1
|
Dou H, Sun J, Wang T, Bi S, Feng X, Sun H, Quan J. Transcriptomic profiling and discovery of key transcription factors involved in adventitious roots formation from root cuttings of mulberry. BMC Genomics 2024; 25:693. [PMID: 39009981 PMCID: PMC11251115 DOI: 10.1186/s12864-024-10593-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 07/03/2024] [Indexed: 07/17/2024] Open
Abstract
ARs plays a crucial role in plant morphogenesis and development. The limited and inefficient rooting of scions poses a significant challenge to the efficiency and quality of clonal propagation of forest trees in silvicultural practices. Building on previous research conducted by our team, we found that applying IBA at a concentration of 1000 mg/L significantly enhanced mulberry rooting. This study aims to uncover the molecular mechanisms underlying this effect by analyzing RNA sequencing data from mulberry phloem before and after treatment with IBA over time intervals of 10, 20, 30, and 40 days. We identified 5226 DEGs, which were then classified into GO terms and KEGG pathways, showing significant enrichment in hormone signaling processes. Using WGCNA, we identified eight co-expression modules, two of which were significantly correlated with the IBA treatment. Additionally, 18 transcription factors that potentially facilitate ARs formation in mulberry were identified, and an exploratory analysis on the cis-regulatory elements associated with these transcription factors was conducted. The findings of this study provide a comprehensive understanding of the mechanisms of ARs in mulberry and offer theoretical support for the discovery and utilization of exceptional genetic resources within the species.
Collapse
Affiliation(s)
- Hao Dou
- College of Forest, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jiajia Sun
- College of Forest, Henan Agricultural University, Zhengzhou, 450002, China
| | - Tiantian Wang
- College of Forest, Henan Agricultural University, Zhengzhou, 450002, China
| | - Shuwen Bi
- College of Forest, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xi Feng
- College of Forest, Henan Agricultural University, Zhengzhou, 450002, China
| | - Huijuan Sun
- College of Forest, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jin'e Quan
- College of Forest, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
2
|
Libao C, Shiting L, Chen Z, Shuyan L. NnARF17 and NnARF18 from lotus promote root formation and modulate stress tolerance in transgenic Arabidopsis thaliana. BMC PLANT BIOLOGY 2024; 24:163. [PMID: 38431568 PMCID: PMC10908128 DOI: 10.1186/s12870-024-04852-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 02/22/2024] [Indexed: 03/05/2024]
Abstract
Auxin response factors (ARFs) play a crucial role in regulating gene expression within the auxin signal transduction pathway, particularly during adventitious root (AR) formation. In this investigation, we identified full-length sequences for ARF17 and ARF18, encompassing 1,800 and 2,055 bp, encoding 599 and 684 amino acid residues, respectively. Despite exhibiting low sequence homology, the ARF17- and ARF18-encoded proteins displayed significant structural similarity and shared identical motifs. Phylogenetic analysis revealed close relationships between NnARF17 and VvARF17, as well as NnARF18 and BvARF18. Both ARF17 and ARF18 demonstrated responsiveness to exogenous indole-3-acetic acid (IAA), ethephon, and sucrose, exhibiting organ-specific expression patterns. Beyond their role in promoting root development, these ARFs enhanced stem growth and conferred drought tolerance while mitigating waterlogging stress in transgenic Arabidopsis plants. RNA sequencing data indicated upregulation of 51 and 75 genes in ARF17 and ARF18 transgenic plants, respectively, including five and three genes associated with hormone metabolism and responses. Further analysis of transgenic plants revealed a significant decrease in IAA content, accompanied by a marked increase in abscisic acid content under normal growth conditions. Additionally, lotus seedlings treated with IAA exhibited elevated levels of polyphenol oxidase, IAA oxidase, and peroxidase. The consistent modulation of IAA content in both lotus and transgenic plants highlights the pivotal role of IAA in AR formation in lotus seedlings.
Collapse
Affiliation(s)
- Cheng Libao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu, P. R. China.
| | - Liang Shiting
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu, P. R. China
| | - Zhao Chen
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu, P. R. China
| | - Li Shuyan
- College of Guangling, Yangzhou University, Yangzhou, Jiangsu, P. R. China.
| |
Collapse
|
3
|
Quan L, Shiting L, Chen Z, Yuyan H, Minrong Z, Shuyan L, Libao C. NnWOX1-1, NnWOX4-3, and NnWOX5-1 of lotus (Nelumbo nucifera Gaertn)promote root formation and enhance stress tolerance in transgenic Arabidopsis thaliana. BMC Genomics 2023; 24:719. [PMID: 38017402 PMCID: PMC10683310 DOI: 10.1186/s12864-023-09772-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/28/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Adventitious roots (ARs) represent an important organ system for water and nutrient uptake in lotus plants because of degeneration of the principal root. The WUSCHEL-related homeobox (WOX) gene regulates plant development and growth by affecting the expression of several other genes. In this study, three WOX genes, NnWOX1-1, NnWOX4-3, and NnWOX5-1, were isolated and their functions were assessed in Arabidopsis plants. RESULTS The full lengths of NnWOX1-1, NnWOX4-3, and NnWOX5-1 were 1038, 645, and 558 bp, encoding 362, 214, and 185 amino acid residues, respectively. Phylogenetic analysis classified NnWOX1-1 and NnWOX4-3 encoding proteins into one group, and NnWOX5-1 and MnWOX5 encoding proteins exhibited strong genetic relationships. The three genes were induced by sucrose and indoleacetic acid (IAA) and exhibited organ-specific expression characteristics. In addition to improving root growth and salt tolerance, NnWOX1-1 and NnWOX4-3 promoted stem development in transgenic Arabidopsis plants. A total of 751, 594, and 541 genes, including 19, 19, and 13 respective genes related to ethylene and IAA metabolism and responses, were enhanced in NnWOX1-1, NnWOX4-3, and NnWOX5-1 transgenic plants, respectively. Further analysis showed that ethylene production rates in transgenic plants increased, whereas IAA, peroxidase, and lignin content did not significantly change. Exogenous application of ethephon on lotus seedlings promoted AR formation and dramatically increased the fresh and dry weights of the plants. CONCLUSIONS NnWOX1-1, NnWOX4-3, and NnWOX5-1 influence root formation, stem development, and stress adaptation in transgenic Arabidopsis plants by affecting the transcription of multiple genes. Among these, changes in gene expression involving ethylene metabolism and responses likely critically affect the development of Arabidopsis plants. In addition, ethylene may represent an important factor affecting AR formation in lotus seedlings.
Collapse
Affiliation(s)
- Liu Quan
- College of Horticulture and landscape Architechture, Yangzhou University, Jiangsu, People's Republic of China
| | - Liang Shiting
- College of Horticulture and landscape Architechture, Yangzhou University, Jiangsu, People's Republic of China
| | - Zhao Chen
- College of Horticulture and landscape Architechture, Yangzhou University, Jiangsu, People's Republic of China
| | - Han Yuyan
- College of Horticulture and landscape Architechture, Yangzhou University, Jiangsu, People's Republic of China
| | - Zhao Minrong
- College of Horticulture and landscape Architechture, Yangzhou University, Jiangsu, People's Republic of China
| | - Li Shuyan
- College of Guangling, Yangzhou University, Jiangsu, People's Republic of China.
| | - Cheng Libao
- College of Horticulture and landscape Architechture, Yangzhou University, Jiangsu, People's Republic of China.
| |
Collapse
|
4
|
Cheng L, Liu H, Zhao J, Dong Y, Xu Q, Yu Y. Hormone Orchestrates a Hierarchical Transcriptional Cascade That Regulates Al-Induced De Novo Root Regeneration in Tea Nodal Cutting. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:5858-5870. [PMID: 34018729 DOI: 10.1021/acs.jafc.1c01100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The aluminum in acid soils is very rhizotoxic to most plant species, but it is essential for root growth and development in Camellia sinensis. However, the molecular basis of Al-mediated signaling pathways in root regeneration of tea plants is largely unclear. In this study, we profiled the physiological phenotype, transcriptome, and phytohormones in the process using stems treated with Al (0.3 mM) and control (0.02 mM). The anatomical analysis showed that the 0.3 mM Al-treated stem began to develop adventitious root (AR) primordia within 7 days, ARs occurred after 21 days, while the control showed a significant delay. We further found that the expression patterns of many genes involved in the biosynthesis of ZT, ACC, and JA were stimulated by Al on day 3; also, the expression profiles of auxin transporter-related genes were markedly increased under Al during the whole rooting process. Moreover, the expression of these genes was strongly correlated with the accumulation of ZT, ACC, JA, and IAA. CsERFs, CsMYBs, and CsWRKYs transcription factor genes with possible crucial roles in regulating AR regeneration were also uncovered. Our findings suggest that multiple phytohormones and genes related to their biosynthesis form a hierarchical transcriptional cascade during Al-induced de novo root regeneration in tea nodal cuttings.
Collapse
Affiliation(s)
- Long Cheng
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Huan Liu
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Jing Zhao
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Yuan Dong
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Qingshan Xu
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Youben Yu
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| |
Collapse
|
5
|
Xie T, Ji J, Chen W, Yue J, Du C, Sun J, Chen L, Jiang Z, Shi S. GABA negatively regulates adventitious root development in poplar. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1459-1474. [PMID: 31740934 DOI: 10.1093/jxb/erz520] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 11/18/2019] [Indexed: 05/25/2023]
Abstract
γ-Aminobutyric acid (GABA) influences plant growth, but little is known about how this metabolite regulates adventitious root (AR) development. Here, we investigate the effects of GABA on ARs using poplar lines overexpressing glutamate decarboxilase 2 (GAD2) and by treating poplar stem cuttings with exogenous GABA or vigabatrin (VGB; a specific GABA transaminase inhibitor). Endogenous GABA accumulation not only inhibited AR growth, but it also suppressed or delayed AR formation. Anatomical observations revealed that the GABA and VGB treatments resulted in a 1 d delay in the formation of AR primordia and the appearance of ARs. This delay coincided with changes in primary metabolism, including transient increases in hexose and amino acid levels. GABA-dependent changes in the expression of genes related to hormone synthesis and signalling, as well as analysis of hormone levels revealed that ethylene-dependent pathways were decreased at the earliest stage of AR formation. In contrast, auxin and abscisic acid were increased at 1-5 d as well as GA4 over a 5 d period of AR formation. These results demonstrate that GABA plays a crucial role in AR development. Evidence is presented demonstrating that GABA can interact with hormone-related pathways as well as carbon/nitrogen metabolism. These findings also elucidate the functions of GABA in plant development.
Collapse
Affiliation(s)
- Tiantian Xie
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry and Grassland Administration, Research Institute of Forestry Research, Chinese Academy of Forestry, Beijing, China
| | - Jing Ji
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry and Grassland Administration, Research Institute of Forestry Research, Chinese Academy of Forestry, Beijing, China
| | - Wei Chen
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry and Grassland Administration, Research Institute of Forestry Research, Chinese Academy of Forestry, Beijing, China
| | - Jianyun Yue
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry and Grassland Administration, Research Institute of Forestry Research, Chinese Academy of Forestry, Beijing, China
| | - Changjian Du
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry and Grassland Administration, Research Institute of Forestry Research, Chinese Academy of Forestry, Beijing, China
| | - Jiacheng Sun
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry and Grassland Administration, Research Institute of Forestry Research, Chinese Academy of Forestry, Beijing, China
| | - Lanzhen Chen
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Risk Assessment Laboratory for Bee Products, Quality and Safety of Ministry of Agriculture, Beijing, China
| | - Zeping Jiang
- Research Institute of Forest Ecology, Environment and Protection, Key Laboratory of Forest Ecology and Environment of State Forestry and Grassland Administration, Chinese Academy of Forestry, Beijing, China
| | - Shengqing Shi
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry and Grassland Administration, Research Institute of Forestry Research, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
6
|
Su J, Jiang J, Zhang F, Liu Y, Ding L, Chen S, Chen F. Current achievements and future prospects in the genetic breeding of chrysanthemum: a review. HORTICULTURE RESEARCH 2019; 6:109. [PMID: 31666962 PMCID: PMC6804895 DOI: 10.1038/s41438-019-0193-8] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 08/11/2019] [Accepted: 08/14/2019] [Indexed: 05/05/2023]
Abstract
Chrysanthemum (Chrysanthemum morifolium Ramat.) is a leading flower with applied value worldwide. Developing new chrysanthemum cultivars with novel characteristics such as new flower colors and shapes, plant architectures, flowering times, postharvest quality, and biotic and abiotic stress tolerance in a time- and cost-efficient manner is the ultimate goal for breeders. Various breeding strategies have been employed to improve the aforementioned traits, ranging from conventional techniques, including crossbreeding and mutation breeding, to a series of molecular breeding methods, including transgenic technology, genome editing, and marker-assisted selection (MAS). In addition, the recent extensive advances in high-throughput technologies, especially genomics, transcriptomics, proteomics, metabolomics, and microbiomics, which are collectively referred to as omics platforms, have led to the collection of substantial amounts of data. Integration of these omics data with phenotypic information will enable the identification of genes/pathways responsible for important traits. Several attempts have been made to use emerging molecular and omics methods with the aim of accelerating the breeding of chrysanthemum. However, applying the findings of such studies to practical chrysanthemum breeding remains a considerable challenge, primarily due to the high heterozygosity and polyploidy of the species. This review summarizes the recent achievements in conventional and modern molecular breeding methods and emerging omics technologies and discusses their future applications for improving the agronomic and horticultural characteristics of chrysanthemum.
Collapse
Affiliation(s)
- Jiangshuo Su
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, China
| | - Jiafu Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, China
| | - Fei Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, China
| | - Ye Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, China
| | - Lian Ding
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, China
| | - Sumei Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, China
| | - Fadi Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, China
| |
Collapse
|
7
|
Fan HM, Liu BW, Ma FF, Sun X, Zheng CS. Proteomic profiling of root system development proteins in chrysanthemum overexpressing the CmTCP20 gene. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 287:110175. [PMID: 31481217 DOI: 10.1016/j.plantsci.2019.110175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 06/13/2019] [Accepted: 06/21/2019] [Indexed: 05/20/2023]
Abstract
Plant root systems ensure the efficient absorption of water and nutrients and provide anchoring into the soil. Although root systems are a highly plastic set of traits that vary both between and among species, the basic root system morphology is controlled by inherent genetic factors. TCP20 has been identified as a key regulator of root development in plants, and yet its underlying mechanism has not been fully elucidated, especially in chrysanthemum. We found that overexpression of the CmTCP20 gene promoted both adventitious and lateral root development in chrysanthemum. To get further insight into the molecular mechanisms controlling root system development, we conducted a study employing tandem mass tag proteomic to characterize the differential root system development proteomes from CmTCP20-overexpressing and wild-type chrysanthemum root samples. Of the proteins identified, 234 proteins were found to be differentially abundant (>1.5-fold cut off, p < 0.05) in CmTCP20-overexpressing versus wild-type chrysanthemum root samples. Functional enrichment analysis indicated that the CmTCP20 gene may participate in "phytohormone signal transduction". Our findings provide a valuable perspective on the mechanisms of both adventitious and lateral root development via CmTCP20 modulation at the proteome level in chrysanthemum.
Collapse
Affiliation(s)
- Hong-Mei Fan
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Bo-Wen Liu
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Fang-Fang Ma
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Xia Sun
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China.
| | - Cheng-Shu Zheng
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China.
| |
Collapse
|
8
|
An Integrated Transcriptome and Proteome Analysis Reveals Putative Regulators of Adventitious Root Formation in Taxodium 'Zhongshanshan'. Int J Mol Sci 2019; 20:ijms20051225. [PMID: 30862088 PMCID: PMC6429173 DOI: 10.3390/ijms20051225] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/02/2019] [Accepted: 03/07/2019] [Indexed: 02/07/2023] Open
Abstract
Adventitious root (AR) formation from cuttings is the primary manner for the commercial vegetative propagation of trees. Cuttings is also the main method for the vegetative reproduction of Taxodium ‘Zhongshanshan’, while knowledge of the molecular mechanisms regulating the processes is limited. Here, we used mRNA sequencing and an isobaric tag for relative and absolute quantitation-based quantitative proteomic (iTRAQ) analysis to measure changes in gene and protein expression levels during AR formation in Taxodium ‘Zhongshanshan’. Three comparison groups were established to represent the three developmental stages in the AR formation process. At the transcript level, 4743 genes showed an expression difference in the comparison groups as detected by RNA sequencing. At the protein level, 4005 proteins differed in their relative abundance levels, as indicated by the quantitative proteomic analysis. A comparison of the transcriptome and proteome data revealed regulatory aspects of metabolism during AR formation and development. In summary, hormonal signal transduction is different at different developmental stages during AR formation. Other factors related to carbohydrate and energy metabolism and protein degradation and some transcription factor activity levels, were also correlated with AR formation. Studying the identified genes and proteins will provide further insights into the molecular mechanisms controlling AR formation.
Collapse
|
9
|
Vilasboa J, Da Costa CT, Fett-Neto AG. Rooting of eucalypt cuttings as a problem-solving oriented model in plant biology. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 146:85-97. [PMID: 30557533 DOI: 10.1016/j.pbiomolbio.2018.12.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/10/2018] [Accepted: 12/13/2018] [Indexed: 02/07/2023]
Abstract
Species of Eucalyptus are some of the most planted trees in the world, providing fiber, cellulose, energy, and wood for construction and furniture in renewable fashion, with the added advantage of fixing large amounts of atmospheric carbon. The efficiency of eucalypts in forestry relies mostly on the clonal propagation of selected genotypes both as pure species and interspecific hybrids. The formation of new roots from cambium tissues at the base of cuttings, referred to as adventitious rooting (AR), is essential for accomplishing clonal propagation successfully. AR is a highly complex, multi-level regulated developmental process, affected by a number of endogenous and environmental factors. In several cases, highly desirable genotypes from an industrial point of view carry along the undesirable trait of difficulty-to-root (recalcitrance). Understanding the bases of this phenotype is needed to identify ways to overcome recalcitrance and allow efficient clonal propagation. Herein, an overview of the state-of-the-art on the basis of AR recalcitrance in eucalypts addressed at various levels of regulation (transcript, protein, metabolite and phenotype), and OMICs techniques is presented. In addition, a focus is also provided on the gaps that need to be filled in order to advance in this strategic biological problem for global forestry industry relying on eucalypts.
Collapse
Affiliation(s)
- Johnatan Vilasboa
- Center for Biotechnology and Department of Botany, Federal University of Rio Grande do Sul (UFRGS), P.O. Box 15005, Porto Alegre, RS, 91501-970, Brazil
| | - Cibele Tesser Da Costa
- Center for Biotechnology and Department of Botany, Federal University of Rio Grande do Sul (UFRGS), P.O. Box 15005, Porto Alegre, RS, 91501-970, Brazil
| | - Arthur Germano Fett-Neto
- Center for Biotechnology and Department of Botany, Federal University of Rio Grande do Sul (UFRGS), P.O. Box 15005, Porto Alegre, RS, 91501-970, Brazil.
| |
Collapse
|
10
|
Huo J, Huang D, Zhang J, Fang H, Wang B, Wang C, Ma Z, Liao W. Comparative Proteomic Analysis during the Involvement of Nitric Oxide in Hydrogen Gas-Improved Postharvest Freshness in Cut Lilies. Int J Mol Sci 2018; 19:E3955. [PMID: 30544843 PMCID: PMC6320913 DOI: 10.3390/ijms19123955] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/05/2018] [Accepted: 12/06/2018] [Indexed: 11/16/2022] Open
Abstract
Our previous studies suggested that both hydrogen gas (H₂) and nitric oxide (NO) could enhance the postharvest freshness of cut flowers. However, the crosstalk of H₂ and NO during that process is unknown. Here, cut lilies (Lilium "Manissa") were used to investigate the relationship between H₂ and NO and to identify differentially accumulated proteins during postharvest freshness. The results revealed that 1% hydrogen-rich water (HRW) and 150 μM sodium nitroprusside (SNP) significantly extended the vase life and quality, while NO inhibitors suppressed the positive effects of HRW. Proteomics analysis found 50 differentially accumulated proteins in lilies leaves which were classified into seven functional categories. Among them, ATP synthase CF1 alpha subunit (chloroplast) (AtpA) was up-regulated by HRW and down-regulated by NO inhibitor. The expression level of LlatpA gene was consistent with the result of proteomics analysis. The positive effect of HRW and SNP on ATP synthase activity was inhibited by NO inhibitor. Meanwhile, the physiological-level analysis of chlorophyll fluorescence and photosynthetic parameters also agreed with the expression of AtpA regulated by HRW and SNP. Altogether, our results suggested that NO might be involved in H₂-improved freshness of cut lilies, and AtpA protein may play important roles during that process.
Collapse
Affiliation(s)
- Jianqiang Huo
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China.
| | - Dengjing Huang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China.
| | - Jing Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China.
| | - Hua Fang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China.
| | - Bo Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China.
| | - Chunlei Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China.
| | - Zhanjun Ma
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China.
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
11
|
Cheng L, Liu H, Jiang R, Li S. A proteomics analysis of adventitious root formation after leaf removal in lotus (Nelumbo nucifera Gaertn.). Z NATURFORSCH C 2018; 73:375-389. [PMID: 29794259 DOI: 10.1515/znc-2018-0011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 04/30/2018] [Indexed: 12/12/2022]
Abstract
Abstract
The formation of adventitious roots (ARs) is an important process for lotus (Nelumbo nucifera), which does not have a well-formed main root. In lotus, the removal of leaves above the waterline significantly promoted AR formation, while the removal of leaves below the waterline inhibited AR formation. Proteins were identified using isobaric tags for relative and absolute quantization technique. The number of proteins decreased with increasing sequencing coverage, and most of the identified proteins had fewer than 10 peptides. In the A1/A0 and A2/A1 stages, 661 and 154 proteins showed increased abundance, respectively, and 498 and 111 proteins showed decreased abundance, respectively. In the B1/B0 and B2/B1 stages, 498 and 436 proteins showed increased abundance, respectively, and 358 and 348 proteins showed decreased abundance, respectively. Among the proteins showing large differences in abundance, 17 were identified as being related to AR formation. Proteins involved in the glycolytic pathway and the citrate cycle showed differences in abundance between the two types of leaf removal. The transcriptional levels of nine genes encoding relevant proteins were assessed by quantitative polymerase chain reaction. The results of this study illustrate the changes in metabolism after different types of leaf removal during AR formation in lotus.
Collapse
Affiliation(s)
- Libao Cheng
- School of Horticulture and Plant Protection, Yangzhou University, Jiangsu 225009, P.R. China
| | - Huiying Liu
- School of Horticulture and Plant Protection, Yangzhou University, Jiangsu, P.R. China
| | - Runzhi Jiang
- School of Horticulture and Plant Protection, Yangzhou University, Jiangsu, P.R. China
| | - Shuyan Li
- College of Guangling, Yangzhou University, Jiangsu 225009, P.R. China
| |
Collapse
|
12
|
Prinsi B, Negri AS, Failla O, Scienza A, Espen L. Root proteomic and metabolic analyses reveal specific responses to drought stress in differently tolerant grapevine rootstocks. BMC PLANT BIOLOGY 2018; 18:126. [PMID: 29925320 PMCID: PMC6011575 DOI: 10.1186/s12870-018-1343-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 06/06/2018] [Indexed: 05/15/2023]
Abstract
BACKGROUND Roots play a central role in plant response to water stress (WS). They are involved in its perception and signalling to the leaf as well as in allowing the plant to adapt to maintaining an adequate water balance. Only a few studies have investigated the molecular/biochemical responses to WS in roots of perennial plants, such as grapevine. This study compares two grapevine rootstock genotypes (i.e. 101.14 and M4) with different tolerance to WS, evaluating the responses at proteomic and metabolite levels. RESULTS WS induced changes in the abundance of several proteins in both genotypes (17 and 22% of the detected proteins in 101.14 and M4, respectively). The proteomic analysis revealed changes in many metabolic pathways that fitted well with the metabolite data. M4 showed metabolic responses which were potentially able to counteract the WS effects, such as the drop in cell turgor, increased oxidative stress and loss of cell structure integrity/functionality. However, in 101.14 it was evident that the roots were suffering more severely from these effects. We found that many proteins classified as active in energy metabolism, hormone metabolism, protein, secondary metabolism and stress functional classes showed particular differences between the two rootstocks. CONCLUSION The proteomic/metabolite comparative analysis carried out provides new information on the possible biochemical and molecular strategies adopted by grapevine roots to counteract WS. Although further work is needed to define in detail the role(s) of the proteins and metabolites that characterize WS response, this study, involving the M4 rootstock genotype, highlights that osmotic responses, modulations of C metabolism, mitochondrial functionality and some specific responses to stress occurring in the roots play a primary role in Vitis spp. tolerance to this type of abiotic stress.
Collapse
Affiliation(s)
- Bhakti Prinsi
- Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia (DiSAA), Università degli Studi di Milano, Via Celoria, 2, 20133 Milano, Italy
| | - Alfredo Simone Negri
- Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia (DiSAA), Università degli Studi di Milano, Via Celoria, 2, 20133 Milano, Italy
| | - Osvaldo Failla
- Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia (DiSAA), Università degli Studi di Milano, Via Celoria, 2, 20133 Milano, Italy
| | - Attilio Scienza
- Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia (DiSAA), Università degli Studi di Milano, Via Celoria, 2, 20133 Milano, Italy
| | - Luca Espen
- Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia (DiSAA), Università degli Studi di Milano, Via Celoria, 2, 20133 Milano, Italy
| |
Collapse
|
13
|
Cheng L, Jiang R, Yang J, Xu X, Zeng H, Li S. Transcriptome profiling reveals an IAA-regulated response to adventitious root formation in lotus seedling. Z NATURFORSCH C 2018; 73:229-240. [PMID: 29432208 DOI: 10.1515/znc-2017-0188] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 01/20/2018] [Indexed: 11/15/2022]
Abstract
Adventitious roots (ARs) of lotus (Nelumbonucifera Gaertn.) play a critical role in water and nutrient uptake. We found that exogenously applied 10-μM indole-3-acetic acid (IAA) promoted the formation of ARs, while 150-μM IAA significantly inhibited the emergence of ARs. However, little is known about these different responses to various concentrations of IAA at the molecular level. This study, therefore, examined the gene expression profiling in four libraries treated with 10- and 150-μM IAA based on the high-throughout tag sequencing technique. Approximately 2.4×107 clean tags were obtained after the removal of low-quality tags from each library respectively, among which about 10% clean tags were unambiguous tag-mapped genes to the reference genes. We found that some genes involved in auxin metabolism showed a similar tendency for expression in the A/CK and C/CK libraries, while three genes were enhanced their expression only in the A/CK libraries. Two transcription factors including B3 domain-containing protein At2g36080-like and trihelix transcription factor were up-regulated for transcriptional level in the A/C libraries. The expressions of six important genes related to AR formation were significantly different in the A/CK and C/CK libraries. In summary, this study provides a comprehensive understanding of gene expression regulated by IAA involved in AR formation in lotus.
Collapse
Affiliation(s)
- Libao Cheng
- School of Horticulture and Plant Protection, Yangzhou University, Jiangsu, P.R. China
| | - Runzhi Jiang
- School of Horticulture and Plant Protection, Yangzhou University, Jiangsu, P.R. China
| | - Jianjun Yang
- School of Horticulture and Plant Protection, Yangzhou University, Jiangsu, P.R. China
| | - Xiaoyong Xu
- School of Horticulture and Plant Protection, Yangzhou University, Jiangsu, P.R. China
| | - Haitao Zeng
- College of Life Sciences and Technology, Shaanxi University of Technology, Hanzhong, P.R. China
| | - Shuyan Li
- College of Guangling, Yangzhou University, Jiangsu, P.R. China
| |
Collapse
|
14
|
Xu L. De novo root regeneration from leaf explants: wounding, auxin, and cell fate transition. CURRENT OPINION IN PLANT BIOLOGY 2018; 41:39-45. [PMID: 28865805 DOI: 10.1016/j.pbi.2017.08.004] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 08/02/2017] [Accepted: 08/09/2017] [Indexed: 05/20/2023]
Abstract
Root organogenesis after tissue damage is a type of plant regeneration known as de novo root regeneration (DNRR). The DNRR process is widely exploited in agricultural technologies, such as cuttings for vegetative propagation. This review summarizes recent advances in our understanding of the cellular and molecular framework of DNRR, mainly focusing on rooting from Arabidopsis thaliana leaf explants. The framework comprises three successive phases, that is, early signaling, auxin accumulation, and cell fate transition, and involves two types of cells with different functions: the converter cell that converts the early signals as the input into auxin flux as the output; and the regeneration-competent cell that undergoes fate transition guided by auxin.
Collapse
Affiliation(s)
- Lin Xu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
15
|
Libao C, Runzhi J, Mengli Y, Liangjun L, Shuyan L. A comparative proteomic analysis for adventitious root formation in lotus root (Nelumbo nucifera Gaertn). Z NATURFORSCH C 2016; 72:181-196. [DOI: 10.1515/znc-2016-0170] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 10/14/2016] [Indexed: 12/11/2022]
Abstract
Abstract
Adventitious roots (ARs) directly affect lotus seedling growth and product quality because principal root is not well developed. However, the details of AR formation at the molecular level have not been determined in lotus. Therefore, three stages were chosen to identify the change of proteins abundant during rhizome formation, using isobaric tags for relative and absolute quantization coupled with liquid chromatography–tandem mass spectrometry to gain insight into the molecular mechanisms involved in AR formation. We totally obtained 323,375 spectra during AR formation. After filtering to eliminate low-scoring spectra, 66,943 spectra, including 53,106 unique spectra, were identified. These unique spectra matched 28,905 peptides, including 24,992 unique peptides, which were assembled into 6686 proteins. In the C0/C1 and C1/C2 stages, 66 and 32 proteins showed enhanced abundance, and 173 and 73 proteins showed decreased abundance, respectively. Seventeen important AR formation-related proteins from the three stages were identified, and the expressions of nine genes from the above-identified proteins were assessed by qRT-PCR. This article provides a comprehensive understanding of the changes in metabolism during AR formation, and is helpful to accelerate the progress of breeding in fulture in lotus root.
Collapse
Affiliation(s)
- Cheng Libao
- School of Horticulture and Plant Protection, Yangzhou University , Jiangsu , P. R. China
| | - Jiang Runzhi
- School of Horticulture and Plant Protection, Yangzhou University , Jiangsu , P. R. China
| | - Yang Mengli
- School of Horticulture and Plant Protection, Yangzhou University , Jiangsu , P. R. China
| | - Li Liangjun
- School of Horticulture and Plant Protection, Yangzhou University , Jiangsu , P. R. China
| | - Li Shuyan
- College of Guangling, Yangzhou University , Jiangsu , P. R. China
| |
Collapse
|
16
|
Zerche S, Haensch KT, Druege U, Hajirezaei MR. Nitrogen remobilisation facilitates adventitious root formation on reversible dark-induced carbohydrate depletion in Petunia hybrida. BMC PLANT BIOLOGY 2016; 16:219. [PMID: 27724871 PMCID: PMC5056478 DOI: 10.1186/s12870-016-0901-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 09/16/2016] [Indexed: 05/24/2023]
Abstract
BACKGROUND Adventitious root (AR) formation in axillary shoot tip cuttings is a crucial physiological process for ornamental propagation that is utilised in global production chains for young plants. In this process, the nitrogen and carbohydrate metabolisms of a cutting are regulated by its total nitrogen content (Nt), dark exposure during transport and irradiance levels at distinct production sites and phases through a specific plasticity to readjust metabolite pools. Here, we examined how elevated Nt contents with a combined dark exposure of cuttings influence their internal N-pools including free amino acids and considered early anatomic events of AR formation as well as further root development in Petunia hybrida cuttings. RESULTS Enhanced Nt contents of unrooted cuttings resulted in elevated total free amino acid levels and in particular glutamate (glu) and glutamine (gln) in leaf and basal stem. N-allocation to mobile N-pools increased whereas the allocation to insoluble protein-N declined. A dark exposure of cuttings conserved initial Nt and nitrate-N, while it reduced insoluble protein-N and increased soluble protein, amino- and amide-N. The increase of amino acids mainly comprised asparagine (asn), aspartate (asp) and arginine (arg) in the leaves, with distinct tissue specific responses to an elevated N supply. Dark exposure induced an early transient rise of asp followed by a temporary increase of glu. A strong positive N effect of high Nt contents of cuttings on AR formation after 384 h was observed. Root meristematic cells developed at 72 h with a negligible difference for two Nt levels. After 168 h, an enhanced Nt accelerated AR formation and gave rise to first obvious fully developed roots while only meristems were formed with a low Nt. However, dark exposure for 168 h promoted AR formation particularly in cuttings with a low Nt to such an extent so that the benefit of the enhanced Nt was almost compensated. Combined dark exposure and low Nt of cuttings strongly reduced shoot growth during AR formation. CONCLUSIONS The results indicate that both enhanced Nt content and dark exposure of cuttings reinforced N signals and mobile N resources in the stem base facilitated by senescence-related proteolysis in leaves. Based on our results, a model of N mobilisation concomitant with carbohydrate depletion and its significance for AR formation is postulated.
Collapse
Affiliation(s)
- Siegfried Zerche
- Department of Plant Nutrition, Leibniz Institute of Vegetable & Ornamental Crops (IGZ), Kuehnhaeuser Str. 101, 99090 Erfurt, Germany
| | - Klaus-Thomas Haensch
- Department of Plant Propagation, Leibniz Institute of Vegetable & Ornamental Crops (IGZ), Kuehnhaeuser Str. 101, 99090 Erfurt, Germany
| | - Uwe Druege
- Department of Plant Propagation, Leibniz Institute of Vegetable & Ornamental Crops (IGZ), Kuehnhaeuser Str. 101, 99090 Erfurt, Germany
| | - Mohammad-Reza Hajirezaei
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Molecular Plant Nutrition, Corrensstr. 3, 06466 Gatersleben, Germany
| |
Collapse
|
17
|
Zhu L, Zheng C, Liu R, Song A, Zhang Z, Xin J, Jiang J, Chen S, Zhang F, Fang W, Chen F. Chrysanthemum transcription factor CmLBD1 direct lateral root formation in Arabidopsis thaliana. Sci Rep 2016; 6:20009. [PMID: 26819087 PMCID: PMC4730235 DOI: 10.1038/srep20009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 11/20/2015] [Indexed: 11/09/2022] Open
Abstract
The plant-specific LATERAL ORGAN BOUNDARIES DOMAIN (LBD) genes are important regulators of growth and development. Here, a chrysanthemum class I LBD transcription factor gene, designated CmLBD1, was isolated and its function verified. CmLBD1 was transcribed in both the root and stem, but not in the leaf. The gene responded to auxin and was shown to participate in the process of adventitious root primordium formation. Its heterologous expression in Arabidopsis thaliana increased the number of lateral roots formed. When provided with exogenous auxin, lateral root emergence was promoted. CmLBD1 expression also favored callus formation from A. thaliana root explants in the absence of exogenously supplied phytohormones. In planta, CmLBD1 probably acts as a positive regulator of the response to auxin fluctuations and connects auxin signaling with lateral root formation.
Collapse
Affiliation(s)
- Lu Zhu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Chen Zheng
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruixia Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Aiping Song
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhaohe Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jingjing Xin
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiafu Jiang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Sumei Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Fei Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Weimin Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Fadi Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
18
|
Druege U, Franken P, Hajirezaei MR. Plant Hormone Homeostasis, Signaling, and Function during Adventitious Root Formation in Cuttings. FRONTIERS IN PLANT SCIENCE 2016; 7:381. [PMID: 27064322 PMCID: PMC4814496 DOI: 10.3389/fpls.2016.00381] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 03/13/2016] [Indexed: 04/14/2023]
Abstract
Adventitious root (AR) formation in cuttings is a multiphase developmental process, resulting from wounding at the cutting site and isolation from the resource and signal network of the whole plant. Though, promotive effects of auxins are widely used for clonal plant propagation, the regulation and function of plant hormones and their intricate signaling networks during AR formation in cuttings are poorly understood. In this focused review, we discuss our recent publications on the involvement of polar auxin transport (PAT) and transcriptional regulation of auxin and ethylene action during AR formation in petunia cuttings in a broad context. Integrating new findings on cuttings of other plant species and general models on plant hormone networks, a model on the regulation and function of auxin, ethylene, and jasmonate in AR formation of cuttings is presented. PAT and cutting off from the basipetal auxin drain are considered as initial principles generating early accumulation of IAA in the rooting zone. This is expected to trigger a self-regulatory process of auxin canalization and maximization to responding target cells, there inducing the program of AR formation. Regulation of auxin homeostasis via auxin influx and efflux carriers, GH3 proteins and peroxidases, of flavonoid metabolism, and of auxin signaling via AUX/IAA proteins, TOPLESS, ARFs, and SAUR-like proteins are postulated as key processes determining the different phases of AR formation. NO and H2O2 mediate auxin signaling via the cGMP and MAPK cascades. Transcription factors of the GRAS-, AP2/ERF-, and WOX-families link auxin signaling to cell fate specification. Cyclin-mediated governing of the cell cycle, modifications of sugar metabolism and microtubule and cell wall remodeling are considered as important implementation processes of auxin function. Induced by the initial wounding and other abiotic stress factors, up-regulation of ethylene biosynthesis, and signaling via ERFs and early accumulation of jasmonic acid stimulate AR formation, while both pathways are linked to auxin. Future research on the function of candidate genes should consider their tissue-specific role and regulation by environmental factors. Furthermore, the whole cutting should be regarded as a system of physiological units with diverse functions specifically responding to the environment and determining the rooting response.
Collapse
Affiliation(s)
- Uwe Druege
- Department Plant Propagation, Leibniz Institute of Vegetable and Ornamental CropsErfurt, Germany
- *Correspondence:
| | - Philipp Franken
- Department Plant Propagation, Leibniz Institute of Vegetable and Ornamental CropsErfurt, Germany
| | - Mohammad R. Hajirezaei
- Department of Molecular Plant Nutrition, Leibniz Institute of Plant Genetics and Crop Plant ResearchGatersleben, Germany
| |
Collapse
|
19
|
Zhao D, Gong S, Hao Z, Meng J, Tao J. Quantitative Proteomics Analysis of Herbaceous Peony in Response to Paclobutrazol Inhibition of Lateral Branching. Int J Mol Sci 2015; 16:24332-52. [PMID: 26473855 PMCID: PMC4632753 DOI: 10.3390/ijms161024332] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 09/24/2015] [Accepted: 10/05/2015] [Indexed: 12/21/2022] Open
Abstract
Herbaceous peony (Paeonia lactiflora Pall.) is an emerging high-grade cut flower worldwide, which is usually used in wedding bouquets and known as the “wedding flower”. However, abundant lateral branches appear frequently in some excellent cultivars, and a lack of a method to remove Paeonia lactiflora lateral branches other than inefficient artificial methods is an obstacle for improving the quality of its cut flowers. In this study, paclobutrazol (PBZ) application was found to inhibit the growth of lateral branches in Paeonia lactiflora for the first time, including 96.82% decreased lateral bud number per branch, 77.79% and 42.31% decreased length and diameter of lateral branches, respectively, declined cell wall materials and changed microstructures. Subsequently, isobaric tag for relative and absolute quantitation (iTRAQ) technology was used for quantitative proteomics analysis of lateral branches under PBZ application and control. The results indicated that 178 differentially expressed proteins (DEPs) successfully obtained, 98 DEPs were up-regulated and 80 DEPs were down-regulated. Thereafter, 34 candidate DEPs associated with the inhibited growth of lateral branches were screened according to their function and classification. These PBZ-stress responsive candidate DEPs were involved in eight biological processes, which played a very important role in the growth and development of lateral branches together with the response to PBZ stress. These results provide a better understanding of the molecular theoretical basis for removing Paeonia lactiflora lateral branches using PBZ application.
Collapse
Affiliation(s)
- Daqiu Zhao
- Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China.
| | - Saijie Gong
- Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China.
| | - Zhaojun Hao
- Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China.
| | - Jiasong Meng
- Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China.
| | - Jun Tao
- Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|