological speciation is the process by which reproductively isolated populations emerge as a consequence of divergent natural or ecologically-mediated sexual selection. Most genomic studies of ecological speciation have investigated allopatric populations, making it difficult to infer reproductive isolation. The few studies on sympatric ecotypes have focused on advanced stages of the speciation process after thousands of generations of divergence. As a consequence, we still do not know what genomic signatures of the early onset of ecological speciation look like. Here, we examined genomic differentiation among migratory lake and resident stream ecotypes of threespine stickleback reproducing in sympatry in one stream, and in parapatry in another stream. Importantly, these ecotypes started diverging less than 150 years ago. We obtained 34,756 SNPs with restriction-site associated DNA sequencing and identified genomic islands of differentiation using a Hidden Markov Model approach. Consistent with incipient ecological speciation, we found significant genomic differentiation between ecotypes both in sympatry and parapatry. Of 19 islands of differentiation resisting gene flow in sympatry, all were also differentiated in parapatry and were thus likely driven by divergent selection among habitats. These islands clustered in quantitative trait loci controlling divergent traits among the ecotypes, many of them concentrated in one region with low to intermediate recombination. Our findings suggest that adaptive genomic differentiation at many genetic loci can arise and persist in sympatry at the very early stage of ecotype divergence, and that the genomic architecture of adaptation may facilitate this.
Collapse
Affiliation(s)
- David A. Marques
- Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- Department of Fish Ecology and Evolution, Centre of Ecology, Evolution & Biogeochemistry, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
- Computational and Molecular Population Genetics Lab, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- * E-mail:
| | - Kay Lucek
- Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- Department of Fish Ecology and Evolution, Centre of Ecology, Evolution & Biogeochemistry, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
- Department of Animal and Plant Science, University of Sheffield, Sheffield, United Kingdom
| | - Joana I. Meier
- Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- Department of Fish Ecology and Evolution, Centre of Ecology, Evolution & Biogeochemistry, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
- Computational and Molecular Population Genetics Lab, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Salome Mwaiko
- Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- Department of Fish Ecology and Evolution, Centre of Ecology, Evolution & Biogeochemistry, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
| | - Catherine E. Wagner
- Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- Department of Fish Ecology and Evolution, Centre of Ecology, Evolution & Biogeochemistry, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
- Biodiversity Institute, University of Wyoming, Wyoming, United States of America
| | - Laurent Excoffier
- Computational and Molecular Population Genetics Lab, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Ole Seehausen
- Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- Department of Fish Ecology and Evolution, Centre of Ecology, Evolution & Biogeochemistry, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
| |
Collapse
|
9
|
Mennigen JA. Micromanaging metabolism-a role for miRNAs in teleost energy metabolism. Comp Biochem Physiol B Biochem Mol Biol 2015; 199:115-125. [PMID: 26384523 DOI: 10.1016/j.cbpb.2015.09.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 09/08/2015] [Accepted: 09/08/2015] [Indexed: 10/23/2022]
Abstract
MicroRNAs (miRNAs) are small, non-protein coding RNA sequences, which are found in most eukaryotes. Since their initial discovery, miRNAs have emerged as important regulators of many biological processes. One of the most important processes profoundly regulated by miRNAs is energy metabolism. Traditionally, metabolic functions of miRNAs have been studied in genome-sequenced mammalian organisms, especially the mouse model. However, partially driven by commercial interest in aquaculture, increasingly feasible large-scale molecular techniques have resulted in the characterization of miRNA repertoires, and importantly, several genome sequences of several (commercially important) teleost species, which also hold important roles as research models in the comparative physiology of energy metabolism. This review aims to introduce the recent advances in miRNA research in teleost fish and to describe the current knowledge of miRNA function in teleost energy metabolism. The most pressing research needs and questions to determine metabolic roles of miRNAs in teleost models are presented, as well as applicable technical approaches and current bottlenecks. Rainbow trout, which possess the advantages of newly available molecular tools and a long history as comparative research model in teleost energy metabolism, are discussed as a promising research model to address these questions.
Collapse
Affiliation(s)
- Jan A Mennigen
- College of Pharmacy, Department of Toxicology and Pharmacology, University of Austin at Texas, 107 W Dean Keeton, Austin, TX 78712, USA
| |
Collapse
|
10
|
Kaitetzidou E, Xiang J, Antonopoulou E, Tsigenopoulos CS, Sarropoulou E. Dynamics of gene expression patterns during early development of the European seabass (Dicentrarchus labrax). Physiol Genomics 2015; 47:158-69. [DOI: 10.1152/physiolgenomics.00001.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 02/23/2015] [Indexed: 01/06/2023] Open
Abstract
Larval and embryonic stages are the most critical period in the life cycle of marine fish. Key developmental events occur early in development and are influenced by external parameters like stress, temperature, salinity, and photoperiodism. Any failure may cause malformations, developmental delays, poor growth, and massive mortalities. Advanced understanding of molecular processes underlying marine larval development may lead to superior larval rearing conditions. Today, the new sequencing and bioinformatic methods allow transcriptome screens comprising messenger (mRNA) and microRNA (miRNA) with the scope of detecting differential expression for any species of interest. In the present study, we applied Illumina technology to investigate the transcriptome of early developmental stages of the European seabass ( Dicentrarchus labrax). The European seabass, in its natural environment, is a euryhaline species and has shown high adaptation processes in early life phases. During its embryonic and larval phases the European seabass lives in a marine environment and as a juvenile it migrates to coastal zones, estuaries, and lagoons. Investigating the dynamics of gene expression in its early development may shed light on factors promoting phenotypic plasticity and may also contribute to the improvement and advancement of rearing methods of the European seabass, a species of high economic importance in European and Mediterranean aquaculture. We present the identification, characterization, and expression of mRNA and miRNA, comprising paralogous genes and differentially spliced transcripts from early developmental stages of the European seabass. We further investigated the detection of possible interactions of miRNA with mRNA.
Collapse
Affiliation(s)
- E. Kaitetzidou
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Greece
- School of Biology, Faculty of Science, Aristotle University of Thessaloniki, Greece; and
| | - J. Xiang
- Genomics Resources Core Facility, Weill Cornell Medical College, New York, New York
| | - E. Antonopoulou
- School of Biology, Faculty of Science, Aristotle University of Thessaloniki, Greece; and
| | - C. S. Tsigenopoulos
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Greece
| | - E. Sarropoulou
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Greece
| |
Collapse
|
11
|
Braasch I, Peterson SM, Desvignes T, McCluskey BM, Batzel P, Postlethwait JH. A new model army: Emerging fish models to study the genomics of vertebrate Evo-Devo. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2014; 324:316-41. [PMID: 25111899 DOI: 10.1002/jez.b.22589] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Revised: 06/19/2014] [Accepted: 06/25/2014] [Indexed: 01/08/2023]
Abstract
Many fields of biology--including vertebrate Evo-Devo research--are facing an explosion of genomic and transcriptomic sequence information and a multitude of fish species are now swimming in this "genomic tsunami." Here, we first give an overview of recent developments in sequencing fish genomes and transcriptomes that identify properties of fish genomes requiring particular attention and propose strategies to overcome common challenges in fish genomics. We suggest that the generation of chromosome-level genome assemblies--for which we introduce the term "chromonome"--should be a key component of genomic investigations in fish because they enable large-scale conserved synteny analyses that inform orthology detection, a process critical for connectivity of genomes. Orthology calls in vertebrates, especially in teleost fish, are complicated by divergent evolution of gene repertoires and functions following two rounds of genome duplication in the ancestor of vertebrates and a third round at the base of teleost fish. Second, using examples of spotted gar, basal teleosts, zebrafish-related cyprinids, cavefish, livebearers, icefish, and lobefin fish, we illustrate how next generation sequencing technologies liberate emerging fish systems from genomic ignorance and transform them into a new model army to answer longstanding questions on the genomic and developmental basis of their biodiversity. Finally, we discuss recent progress in the genetic toolbox for the major fish models for functional analysis, zebrafish, and medaka, that can be transferred to many other fish species to study in vivo the functional effect of evolutionary genomic change as Evo-Devo research enters the postgenomic era.
Collapse
Affiliation(s)
- Ingo Braasch
- Institute of Neuroscience, University of Oregon, Eugene, Oregon
| | | | | | | | - Peter Batzel
- Institute of Neuroscience, University of Oregon, Eugene, Oregon
| | | |
Collapse
|
12
|
Generation and characterization of the sea bass Dicentrarchus labrax brain and liver transcriptomes. Gene 2014; 544:56-66. [PMID: 24768179 DOI: 10.1016/j.gene.2014.04.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 04/02/2014] [Accepted: 04/17/2014] [Indexed: 12/14/2022]
Abstract
The sea bass Dicentrarchus labrax is the center of interest of an increasing number of basic or applied research investigations, even though few genomic or transcriptomic data is available. Current public data only represent a very partial view of its transcriptome. To fill this need, we characterized brain and liver transcriptomes in a generalist manner that would benefit the entire scientific community. We also tackled some bioinformatics questions, related to the effect of RNA fragment size on the assembly quality. Using Illumina RNA-seq, we sequenced organ pools from both wild and farmed Atlantic and Mediterranean fishes. We built two distinct cDNA libraries per organ that only differed by the length of the selected mRNA fragments. Efficiency of assemblies performed on either or both fragments size differed depending on the organ, but remained very close reflecting the quality of the technical replication. We generated more than 19,538Mbp of data. Over 193million reads were assembled into 35,073 contigs (average length=2374bp; N50=3257). 59% contigs were annotated with SwissProt, which corresponded to 12,517 unique genes. We compared the Gene Ontology (GO) contig distribution between the sea bass and the tilapia. We also looked for brain and liver GO specific signatures as well as KEGG pathway coverage. 23,050 putative micro-satellites and 134,890 putative SNPs were identified. Our sampling strategy and assembly pipeline provided a reliable and broad reference transcriptome for the sea bass. It constitutes an indisputable quantitative and qualitative improvement of the public data, as it provides 5 times more base pairs with fewer and longer contigs. Both organs present unique signatures consistent with their specific physiological functions. The discrepancy in fragment size effect on assembly quality between organs lies in their difference in complexity and thus does not allow prescribing any general strategy. This information on two key organs will facilitate further functional approaches.
Collapse
|
13
|
Chaturvedi A, Raeymaekers JAM, Volckaert FAM. Computational identification of miRNAs, their targets and functions in three-spined stickleback (Gasterosteus aculeatus). Mol Ecol Resour 2014; 14:768-77. [DOI: 10.1111/1755-0998.12223] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 12/27/2013] [Accepted: 01/03/2014] [Indexed: 12/12/2022]
Affiliation(s)
- Anurag Chaturvedi
- Laboratory of Biodiversity and Evolutionary Genomics; University of Leuven; Ch. Deberiotstraat 32 Leuven B-3000 Belgium
| | - Joost A. M. Raeymaekers
- Laboratory of Biodiversity and Evolutionary Genomics; University of Leuven; Ch. Deberiotstraat 32 Leuven B-3000 Belgium
- Zoological Institute; University of Basel; Vesalgasse 1 Basel CH-4051 Switzerland
| | - Filip A. M. Volckaert
- Laboratory of Biodiversity and Evolutionary Genomics; University of Leuven; Ch. Deberiotstraat 32 Leuven B-3000 Belgium
| |
Collapse
|
14
|
Integrated Genomics Approaches in Evolutionary and Ecological Endocrinology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 781:299-319. [DOI: 10.1007/978-94-007-7347-9_15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|