1
|
Sung YC, Li Y, Bernasconi Z, Baik S, Asuke S, Keller B, Fahima T, Coaker G. Wheat tandem kinase RWT4 directly binds a fungal effector to activate defense. Nat Genet 2025:10.1038/s41588-025-02162-w. [PMID: 40229601 DOI: 10.1038/s41588-025-02162-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 03/12/2025] [Indexed: 04/16/2025]
Abstract
Plants have intricate innate immune receptors that detect pathogens. Research has intensely focused on two receptor classes recognizing external and internal threats. Recent research has identified a class of disease-resistance proteins called tandem kinase proteins (TKPs). We investigated RWT4, a wheat TKP that confers resistance to the devastating fungal pathogen Magnaporthe oryzae. We established a rice protoplast system, revealing RWT4 specifically recognizes the AvrPWT4 effector, leading to the transcription of defense genes and inducing cell death. RWT4 possesses both kinase and pseudokinase domains, with its kinase activity essential for defense. RWT4 directly interacts with and transphosphorylates AvrPWT4. Biolayer interferometry revealed both RWT4 kinase and pseudokinase regions bind the effector. Sequence similarity and structural modeling revealed a partial kinase duplication in RWT4's kinase region as critical for effector interaction and defense activation. Collectively, these findings demonstrate that TKPs can directly bind a recognized effector, leading to downstream defense activation.
Collapse
Affiliation(s)
- Yi-Chang Sung
- Department of Plant Pathology, University of California, Davis, CA, USA
| | - Yinghui Li
- Department of Plant Pathology, University of California, Davis, CA, USA
- Institute of Evolution and the Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zoe Bernasconi
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Suji Baik
- Department of Plant Pathology, University of California, Davis, CA, USA
| | - Soichiro Asuke
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Beat Keller
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Tzion Fahima
- Institute of Evolution and the Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel
| | - Gitta Coaker
- Department of Plant Pathology, University of California, Davis, CA, USA.
| |
Collapse
|
2
|
Gonçalves Dias M, Dharmasena T, Gonzalez-Ferrer C, Maika JE, Miguel VN, Dou R, Rodriguez Gallo MC, Bredow M, Siegel KR, Uhrig RG, Simon R, Monaghan J. Catalytically inactive subgroup VIII receptor-like cytoplasmic kinases regulate the immune-triggered oxidative burst in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:1553-1568. [PMID: 39673241 PMCID: PMC11981898 DOI: 10.1093/jxb/erae486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 11/29/2024] [Indexed: 12/16/2024]
Abstract
Protein kinases are key components of multiple cell signaling pathways. Several receptor-like cytoplasmic kinases (RLCKs) have demonstrated roles in immune and developmental signaling across various plant species, making them of interest in the study of phosphorylation-based signal relay. Here, we present our investigation of a subgroup of RLCKs in Arabidopsis thaliana. Specifically, we focus on subgroup VIII RLCKs: MAZ and its paralog CARK6, as well as CARK7 and its paralog CARK9. We found that both MAZ and CARK7 associate with the calcium-dependent protein kinase CPK28 in planta and, furthermore, that CPK28 phosphorylates both MAZ and CARK7 on multiple residues in areas that are known to be critical for protein kinase activation. Genetic analysis suggested redundant roles for MAZ and CARK6 as negative regulators of the immune-triggered oxidative burst. We provide evidence that supports homo- and heterodimerization between CARK7 and MAZ, which may be a general feature of this subgroup. Multiple biochemical experiments indicated that neither MAZ nor CARK7 demonstrate catalytic protein kinase activity in vitro. Interestingly, we found that a mutant variant of MAZ incapable of protein kinase activity can complement maz-1 mutants, suggesting non-catalytic roles of MAZ in planta. Overall, our study identifies subgroup VIII RLCKs as new players in Arabidopsis immune signaling and highlights the importance of non-catalytic functions of protein kinases.
Collapse
Affiliation(s)
| | | | | | - Jan Eric Maika
- Institute for Developmental Genetics, Heinrich Heine University, Düsseldorf, Germany
| | | | - Ruoqi Dou
- Department of Biology, Queen’s University, Kingston, ON, Canada
| | | | - Melissa Bredow
- Department of Biology, Queen’s University, Kingston, ON, Canada
| | | | - R Glen Uhrig
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Rüdiger Simon
- Institute for Developmental Genetics, Heinrich Heine University, Düsseldorf, Germany
| | | |
Collapse
|
3
|
Kim D, Jorge GL, Xu C, Su L, Cho SH, Ahsan N, Chen D, Zhou L, Gritsenko MA, Zhou M, Wan J, Pasa-Tolic L, Xu D, Bartley LE, Thelen JJ, Stacey G. Identifying Receptor Kinase Substrates Using an 8000 Peptide Kinase Client Library Enriched for Conserved Phosphorylation Sites. Mol Cell Proteomics 2025; 24:100926. [PMID: 39923935 PMCID: PMC11952801 DOI: 10.1016/j.mcpro.2025.100926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 10/14/2024] [Accepted: 12/03/2024] [Indexed: 02/11/2025] Open
Abstract
In eukaryotic organisms, protein kinases regulate diverse protein activities and signaling pathways through phosphorylation of specific protein substrates. Isolating and characterizing kinase substrates is vital for defining downstream signaling pathways. The kinase-client (KiC) assay is an in vitro synthetic peptide LC-MS/MS phosphorylation assay that has enabled identification of protein substrates (i.e., clients) for various protein kinases. For example, previous use of a 2100-member (2k) peptide library identified substrates for the extracellular ATP receptor-like kinase, P2K1. Many P2K1 clients were confirmed by additional in vitro and in planta studies, including integrin-linked kinase 4, for which we provide the evidence herein. In addition, we developed a new KiC peptide library containing 8000 (8k) peptides based on phosphorylation sites primarily from Arabidopsis thaliana datasets. The 8k peptides are enriched for sites with conservation in other angiosperm plants, with the paired goals of representing functionally conserved sites and usefulness for screening kinases from diverse plants. Screening the 8k library with the active P2K1 kinase domain identified 177 phosphopeptides, including calcineurin B-like protein and G protein alpha subunit 1, which functions in cellular calcium signaling. We confirmed that P2K1 directly phosphorylates calcineurin B-like protein and G protein alpha subunit 1 through in vitro kinase assays. This expanded 8k KiC assay will be a useful tool for identifying novel substrates across diverse plant protein kinases, ultimately facilitating the exploration of previously undiscovered signaling pathways.
Collapse
Affiliation(s)
- Daewon Kim
- Division of Plant Science & Technology, C.S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - Gabriel Lemes Jorge
- Division of Biochemistry and Interdisciplinary Plant Group, C.S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - Chunhui Xu
- Department of Electrical Engineering and Computer Science, C.S. Bond Life Sciences Center, Institute for Data Science and Informatics, University of Missouri, Columbia, Missouri, USA
| | - Lingtao Su
- Department of Electrical Engineering and Computer Science, C.S. Bond Life Sciences Center, Institute for Data Science and Informatics, University of Missouri, Columbia, Missouri, USA
| | - Sung-Hwan Cho
- Division of Plant Science & Technology, C.S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - Nagib Ahsan
- Department of Chemistry and Biochemistry, The University of Oklahoma, Norman, Oklahoma, USA; Mass Spectrometry, Proteomics and Metabolomics Core Facility, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA
| | - Dongqin Chen
- Division of Plant Science & Technology, C.S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - Lijuan Zhou
- Division of Plant Science & Technology, C.S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - Marina A Gritsenko
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Mowei Zhou
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Jinrong Wan
- Division of Plant Science & Technology, C.S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - Ljiljana Pasa-Tolic
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Dong Xu
- Department of Electrical Engineering and Computer Science, C.S. Bond Life Sciences Center, Institute for Data Science and Informatics, University of Missouri, Columbia, Missouri, USA
| | - Laura E Bartley
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, USA
| | - Jay J Thelen
- Division of Biochemistry and Interdisciplinary Plant Group, C.S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA.
| | - Gary Stacey
- Division of Plant Science & Technology, C.S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA; Division of Biochemistry and Interdisciplinary Plant Group, C.S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA.
| |
Collapse
|
4
|
Yan N, Yang S, Chao H, Zhang W, Zhang J, Chen M, Zhao J. Genome-wide characterization of the sunflower kinome: classification, evolutionary analysis and expression patterns under different stresses. FRONTIERS IN PLANT SCIENCE 2024; 15:1450936. [PMID: 39687314 PMCID: PMC11646777 DOI: 10.3389/fpls.2024.1450936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/14/2024] [Indexed: 12/18/2024]
Abstract
Protein kinases play a significant role in plant responses to biotic and abiotic stresses, as well as in growth and development. While the kinome has been extensively investigated in crops such as Arabidopsis thaliana, soybean, common bean, and cotton, studies on protein kinases in sunflower remain limited. Our objective is to explore protein kinases in sunflower to bridge the research gap and enhance the understanding of their functions. We identified a total of 2,583 protein kinases from sunflower, which were classified into 22 families and 121 subfamilies. By comparing the subfamily members between sunflower and other species, we found that three subfamilies in sunflower-RLK-Pelle_CrRLK1L-1, RLK-Pelle_SD-2b, and RLK-Pelle_WAK-had undergone significant expansion. We then investigated the chromosomal distribution, molecular weight, isoelectric point, transmembrane domain, signal peptide, and structural and evolutionary diversity of the protein kinases. Through these studies, we have obtained a basic understanding of protein kinases in sunflower. To investigate the role of protein kinases in sunflower's response to biotic and abiotic stresses, we obtained 534 transcriptome datasets from various research groups, covering eight types of abiotic stress and two types of biotic stress. For the first time, we overcame the batch effects in the data and utilized a gene scoring system developed by our lab to perform a comprehensive analysis of multiple transcriptome datasets from different research groups. Ultimately, 73 key protein kinases were identified from numerous candidates, and functional annotation revealed that they are key members of signaling pathways such as ABA, MAPK, and SOS, actively participating in sunflower's response to biotic and abiotic stresses. In summary, through the exploration of protein kinases in sunflower, we have filled the gap in protein kinase research and provided a substantial amount of foundational data. By using the new scoring method to eliminate batch effects between transcriptome datasets, we achieved the first comprehensive analysis of large-scale transcriptome data. This method allows for a more thorough and detailed identification of key protein kinases that are widely regulated under various stress conditions, providing numerous candidate genes for sunflower stress resistance research.
Collapse
Affiliation(s)
- Ningning Yan
- College of Horticultrue and Plant Protection, Inner Mongolia Agricultural University, Hohhot, China
| | - Shuqing Yang
- College of Agriculture, Tarim University, Alaer, China
| | - Haoyu Chao
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, China
| | - Wenbing Zhang
- College of Horticultrue and Plant Protection, Inner Mongolia Agricultural University, Hohhot, China
| | - Jian Zhang
- College of Horticultrue and Plant Protection, Inner Mongolia Agricultural University, Hohhot, China
| | - Ming Chen
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, China
| | - Jun Zhao
- College of Horticultrue and Plant Protection, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
5
|
Xi L, Wu X, Wang J, Zhang Z, He M, Zeeshan Z, Stefan T, Schulze WX. Receptor Kinase Signaling of BRI1 and SIRK1 Is Tightly Balanced by Their Interactomes as Revealed From Domain-Swap Chimaera in AE-MS Approaches. Mol Cell Proteomics 2024; 23:100857. [PMID: 39414233 PMCID: PMC11585773 DOI: 10.1016/j.mcpro.2024.100857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/16/2024] [Accepted: 10/09/2024] [Indexed: 10/18/2024] Open
Abstract
At the plasma membrane, in response to biotic and abiotic cues, specific ligands initiate the formation of receptor kinase heterodimers, which regulate the activities of plasma membrane proteins and initiate signaling cascades to the nucleus. In this study, we utilized affinity enrichment mass spectrometry to investigate the stimulus-dependent interactomes of LRR receptor kinases in response to their respective ligands, with an emphasis on exploring structural influences and potential cross-talk events at the plasma membrane. BRI1 and SIRK1 were chosen as receptor kinases with distinct coreceptor preference. By using interactome characteristic of domain-swap chimera following a gradient boosting learning algorithm trained on SIRK1 and BRI1 interactomes, we attribute contributions of extracellular domain, transmembrane domain, juxtamembrane domain, and kinase domain of respective ligand-binding receptors to their interaction with their coreceptors and substrates. Our results revealed juxtamembrane domain as major structural element defining the specific substrate recruitment for BRI1 and extracellular domain for SIRK1. Furthermore, the learning algorithm enabled us to predict the phenotypic outcomes of chimeric receptors based on different domain combinations, which was verified by dedicated experiments. As a result, our work reveals a tightly controlled balance of signaling cascade activation dependent on ligand-binding receptors domains and the internal ligand status of the plant. Moreover, our study shows the robust utility of machine learning classification as a quantitative metric for studying dynamic interactomes, dissecting the contribution of specific domains and predicting their phenotypic outcome.
Collapse
Affiliation(s)
- Lin Xi
- Department of Plant Systems Biology, University of Hohenheim, Stuttgart, Germany
| | - Xuna Wu
- Department of Plant Systems Biology, University of Hohenheim, Stuttgart, Germany; State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan and Center for Life Science, School of Life Sciences, Yunnan University, Kunming, China
| | - Jiahui Wang
- Department of Plant Systems Biology, University of Hohenheim, Stuttgart, Germany
| | - Zhaoxia Zhang
- Department of Plant Systems Biology, University of Hohenheim, Stuttgart, Germany
| | - Mingjie He
- Department of Plant Systems Biology, University of Hohenheim, Stuttgart, Germany
| | - Zeeshan Zeeshan
- Department of Plant Systems Biology, University of Hohenheim, Stuttgart, Germany
| | - Thorsten Stefan
- Department of Plant Systems Biology, University of Hohenheim, Stuttgart, Germany
| | - Waltraud X Schulze
- Department of Plant Systems Biology, University of Hohenheim, Stuttgart, Germany.
| |
Collapse
|
6
|
Zhao Y, Dong Z, Miao J, Liu Q, Ma C, Tian X, He J, Bi H, Yao W, Li T, Gill HS, Zhang Z, Cao A, Liu B, Li H, Sehgal SK, Liu W. Pm57 from Aegilops searsii encodes a tandem kinase protein and confers wheat powdery mildew resistance. Nat Commun 2024; 15:4796. [PMID: 38839783 PMCID: PMC11153570 DOI: 10.1038/s41467-024-49257-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/29/2024] [Indexed: 06/07/2024] Open
Abstract
Powdery mildew is a devastating disease that affects wheat yield and quality. Wheat wild relatives represent valuable sources of disease resistance genes. Cloning and characterization of these genes will facilitate their incorporation into wheat breeding programs. Here, we report the cloning of Pm57, a wheat powdery mildew resistance gene from Aegilops searsii. It encodes a tandem kinase protein with putative kinase-pseudokinase domains followed by a von Willebrand factor A domain (WTK-vWA), being ortholog of Lr9 that mediates wheat leaf rust resistance. The resistance function of Pm57 is validated via independent mutants, gene silencing, and transgenic assays. Stable Pm57 transgenic wheat lines and introgression lines exhibit high levels of all-stage resistance to diverse isolates of the Bgt fungus, and no negative impacts on agronomic parameters are observed in our experimental set-up. Our findings highlight the emerging role of kinase fusion proteins in plant disease resistance and provide a valuable gene for wheat breeding.
Collapse
Affiliation(s)
- Yue Zhao
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Zhenjie Dong
- College of Agronomy, Nanjing Agricultural University, Nanjing, 210000, China
| | - Jingnan Miao
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Qianwen Liu
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Chao Ma
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xiubin Tian
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jinqiu He
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Huihui Bi
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Wen Yao
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Tao Li
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Harsimardeep S Gill
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Zhibin Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Aizhong Cao
- College of Agronomy, Nanjing Agricultural University, Nanjing, 210000, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Huanhuan Li
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Sunish K Sehgal
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, 57007, USA.
| | - Wenxuan Liu
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
7
|
Sojka J, Šamajová O, Šamaj J. Gene-edited protein kinases and phosphatases in molecular plant breeding. TRENDS IN PLANT SCIENCE 2024; 29:694-710. [PMID: 38151445 DOI: 10.1016/j.tplants.2023.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/07/2023] [Accepted: 11/29/2023] [Indexed: 12/29/2023]
Abstract
Protein phosphorylation, the most common and essential post-translational modification, belongs to crucial regulatory mechanisms in plants, affecting their metabolism, intracellular transport, cytoarchitecture, cell division, growth, development, and interactions with the environment. Protein kinases and phosphatases, two important families of enzymes optimally regulating phosphorylation, have now become important targets for gene editing in crops. We review progress on gene-edited protein kinases and phosphatases in crops using clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9). We also provide guidance for computational prediction of alterations and/or changes in function, activity, and binding of protein kinases and phosphatases as consequences of CRISPR/Cas9-based gene editing with its possible application in modern crop molecular breeding towards sustainable agriculture.
Collapse
Affiliation(s)
- Jiří Sojka
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Olga Šamajová
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Jozef Šamaj
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.
| |
Collapse
|
8
|
Ahsan N, Kataya ARA, Rao RSP, Swatek KN, Wilson RS, Meyer LJ, Tovar-Mendez A, Stevenson S, Maszkowska J, Dobrowolska G, Yao Q, Xu D, Thelen JJ. Decoding Arabidopsis thaliana CPK/SnRK Superfamily Kinase Client Signaling Networks Using Peptide Library and Mass Spectrometry. PLANTS (BASEL, SWITZERLAND) 2024; 13:1481. [PMID: 38891291 PMCID: PMC11174488 DOI: 10.3390/plants13111481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/08/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024]
Abstract
Members of the calcium-dependent protein kinase (CDPK/CPK) and SNF-related protein kinase (SnRK) superfamilies are commonly found in plants and some protists. Our knowledge of client specificity of the members of this superfamily is fragmentary. As this family is represented by over 30 members in Arabidopsis thaliana, the identification of kinase-specific and overlapping client relationships is crucial to our understanding the nuances of this large family of kinases as directed towards signal transduction pathways. Herein, we used the kinase client (KiC) assay-a relative, quantitative, high-throughput mass spectrometry-based in vitro phosphorylation assay-to identify and characterize potential CPK/SnRK targets of Arabidopsis. Eight CPKs (1, 3, 6, 8, 17, 24, 28, and 32), four SnRKs (subclass 1 and 2), and PPCK1 and PPCK2 were screened against a synthetic peptide library that contains 2095 peptides and 2661 known phosphorylation sites. A total of 625 in vitro phosphorylation sites corresponding to 203 non-redundant proteins were identified. The most promiscuous kinase, CPK17, had 105 candidate target proteins, many of which had already been discovered. Sequence analysis of the identified phosphopeptides revealed four motifs: LxRxxS, RxxSxxR, RxxS, and LxxxxS, that were significantly enriched among CPK/SnRK clients. The results provide insight into both CPK- and SnRK-specific and overlapping signaling network architectures and recapitulate many known in vivo relationships validating this large-scale approach towards discovering kinase targets.
Collapse
Affiliation(s)
- Nagib Ahsan
- Division of Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
- Department of Chemistry and Biochemistry, Mass Spectrometry, Proteomics and Metabolomics Core Facility, Stephenson Life Sciences Research Center, The University of Oklahoma, Norman, OK 73019, USA
| | - Amr R. A. Kataya
- Division of Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - R. Shyama Prasad Rao
- Division of Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
- Center for Bioinformatics, NITTE Deemed to be University, Mangaluru 575018, India
| | - Kirby N. Swatek
- Division of Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Rashaun S. Wilson
- Division of Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
- Arvinas, Inc., New Haven, CT 06511, USA
| | - Louis J. Meyer
- Division of Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
- Bayer Crop Science, St. Louis, MO 63141, USA
| | - Alejandro Tovar-Mendez
- Division of Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
- Elemental Enzymes, St. Louis, MO 63132, USA
| | - Severin Stevenson
- Division of Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Justyna Maszkowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawińskiego 5a, 02-106 Warsaw, Poland (G.D.)
| | - Grazyna Dobrowolska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawińskiego 5a, 02-106 Warsaw, Poland (G.D.)
| | - Qiuming Yao
- Department of Electrical Engineering & Computer Science, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Dong Xu
- Department of Electrical Engineering & Computer Science, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Jay J. Thelen
- Division of Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
9
|
Ni J, Dong Z, Qiao F, Zhou W, Cao A, Xing L. Phylogenetic Analysis of Wall-Associated Kinase Genes in Triticum Species and Characterization of TaWAK7 Involved in Wheat Powdery Mildew Resistance. PLANT DISEASE 2024; 108:1223-1235. [PMID: 37923976 DOI: 10.1094/pdis-06-23-1090-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2023]
Abstract
Wall-associated kinases (WAKs), a group of receptor-like kinases, have been found to play important roles in defending against pathogens and in various developmental processes. However, the importance of this family in wheat remains largely unknown. Wheat powdery mildew is caused by Blumeria graminis f. sp. tritici (Bgt), which initiates infection on the cell surface and forms haustoria inside the cell; therefore, the defense to Bgt involves extracellular and subsequently intracellular signals. In this study, WAKs were identified genome-wide and analyzed phylogenetically, and then a transmembrane WAK gene that putatively participated in pathogen-associated molecular pattern-triggered immunity and effector-triggered immunity to Bgt was functionally and evolutionarily investigated. In total, 1,193 WAKs were identified from wheat and its Gramineae relatives. Phylogenetic analysis indicated that WAKs expanded through tandem duplication or segment duplication. TaWAK7, from chromosome 2A, was identified as a Bgt-inducible gene both in susceptible and resistant materials, but it showed distinct responsive patterns. Functional analysis showed that TaWAK7 was involved in both the basal and resistance gene-mediated resistances. The specific gene structures and protein characteristics of TaWAK7, along with its orthologs, were characterized both in subgenomes of Triticum spp. and in the A genome of multiple wheat accessions, which revealed that TaWAK7 orthologs underwent complex evolution with frequent gene fusion and domain deletion. In addition, three cytoplasmic proteins interacting with TaWAK7 were indicated by yeast two-hybrid and bimolecular fluorescence complementation assays. Binding of TaWAK7 with these proteins could change its subcellular localization from the plasma membrane to the cytoplasm. This study provides a better understanding of the evolution of WAKs at the genomic level and TaWAK7 at the gene level and provides useful clues for further investigation of how WAKs transmit the extracellular signals to the cytoplasm to activate defense responses.
Collapse
Affiliation(s)
- Jiayao Ni
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China
| | - Zhenjie Dong
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China
| | - Fangyuan Qiao
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China
| | - Weihao Zhou
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China
| | - Aizhong Cao
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing 210014, China
| | - Liping Xing
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing 210014, China
| |
Collapse
|
10
|
Cayuela A, Villasante-Fernández A, Corbalán-Acedo A, Baena-González E, Ferrando A, Belda-Palazón B. An Escherichia coli-Based Phosphorylation System for Efficient Screening of Kinase Substrates. Int J Mol Sci 2024; 25:3813. [PMID: 38612623 PMCID: PMC11011427 DOI: 10.3390/ijms25073813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 02/29/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Posttranslational modifications (PTMs), particularly phosphorylation, play a pivotal role in expanding the complexity of the proteome and regulating diverse cellular processes. In this study, we present an efficient Escherichia coli phosphorylation system designed to streamline the evaluation of potential substrates for Arabidopsis thaliana plant kinases, although the technology is amenable to any. The methodology involves the use of IPTG-inducible vectors for co-expressing kinases and substrates, eliminating the need for radioactive isotopes and prior protein purification. We validated the system's efficacy by assessing the phosphorylation of well-established substrates of the plant kinase SnRK1, including the rat ACETYL-COA CARBOXYLASE 1 (ACC1) and FYVE1/FREE1 proteins. The results demonstrated the specificity and reliability of the system in studying kinase-substrate interactions. Furthermore, we applied the system to investigate the phosphorylation cascade involving the A. thaliana MKK3-MPK2 kinase module. The activation of MPK2 by MKK3 was demonstrated to phosphorylate the Myelin Basic Protein (MBP), confirming the system's ability to unravel sequential enzymatic steps in phosphorylation cascades. Overall, this E. coli phosphorylation system offers a rapid, cost-effective, and reliable approach for screening potential kinase substrates, presenting a valuable tool to complement the current portfolio of molecular techniques for advancing our understanding of kinase functions and their roles in cellular signaling pathways.
Collapse
Affiliation(s)
- Andrés Cayuela
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas, Universitat Politècnica de València, 46022 Valencia, Spain; (A.C.); (A.V.-F.); (A.C.-A.)
| | - Adela Villasante-Fernández
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas, Universitat Politècnica de València, 46022 Valencia, Spain; (A.C.); (A.V.-F.); (A.C.-A.)
| | - Antonio Corbalán-Acedo
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas, Universitat Politècnica de València, 46022 Valencia, Spain; (A.C.); (A.V.-F.); (A.C.-A.)
| | | | - Alejandro Ferrando
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas, Universitat Politècnica de València, 46022 Valencia, Spain; (A.C.); (A.V.-F.); (A.C.-A.)
| | - Borja Belda-Palazón
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas, Universitat Politècnica de València, 46022 Valencia, Spain; (A.C.); (A.V.-F.); (A.C.-A.)
| |
Collapse
|
11
|
Perdoux R, Barrada A, Boulaiz M, Garau C, Belbachir C, Lecampion C, Montané MH, Menand B. A drug-resistant mutation in plant target of rapamycin validates the specificity of ATP-competitive TOR inhibitors in vivo. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1344-1355. [PMID: 38011587 DOI: 10.1111/tpj.16564] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/27/2023] [Accepted: 11/13/2023] [Indexed: 11/29/2023]
Abstract
Kinases are major components of cellular signaling pathways, regulating key cellular activities through phosphorylation. Kinase inhibitors are efficient tools for studying kinase targets and functions, however assessing their kinase specificity in vivo is essential. The identification of resistant kinase mutants has been proposed to be the most convincing approach to achieve this goal. Here, we address this issue in plants via a pharmacogenetic screen for mutants resistant to the ATP-competitive TOR inhibitor AZD-8055. The eukaryotic TOR (Target of Rapamycin) kinase is emerging as a major hub controlling growth responses in plants largely thanks to the use of ATP-competitive inhibitors. We identified a dominant mutation in the DFG motif of the Arabidopsis TOR kinase domain that leads to very strong resistance to AZD-8055. This resistance was characterized by measuring root growth, photosystem II (PSII) activity in leaves and phosphorylation of YAK1 (Yet Another Kinase 1) and RPS6 (Ribosomal protein S6), a direct and an indirect target of TOR respectively. Using other ATP-competitive TOR inhibitors, we also show that the dominant mutation is particularly efficient for resistance to drugs structurally related to AZD-8055. Altogether, this proof-of-concept study demonstrates that a pharmacogenetic screen in Arabidopsis can be used to successfully identify the target of a kinase inhibitor in vivo and therefore to demonstrate inhibitor specificity. Thanks to the conservation of kinase families in eukaryotes, and the possibility of creating amino acid substitutions by genome editing, this work has great potential for extending studies on the evolution of signaling pathways in eukaryotes.
Collapse
Affiliation(s)
- Romain Perdoux
- Aix-Marseille Univ, CEA, CNRS, BIAM, LGBP Team, Marseille, France
| | - Adam Barrada
- Aix-Marseille Univ, CEA, CNRS, BIAM, LGBP Team, Marseille, France
| | - Manal Boulaiz
- Aix-Marseille Univ, CEA, CNRS, BIAM, LGBP Team, Marseille, France
| | - Camille Garau
- Aix-Marseille Univ, CEA, CNRS, BIAM, LGBP Team, Marseille, France
| | | | - Cécile Lecampion
- Aix-Marseille Univ, CEA, CNRS, BIAM, LGBP Team, Marseille, France
| | | | - Benoît Menand
- Aix-Marseille Univ, CEA, CNRS, BIAM, LGBP Team, Marseille, France
| |
Collapse
|
12
|
Liu J, Li W, Wu G, Ali K. An update on evolutionary, structural, and functional studies of receptor-like kinases in plants. FRONTIERS IN PLANT SCIENCE 2024; 15:1305599. [PMID: 38362444 PMCID: PMC10868138 DOI: 10.3389/fpls.2024.1305599] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/03/2024] [Indexed: 02/17/2024]
Abstract
All living organisms must develop mechanisms to cope with and adapt to new environments. The transition of plants from aquatic to terrestrial environment provided new opportunities for them to exploit additional resources but made them vulnerable to harsh and ever-changing conditions. As such, the transmembrane receptor-like kinases (RLKs) have been extensively duplicated and expanded in land plants, increasing the number of RLKs in the advanced angiosperms, thus becoming one of the largest protein families in eukaryotes. The basic structure of the RLKs consists of a variable extracellular domain (ECD), a transmembrane domain (TM), and a conserved kinase domain (KD). Their variable ECDs can perceive various kinds of ligands that activate the conserved KD through a series of auto- and trans-phosphorylation events, allowing the KDs to keep the conserved kinase activities as a molecular switch that stabilizes their intracellular signaling cascades, possibly maintaining cellular homeostasis as their advantages in different environmental conditions. The RLK signaling mechanisms may require a coreceptor and other interactors, which ultimately leads to the control of various functions of growth and development, fertilization, and immunity. Therefore, the identification of new signaling mechanisms might offer a unique insight into the regulatory mechanism of RLKs in plant development and adaptations. Here, we give an overview update of recent advances in RLKs and their signaling mechanisms.
Collapse
Affiliation(s)
| | | | - Guang Wu
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Khawar Ali
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
| |
Collapse
|
13
|
Van den Broeck L, Bhosale DK, Song K, Fonseca de Lima CF, Ashley M, Zhu T, Zhu S, Van De Cotte B, Neyt P, Ortiz AC, Sikes TR, Aper J, Lootens P, Locke AM, De Smet I, Sozzani R. Functional annotation of proteins for signaling network inference in non-model species. Nat Commun 2023; 14:4654. [PMID: 37537196 PMCID: PMC10400656 DOI: 10.1038/s41467-023-40365-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 07/25/2023] [Indexed: 08/05/2023] Open
Abstract
Molecular biology aims to understand cellular responses and regulatory dynamics in complex biological systems. However, these studies remain challenging in non-model species due to poor functional annotation of regulatory proteins. To overcome this limitation, we develop a multi-layer neural network that determines protein functionality directly from the protein sequence. We annotate kinases and phosphatases in Glycine max. We use the functional annotations from our neural network, Bayesian inference principles, and high resolution phosphoproteomics to infer phosphorylation signaling cascades in soybean exposed to cold, and identify Glyma.10G173000 (TOI5) and Glyma.19G007300 (TOT3) as key temperature regulators. Importantly, the signaling cascade inference does not rely upon known kinase motifs or interaction data, enabling de novo identification of kinase-substrate interactions. Conclusively, our neural network shows generalization and scalability, as such we extend our predictions to Oryza sativa, Zea mays, Sorghum bicolor, and Triticum aestivum. Taken together, we develop a signaling inference approach for non-model species leveraging our predicted kinases and phosphatases.
Collapse
Affiliation(s)
- Lisa Van den Broeck
- Plant and Microbial Biology Department and NC Plant Sciences Initiative, North Carolina State University, Raleigh, NC, 27695, USA.
| | - Dinesh Kiran Bhosale
- Electrical and Computer Engineering Department, North Carolina State University, Raleigh, NC, 27695, USA
| | - Kuncheng Song
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, 27695, USA
| | - Cássio Flavio Fonseca de Lima
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, B-9052, Ghent, Belgium
| | - Michael Ashley
- Electrical and Computer Engineering Department, North Carolina State University, Raleigh, NC, 27695, USA
| | - Tingting Zhu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, B-9052, Ghent, Belgium
| | - Shanshuo Zhu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, B-9052, Ghent, Belgium
| | - Brigitte Van De Cotte
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, B-9052, Ghent, Belgium
| | - Pia Neyt
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, B-9052, Ghent, Belgium
| | - Anna C Ortiz
- USDA-ARS Soybean & Nitrogen Fixation Research Unit, Raleigh, NC, 27607, Belgium
| | - Tiffany R Sikes
- USDA-ARS Soybean & Nitrogen Fixation Research Unit, Raleigh, NC, 27607, Belgium
| | - Jonas Aper
- Protealis NV, Technologiepark-Zwijnaarde 94, 9052, Ghent, Belgium
| | - Peter Lootens
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), 9090, Melle, Belgium
| | - Anna M Locke
- USDA-ARS Soybean & Nitrogen Fixation Research Unit, Raleigh, NC, 27607, Belgium
- Department of Crop and Soil Sciences and NC Plant Sciences Initiative, North Carolina State University, Raleigh, NC, 27695, USA
| | - Ive De Smet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, B-9052, Ghent, Belgium
| | - Rosangela Sozzani
- Plant and Microbial Biology Department and NC Plant Sciences Initiative, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
14
|
Zhang Y, Tian H, Chen D, Zhang H, Sun M, Chen S, Qin Z, Ding Z, Dai S. Cysteine-rich receptor-like protein kinases: emerging regulators of plant stress responses. TRENDS IN PLANT SCIENCE 2023; 28:776-794. [PMID: 37105805 DOI: 10.1016/j.tplants.2023.03.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 03/26/2023] [Accepted: 03/31/2023] [Indexed: 06/17/2023]
Abstract
Cysteine-rich receptor-like kinases (CRKs) belong to a large DUF26-containing receptor-like kinase (RLK) family. They play key roles in immunity, abiotic stress response, and growth and development. How CRKs regulate diverse processes is a long-standing question. Recent studies have advanced our understanding of the molecular mechanisms underlying CRK functions in Ca2+ influx, reactive oxygen species (ROS) production, mitogen-activated protein kinase (MAPK) cascade activation, callose deposition, stomatal immunity, and programmed cell death (PCD). We review the CRK structure-function relationship with a focus on the roles of CRKs in immunity, the abiotic stress response, and the growth-stress tolerance tradeoff. We provide a critical analysis and synthesis of how CRKs control sophisticated regulatory networks that determine diverse plant phenotypic outputs.
Collapse
Affiliation(s)
- Yongxue Zhang
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China; Shanghai Key Laboratory of Protected Horticulture Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Science, Shanghai 201403, China
| | - Haodong Tian
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Daniel Chen
- MD Program of Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Heng Zhang
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Meihong Sun
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Sixue Chen
- Department of Biology, The University of Mississippi, Oxford, MS 38677, USA
| | - Zhi Qin
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Zhaojun Ding
- Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, China.
| | - Shaojun Dai
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China.
| |
Collapse
|
15
|
Kin K, Chen ZH, Forbes G, Lawal H, Schilde C, Singh R, Cole C, Barton GJ, Schaap P. The protein kinases of Dictyostelia and their incorporation into a signalome. Cell Signal 2023; 108:110714. [PMID: 37187217 DOI: 10.1016/j.cellsig.2023.110714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/02/2023] [Accepted: 05/12/2023] [Indexed: 05/17/2023]
Abstract
Protein kinases are major regulators of cellular processes, but the roles of most kinases remain unresolved. Dictyostelid social amoebas have been useful in identifying functions for 30% of its kinases in cell migration, cytokinesis, vesicle trafficking, gene regulation and other processes but their upstream regulators and downstream effectors are mostly unknown. Comparative genomics can assist to distinguish between genes involved in deeply conserved core processes and those involved in species-specific innovations, while co-expression of genes as evident from comparative transcriptomics can provide cues to the protein complement of regulatory networks. Genomes and developmental and cell-type specific transcriptomes are available for species that span the 0.5 billion years of evolution of Dictyostelia from their unicellular ancestors. In this work we analysed conservation and change in the abundance, functional domain architecture and developmental regulation of protein kinases across the 4 major taxon groups of Dictyostelia. All data are summarized in annotated phylogenetic trees of the kinase subtypes and accompanied by functional information of all kinases that were experimentally studied. We detected 393 different protein kinase domains across the five studied genomes, of which 212 were fully conserved. Conservation was highest (71%) in the previously defined AGC, CAMK, CK1, CMCG, STE and TKL groups and lowest (26%) in the "other" group of typical protein kinases. This was mostly due to species-specific single gene amplification of "other" kinases. Apart from the AFK and α-kinases, the atypical protein kinases, such as the PIKK and histidine kinases were also almost fully conserved. The phylogeny-wide developmental and cell-type specific expression profiles of the protein kinase genes were combined with profiles from the same transcriptomic experiments for the families of G-protein coupled receptors, small GTPases and their GEFs and GAPs, the transcription factors and for all genes that upon lesion generate a developmental defect. This dataset was subjected to hierarchical clustering to identify clusters of co-expressed genes that potentially act together in a signalling network. The work provides a valuable resource that allows researchers to identify protein kinases and other regulatory proteins that are likely to act as intermediates in a network of interest.
Collapse
Affiliation(s)
- Koryu Kin
- Molecular Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom; Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain.
| | - Zhi-Hui Chen
- Molecular Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Gillian Forbes
- Molecular Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom; Institut de Génomique Fonctionnelle de Lyon (IGFL), CNRS, École Normale Supérieure de Lyon and Université Claude Bernard Lyon-1, Lyon 69007, France.
| | - Hajara Lawal
- Molecular Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Christina Schilde
- Molecular Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom; D'Arcy Thompson Unit, School of Life Sciences, University of Dundee, DD1 4HN, United Kingdom.
| | - Reema Singh
- Molecular Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom; Computational Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom; Vaccine and Infectious Disease Organization, University of Saskatchewan,120 Veterinary Road, Saskatoon, SK S7N 5E3, Canada.
| | - Christian Cole
- Computational Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom; Population Health and Genomics, School of Medicine, University of Dundee, Ninewells Hospital, Dundee DD1 9SY, United Kingdom
| | - Geoffrey J Barton
- Computational Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Pauline Schaap
- Molecular Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom.
| |
Collapse
|
16
|
Aono AH, Pimenta RJG, Dambroz CMDS, Costa FCL, Kuroshu RM, de Souza AP, Pereira WA. Genome-wide characterization of the common bean kinome: Catalog and insights into expression patterns and genetic organization. Gene 2023; 855:147127. [PMID: 36563714 DOI: 10.1016/j.gene.2022.147127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/06/2022] [Accepted: 12/16/2022] [Indexed: 12/25/2022]
Abstract
The protein kinase (PK) superfamily is one of the largest superfamilies in plants and is the core regulator of cellular signaling. Even considering this substantial importance, the kinome of common bean (Phaseolus vulgaris) has not been profiled yet. Here, we identified and characterised the complete set of kinases of common bean, performing an in-depth investigation with phylogenetic analyses and measurements of gene distribution, structural organization, protein properties, and expression patterns over a large set of RNA-Sequencing data. Being composed of 1,203 PKs distributed across all P. vulgaris chromosomes, this set represents 3.25% of all predicted proteins for the species. These PKs could be classified into 20 groups and 119 subfamilies, with a more pronounced abundance of subfamilies belonging to the receptor-like kinase (RLK)-Pelle group. In addition to provide a vast and rich reservoir of data, our study supplied insights into the compositional similarities between PK subfamilies, their evolutionary divergences, highly variable functional profile, structural diversity, and expression patterns, modeled with coexpression networks for investigating putative interactions associated with stress response.
Collapse
Affiliation(s)
- Alexandre Hild Aono
- Molecular Biology and Genetic Engineering Center (CBMEG), University of Campinas (UNICAMP), Campinas, Brazil.
| | | | | | | | - Reginaldo Massanobu Kuroshu
- Instituto de Ciência e Tecnologia, Universidade Federal de São Paulo (UNIFESP), São José dos Campos, Brazil.
| | - Anete Pereira de Souza
- Molecular Biology and Genetic Engineering Center (CBMEG), University of Campinas (UNICAMP), Campinas, Brazil; Department of Plant Biology, Biology Institute, University of Campinas (UNICAMP), Campinas, Brazil.
| | | |
Collapse
|
17
|
dos Santos LB, Aono AH, Francisco FR, da Silva CC, Souza LM, de Souza AP. The rubber tree kinome: Genome-wide characterization and insights into coexpression patterns associated with abiotic stress responses. FRONTIERS IN PLANT SCIENCE 2023; 14:1068202. [PMID: 36824205 PMCID: PMC9941580 DOI: 10.3389/fpls.2023.1068202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
The protein kinase (PK) superfamily constitutes one of the largest and most conserved protein families in eukaryotic genomes, comprising core components of signaling pathways in cell regulation. Despite its remarkable relevance, only a few kinase families have been studied in Hevea brasiliensis. A comprehensive characterization and global expression analysis of the PK superfamily, however, is currently lacking. In this study, with the aim of providing novel inferences about the mechanisms associated with the stress response developed by PKs and retained throughout evolution, we identified and characterized the entire set of PKs, also known as the kinome, present in the Hevea genome. Different RNA-sequencing datasets were employed to identify tissue-specific expression patterns and potential correspondences between different rubber tree genotypes. In addition, coexpression networks under several abiotic stress conditions, such as cold, drought and latex overexploitation, were employed to elucidate associations between families and tissues/stresses. A total of 1,809 PK genes were identified using the current reference genome assembly at the scaffold level, and 1,379 PK genes were identified using the latest chromosome-level assembly and combined into a single set of 2,842 PKs. These proteins were further classified into 20 different groups and 122 families, exhibiting high compositional similarities among family members and with two phylogenetically close species Manihot esculenta and Ricinus communis. Through the joint investigation of tandemly duplicated kinases, transposable elements, gene expression patterns, and coexpression events, we provided insights into the understanding of the cell regulation mechanisms in response to several conditions, which can often lead to a significant reduction in rubber yield.
Collapse
Affiliation(s)
- Lucas Borges dos Santos
- Center for Molecular Biology and Genetic Engineering, State University of Campinas, Campinas, Brazil
| | - Alexandre Hild Aono
- Center for Molecular Biology and Genetic Engineering, State University of Campinas, Campinas, Brazil
| | - Felipe Roberto Francisco
- Center for Molecular Biology and Genetic Engineering, State University of Campinas, Campinas, Brazil
| | - Carla Cristina da Silva
- Center for Molecular Biology and Genetic Engineering, State University of Campinas, Campinas, Brazil
| | - Livia Moura Souza
- Center for Molecular Biology and Genetic Engineering, State University of Campinas, Campinas, Brazil
- São Francisco University (USF), Itatiba, Brazil
| | - Anete Pereira de Souza
- Center for Molecular Biology and Genetic Engineering, State University of Campinas, Campinas, Brazil
- Department of Plant Biology, Biology Institute, University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
18
|
Xu X, Gevaert K, De Smet I, Vu LD. Targeted Profiling of Protein Phosphorylation in Plants. Methods Mol Biol 2023; 2718:167-179. [PMID: 37665460 DOI: 10.1007/978-1-0716-3457-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Proteins are crucial for controlling different cellular processes by perceiving and converting external environmental cues into cellular responses. Therefore, regulation of protein activities is pivotal for the development and survival of an organism. This is often mediated by posttranslational modifications, which usually are carried out on specific residues of a target protein by a "writer" protein. The (reversible) modifications of different residues may lead to different signaling outputs. In the case of protein phosphorylation, one of the most common posttranslational modifications, this writer protein is a protein kinase. In this chapter, we report a comprehensive and versatile workflow to identify the phosphorylation profile of a target protein in plants from a putative kinase-target pair by combining an in planta phosphorylation assay and mass spectrometry analysis.
Collapse
Affiliation(s)
- Xiangyu Xu
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Kris Gevaert
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Ive De Smet
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium.
- VIB Center for Plant Systems Biology, Ghent, Belgium.
| | - Lam Dai Vu
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
19
|
Wang J, Xi L, Wu XN, König S, Rohr L, Neumann T, Weber J, Harter K, Schulze WX. PEP7 acts as a peptide ligand for the receptor kinase SIRK1 to regulate aquaporin-mediated water influx and lateral root growth. MOLECULAR PLANT 2022; 15:1615-1631. [PMID: 36131543 DOI: 10.1016/j.molp.2022.09.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/11/2022] [Accepted: 09/19/2022] [Indexed: 06/15/2023]
Abstract
Plant receptors constitute a large protein family that regulates various aspects of development and responses to external cues. Functional characterization of this protein family and the identification of their ligands remain major challenges in plant biology. Previously, we identified plasma membrane-intrinsic sucrose-induced receptor kinase 1 (SIRK1) and Qian Shou kinase 1 (QSK1) as receptor/co-receptor pair involved in the regulation of aquaporins in response to osmotic conditions induced by sucrose. In this study, we identified a member of the elicitor peptide (PEP) family, namely PEP7, as the specific ligand of th receptor kinase SIRK1. PEP7 binds to the extracellular domain of SIRK1 with a binding constant of 1.44 ± 0.79 μM and is secreted to the apoplasm specifically in response to sucrose treatment. Stabilization of a signaling complex involving SIRK1, QSK1, and aquaporins as substrates is mediated by alterations in the external sucrose concentration or by PEP7 application. Moreover, the presence of PEP7 induces the phosphorylation of aquaporins in vivo and enhances water influx into protoplasts. Disturbed water influx, in turn, led to delayed lateral root development in the pep7 mutant. The loss-of-function mutant of SIRK1 is not responsive to external PEP7 treatment regarding kinase activity, aquaporin phosphorylation, water influx activity, and lateral root development. Taken together, our data indicate that the PEP7/SIRK1/QSK1 complex represents a crucial perception and response module that mediates sucrose-controlled water flux in plants and lateral root development.
Collapse
Affiliation(s)
- Jiahui Wang
- Department of Plant Systems Biology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Lin Xi
- Department of Plant Systems Biology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Xu Na Wu
- Department of Plant Systems Biology, University of Hohenheim, 70593 Stuttgart, Germany; School of Life Science, Center for Life Sciences, Yunnan University, 650091 Kunming, People's Republic of China
| | - Stefanie König
- Department of Plant Systems Biology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Leander Rohr
- Center for Plant Molecular Biology, University of Tübingen, 72076 Tübingen, Germany
| | - Theresia Neumann
- Department of Plant Systems Biology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Jan Weber
- Department of Plant Systems Biology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Klaus Harter
- Center for Plant Molecular Biology, University of Tübingen, 72076 Tübingen, Germany
| | - Waltraud X Schulze
- Department of Plant Systems Biology, University of Hohenheim, 70593 Stuttgart, Germany.
| |
Collapse
|
20
|
Kumar M, Carr P, Turner SR. An atlas of Arabidopsis protein S-acylation reveals its widespread role in plant cell organization and function. NATURE PLANTS 2022; 8:670-681. [PMID: 35681017 PMCID: PMC7617270 DOI: 10.1038/s41477-022-01164-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 05/04/2022] [Indexed: 05/28/2023]
Abstract
S-acylation is the addition of a fatty acid to a cysteine residue of a protein. While this modification may profoundly alter protein behaviour, its effects on the function of plant proteins remains poorly characterized, largely as a result of the lack of basic information regarding which proteins are S-acylated and where in the proteins the modification occurs. To address this gap in our knowledge, we used an optimized acyl-resin-assisted capture assay to perform a comprehensive analysis of plant protein S-acylation from six separate tissues. In our high- and medium-confidence groups, we identified 1,849 cysteines modified by S-acylation, which were located in 1,640 unique peptides from 1,094 different proteins. This represents around 6% of the detectable Arabidopsis proteome and suggests an important role for S-acylation in many essential cellular functions including trafficking, signalling and metabolism. To illustrate the potential of this dataset, we focus on cellulose synthesis and confirm the S-acylation of a number of proteins known to be involved in cellulose synthesis and trafficking of the cellulose synthase complex. In the secondary cell walls, cellulose synthesis requires three different catalytic subunits (CESA4, CESA7 and CESA8) that all exhibit striking sequence similarity and are all predicted to possess a RING-type zinc finger at their amino terminus composed of eight cysteines. For CESA8, we find evidence for S-acylation of these cysteines that is incompatible with any role in coordinating metal ions. We show that while CESA7 may possess a RING-type domain, the same region of CESA8 appears to have evolved a very different structure. Together, the data suggest that this study represents an atlas of S-acylation in Arabidopsis that will facilitate the broader study of this elusive post-translational modification in plants as well as demonstrating the importance of further work in this area.
Collapse
Affiliation(s)
- Manoj Kumar
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Paul Carr
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Holiferm, Manchester, UK
| | - Simon R Turner
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| |
Collapse
|
21
|
Du Y, Xie S, Wang Y, Ma Y, Jia B, Liu X, Rong J, Li R, Zhu X, Song CP, Tao WA, Wang P. Low molecular weight protein phosphatase APH mediates tyrosine dephosphorylation and ABA response in Arabidopsis. STRESS BIOLOGY 2022; 2:23. [PMID: 35935594 PMCID: PMC9345830 DOI: 10.1007/s44154-022-00041-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/17/2022] [Indexed: 02/02/2023]
Abstract
Low molecular weight protein tyrosine phosphatase (LWM-PTP), also known as acid phosphatase, is a highly conserved tyrosine phosphatase in living organisms. However, the function of LWM-PTP homolog has not been reported yet in plants. Here, we revealed a homolog of acid phosphatase, APH, in Arabidopsis plants, is a functional protein tyrosine phosphatase. The aph mutants are hyposensitive to ABA in post-germination growth. We performed an anti-phosphotyrosine antibody-based quantitative phosphoproteomics in wild-type and aph mutant and identified hundreds of putative targets of APH, including multiple splicing factors and other transcriptional regulators. Consistently, RNA-seq analysis revealed that the expression of ABA-highly-responsive genes is suppressed in aph mutants. Thus, APH regulates the ABA-responsive gene expressions by regulating the tyrosine phosphorylation of multiple splicing factors and other post-transcriptional regulators. We also revealed that Tyr383 in RAF9, a member of B2 and B3 RAF kinases that phosphorylate and activate SnRK2s in the ABA signaling pathway, is a direct target site of APH. Phosphorylation of Tyr383 is essential for RAF9 activity. Our results uncovered a crucial function of APH in ABA-induced tyrosine phosphorylation in Arabidopsis. Supplementary Information The online version contains supplementary material available at 10.1007/s44154-022-00041-6.
Collapse
Affiliation(s)
- Yanyan Du
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
| | - Shaojun Xie
- Bioinformatics Core, Purdue University, West Lafayette, IN 47907 USA
| | - Yubei Wang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Yu Ma
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Bei Jia
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
| | - Xue Liu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
| | - Jingkai Rong
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Rongxia Li
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
| | - Xiaohong Zhu
- State Key Laboratory of Crop Stress Adaption and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004 China
| | - Chun-Peng Song
- State Key Laboratory of Crop Stress Adaption and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004 China
| | - W. Andy Tao
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907 USA
| | - Pengcheng Wang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
- State Key Laboratory of Crop Stress Adaption and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004 China
| |
Collapse
|
22
|
Romero-Hernandez G, Martinez M. Plant Kinases in the Perception and Signaling Networks Associated With Arthropod Herbivory. FRONTIERS IN PLANT SCIENCE 2022; 13:824422. [PMID: 35599859 PMCID: PMC9116192 DOI: 10.3389/fpls.2022.824422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/14/2022] [Indexed: 06/15/2023]
Abstract
The success in the response of plants to environmental stressors depends on the regulatory networks that connect plant perception and plant response. In these networks, phosphorylation is a key mechanism to activate or deactivate the proteins involved. Protein kinases are responsible for phosphorylations and play a very relevant role in transmitting the signals. Here, we review the present knowledge on the contribution of protein kinases to herbivore-triggered responses in plants, with a focus on the information related to the regulated kinases accompanying herbivory in Arabidopsis. A meta-analysis of transcriptomic responses revealed the importance of several kinase groups directly involved in the perception of the attacker or typically associated with the transmission of stress-related signals. To highlight the importance of these protein kinase families in the response to arthropod herbivores, a compilation of previous knowledge on their members is offered. When available, this information is compared with previous findings on their role against pathogens. Besides, knowledge of their homologous counterparts in other plant-herbivore interactions is provided. Altogether, these observations resemble the complexity of the kinase-related mechanisms involved in the plant response. Understanding how kinase-based pathways coordinate in response to a specific threat remains a major challenge for future research.
Collapse
Affiliation(s)
- Gara Romero-Hernandez
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Manuel Martinez
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| |
Collapse
|
23
|
Kataya A, Gautam N, Jamshed M, Muench DG, Samuel MA, Thelen JJ, Moorhead GB. Identification of Arabidopsis Protein Kinases That Harbor Functional Type 1 Peroxisomal Targeting Signals. Front Cell Dev Biol 2022; 10:745883. [PMID: 35242755 PMCID: PMC8886021 DOI: 10.3389/fcell.2022.745883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 01/25/2022] [Indexed: 12/25/2022] Open
Abstract
Peroxisomes are eukaryotic specific organelles that perform diverse metabolic functions including fatty acid β-oxidation, reactive species metabolism, photorespiration, and responses to stress. However, the potential regulation of these functions by post-translational modifications, including protein phosphorylation, has had limited study. Recently, we identified and catalogued a large number of peroxisomal phosphorylated proteins, implicating the presence of protein kinases in this organelle. Here, we employed available prediction models coupled with sequence conservation analysis to identify 31 protein kinases from the Arabidopsis kinome (all protein kinases) that contain a putative, non-canonical peroxisomal targeting signal type 1 (PTS1). From this, twelve C-terminal domain-PTS1s were demonstrated to be functional in vivo, targeting enhanced yellow fluorescent protein to peroxisomes, increasing the list of presumptive peroxisomal protein kinases to nineteen. Of the twelve protein kinases with functional PTS1s, we obtained full length clones for eight and demonstrated that seven target to peroxisomes in vivo. Screening homozygous mutants of the presumptive nineteen protein kinases revealed one candidate (GPK1) that harbors a sugar-dependence phenotype, suggesting it is involved in regulating peroxisomal fatty acid β-oxidation. These results present new opportunities for investigating the regulation of peroxisome functions.
Collapse
Affiliation(s)
- Amr Kataya
- Department of Chemistry, Bioscience, and Environmental Engineering, University of Stavanger, Stavanger, Norway.,Department of Biological Sciences, University of Calgary, Calgary, AB, Canada.,Christopher S. Bond Life Sciences Center, Department of Biochemistry, University of Missouri, Columbia, MO, United States
| | - Nitija Gautam
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Muhammad Jamshed
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Douglas G Muench
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Marcus A Samuel
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Jay J Thelen
- Christopher S. Bond Life Sciences Center, Department of Biochemistry, University of Missouri, Columbia, MO, United States
| | - Greg B Moorhead
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
24
|
Subba P, Prasad TSK. Plant Phosphoproteomics: Known Knowns, Known Unknowns, and Unknown Unknowns of an Emerging Systems Science Frontier. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2021; 25:750-769. [PMID: 34882020 DOI: 10.1089/omi.2021.0192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Plant systems science research depends on the dynamic functional maps of the biological substrates of plant phenotypes and host/environment interactions in diverse ecologies. In this context, high-resolution mass spectrometry platforms offer comprehensive insights into the molecular pathways regulated by protein phosphorylation. Reversible protein phosphorylation is a ubiquitous reaction in signal transduction mechanisms in biological systems. In contrast to human and animal biology research, a plethora of experimental options for functional mapping and regulation of plant biology are, however, not currently available. Plant phosphoproteomics is an emerging field of research that aims at addressing this gap in systems science and plant omics, and thus has a large scope to empower fundamental discoveries. To date, large-scale data-intensive identification of phosphorylation events in plants remained technically challenging. In this expert review, we present a critical analysis and overview of phosphoproteomic studies performed in the model plant Arabidopsis thaliana. We discuss the technical strategies used for the enrichment of phosphopeptides and methods used for their quantitative assessment. Various types of mass spectrometry data acquisition and fragmentation methods are also discussed. The insights gathered here can allow plant biology and systems science researchers to design high-throughput function-oriented experimental workflows that elucidate the regulatory signaling mechanisms impacting plant physiology and plant diseases.
Collapse
Affiliation(s)
- Pratigya Subba
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | | |
Collapse
|
25
|
Klymiuk V, Coaker G, Fahima T, Pozniak CJ. Tandem Protein Kinases Emerge as New Regulators of Plant Immunity. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:1094-1102. [PMID: 34096764 PMCID: PMC8761531 DOI: 10.1094/mpmi-03-21-0073-cr] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Plant-pathogen interactions result in disease development in a susceptible host. Plants actively resist pathogens via a complex immune system comprising both surface-localized receptors that sense the extracellular space as well as intracellular receptors recognizing pathogen effectors. To date, the majority of cloned resistance genes encode intracellular nucleotide-binding leucine-rich repeat receptor proteins. Recent discoveries have revealed tandem kinase proteins (TKPs) as another important family of intracellular proteins involved in plant immune responses. Five TKP genes-barley Rpg1 and wheat WTK1 (Yr15), WTK2 (Sr60), WTK3 (Pm24), and WTK4-protect against devastating fungal diseases. Moreover, a large diversity and numerous putative TKPs exist across the plant kingdom. This review explores our current knowledge of TKPs and serves as a basis for future studies that aim to develop and exploit a deeper understanding of innate plant immunity receptor proteins.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Valentyna Klymiuk
- Crop Development Centre and Department of Plant Sciences,
University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Gitta Coaker
- Department of Plant Pathology, University of California,
Davis, CA, U.S.A
| | - Tzion Fahima
- Institute of Evolution, University of Haifa, 199 Abba-Hushi
Avenue, Mt. Carmel, 3498838 Haifa, Israel
- Department of Evolutionary and Environmental Biology,
University of Haifa, 199 Abba-Hushi Avenue, Mt. Carmel, 3498838 Haifa, Israel
| | - Curtis J. Pozniak
- Crop Development Centre and Department of Plant Sciences,
University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| |
Collapse
|
26
|
Silva GLA, Tosi LRO, McCulloch R, Black JA. Unpicking the Roles of DNA Damage Protein Kinases in Trypanosomatids. Front Cell Dev Biol 2021; 9:636615. [PMID: 34422791 PMCID: PMC8377203 DOI: 10.3389/fcell.2021.636615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 07/13/2021] [Indexed: 12/31/2022] Open
Abstract
To preserve genome integrity when faced with DNA lesions, cells activate and coordinate a multitude of DNA repair pathways to ensure timely error correction or tolerance, collectively called the DNA damage response (DDR). These interconnecting damage response pathways are molecular signal relays, with protein kinases (PKs) at the pinnacle. Focused efforts in model eukaryotes have revealed intricate aspects of DNA repair PK function, including how they direct DDR pathways and how repair reactions connect to wider cellular processes, including DNA replication and transcription. The Kinetoplastidae, including many parasites like Trypanosoma spp. and Leishmania spp. (causative agents of debilitating, neglected tropical infections), exhibit peculiarities in several core biological processes, including the predominance of multigenic transcription and the streamlining or repurposing of DNA repair pathways, such as the loss of non-homologous end joining and novel operation of nucleotide excision repair (NER). Very recent studies have implicated ATR and ATM kinases in the DDR of kinetoplastid parasites, whereas DNA-dependent protein kinase (DNA-PKcs) displays uncertain conservation, questioning what functions it fulfills. The wide range of genetic manipulation approaches in these organisms presents an opportunity to investigate DNA repair kinase roles in kinetoplastids and to ask if further kinases are involved. Furthermore, the availability of kinase inhibitory compounds, targeting numerous eukaryotic PKs, could allow us to test the suitability of DNA repair PKs as novel chemotherapeutic targets. Here, we will review recent advances in the study of trypanosomatid DNA repair kinases.
Collapse
Affiliation(s)
- Gabriel L A Silva
- The Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom.,Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Luiz R O Tosi
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Richard McCulloch
- The Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Jennifer Ann Black
- The Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom.,Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
27
|
Zhu K, Fan P, Liu H, Zhao J, Tan P, Mo Z, Peng F. Pecan kinome: classification and expression analysis of all protein kinases in Carya illinoinensis. FORESTRY RESEARCH 2021; 1:14. [PMID: 39524521 PMCID: PMC11524300 DOI: 10.48130/fr-2021-0014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/03/2021] [Indexed: 11/16/2024]
Abstract
Protein kinases (PKs) are involved in plant growth and stress responses, and constitute one of the largest superfamilies due to numerous gene duplications. However, limited PKs have been functionally described in pecan, an economically important nut tree. Here, the comprehensive identification, annotation and classification of the entire pecan kinome are reported. A total of 967 PK genes were identified from the pecan genome, and further classified into 20 different groups and 121 subfamilies using the kinase domain sequences, which were verified by phylogenetic analysis. The receptor-like kinase (RLK) group contained 565 members, which constituted the largest group. Gene duplication contributed to the expansion of pecan kinome, 169 segmental duplication events including 285 PK genes were found, and the Ka/Ks ratio revealed they experienced strong negative selection. The RNA-Seq data of PK genes in pecan were further analyzed at the subfamily level, and different PK subfamilies performed various expression patterns across pecan embryo development or drought treatment, suggesting PK genes in pecan are involved in embryo development and drought stress response. Taken together, this study provides insight into the classification, expansion, evolution, and expression of pecan PKs. Our findings regarding expansion, expression and co-expression analyses lay a good foundation for future research to understand the roles of pecan PKs, and more efficiently determine the key candidate genes.
Collapse
Affiliation(s)
- Kaikai Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Pinghua Fan
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Hui Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Juan Zhao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Pengpeng Tan
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Zhenghai Mo
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Fangren Peng
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| |
Collapse
|
28
|
Vega A, Fredes I, O'Brien J, Shen Z, Ötvös K, Abualia R, Benkova E, Briggs SP, Gutiérrez RA. Nitrate triggered phosphoproteome changes and a PIN2 phosphosite modulating root system architecture. EMBO Rep 2021; 22:e51813. [PMID: 34357701 PMCID: PMC8447600 DOI: 10.15252/embr.202051813] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 05/13/2021] [Accepted: 06/23/2021] [Indexed: 01/04/2023] Open
Abstract
Nitrate commands genome‐wide gene expression changes that impact metabolism, physiology, plant growth, and development. In an effort to identify new components involved in nitrate responses in plants, we analyze the Arabidopsis thaliana root phosphoproteome in response to nitrate treatments via liquid chromatography coupled to tandem mass spectrometry. 176 phosphoproteins show significant changes at 5 or 20 min after nitrate treatments. Proteins identified by 5 min include signaling components such as kinases or transcription factors. In contrast, by 20 min, proteins identified were associated with transporter activity or hormone metabolism functions, among others. The phosphorylation profile of NITRATE TRANSPORTER 1.1 (NRT1.1) mutant plants was significantly altered as compared to wild‐type plants, confirming its key role in nitrate signaling pathways that involves phosphorylation changes. Integrative bioinformatics analysis highlights auxin transport as an important mechanism modulated by nitrate signaling at the post‐translational level. We validated a new phosphorylation site in PIN2 and provide evidence that it functions in primary and lateral root growth responses to nitrate.
Collapse
Affiliation(s)
- Andrea Vega
- Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago, Chile.,FONDAP Center for Genome Regulation, ANID - Millennium Science Initiative Program - Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Isabel Fredes
- Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago, Chile.,FONDAP Center for Genome Regulation, ANID - Millennium Science Initiative Program - Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - José O'Brien
- Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago, Chile.,FONDAP Center for Genome Regulation, ANID - Millennium Science Initiative Program - Millennium Institute for Integrative Biology (iBio), Santiago, Chile.,Departamento de Fruticultura y Enología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Zhouxin Shen
- Cell and Developmental Biology, University of California San Diego. San Diego, CA, USA
| | - Krisztina Ötvös
- Institute of Science and Technology (IST) Austria, Klosterneuburg, Austria.,Bioresources Unit, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Rashed Abualia
- Institute of Science and Technology (IST) Austria, Klosterneuburg, Austria
| | - Eva Benkova
- Institute of Science and Technology (IST) Austria, Klosterneuburg, Austria
| | - Steven P Briggs
- Cell and Developmental Biology, University of California San Diego. San Diego, CA, USA
| | - Rodrigo A Gutiérrez
- Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago, Chile.,FONDAP Center for Genome Regulation, ANID - Millennium Science Initiative Program - Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| |
Collapse
|
29
|
Chen Y, Wang Y, Yang J, Zhou W, Dai S. Exploring the diversity of plant proteome. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1197-1210. [PMID: 33650765 DOI: 10.1111/jipb.13087] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/25/2021] [Indexed: 05/10/2023]
Abstract
The tremendous functional, spatial, and temporal diversity of the plant proteome is regulated by multiple factors that continuously modify protein abundance, modifications, interactions, localization, and activity to meet the dynamic needs of plants. Dissecting the proteome complexity and its underlying genetic variation is attracting increasing research attention. Mass spectrometry (MS)-based proteomics has become a powerful approach in the global study of protein functions and their relationships on a systems level. Here, we review recent breakthroughs and strategies adopted to unravel the diversity of the proteome, with a specific focus on the methods used to analyze posttranslational modifications (PTMs), protein localization, and the organization of proteins into functional modules. We also consider PTM crosstalk and multiple PTMs temporally regulating the life cycle of proteins. Finally, we discuss recent quantitative studies using MS to measure protein turnover rates and examine future directions in the study of the plant proteome.
Collapse
Affiliation(s)
- Yanmei Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yi Wang
- State Key Laboratory of Wheat and Maize Crop Science, College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jun Yang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Wenbin Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shaojun Dai
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| |
Collapse
|
30
|
Ferreira-Neto JRC, Borges ANDC, da Silva MD, Morais DADL, Bezerra-Neto JP, Bourque G, Kido EA, Benko-Iseppon AM. The Cowpea Kinome: Genomic and Transcriptomic Analysis Under Biotic and Abiotic Stresses. FRONTIERS IN PLANT SCIENCE 2021; 12:667013. [PMID: 34194450 PMCID: PMC8238008 DOI: 10.3389/fpls.2021.667013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/26/2021] [Indexed: 06/13/2023]
Abstract
The present work represents a pioneering effort, being the first to analyze genomic and transcriptomic data from Vigna unguiculata (cowpea) kinases. We evaluated the cowpea kinome considering its genome-wide distribution and structural characteristics (at the gene and protein levels), sequence evolution, conservation among Viridiplantae species, and gene expression in three cowpea genotypes under different stress situations, including biotic (injury followed by virus inoculation-CABMV or CPSMV) and abiotic (root dehydration). The structural features of cowpea kinases (VuPKs) indicated that 1,293 bona fide VuPKs covered 20 groups and 118 different families. The RLK-Pelle was the largest group, with 908 members. Insights on the mechanisms of VuPK genomic expansion and conservation among Viridiplantae species indicated dispersed and tandem duplications as major forces for VuPKs' distribution pattern and high orthology indexes and synteny with other legume species, respectively. K a /K s ratios showed that almost all (91%) of the tandem duplication events were under purifying selection. Candidate cis-regulatory elements were associated with different transcription factors (TFs) in the promoter regions of the RLK-Pelle group. C2H2 TFs were closely associated with the promoter regions of almost all scrutinized families for the mentioned group. At the transcriptional level, it was suggested that VuPK up-regulation was stress, genotype, or tissue dependent (or a combination of them). The most prominent families in responding (up-regulation) to all the analyzed stresses were RLK-Pelle_DLSV and CAMK_CAMKL-CHK1. Concerning root dehydration, it was suggested that the up-regulated VuPKs are associated with ABA hormone signaling, auxin hormone transport, and potassium ion metabolism. Additionally, up-regulated VuPKs under root dehydration potentially assist in a critical physiological strategy of the studied cowpea genotype in this assay, with activation of defense mechanisms against biotic stress while responding to root dehydration. This study provides the foundation for further studies on the evolution and molecular function of VuPKs.
Collapse
Affiliation(s)
| | | | - Manassés Daniel da Silva
- Laboratory of Molecular Genetics, Genetics Department, Federal University of Pernambuco, Recife, Brazil
| | | | - João Pacífico Bezerra-Neto
- Laboratory of Plant Genetics and Biotechnology, Genetics Department, Federal University of Pernambuco, Recife, Brazil
| | - Guillaume Bourque
- Génome Québec Innovation Centre, McGill University, Montréal, QC, Canada
| | - Ederson Akio Kido
- Laboratory of Molecular Genetics, Genetics Department, Federal University of Pernambuco, Recife, Brazil
| | - Ana Maria Benko-Iseppon
- Laboratory of Plant Genetics and Biotechnology, Genetics Department, Federal University of Pernambuco, Recife, Brazil
| |
Collapse
|
31
|
Smythers AL, Hicks LM. Mapping the plant proteome: tools for surveying coordinating pathways. Emerg Top Life Sci 2021; 5:203-220. [PMID: 33620075 PMCID: PMC8166341 DOI: 10.1042/etls20200270] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 12/14/2022]
Abstract
Plants rapidly respond to environmental fluctuations through coordinated, multi-scalar regulation, enabling complex reactions despite their inherently sessile nature. In particular, protein post-translational signaling and protein-protein interactions combine to manipulate cellular responses and regulate plant homeostasis with precise temporal and spatial control. Understanding these proteomic networks are essential to addressing ongoing global crises, including those of food security, rising global temperatures, and the need for renewable materials and fuels. Technological advances in mass spectrometry-based proteomics are enabling investigations of unprecedented depth, and are increasingly being optimized for and applied to plant systems. This review highlights recent advances in plant proteomics, with an emphasis on spatially and temporally resolved analysis of post-translational modifications and protein interactions. It also details the necessity for generation of a comprehensive plant cell atlas while highlighting recent accomplishments within the field.
Collapse
Affiliation(s)
- Amanda L Smythers
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, U.S.A
| | - Leslie M Hicks
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, U.S.A
| |
Collapse
|
32
|
Vu LD, Xu X, Zhu T, Pan L, van Zanten M, de Jong D, Wang Y, Vanremoortele T, Locke AM, van de Cotte B, De Winne N, Stes E, Russinova E, De Jaeger G, Van Damme D, Uauy C, Gevaert K, De Smet I. The membrane-localized protein kinase MAP4K4/TOT3 regulates thermomorphogenesis. Nat Commun 2021; 12:2842. [PMID: 33990595 PMCID: PMC8121802 DOI: 10.1038/s41467-021-23112-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 04/12/2021] [Indexed: 12/14/2022] Open
Abstract
Plants respond to mild warm temperature conditions by increased elongation growth of organs to enhance cooling capacity, in a process called thermomorphogenesis. To this date, the regulation of thermomorphogenesis has been exclusively shown to intersect with light signalling pathways. To identify regulators of thermomorphogenesis that are conserved in flowering plants, we map changes in protein phosphorylation in both dicots and monocots exposed to warm temperature. We identify MITOGEN-ACTIVATED PROTEIN KINASE KINASE KINASE KINASE4 (MAP4K4)/TARGET OF TEMPERATURE3 (TOT3) as a regulator of thermomorphogenesis that impinges on brassinosteroid signalling in Arabidopsis thaliana. In addition, we show that TOT3 plays a role in thermal response in wheat, a monocot crop. Altogether, the conserved thermal regulation by TOT3 expands our knowledge of thermomorphogenesis beyond the well-studied pathways and can contribute to ensuring food security under a changing climate. Plants respond to warmth via growth processes termed thermomorphogenesis. Here, via a phosphoproteomics approach, the authors show that the mitogen activated protein kinase TOT3 regulates thermomorphogenesis in both wheat and Arabidopsis and modifies brassinosteroid signaling in Arabidopsis.
Collapse
Affiliation(s)
- Lam Dai Vu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium.,VIB Center for Plant Systems Biology, B-9052, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, B-9000, Ghent, Belgium.,VIB Center for Medical Biotechnology, B-9000, Ghent, Belgium
| | - Xiangyu Xu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium.,VIB Center for Plant Systems Biology, B-9052, Ghent, Belgium
| | - Tingting Zhu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium.,VIB Center for Plant Systems Biology, B-9052, Ghent, Belgium
| | - Lixia Pan
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium.,VIB Center for Plant Systems Biology, B-9052, Ghent, Belgium
| | - Martijn van Zanten
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, 3584CH, Utrecht, The Netherlands
| | - Dorrit de Jong
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium.,VIB Center for Plant Systems Biology, B-9052, Ghent, Belgium
| | - Yaowei Wang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium.,VIB Center for Plant Systems Biology, B-9052, Ghent, Belgium
| | - Tim Vanremoortele
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium.,VIB Center for Plant Systems Biology, B-9052, Ghent, Belgium
| | - Anna M Locke
- Soybean & Nitrogen Fixation Research Unit, United States Department of Agriculture- Agricultural Research Service, Raleigh, NC, 27695, USA.,Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - Brigitte van de Cotte
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium.,VIB Center for Plant Systems Biology, B-9052, Ghent, Belgium
| | - Nancy De Winne
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium.,VIB Center for Plant Systems Biology, B-9052, Ghent, Belgium
| | - Elisabeth Stes
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium.,VIB Center for Plant Systems Biology, B-9052, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, B-9000, Ghent, Belgium.,VIB Center for Medical Biotechnology, B-9000, Ghent, Belgium.,VIB Headquarters, 9052, Gent, Belgium
| | - Eugenia Russinova
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium.,VIB Center for Plant Systems Biology, B-9052, Ghent, Belgium
| | - Geert De Jaeger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium.,VIB Center for Plant Systems Biology, B-9052, Ghent, Belgium
| | - Daniël Van Damme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium.,VIB Center for Plant Systems Biology, B-9052, Ghent, Belgium
| | - Cristobal Uauy
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, NR4 7UH, UK
| | - Kris Gevaert
- Department of Biomolecular Medicine, Ghent University, B-9000, Ghent, Belgium. .,VIB Center for Medical Biotechnology, B-9000, Ghent, Belgium.
| | - Ive De Smet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium. .,VIB Center for Plant Systems Biology, B-9052, Ghent, Belgium.
| |
Collapse
|
33
|
Uhrig RG, Echevarría‐Zomeño S, Schlapfer P, Grossmann J, Roschitzki B, Koerber N, Fiorani F, Gruissem W. Diurnal dynamics of the Arabidopsis rosette proteome and phosphoproteome. PLANT, CELL & ENVIRONMENT 2021; 44:821-841. [PMID: 33278033 PMCID: PMC7986931 DOI: 10.1111/pce.13969] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 05/11/2023]
Abstract
Plant growth depends on the diurnal regulation of cellular processes, but it is not well understood if and how transcriptional regulation controls diurnal fluctuations at the protein level. Here, we report a high-resolution Arabidopsis thaliana (Arabidopsis) leaf rosette proteome acquired over a 12 hr light:12 hr dark diurnal cycle and the phosphoproteome immediately before and after the light-to-dark and dark-to-light transitions. We quantified nearly 5,000 proteins and 800 phosphoproteins, of which 288 fluctuated in their abundance and 226 fluctuated in their phosphorylation status. Of the phosphoproteins, 60% were quantified for changes in protein abundance. This revealed six proteins involved in nitrogen and hormone metabolism that had concurrent changes in both protein abundance and phosphorylation status. The diurnal proteome and phosphoproteome changes involve proteins in key cellular processes, including protein translation, light perception, photosynthesis, metabolism and transport. The phosphoproteome at the light-dark transitions revealed the dynamics at phosphorylation sites in either anticipation of or response to a change in light regime. Phosphorylation site motif analyses implicate casein kinase II and calcium/calmodulin-dependent kinases among the primary light-dark transition kinases. The comparative analysis of the diurnal proteome and diurnal and circadian transcriptome established how mRNA and protein accumulation intersect in leaves during the diurnal cycle of the plant.
Collapse
Affiliation(s)
- R. Glen Uhrig
- Department of BiologyInstitute of Molecular Plant Biology, ETH ZurichZurichSwitzerland
- Department of Biological SciencesUniversity of AlbertaEdmontonAlbertaCanada
| | | | - Pascal Schlapfer
- Department of BiologyInstitute of Molecular Plant Biology, ETH ZurichZurichSwitzerland
| | - Jonas Grossmann
- Functional Genomics Center ZurichUniversity of ZurichZurichSwitzerland
| | - Bernd Roschitzki
- Functional Genomics Center ZurichUniversity of ZurichZurichSwitzerland
| | - Niklas Koerber
- Institute of Bio‐ and GeosciencesIBG‐2: Plant Sciences, Forschungszentrum Jülich GmbHJülichGermany
| | - Fabio Fiorani
- Institute of Bio‐ and GeosciencesIBG‐2: Plant Sciences, Forschungszentrum Jülich GmbHJülichGermany
| | - Wilhelm Gruissem
- Department of BiologyInstitute of Molecular Plant Biology, ETH ZurichZurichSwitzerland
- Institute of BiotechnologyNational Chung Hsing UniversityTaichungTaiwan
| |
Collapse
|
34
|
Lee HK, Goring DR. Two subgroups of receptor-like kinases promote early compatible pollen responses in the Arabidopsis thaliana pistil. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1198-1211. [PMID: 33097927 DOI: 10.1093/jxb/eraa496] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/20/2020] [Indexed: 06/11/2023]
Abstract
In flowering plants, cell-cell communication between the compatible pollen grain/growing pollen tube and the pistil is an essential component for successful sexual reproduction. In Arabidopsis thaliana, the later stages of this dialogue are mediated by several peptide ligands and receptors that guide pollen tubes to the ovules for the release of sperm cells. Despite a detailed understanding of these processes, a key gap remains regarding the nature of the regulators that function at the earlier stages which are essential steps leading to fertilization. Here, we report on new functions for A. thaliana Receptor-Like Kinase (RLK) genes belonging to the LRR-II and LRR-VIII-2 RLK subgroups in the female reproductive tract to regulate compatible pollen hydration and the early stages of pollen tube growth. Mutant pistils for the A. thaliana RKF1 gene cluster were observed to support reduced wild-type pollen hydration and, when combined with the SERK1 and SERK3/BAK1 mutations, reduced pollen tube travel distances occurred. As these mutant pistils displayed a wild-type morphology, we propose that the observed altered compatible pollen responses result from an impaired pollen-pistil dialogue at these early stages.
Collapse
Affiliation(s)
- Hyun Kyung Lee
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada
| | - Daphne R Goring
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, Canada
| |
Collapse
|
35
|
Mehta D, Ghahremani M, Pérez-Fernández M, Tan M, Schläpfer P, Plaxton WC, Uhrig RG. Phosphate and phosphite have a differential impact on the proteome and phosphoproteome of Arabidopsis suspension cell cultures. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:924-941. [PMID: 33184936 DOI: 10.1111/tpj.15078] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 10/01/2020] [Accepted: 10/19/2020] [Indexed: 05/21/2023]
Abstract
Phosphorus absorbed in the form of phosphate (H2 PO4- ) is an essential but limiting macronutrient for plant growth and agricultural productivity. A comprehensive understanding of how plants respond to phosphate starvation is essential for the development of more phosphate-efficient crops. Here we employed label-free proteomics and phosphoproteomics to quantify protein-level responses to 48 h of phosphate versus phosphite (H2 PO3- ) resupply to phosphate-deprived Arabidopsis thaliana suspension cells. Phosphite is similarly sensed, taken up and transported by plant cells as phosphate, but cannot be metabolized or used as a nutrient. Phosphite is thus a useful tool for differentiating between non-specific processes related to phosphate sensing and transport and specific responses to phosphorus nutrition. We found that responses to phosphate versus phosphite resupply occurred mainly at the level of protein phosphorylation, complemented by limited changes in protein abundance, primarily in protein translation, phosphate transport and scavenging, and central metabolism proteins. Altered phosphorylation of proteins involved in core processes such as translation, RNA splicing and kinase signaling was especially important. We also found differential phosphorylation in response to phosphate and phosphite in 69 proteins, including splicing factors, translation factors, the PHT1;4 phosphate transporter and the HAT1 histone acetyltransferase - potential phospho-switches signaling changes in phosphorus nutrition. Our study illuminates several new aspects of the phosphate starvation response and identifies important targets for further investigation and potential crop improvement.
Collapse
Affiliation(s)
- Devang Mehta
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, AB, T6G 2E9, Canada
| | - Mina Ghahremani
- Department of Biology, Queen's University, 116 Barrie St., Kingston, ON, K7L 3N6, Canada
| | - Maria Pérez-Fernández
- Departamento de Sistemas Físicos Químicos y Naturales, Universidad Pablo de Olavide, Ecology Area. Faculty os Experimental Sciences. Carretera de Utrera Km 1, Sevilla, 41013, Spain
| | - Maryalle Tan
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, AB, T6G 2E9, Canada
| | - Pascal Schläpfer
- Department of Biology, Institute of Molecular Plant Biology, ETH Zurich, Universitätstrasse 2, Zurich, 8092, Switzerland
| | - William C Plaxton
- Department of Biology, Queen's University, 116 Barrie St., Kingston, ON, K7L 3N6, Canada
| | - R Glen Uhrig
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, AB, T6G 2E9, Canada
| |
Collapse
|
36
|
Xi L, Schulze WX, Wu XN. Phosphoproteomic Analysis of Plant Membranes. Methods Mol Biol 2021; 2200:441-451. [PMID: 33175392 DOI: 10.1007/978-1-0716-0880-7_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Mass spectrometry (MS) is a powerful tool to investigate plant phosphorylation dynamics on a system-wide scale (phosphoproteomics). Plant membrane phosphoproteomics enables elucidating regulatory patterns in membranes, such as kinase-target relationships in different signaling pathways. Here, we present "ShortPhos," an efficient and simple phosphoproteomics protocol for research on plant membrane proteins, which allows fast and efficient identification and quantification of phosphopeptides from small amounts of starting plant material and/or membrane proteins. This method improves upon the efficiency of plant membrane phosphoproteomics profiling and can be applied to the study of membrane-based signaling networks.
Collapse
Affiliation(s)
- Lin Xi
- Department of Plant Systems Biology, University of Hohenheim, Stuttgart, Germany
| | - Waltraud X Schulze
- Department of Plant Systems Biology, University of Hohenheim, Stuttgart, Germany
| | - Xu Na Wu
- Department of Plant Systems Biology, University of Hohenheim, Stuttgart, Germany.
- School of Life Sciences, Center for Life Sciences, Yunnan University, Kunming, China.
| |
Collapse
|
37
|
Xi L, Zhang Z, Herold S, Kassem S, Wu XN, Schulze WX. Phosphorylation Site Motifs in Plant Protein Kinases and Their Substrates. Methods Mol Biol 2021; 2358:1-16. [PMID: 34270043 DOI: 10.1007/978-1-0716-1625-3_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Protein phosphorylation is an important cellular regulatory mechanism affecting the activity, localization, conformation, and interaction of proteins. Protein phosphorylation is catalyzed by kinases, and thus kinases are the enzymes regulating cellular signaling cascades. In the model plant Arabidopsis, 940 genes encode for kinases. The substrate proteins of kinases are phosphorylated at defined sites, which consist of common patterns around the phosphorylation site, known as phosphorylation motifs. The discovery of kinase specificity with a preference of phosphorylation of certain motifs and application of such motifs in deducing signaling cascades helped to reveal underlying regulation mechanisms, and facilitated the prediction of kinase-target pairs. In this mini-review, we took advantage of retrieved data as examples to present the functions of kinase families along with their commonly found phosphorylation motifs from their substrates.
Collapse
Affiliation(s)
- Lin Xi
- Department of Plant Systems Biology, University of Hohenheim, Stuttgart, Germany.
| | - Zhaoxia Zhang
- Department of Plant Systems Biology, University of Hohenheim, Stuttgart, Germany
| | - Sandra Herold
- Department of Plant Systems Biology, University of Hohenheim, Stuttgart, Germany
| | - Sarah Kassem
- Department of Plant Systems Biology, University of Hohenheim, Stuttgart, Germany
| | - Xu Na Wu
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan and Center for Life Science, School of Life Sciences, Yunnan University, Kunming, China
| | - Waltraud X Schulze
- Department of Plant Systems Biology, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
38
|
Lu D, Gao T, Xi L, Krall L, Wu XN. Phosphoproteomics Profiling of Receptor Kinase Mutants. Methods Mol Biol 2021; 2358:73-82. [PMID: 34270046 DOI: 10.1007/978-1-0716-1625-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The transmembrane receptor kinase family is the largest protein kinase family in Arabidopsis. Many members of this family play critical roles in plant signaling pathways. However, many of these kinases have yet uncharacterized functions and very little is known about the direct substrates of these kinases. We have developed the "ShortPhos" method, an efficient and simple mass spectrometry (MS)-based phosphoproteomics protocol to perform comparative phosphopeptide profiling of knockout mutants of receptor-like kinases. Through this method, we are able to better understand the functional roles of plant kinases in the context of their signaling networks.
Collapse
Affiliation(s)
- Dandan Lu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Ting Gao
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan and Center for Life Science, School of Life Sciences, Yunnan University, Kunming, China
| | - Lin Xi
- Department of Plant Systems Biology, University of Hohenheim, Stuttgart, Germany
| | - Leonard Krall
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan and Center for Life Science, School of Life Sciences, Yunnan University, Kunming, China
| | - Xu Na Wu
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan and Center for Life Science, School of Life Sciences, Yunnan University, Kunming, China.
| |
Collapse
|
39
|
Wang J, Yang X, Xi L, Wu XN. Kinase Activity Assay Using Unspecific Substrate or Specific Synthetic Peptides. Methods Mol Biol 2021; 2358:229-237. [PMID: 34270059 DOI: 10.1007/978-1-0716-1625-3_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Phosphorylation of a substrate by protein kinases leads to the activation or inactivation of numerous signaling pathways and metabolic processes. The assessment of kinase activity by using a specific or generic substrate plays a crucial role in characterization of kinase specificity and activity. Here we describe a protocol using either a synthetic peptide as a specific substrate or using myelin basic protein (MBP) as a generic substrate for the kinase activity assay. The kinase of interest is fused with a GFP (green fluorescent protein) tag and can be purified by GFP magnetic beads. Kinase-GFP complexes are then incubated with ATP, substrate, and coordinated reaction reagent for the kinase reaction. The assay is then quantified through mass spectrometry or enzymatic luminescence.
Collapse
Affiliation(s)
- Jiahui Wang
- Department of Plant Systems Biology, University of Hohenheim, Stuttgart, Germany
| | - Xiaolin Yang
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan and Center for Life Science, School of Life Sciences, Yunnan University, Kunming, China
| | - Lin Xi
- Department of Plant Systems Biology, University of Hohenheim, Stuttgart, Germany
| | - Xu Na Wu
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan and Center for Life Science, School of Life Sciences, Yunnan University, Kunming, China.
| |
Collapse
|
40
|
Aono AH, Pimenta RJG, Garcia ALB, Correr FH, Hosaka GK, Carrasco MM, Cardoso-Silva CB, Mancini MC, Sforça DA, dos Santos LB, Nagai JS, Pinto LR, Landell MGDA, Carneiro MS, Balsalobre TW, Quiles MG, Pereira WA, Margarido GRA, de Souza AP. The Wild Sugarcane and Sorghum Kinomes: Insights Into Expansion, Diversification, and Expression Patterns. FRONTIERS IN PLANT SCIENCE 2021; 12:668623. [PMID: 34305969 PMCID: PMC8294386 DOI: 10.3389/fpls.2021.668623] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 03/17/2021] [Indexed: 05/11/2023]
Abstract
The protein kinase (PK) superfamily is one of the largest superfamilies in plants and the core regulator of cellular signaling. Despite this substantial importance, the kinomes of sugarcane and sorghum have not been profiled. Here, we identified and profiled the complete kinomes of the polyploid Saccharum spontaneum (Ssp) and Sorghum bicolor (Sbi), a close diploid relative. The Sbi kinome was composed of 1,210 PKs; for Ssp, we identified 2,919 PKs when disregarding duplications and allelic copies, and these were related to 1,345 representative gene models. The Ssp and Sbi PKs were grouped into 20 groups and 120 subfamilies and exhibited high compositional similarities and evolutionary divergences. By utilizing the collinearity between the species, this study offers insights into Sbi and Ssp speciation, PK differentiation and selection. We assessed the PK subfamily expression profiles via RNA-Seq and identified significant similarities between Sbi and Ssp. Moreover, coexpression networks allowed inference of a core structure of kinase interactions with specific key elements. This study provides the first categorization of the allelic specificity of a kinome and offers a wide reservoir of molecular and genetic information, thereby enhancing the understanding of Sbi and Ssp PK evolutionary history.
Collapse
Affiliation(s)
- Alexandre Hild Aono
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, Brazil
| | - Ricardo José Gonzaga Pimenta
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, Brazil
| | - Ana Letycia Basso Garcia
- Department of Genetics, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, Brazil
| | - Fernando Henrique Correr
- Department of Genetics, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, Brazil
| | - Guilherme Kenichi Hosaka
- Department of Genetics, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, Brazil
| | - Marishani Marin Carrasco
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, Brazil
| | | | - Melina Cristina Mancini
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, Brazil
| | - Danilo Augusto Sforça
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, Brazil
| | - Lucas Borges dos Santos
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, Brazil
| | - James Shiniti Nagai
- Faculty of Medicine, Institute for Computational Genomics, RWTH Aachen University, Aachen, Germany
| | - Luciana Rossini Pinto
- Advanced Center of Sugarcane Agrobusiness Technological Research, Agronomic Institute of Campinas (IAC), Ribeirão Preto, Brazil
| | | | - Monalisa Sampaio Carneiro
- Departamento de Biotecnologia e Produção Vegetal e Animal, Centro de Ciências Agrárias, Universidade Federal de São Carlos (UFSCar), São Carlos, Brazil
| | - Thiago Willian Balsalobre
- Departamento de Biotecnologia e Produção Vegetal e Animal, Centro de Ciências Agrárias, Universidade Federal de São Carlos (UFSCar), São Carlos, Brazil
| | - Marcos Gonçalves Quiles
- Instituto de Ciência e Tecnologia (ICT), Universidade Federal de São Paulo (Unifesp), São José dos Campos, Brazil
| | | | | | - Anete Pereira de Souza
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, Brazil
- Department of Plant Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
- *Correspondence: Anete Pereira de Souza,
| |
Collapse
|
41
|
Li P, Liu J. Protein Phosphorylation in Plant Cell Signaling. Methods Mol Biol 2021; 2358:45-71. [PMID: 34270045 DOI: 10.1007/978-1-0716-1625-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Owing to their sessile nature, plants have evolved sophisticated sensory mechanisms to respond quickly and precisely to the changing environment. The extracellular stimuli are perceived and integrated by diverse receptors, such as receptor-like protein kinases (RLKs) and receptor-like proteins (RLPs), and then transmitted to the nucleus by complex cellular signaling networks, which play vital roles in biological processes including plant growth, development, reproduction, and stress responses. The posttranslational modifications (PTMs) are important regulators for the diversification of protein functions in plant cell signaling. Protein phosphorylation is an important and well-characterized form of the PTMs, which influences the functions of many receptors and key components in cellular signaling. Protein phosphorylation in plants predominantly occurs on serine (Ser) and threonine (Thr) residues, which is dynamically and reversibly catalyzed by protein kinases and protein phosphatases, respectively. In this review, we focus on the function of protein phosphorylation in plant cell signaling, especially plant hormone signaling, and highlight the roles of protein phosphorylation in plant abiotic stress responses.
Collapse
Affiliation(s)
- Ping Li
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan and Center for Life Science, School of Life Sciences, Yunnan University, Kunming, China
| | - Junzhong Liu
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan and Center for Life Science, School of Life Sciences, Yunnan University, Kunming, China.
| |
Collapse
|
42
|
Kumar V, Donev EN, Barbut FR, Kushwah S, Mannapperuma C, Urbancsok J, Mellerowicz EJ. Genome-Wide Identification of Populus Malectin/Malectin-Like Domain-Containing Proteins and Expression Analyses Reveal Novel Candidates for Signaling and Regulation of Wood Development. FRONTIERS IN PLANT SCIENCE 2020; 11:588846. [PMID: 33414796 PMCID: PMC7783096 DOI: 10.3389/fpls.2020.588846] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/18/2020] [Indexed: 05/21/2023]
Abstract
Malectin domain (MD) is a ligand-binding protein motif of pro- and eukaryotes. It is particularly abundant in Viridiplantae, where it occurs as either a single (MD, PF11721) or tandemly duplicated domain (PF12819) called malectin-like domain (MLD). In herbaceous plants, MD- or MLD-containing proteins (MD proteins) are known to regulate development, reproduction, and resistance to various stresses. However, their functions in woody plants have not yet been studied. To unravel their potential role in wood development, we carried out genome-wide identification of MD proteins in the model tree species black cottonwood (Populus trichocarpa), and analyzed their expression and co-expression networks. P. trichocarpa had 146 MD genes assigned to 14 different clades, two of which were specific to the genus Populus. 87% of these genes were located on chromosomes, the rest being associated with scaffolds. Based on their protein domain organization, and in agreement with the exon-intron structures, the MD genes identified here could be classified into five superclades having the following domains: leucine-rich repeat (LRR)-MD-protein kinase (PK), MLD-LRR-PK, MLD-PK (CrRLK1L), MLD-LRR, and MD-Kinesin. Whereas the majority of MD genes were highly expressed in leaves, particularly under stress conditions, eighteen showed a peak of expression during secondary wall formation in the xylem and their co-expression networks suggested signaling functions in cell wall integrity, pathogen-associated molecular patterns, calcium, ROS, and hormone pathways. Thus, P. trichocarpa MD genes having different domain organizations comprise many genes with putative foliar defense functions, some of which could be specific to Populus and related species, as well as genes with potential involvement in signaling pathways in other tissues including developing wood.
Collapse
Affiliation(s)
- Vikash Kumar
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Evgeniy N. Donev
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Félix R. Barbut
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Sunita Kushwah
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Chanaka Mannapperuma
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | - János Urbancsok
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Ewa J. Mellerowicz
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
| |
Collapse
|
43
|
Arabidopsis Transmembrane Receptor-Like Kinases (RLKs): A Bridge between Extracellular Signal and Intracellular Regulatory Machinery. Int J Mol Sci 2020; 21:ijms21114000. [PMID: 32503273 PMCID: PMC7313013 DOI: 10.3390/ijms21114000] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 05/31/2020] [Accepted: 06/01/2020] [Indexed: 12/12/2022] Open
Abstract
Receptors form the crux for any biochemical signaling. Receptor-like kinases (RLKs) are conserved protein kinases in eukaryotes that establish signaling circuits to transduce information from outer plant cell membrane to the nucleus of plant cells, eventually activating processes directing growth, development, stress responses, and disease resistance. Plant RLKs share considerable homology with the receptor tyrosine kinases (RTKs) of the animal system, differing at the site of phosphorylation. Typically, RLKs have a membrane-localization signal in the amino-terminal, followed by an extracellular ligand-binding domain, a solitary membrane-spanning domain, and a cytoplasmic kinase domain. The functional characterization of ligand-binding domains of the various RLKs has demonstrated their essential role in the perception of extracellular stimuli, while its cytosolic kinase domain is usually confined to the phosphorylation of their substrates to control downstream regulatory machinery. Identification of the several ligands of RLKs, as well as a few of its immediate substrates have predominantly contributed to a better understanding of the fundamental signaling mechanisms. In the model plant Arabidopsis, several studies have indicated that multiple RLKs are involved in modulating various types of physiological roles via diverse signaling routes. Here, we summarize recent advances and provide an updated overview of transmembrane RLKs in Arabidopsis.
Collapse
|
44
|
Dievart A, Gottin C, Périn C, Ranwez V, Chantret N. Origin and Diversity of Plant Receptor-Like Kinases. ANNUAL REVIEW OF PLANT BIOLOGY 2020; 71:131-156. [PMID: 32186895 DOI: 10.1146/annurev-arplant-073019-025927] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Because of their high level of diversity and complex evolutionary histories, most studies on plant receptor-like kinase subfamilies have focused on their kinase domains. With the large amount of genome sequence data available today, particularly on basal land plants and Charophyta, more attention should be paid to primary events that shaped the diversity of the RLK gene family. We thus focus on the motifs and domains found in association with kinase domains to illustrate their origin, organization, and evolutionary dynamics. We discuss when these different domain associations first occurred and how they evolved, based on a literature review complemented by some of our unpublished results.
Collapse
Affiliation(s)
- Anne Dievart
- CIRAD, UMR AGAP, F-34398 Montpellier, France;
- AGAP, Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, F-34060 Montpellier, France
| | - Céline Gottin
- CIRAD, UMR AGAP, F-34398 Montpellier, France;
- AGAP, Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, F-34060 Montpellier, France
| | - Christophe Périn
- CIRAD, UMR AGAP, F-34398 Montpellier, France;
- AGAP, Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, F-34060 Montpellier, France
| | - Vincent Ranwez
- AGAP, Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, F-34060 Montpellier, France
| | - Nathalie Chantret
- AGAP, Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, F-34060 Montpellier, France
| |
Collapse
|
45
|
Zhang T, Chhajed S, Schneider JD, Feng G, Song WY, Chen S. Proteomic characterization of MPK4 signaling network and putative substrates. PLANT MOLECULAR BIOLOGY 2019; 101:325-339. [PMID: 31399934 DOI: 10.1007/s11103-019-00908-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 08/06/2019] [Indexed: 05/21/2023]
Abstract
KEY MESSAGE Combining genetic engineering of MPK4 activity and quantitative proteomics, we established an in planta system that enables rapid study of MPK4 signaling networks and potential substrate proteins. Mitogen activated protein kinase 4 (MPK4) is a multifunctional kinase that regulates various signaling events in plant defense, growth, light response and cytokinesis. The question of how a single protein modulates many distinct processes has spurred extensive research into the physiological outcomes resulting from genetic perturbation of MPK4. However, the mechanism by which MPK4 functions is still poorly understood due to limited data on the MPK4 networks including substrate proteins and downstream pathways. Here we introduce an experimental system that combines genetic engineering of kinase activity and quantitative proteomics to rapidly study the signaling networks of MPK4. First, we transiently expressed a constitutively active (MPK4CA) and an inactive (MPK4IN) version of a Brassica napus MPK4 (BnMPK4) in Nicotiana benthamiana leaves. Proteomics analysis revealed that BnMPK4 activation affects multiple pathways (e.g., metabolism, redox regulation, jasmonic acid biosynthesis and stress responses). Furthermore, BnMPK4 activation also increased protein phosphorylation in the phosphoproteome, from which putative MPK4 substrates were identified. Using protein kinase assay, we validated that a transcription factor TCP8-like (TCP8) and a PP2A regulatory subunit TAP46-like (TAP46) were indeed phosphorylated by BnMPK4. Taken together, we demonstrated the utility of proteomics and phosphoproteomics in elucidating kinase signaling networks and in identification of downstream substrates.
Collapse
Affiliation(s)
- Tong Zhang
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
- Biological Sciences Division, Pacific Northwest National Lab, Richland, WA, 99354, USA
| | - Shweta Chhajed
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
| | | | - Guanqiao Feng
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, 32610, USA
| | - Wen-Yuan Song
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, 32610, USA
- Department of Plant Pathology, University of Florida, Gainesville, FL, 32611, USA
- Genetics Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Sixue Chen
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA.
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, 32610, USA.
- Genetics Institute, University of Florida, Gainesville, FL, 32610, USA.
- Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
46
|
Wu XN, Chu L, Xi L, Pertl-Obermeyer H, Li Z, Sklodowski K, Sanchez-Rodriguez C, Obermeyer G, Schulze WX. Sucrose-induced Receptor Kinase 1 is Modulated by an Interacting Kinase with Short Extracellular Domain. Mol Cell Proteomics 2019; 18:1556-1571. [PMID: 31147492 PMCID: PMC6683012 DOI: 10.1074/mcp.ra119.001336] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/08/2019] [Indexed: 12/22/2022] Open
Abstract
Sucrose as a product of photosynthesis is the major carbohydrate translocated from photosynthetic leaves to growing nonphotosynthetic organs such as roots and seeds. These growing tissues, besides carbohydrate supply, require uptake of water through aquaporins to enhance cell expansion during growth. Previous work revealed Sucrose Induced Receptor Kinase, SIRK1, to control aquaporin activity via phosphorylation in response to external sucrose stimulation. Here, we present the regulatory role of AT3G02880 (QSK1), a receptor kinase with a short external domain, in modulation of SIRK1 activity. Our results suggest that SIRK1 autophosphorylates at Ser-744 after sucrose treatment. Autophosphorylated SIRK1 then interacts with and transphosphorylates QSK1 and QSK2. Upon interaction with QSK1, SIRK1 phosphorylates aquaporins at their regulatory C-terminal phosphorylation sites. Consequently, in root protoplast swelling assays, the qsk1qsk2 mutant showed reduced water influx rates under iso-osmotic sucrose stimulation, confirming an involvement in the same signaling pathway as the receptor kinase SIRK1. Large-scale phosphoproteomics comparing single mutant sirk1, qsk1, and double mutant sirk1 qsk1 revealed that aquaporins were regulated by phosphorylation depending on an activated receptor kinase complex of SIRK1, as well as QSK1. QSK1 thereby acts as a coreceptor stabilizing and enhancing SIRK1 activity and recruiting substrate proteins, such as aquaporins.
Collapse
Affiliation(s)
- Xu Na Wu
- ‡Department of Plant Systems Biology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Liangcui Chu
- ‡Department of Plant Systems Biology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Lin Xi
- ‡Department of Plant Systems Biology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Heidi Pertl-Obermeyer
- §Molecular Plant Biophysics and Biochemistry, Department of Biosciences, University of Salzburg, 5020 Salzburg, Austria
| | - Zhi Li
- ‡Department of Plant Systems Biology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Kamil Sklodowski
- ¶Department of Biology, ETH Zürich, Universitätsstrasse 2, 8092 Zürich, Switzerland
| | | | - Gerhard Obermeyer
- §Molecular Plant Biophysics and Biochemistry, Department of Biosciences, University of Salzburg, 5020 Salzburg, Austria
| | - Waltraud X Schulze
- ‡Department of Plant Systems Biology, University of Hohenheim, 70593 Stuttgart, Germany.
| |
Collapse
|
47
|
Uhrig RG, Schläpfer P, Roschitzki B, Hirsch-Hoffmann M, Gruissem W. Diurnal changes in concerted plant protein phosphorylation and acetylation in Arabidopsis organs and seedlings. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:176-194. [PMID: 30920011 DOI: 10.1111/tpj.14315] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/24/2019] [Accepted: 02/26/2019] [Indexed: 05/22/2023]
Abstract
Protein phosphorylation and acetylation are the two most abundant post-translational modifications (PTMs) that regulate protein functions in eukaryotes. In plants, these PTMs have been investigated individually; however, their co-occurrence and dynamics on proteins is currently unknown. Using Arabidopsis thaliana, we quantified changes in protein phosphorylation, acetylation and protein abundance in leaf rosettes, roots, flowers, siliques and seedlings at the end of day (ED) and at the end of night (EN). This identified 2549 phosphorylated and 909 acetylated proteins, of which 1724 phosphorylated and 536 acetylated proteins were also quantified for changes in PTM abundance between ED and EN. Using a sequential dual-PTM workflow, we identified significant PTM changes and intersections in these organs and plant developmental stages. In particular, cellular process-, pathway- and protein-level analyses reveal that the phosphoproteome and acetylome predominantly intersect at the pathway- and cellular process-level at ED versus EN. We found 134 proteins involved in core plant cell processes, such as light harvesting and photosynthesis, translation, metabolism and cellular transport, that were both phosphorylated and acetylated. Our results establish connections between PTM motifs, PTM catalyzing enzymes and putative substrate networks. We also identified PTM motifs for further characterization of the regulatory mechanisms that control cellular processes during the diurnal cycle in different Arabidopsis organs and seedlings. The sequential dual-PTM analysis expands our understanding of diurnal plant cell regulation by PTMs and provides a useful resource for future analyses, while emphasizing the importance of analyzing multiple PTMs simultaneously to elucidate when, where and how they are involved in plant cell regulation.
Collapse
Affiliation(s)
- R Glen Uhrig
- Institute of Molecular Plant Biology, Department of Biology, ETH Zurich, 8092, Zurich, Switzerland
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Pascal Schläpfer
- Institute of Molecular Plant Biology, Department of Biology, ETH Zurich, 8092, Zurich, Switzerland
| | - Bernd Roschitzki
- Functional Genomics Center, ETH Zurich, 8092, Zurich, Switzerland
| | - Matthias Hirsch-Hoffmann
- Institute of Molecular Plant Biology, Department of Biology, ETH Zurich, 8092, Zurich, Switzerland
| | - Wilhelm Gruissem
- Institute of Molecular Plant Biology, Department of Biology, ETH Zurich, 8092, Zurich, Switzerland
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, 40227, Taiwan
| |
Collapse
|
48
|
Kwon A, Scott S, Taujale R, Yeung W, Kochut KJ, Eyers PA, Kannan N. Tracing the origin and evolution of pseudokinases across the tree of life. Sci Signal 2019; 12:12/578/eaav3810. [PMID: 31015289 DOI: 10.1126/scisignal.aav3810] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Protein phosphorylation by eukaryotic protein kinases (ePKs) is a fundamental mechanism of cell signaling in all organisms. In model vertebrates, ~10% of ePKs are classified as pseudokinases, which have amino acid changes within the catalytic machinery of the kinase domain that distinguish them from their canonical kinase counterparts. However, pseudokinases still regulate various signaling pathways, usually doing so in the absence of their own catalytic output. To investigate the prevalence, evolutionary relationships, and biological diversity of these pseudoenzymes, we performed a comprehensive analysis of putative pseudokinase sequences in available eukaryotic, bacterial, and archaeal proteomes. We found that pseudokinases are present across all domains of life, and we classified nearly 30,000 eukaryotic, 1500 bacterial, and 20 archaeal pseudokinase sequences into 86 pseudokinase families, including ~30 families that were previously unknown. We uncovered a rich variety of pseudokinases with notable expansions not only in animals but also in plants, fungi, and bacteria, where pseudokinases have previously received cursory attention. These expansions are accompanied by domain shuffling, which suggests roles for pseudokinases in plant innate immunity, plant-fungal interactions, and bacterial signaling. Mechanistically, the ancestral kinase fold has diverged in many distinct ways through the enrichment of unique sequence motifs to generate new families of pseudokinases in which the kinase domain is repurposed for noncanonical nucleotide binding or to stabilize unique, inactive kinase conformations. We further provide a collection of annotated pseudokinase sequences in the Protein Kinase Ontology (ProKinO) as a new mineable resource for the signaling community.
Collapse
Affiliation(s)
- Annie Kwon
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA.,Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Steven Scott
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA.,Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Rahil Taujale
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA.,Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Wayland Yeung
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA.,Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Krys J Kochut
- Department of Computer Science, University of Georgia, Athens, GA 30602, USA
| | - Patrick A Eyers
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Natarajan Kannan
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA. .,Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
49
|
Kataya ARA, Muench DG, Moorhead GB. A Framework to Investigate Peroxisomal Protein Phosphorylation in Arabidopsis. TRENDS IN PLANT SCIENCE 2019; 24:366-381. [PMID: 30683463 DOI: 10.1016/j.tplants.2018.12.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/11/2018] [Accepted: 12/20/2018] [Indexed: 06/09/2023]
Abstract
Peroxisomes perform essential roles in a range of cellular processes, highlighted by lipid metabolism, reactive species detoxification, and response to a variety of stimuli. The ability of peroxisomes to grow, divide, respond to changing cellular needs, interact with other organelles, and adjust their proteome as required, suggest that, like other organelles, their specialized roles are highly regulated. Similar to most other cellular processes, there is an emerging role for protein phosphorylation to regulate these events. In this review, we establish a knowledge framework of key players that control protein phosphorylation events in the plant peroxisome (i.e., the protein kinases and phosphatases), and highlight a vastly expanded set of (phospho)substrates.
Collapse
Affiliation(s)
- Amr R A Kataya
- Department of Chemistry, Bioscience, and Environmental Engineering, University of Stavanger, Stavanger, 4036, Norway; Department of Biological Sciences, University of Calgary, Calgary, T2N 1N4, Canada; www.katayaproject.com.
| | - Douglas G Muench
- Department of Biological Sciences, University of Calgary, Calgary, T2N 1N4, Canada
| | - Greg B Moorhead
- Department of Biological Sciences, University of Calgary, Calgary, T2N 1N4, Canada
| |
Collapse
|
50
|
Subba P, Narayana Kotimoole C, Prasad TSK. Plant Proteome Databases and Bioinformatic Tools: An Expert Review and Comparative Insights. ACTA ACUST UNITED AC 2019; 23:190-206. [PMID: 31009332 DOI: 10.1089/omi.2019.0024] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Pratigya Subba
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Chinmaya Narayana Kotimoole
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Thottethodi Subrahmanya Keshava Prasad
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
- Institute of Bioinformatics, International Technology Park, Bangalore, India
| |
Collapse
|