1
|
Nakandala U, Furtado A, Henry RJ. Citrus genomes: past, present and future. HORTICULTURE RESEARCH 2025; 12:uhaf033. [PMID: 40224327 PMCID: PMC11992330 DOI: 10.1093/hr/uhaf033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/23/2025] [Indexed: 04/15/2025]
Abstract
Over the past decade, genome sequencing and assembly approaches have been greatly improved, resulting in the assembly of many genomes for citrus, including wild, domesticated, and citrus-related genomes. Improvements in technologies have led to assembled genomes with higher completeness, contiguity, quality, and accuracy that have greatly facilitated annotation and analysis. This review summarizes the evolution of the sequencing, assembly, and annotation technologies leading to citrus genomes over the past 11 years, a comprehensive evaluation of their quality, contiguity, and completeness, and the major findings and applications. Of the 50 genomes now available, 35 have been assembled to chromosome level and 15 to draft level, and 14 were haplotype-resolved assemblies. To date there have been four pangenome-wide studies for citrus. The very recent genomes assembled with long-read sequencing have achieved >99% and >98% assembly and annotation completeness (BUSCO), respectively. However, some early genomes are not of the same high quality as more recently sequenced genomes and would benefit from re-sequencing. A more comprehensive pangenome based upon a larger set of species and genotypes assembled at the haplotype level would allow genomics to deliver the maximum benefits for citrus improvement and research.
Collapse
Affiliation(s)
- Upuli Nakandala
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Sir Fred Schonell Drive, St Lucia, Brisbane 4072, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, University of Queensland, Sir Fred Schonell Drive, St Lucia, Brisbane 4072, Australia
| | - Agnelo Furtado
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Sir Fred Schonell Drive, St Lucia, Brisbane 4072, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, University of Queensland, Sir Fred Schonell Drive, St Lucia, Brisbane 4072, Australia
| | - Robert J Henry
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Sir Fred Schonell Drive, St Lucia, Brisbane 4072, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, University of Queensland, Sir Fred Schonell Drive, St Lucia, Brisbane 4072, Australia
| |
Collapse
|
2
|
Luo A, Shi C, Luo P, Zhao Z, Sun MX. The regulatory network and critical factors promoting programmed cell death during embryogenesis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:55-70. [PMID: 39513658 DOI: 10.1111/jipb.13795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 08/29/2024] [Accepted: 09/21/2024] [Indexed: 11/15/2024]
Abstract
Programmed cell death (PCD) is essential for animal and plant development. However, the knowledge of the mechanism regulating PCD in plants remains limited, largely due to technical limitations. Previously, we determined that the protease NtCP14 could trigger PCD in the embryonic suspensor of tobacco (Nicotiana tabacum), providing a unique opportunity to overcome the limitations by creating synchronous two-celled proembryos with ongoing PCD for transcriptome analysis and regulatory factor screening. Here, we performed comparative transcriptome analysis using isolated two-celled proembryos and explored the potential regulatory network underlying NtCP14-triggered PCD. Multiple phytohormones, calcium, microtubule organization, the immunity system, soluble N-ethylmaleimide-sensitive factor attachment protein receptor proteins, long non-coding RNAs and alternative splicing are addressed as critical factors involved in the early stage of suspensor PCD. Genes thought to play crucial roles in suspensor PCD are highlighted. Notably, decreased antioxidant gene expression and increased reactive oxygen species (ROS) levels during suspensor PCD suggest a critical role for ROS signaling in the initiation of NtCP14-triggered PCD. Furthermore, five genes in the regulatory network are recommended as immediate downstream elements of NtCP14. Together, our analysis outlines an overall molecular network underlying protease-triggered PCD and provides a reliable database and valuable clues for targeting elements immediately downstream of NtCP14 to overcome technical bottlenecks and gain deep insight into the molecular mechanism regulating plant PCD.
Collapse
Affiliation(s)
- An Luo
- College of Life Sciences, Yangtze University, Jingzhou, 434023, China
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Ce Shi
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Pan Luo
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zifu Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Meng-Xiang Sun
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
3
|
Wang J, Ma W, Wang F, He Z, Ye X, Deng J, Zhao M, Li J. Signaling pathways mediating the induction of preharvest fruit drop in litchi. FRONTIERS IN PLANT SCIENCE 2024; 15:1474657. [PMID: 39717728 PMCID: PMC11663655 DOI: 10.3389/fpls.2024.1474657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/21/2024] [Indexed: 12/25/2024]
Abstract
Certain litchi varieties, such as "Nuomici", are highly susceptible to preharvest fruit drop, which leads to significant losses in fruit yield and economic value. However, the precise molecular mechanisms underlying this issue are not yet fully understood. In this study, we aimed to elucidate the signaling pathways that facilitate preharvest fruit drop in litchi, using "Nuomici" and "Huaizhi" cultivars as examples, which demonstrate high and low preharvest fruit drop rates, respectively. Our findings revealed that "Nuomici" experienced a substantial preharvest fruit drop, with a cumulative rate of 41.68%, significantly higher than the 1.44% observed in "Huaizhi". Cellulase activity assays showed a significant increase in cellulase activity in the abscission zone of "Nuomici", which coincided with the occurrence of preharvest fruit drop, in contrast to the relatively low levels in "Huaizhi". Phytohormone assays indicated lower indole-3-acetic acid content in the pericarp, aril, and seeds of "Nuomici" during the preharvest stage compared to "Huaizhi", coupled with higher abscisic acid levels in the seeds of "Nuomici". Furthermore, transcriptomic analysis identified 180, 282, 655, and 241 differentially expressed genes (DEGs) in the pericarp, aril, seed, and abscission zone, respectively, between the two cultivars during preharvest fruit drop. These DEGs are intricately involved in the generation and transmission of abscission signals from fruit tissues, encompassing PIN, PIN-LIKES, LAX, and SAUR genes related to polar auxin transport, ethylene diffusion, as well as perceiving these signals and activating the abscission process within the abscission zone. This includes ACO and ILR genes involved in hormone biosynthesis and signal transduction, regulation by WRKY, NAC, and bHLH transcription factors, AAO genes involved in response to reactive oxygen species, and EXP, EG, and PG genes involved in cell wall degradation in the abscission zone. Based on these comprehensive findings, we propose a model for preharvest fruit drop triggered by a series of molecular events in litchi, providing valuable insights into the complex mechanisms governing this phenomenon.
Collapse
Affiliation(s)
- Jun Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural University, Guangzhou, China
- Ministry of Agriculture and Rural Affairs Key Laboratory of South China Horticultural Crop Biology and Germplasm Enhancement, College of Horticulture, South China Agricultural University, Guangzhou, China
- School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Danzhou, China
| | - Wuqiang Ma
- School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Danzhou, China
- Sanya Nanfan Research Institute, Hainan University, Sanya, China
| | - Fei Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural University, Guangzhou, China
- Ministry of Agriculture and Rural Affairs Key Laboratory of South China Horticultural Crop Biology and Germplasm Enhancement, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Zidi He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural University, Guangzhou, China
- Ministry of Agriculture and Rural Affairs Key Laboratory of South China Horticultural Crop Biology and Germplasm Enhancement, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Xiangyang Ye
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural University, Guangzhou, China
- Ministry of Agriculture and Rural Affairs Key Laboratory of South China Horticultural Crop Biology and Germplasm Enhancement, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Jiahui Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural University, Guangzhou, China
- Ministry of Agriculture and Rural Affairs Key Laboratory of South China Horticultural Crop Biology and Germplasm Enhancement, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Minglei Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural University, Guangzhou, China
- Ministry of Agriculture and Rural Affairs Key Laboratory of South China Horticultural Crop Biology and Germplasm Enhancement, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Jianguo Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural University, Guangzhou, China
- Ministry of Agriculture and Rural Affairs Key Laboratory of South China Horticultural Crop Biology and Germplasm Enhancement, College of Horticulture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
4
|
Feng C, Stetina SR, Erpelding JE. Transcriptome Analysis of Resistant Cotton Germplasm Responding to Reniform Nematodes. PLANTS (BASEL, SWITZERLAND) 2024; 13:958. [PMID: 38611488 PMCID: PMC11013486 DOI: 10.3390/plants13070958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/22/2024] [Accepted: 03/23/2024] [Indexed: 04/14/2024]
Abstract
Reniform nematode (Rotylenchulus reniformis) is an important microparasite for Upland cotton (Gossypium hirsutum L.) production. Growing resistant cultivars is the most economical management method, but only a few G. barbadense genotypes and some diploid Gossypium species confer high levels of resistance. This study conducted a transcriptome analysis of resistant genotypes to identify genes involved in host plant defense. Seedlings of G. arboreum accessions PI 529728 (A2-100) and PI 615699 (A2-190), and G. barbadense genotypes PI 608139 (GB 713) and PI 163608 (TX 110), were inoculated with the reniform nematode population MSRR04 and root samples were collected on the fifth (D5) and ninth (D9) day after inoculation. Differentially expressed genes (DEGs) were identified by comparing root transcriptomes from inoculated plants with those from non-inoculated plants. Accessions A2-100 and A2-190 showed 52 and 29 DEGs on D5, respectively, with 14 DEGs in common, and 18 DEGs for A2-100 and 11 DEGs for A2-190 on chromosome 5. On D9, four DEGs were found in A2-100 and two DEGs in A2-190. For GB 713, 52 and 43 DEGs were found, and for TX 110, 29 and 117 DEGs were observed on D5 and D9, respectively. Six DEGs were common at the two sampling times for these genotypes. Some DEGs were identified as Meloidogyne-induced cotton (MIC) 3 and 4, resistance gene analogs, or receptor-like proteins. Other DEGs have potential roles in plant defense, such as peroxidases, programmed cell death, pathogenesis related proteins, and systemic acquired resistance. Further research on these DEGs will aid in understanding the mechanisms of resistance to explore new applications for the development of resistant cultivars.
Collapse
Affiliation(s)
- Chunda Feng
- USDA Agricultural Research Service, Crop Genetics Research Unit, Stoneville, MS 38776, USA
| | - Salliana R Stetina
- USDA Agricultural Research Service, Crop Genetics Research Unit, Stoneville, MS 38776, USA
| | - John E Erpelding
- USDA Agricultural Research Service, Crop Genetics Research Unit, Stoneville, MS 38776, USA
| |
Collapse
|
5
|
Li J, Chen Y, Zhou G, Li M. Phytohormones and candidate genes synergistically regulate fruitlet abscission in Areca catechu L. BMC PLANT BIOLOGY 2023; 23:537. [PMID: 37919647 PMCID: PMC10623784 DOI: 10.1186/s12870-023-04562-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/26/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND The fruit population of most plants is under the control of a process named "physiological drop" to selectively abort some developing fruitlets. However, frequent fruitlet abscission severely restricts the yield of Areca catechu. To reveal the physiological and molecular variations in this process, we detected the variation of phytohormone levels in abscised and non-abscised fruitlets in A. catechu. RESULTS The levels of gibberellin acid, jasmonic acid, salicylic acid, abscisic acid and zeatin were elevated, while the indole-3-acetic acid and indole-3-carboxaldehyde levels were declined in the "about-to-abscise" part (AB) of abscission zone (AZ) compared to the "non-abscised" part (CK). Then the differentially expressed genes (DEGs) between AB and CK were screened based on transcriptome data. DEGs involved in phytohormone synthesis, response and transportation were identified as key genes. Genes related to cell wall biosynthesis, degradation, loosening and modification, and critical processes during fruit abscission were identified as role players. In addition, genes encoding transcription factors, such as NAC, ERF, WRKY, MADS and Zinc Finger proteins, showed differentially expressed patterns between AB and CK, were also identified as candidates. CONCLUSIONS These results unraveled a phytohormone signaling cross talk and key genes involved in the fruitlet abscission process in A. catechu. This study not only provides a theoretical basis for fruitlet abscission in A. catechu, but also identified many candidate genes or potential molecular markers for further breeding of fruit trees.
Collapse
Affiliation(s)
- Jia Li
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, China
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, 571339, Hainan, China
| | - Yunche Chen
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, 571339, Hainan, China
| | - Guangzhen Zhou
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Meng Li
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan, 410004, P. R. China.
| |
Collapse
|
6
|
Tong N, Shu Q, Wang B, Peng L, Liu Z. Histology, physiology, and transcriptomic and metabolomic profiling reveal the developmental dynamics of annual shoots in tree peonies ( Paeonia suffruticosa Andr.). HORTICULTURE RESEARCH 2023; 10:uhad152. [PMID: 37701456 PMCID: PMC10493643 DOI: 10.1093/hr/uhad152] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 07/23/2023] [Indexed: 09/14/2023]
Abstract
The development of tree peony annual shoots is characterized by "withering", which is related to whether there are bud points in the leaf axillaries of annual shoots. However, the mechanism of "withering" in tree peony is still unclear. In this study, Paeonia ostii 'Fengdan' and P. suffruticosa 'Luoyanghong' were used to investigate dynamic changes of annual shoots through anatomy, physiology, transcriptome, and metabolome. The results demonstrated that the developmental dynamics of annual shoots of the two cultivars were comparable. The withering degree of P. suffruticosa 'Luoyanghong' was higher than that of P. ostii 'Fengdan', and their upper internodes of annual flowering shoots had a lower degree of lignin deposition, cellulose, C/N ratio, showing no obvious sclerenchyma, than the bottom ones and the whole internodes of vegetative shoot, which resulted in the "withering" of upper internodes. A total of 36 phytohormone metabolites were detected, of which 33 and 31 were detected in P. ostii 'Fengdan' and P. suffruticosa 'Luoyanghong', respectively. In addition, 302 and 240 differentially expressed genes related to lignin biosynthesis, carbon and nitrogen metabolism, plant hormone signal transduction, and zeatin biosynthesis were screened from the two cultivars. Furtherly, 36 structural genes and 40 transcription factors associated with the development of annual shoots were highly co-expressed, and eight hub genes involved in this developmental process were identified. Consequently, this study explained the developmental dynamic on the varied annual shoots through multi-omics, providing a theoretical foundation for germplasm innovation and the mechanized harvesting of tree peony annual shoots.
Collapse
Affiliation(s)
- Ningning Tong
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingyan Shu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Baichen Wang
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Liping Peng
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Zheng'an Liu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| |
Collapse
|
7
|
Chu LL, Yan Z, Sheng XX, Liu HQ, Wang QY, Zeng RF, Hu CG, Zhang JZ. Citrus ACC synthase CiACS4 regulates plant height by inhibiting gibberellin biosynthesis. PLANT PHYSIOLOGY 2023; 192:1947-1968. [PMID: 36913259 PMCID: PMC10315275 DOI: 10.1093/plphys/kiad159] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/01/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
Dwarfism is an agronomic trait that has substantial effects on crop yield, lodging resistance, planting density, and a high harvest index. Ethylene plays an important role in plant growth and development, including the determination of plant height. However, the mechanism by which ethylene regulates plant height, especially in woody plants, remains unclear. In this study, a 1-aminocyclopropane-1-carboxylic acid synthase (ACC) gene (ACS), which is involved in ethylene biosynthesis, was isolated from lemon (Citrus limon L. Burm) and named CiACS4. Overexpression of CiACS4 resulted in a dwarf phenotype in Nicotiana tabacum and lemon and increased ethylene release and decreased gibberellin (GA) content in transgenic plants. Inhibition of CiACS4 expression in transgenic citrus significantly increased plant height compared with the controls. Yeast two-hybrid assays revealed that CiACS4 interacted with an ethylene response factor (ERF), CiERF3. Further experiments revealed that the CiACS4-CiERF3 complex can bind to the promoters of 2 citrus GA20-oxidase genes, CiGA20ox1 and CiGA20ox2, and suppress their expression. In addition, another ERF transcription factor, CiERF023, identified using yeast one-hybrid assays, promoted CiACS4 expression by binding to its promoter. Overexpression of CiERF023 in N. tabacum caused a dwarfing phenotype. CiACS4, CiERF3, and CiERF023 expression was inhibited and induced by GA3 and ACC treatments, respectively. These results suggest that the CiACS4-CiERF3 complex may be involved in the regulation of plant height by regulating CiGA20ox1 and CiGA20ox2 expression levels in citrus.
Collapse
Affiliation(s)
- Le Le Chu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhen Yan
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Xing Xing Sheng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Hai Qiang Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Qing Ye Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Ren Fang Zeng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Chun Gen Hu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Jin Zhi Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
8
|
Paisey EK, Santosa E, Kurniawati A, Supijatno, Matra DD. Long-reads-based transcriptome dataset from leaves of lime, Citrus aurantiifolia (Christm.) Swingle treated by ethephon and abscisic acid. Data Brief 2023; 48:109167. [PMID: 37206898 PMCID: PMC10189083 DOI: 10.1016/j.dib.2023.109167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/04/2023] [Accepted: 04/12/2023] [Indexed: 09/19/2024] Open
Abstract
The lime plant is a horticultural plant that grows in tropical regions. One of the cultivation maintenances to increase the production of lime fruits is pruning. However, the pruning technique of lime requires high production costs. In addition, phytohormones such as ethylene and abscisic acid have regulation to help drop leaves and branches. The study aimed to identify genes in lime involved in the self-pruning process during ethephon and abscisic acid treatments. Total RNA was extracted and subjected to long-read sequencing using a PCR-cDNA sequencing kit, Oxford Nanopore Technologies. The transcripts were produced 5,914 using the RATTLE program and ranged from 201 - 8,156 bp, and N50 was 1,292 bp. The RNA-seq dataset is available as a raw sequence read that scientists can further process and analyze, and this data can be helpful for lime breeding programs that can shed branches and leaves.
Collapse
Affiliation(s)
- Elda Kristiani Paisey
- Agronomy and Horticulture Study Program, Graduate School of IPB University, Bogor, Indonesia
- Agrotechnology Study Program, Faculty of Agriculture, Papua University, Manokwari, Indonesia
| | - Edi Santosa
- Department of Agronomy and Horticulture, Faculty of Agriculture, IPB University, Bogor, Indonesia
| | - Ani Kurniawati
- Department of Agronomy and Horticulture, Faculty of Agriculture, IPB University, Bogor, Indonesia
| | - Supijatno
- Department of Agronomy and Horticulture, Faculty of Agriculture, IPB University, Bogor, Indonesia
| | - Deden Derajat Matra
- Department of Agronomy and Horticulture, Faculty of Agriculture, IPB University, Bogor, Indonesia
| |
Collapse
|
9
|
Zeng RF, Zhou H, Fu LM, Yan Z, Ye LX, Hu SF, Gan ZM, Ai XY, Hu CG, Zhang JZ. Two citrus KNAT-like genes, CsKN1 and CsKN2, are involved in the regulation of spring shoot development in sweet orange. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:7002-7019. [PMID: 34185082 DOI: 10.1093/jxb/erab311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 06/26/2021] [Indexed: 05/21/2023]
Abstract
Shoot-tip abortion is a very common phenomenon in some perennial woody plants and it affects the height, architecture, and branch orientation of trees; however, little is currently known about the underlying mechanisms. In this study, we identified a gene in sweet orange (Citrus sinensis) encoding a KNAT-like protein (CsKN1) and found high expression in the shoot apical meristem (SAM). Overexpression of CsKN1 in transgenic plants prolonged the vegetative growth of SAMs, whilst silencing resulted in either the loss or inhibition of SAMs. Yeast two-hybrid analysis revealed that CsKN1 interacted with another citrus KNAT-like protein (CsKN2), and overexpression of CsKN2 in lemon and tobacco caused an extreme multiple-meristem phenotype. Overexpression of CsKN1 and CsKN2 in transgenic plants resulted in the differential expression of numerous genes related to hormone biosynthesis and signaling. Yeast one-hybrid analysis revealed that the CsKN1-CsKN2 complex can bind to the promoter of citrus floral meristem gene LEAFY (CsLFY) and inhibit its expression. These results indicated that CsKN1 might prolong the vegetative growth period of SAMs by delaying flowering. In addition, an ethylene-responsive factor (CsERF) was found to bind to the CsKN1 promoter and suppresses its transcription. Overexpression of CsERF in Arabidopsis increased the contents of ethylene and reactive oxygen species, which might induce the occurrence of shoot-tip abscission. On the basis of our results, we conclude that CsKN1 and CsKN2 might work cooperatively to regulate the shoot-tip abscission process in spring shoots of sweet orange.
Collapse
Affiliation(s)
- Ren-Fang Zeng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
| | - Huan Zhou
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
| | - Li-Ming Fu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhen Yan
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
| | - Li-Xia Ye
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
| | - Si-Fan Hu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
| | - Zhi-Meng Gan
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
| | - Xiao-Yan Ai
- Institute of Pomology and Tea, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Chun-Gen Hu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
| | - Jin-Zhi Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
10
|
Bai Z, Zhang J, Ning X, Guo H, Xu X, Huang X, Wang Y, Hu Z, Lu C, Zhang L, Chi W. A Kinase-Phosphatase-Transcription Factor Module Regulates Adventitious Root Emergence in Arabidopsis Root-Hypocotyl Junctions. MOLECULAR PLANT 2020; 13:1162-1177. [PMID: 32534220 DOI: 10.1016/j.molp.2020.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 12/05/2019] [Accepted: 06/08/2020] [Indexed: 06/11/2023]
Abstract
Adventitious roots form from non-root tissues as part of normal development or in response to stress or wounding. The root primordia form in the source tissue, and during emergence the adventitious roots penetrate the inner cell layers and the epidermis; however, the mechanisms underlying this emergence remain largely unexplored. Here, we report that a regulatory module composed of the AP2/ERF transcription factor ABSCISIC ACID INSENSITIVE 4 (ABI4), the MAP kinases MPK3 and MPK6, and the phosphatase PP2C12 plays an important role in the emergence of junction adventitious roots (J-ARs) from the root-hypocotyl junctions in Arabidopsis thaliana. ABI4 negatively regulates J-AR emergence, preventing the accumulation of reactive oxygen species and death of epidermal cells, which would otherwise facilitate J-AR emergence. Phosphorylation by MPK3/MPK6 activates ABI4 and dephosphorylation by PP2C12 inactivates ABI4. MPK3/MPK6 also directly phosphorylate and inactivate PP2C12 during J-AR emergence. We propose that this "double-check" mechanism increases the robustness of MAP kinase signaling and finely regulates the local programmed cell death required for J-AR emergence.
Collapse
Affiliation(s)
- Zechen Bai
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Zhang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Ning
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hailong Guo
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing 100093, China
| | - Xiumei Xu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing 100093, China
| | - Xiahe Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhubing Hu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Congming Lu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Lixin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Wei Chi
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China; The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
11
|
Du C, Jiang J, Zhang H, Zhao T, Yang H, Zhang D, Zhao Z, Xu X, Li J. Transcriptomic profiling of Solanum peruvianum LA3858 revealed a Mi-3-mediated hypersensitive response to Meloidogyne incognita. BMC Genomics 2020; 21:250. [PMID: 32293256 PMCID: PMC7092525 DOI: 10.1186/s12864-020-6654-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 03/04/2020] [Indexed: 01/19/2023] Open
Abstract
Background The Mi-1 gene was the first identified and cloned gene that provides resistance to root-knot nematodes (RKNs) in cultivated tomato. However, owing to its temperature sensitivity, this gene does not meet the need for breeding disease-resistant plants that grow under high temperature. In this study, Mi-3 was isolated from the wild species PI 126443 (LA3858) and was shown to display heat-stable resistance to RKNs. However, the mechanism that regulates this resistance remains unknown. Results In this study, 4760, 1024 and 137 differentially expressed genes (DEGs) were enriched on the basis of pairwise comparisons (34 °C vs. 25 °C) at 0 (before inoculation), 3 and 6 days post-inoculation (dpi), respectively. A total of 7035 DEGs were identified from line LA3858 in the respective groups under the different soil temperature treatments. At 3 dpi, most DEGs were enriched in Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways related to plant biotic responses, such as “plant-pathogen interaction” and “plant hormone signal transduction”. Significantly enriched DEGs were found to encode key proteins such as R proteins and heat-shock proteins (HSPs). Moreover, other DEGs were found to participate in Ca2+ signal transduction; the production of ROS; DEGs encoding transcription factors (TFs) from the bHLH, TGA, ERF, heat-shock transcription factor (HSF) and WRKY families were highly expressed, which contribute to be involved into the formation of phytohormones, such as salicylic acid (SA), jasmonic acid (JA) and ethylene (ET), the expression of most was upregulated at 3 dpi at the 25 °C soil temperature compared with the 34 °C soil temperature. Conclusion Taken together, the results of our study revealed reliable candidate genes from wild materials LA3858, that are related to Mi-3-mediate resistance to Meloidogyne incognita. A large number of vital pathways and DEGs were expressed specifically in accession LA3858 grown at 34 °C and 25 °C soil temperatures at 3 dpi. Upon infection by RKNs, pattern-recognition receptors (PRRs) specifically recognized conserved pathogen-associated molecular patterns (PAMPs) as a result of pathogen-triggered immunity (PTI), and the downstream defensive signal transduction pathway was likely activated through Ca2+ signal channels. The expression of various TFs was induced to synthesize phytohormones and activate R proteins related to resistance, resulting in the development of effector-triggered immunity (ETI). Last, a hypersensitive response in the roots occurred, which was probably induced by the accumulation of ROS.
Collapse
Affiliation(s)
- Chong Du
- Laboratory of Genetic Breeding in Tomato, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Jingbin Jiang
- Laboratory of Genetic Breeding in Tomato, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - He Zhang
- Laboratory of Genetic Breeding in Tomato, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Tingting Zhao
- Laboratory of Genetic Breeding in Tomato, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Huanhuan Yang
- Laboratory of Genetic Breeding in Tomato, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Dongye Zhang
- Laboratory of Genetic Breeding in Tomato, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Zhentong Zhao
- Laboratory of Genetic Breeding in Tomato, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xiangyang Xu
- Laboratory of Genetic Breeding in Tomato, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Jingfu Li
- Laboratory of Genetic Breeding in Tomato, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
12
|
Zou L, Liu W, Zhang Z, Edwards EJ, Gathunga EK, Fan P, Duan W, Li S, Liang Z. Gene body demethylation increases expression and is associated with self-pruning during grape genome duplication. HORTICULTURE RESEARCH 2020; 7:84. [PMID: 32528696 PMCID: PMC7261773 DOI: 10.1038/s41438-020-0303-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/11/2020] [Accepted: 03/19/2020] [Indexed: 05/15/2023]
Abstract
A colchicine-induced autotetraploid grapevine exhibiting potentially valuable agronomic traits for grape production and breeding, including self-pruning, was identified. This study investigated DNA methylation variation and its role in gene expression during self-pruning in the autotetraploid grapevine. We used RNA-Seq to estimate differentially expressed genes between diploid and autotetraploid grapevine shoot tips. The genes showing increases in the autotetraploid were mainly related to stress response pathways, whereas those showing decreases in the autotetraploid were related to biological metabolism and biosynthesis. Whole-genome bisulfite sequencing was performed to produce single-base methylomes for the diploid and autotetraploid grapevines. Comparison between the methylomes revealed that they were conserved in CG and CHG contexts. In the autotetraploid grapevine, hypodifferentially methylated regions (DMRs) and hyper-DMRs in the gene body increased or decreased gene expression, respectively. Our results indicated that a hypo-DMR in the ACO1 gene body increased its expression and might promote self-pruning. This study reports that hypo-DMRs in the gene body increase gene expression in plants and reveals the mechanism underlying the changes in the modifications affecting gene expression during genome duplication. Overall, our results provide valuable information for understanding the relationships between DNA methylation, gene expression, and autotetraploid breeding in grape.
Collapse
Affiliation(s)
- Luming Zou
- Beijing Key Laboratory of Grape Science and Enology and CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 PR China
- University of the Chinese Academy of Sciences, Beijing, 100049 PR China
| | - Wenwen Liu
- Beijing Key Laboratory of Grape Science and Enology and CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 PR China
- University of the Chinese Academy of Sciences, Beijing, 100049 PR China
| | - Zhan Zhang
- Beijing Key Laboratory of Grape Science and Enology and CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 PR China
- University of the Chinese Academy of Sciences, Beijing, 100049 PR China
- College of Life Science, Shanxi Normal University, Shanxi, 041004 PR China
| | | | - Elias Kirabi Gathunga
- Beijing Key Laboratory of Grape Science and Enology and CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 PR China
- University of the Chinese Academy of Sciences, Beijing, 100049 PR China
| | - Peige Fan
- Beijing Key Laboratory of Grape Science and Enology and CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 PR China
| | - Wei Duan
- Beijing Key Laboratory of Grape Science and Enology and CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 PR China
| | - Shaohua Li
- Beijing Key Laboratory of Grape Science and Enology and CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 PR China
- University of the Chinese Academy of Sciences, Beijing, 100049 PR China
| | - Zhenchang Liang
- Beijing Key Laboratory of Grape Science and Enology and CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 PR China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074 PR China
| |
Collapse
|
13
|
Sundaresan S, Philosoph-Hadas S, Ma C, Jiang CZ, Riov J, Mugasimangalam R, Kochanek B, Salim S, Reid MS, Meir S. The Tomato Hybrid Proline-rich Protein regulates the abscission zone competence to respond to ethylene signals. HORTICULTURE RESEARCH 2018; 5:28. [PMID: 29872533 PMCID: PMC5981600 DOI: 10.1038/s41438-018-0033-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/05/2018] [Accepted: 03/08/2018] [Indexed: 05/04/2023]
Abstract
The Tomato Hybrid Proline-rich Protein (THyPRP) gene was specifically expressed in the tomato (Solanum lycopersicum) flower abscission zone (FAZ), and its stable antisense silencing under the control of an abscission zone (AZ)-specific promoter, Tomato Abscission Polygalacturonase4, significantly inhibited tomato pedicel abscission following flower removal. For understanding the THyPRP role in regulating pedicel abscission, a transcriptomic analysis of the FAZ of THyPRP-silenced plants was performed, using a newly developed AZ-specific tomato microarray chip. Decreased expression of THyPRP in the silenced plants was already observed before abscission induction, resulting in FAZ-specific altered gene expression of transcription factors, epigenetic modifiers, post-translational regulators, and transporters. Our data demonstrate that the effect of THyPRP silencing on pedicel abscission was not mediated by its effect on auxin balance, but by decreased ethylene biosynthesis and response. Additionally, THyPRP silencing revealed new players, which were demonstrated for the first time to be involved in regulating pedicel abscission processes. These include: gibberellin perception, Ca2+-Calmodulin signaling, Serpins and Small Ubiquitin-related Modifier proteins involved in post-translational modifications, Synthaxin and SNARE-like proteins, which participate in exocytosis, a process necessary for cell separation. These changes, occurring in the silenced plants early after flower removal, inhibited and/or delayed the acquisition of the competence of the FAZ cells to respond to ethylene signaling. Our results suggest that THyPRP acts as a master regulator of flower abscission in tomato, predominantly by playing a role in the regulation of the FAZ cell competence to respond to ethylene signals.
Collapse
Affiliation(s)
- Srivignesh Sundaresan
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization (ARO), The Volcani Center, Rishon LeZiyon, Israel
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
- Present Address: Department of Nano Science and Technology, Tamil Nadu Agricultural University, Coimbatore, India
| | - Sonia Philosoph-Hadas
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization (ARO), The Volcani Center, Rishon LeZiyon, Israel
| | - Chao Ma
- Department of Plant Sciences, University of California, Davis, CA USA
- Present Address: Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Cai-Zhong Jiang
- Department of Plant Sciences, University of California, Davis, CA USA
- Crops Pathology & Genetic Research Unit, USDA-ARS, Davis, CA USA
| | - Joseph Riov
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Raja Mugasimangalam
- Department of Bioinformatics, QTLomics Technologies Pvt. Ltd, Bangalore, India
| | - Betina Kochanek
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization (ARO), The Volcani Center, Rishon LeZiyon, Israel
| | - Shoshana Salim
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization (ARO), The Volcani Center, Rishon LeZiyon, Israel
| | - Michael S. Reid
- Department of Plant Sciences, University of California, Davis, CA USA
| | - Shimon Meir
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization (ARO), The Volcani Center, Rishon LeZiyon, Israel
| |
Collapse
|
14
|
Wang CY, Liu SR, Zhang XY, Ma YJ, Hu CG, Zhang JZ. Genome-wide screening and characterization of long non-coding RNAs involved in flowering development of trifoliate orange (Poncirus trifoliata L. Raf.). Sci Rep 2017; 7:43226. [PMID: 28233798 PMCID: PMC5324131 DOI: 10.1038/srep43226] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 01/23/2017] [Indexed: 11/30/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have been demonstrated to play critical regulatory roles in post-transcriptional and transcriptional regulation in Arabidopsis. However, lncRNAs and their functional roles remain poorly characterized in woody plants, including citrus. To identify lncRNAs and investigate their role in citrus flowering, paired-end strand-specific RNA sequencing was performed for precocious trifoliate orange and its wild-type counterpart. A total of 6,584 potential lncRNAs were identified, 51.6% of which were from intergenic regions. Additionally, 555 lncRNAs were significantly up-regulated and 276 lncRNAs were down-regulated in precocious trifoliate orange, indicating that lncRNAs could be involved in the regulation of trifoliate orange flowering. Comparisons between lncRNAs and coding genes indicated that lncRNAs tend to have shorter transcripts and lower expression levels and that they display significant expression specificity. More importantly, 59 and 7 lncRNAs were identified as putative targets and target mimics of citrus miRNAs, respectively. In addition, the targets of Pt-miR156 and Pt-miR396 were confirmed using the regional amplification reverse-transcription polymerase chain reaction method. Furthermore, overexpression of Pt-miR156a1 and Pt-miR156a1 in Arabidopsis resulted in an extended juvenile phase, short siliques, and smaller leaves in transgenic plants compared with control plants. These findings provide important insight regarding citrus lncRNAs, thus enabling in-depth functional analyses.
Collapse
Affiliation(s)
- Chen-Yang Wang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Sheng-Rui Liu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiao-Yu Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Yu-Jiao Ma
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Chun-Gen Hu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Jin-Zhi Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
15
|
Ying P, Li C, Liu X, Xia R, Zhao M, Li J. Identification and molecular characterization of an IDA-like gene from litchi, LcIDL1, whose ectopic expression promotes floral organ abscission in Arabidopsis. Sci Rep 2016; 6:37135. [PMID: 27845425 PMCID: PMC5109030 DOI: 10.1038/srep37135] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 10/25/2016] [Indexed: 01/29/2023] Open
Abstract
Unexpected abscission of flowers or fruits is a major limiting factor for crop productivity. Key genes controlling abscission in plants, especially in popular fruit trees, are largely unknown. Here we identified a litchi (Litchi chinensis Sonn.) IDA-like (INFLORESCENCE DEFICIENT IN ABSCISSION-like) gene LcIDL1 as a potential key regulator of abscission. LcIDL1 encodes a peptide that shows the closest homology to Arabidopsis IDA, and is localized in cell membrane and cytoplasm. Real-time PCR analysis showed that the expression level of LcIDL1 accumulated gradually following flower abscission, and it was obviously induced by fruit abscission-promoting treatments. Transgenic plants expressing LcIDL1 in Arabidopsis revealed a role of LcIDL1 similar to IDA in promoting floral organ abscission. Moreover, ectopic expression of LcIDL1 in Arabidopsis activated the expression of abscission-related genes. Taken together, our findings provide evidence that LcIDL1 may act as a key regulator in control of abscission.
Collapse
Affiliation(s)
- Peiyuan Ying
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, China Litchi Research Center, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Caiqin Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, China Litchi Research Center, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Xuncheng Liu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Rui Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, China Litchi Research Center, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Minglei Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, China Litchi Research Center, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Jianguo Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, China Litchi Research Center, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
16
|
Sun LM, Zhang JZ, Hu CG. Characterization and Expression Analysis of PtAGL24, a SHORT VEGETATIVE PHASE/AGAMOUS-LIKE 24 (SVP/AGL24)-Type MADS-Box Gene from Trifoliate Orange (Poncirus trifoliata L. Raf.). FRONTIERS IN PLANT SCIENCE 2016; 7:823. [PMID: 27375669 PMCID: PMC4901042 DOI: 10.3389/fpls.2016.00823] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 05/26/2016] [Indexed: 05/29/2023]
Abstract
The transition from vegetative to reproductive growth in perennial woody plants does not occur until after several years of repeated seasonal changes and alternative growth. To better understand the molecular basis of flowering regulation in citrus, a MADS-box gene was isolated from trifoliate orange (precocious trifoliate orange, Poncirus trifoliata L. Raf.). Sequence alignment and phylogenetic analysis showed that the MADS-box gene is more closely related to the homologs of the AGAMOUS-LIKE 24 (AGL24) lineage than to any of the other MADS-box lineages known from Arabidopsis; it is named PtAGL24. Expression analysis indicated that PtAGL24 was widely expressed in the most organs of trifoliate orange, with the higher expression in mature flowers discovered by real-time PCR. Ectopic expression of PtAGL24 in wild-type Arabidopsis promoted early flowering and caused morphological changes in class I transgenic Arabidopsis. Yeast two-hybrid assay revealed that PtAGL24 interacted with Arabidopsis AtAGL24 and other partners of AtAGL24, suggesting that the abnormal morphology of PtAGL24 overexpression in transgenic Arabidopsis was likely due to the inappropriate interactions between exogenous and endogenous proteins. Also, PtAGL24 interacted with SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (PtSOC1) and APETALA1 (PtAP1) of citrus. These results suggest that PtAGL24 may play an important role in the process of floral transition but may have diverse functions in citrus development.
Collapse
|
17
|
Shiratake K, Suzuki M. Omics studies of citrus, grape and rosaceae fruit trees. BREEDING SCIENCE 2016; 66:122-38. [PMID: 27069397 PMCID: PMC4780796 DOI: 10.1270/jsbbs.66.122] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 11/01/2015] [Indexed: 05/06/2023]
Abstract
Recent advance of bioinformatics and analytical apparatuses such as next generation DNA sequencer (NGS) and mass spectrometer (MS) has brought a big wave of comprehensive study to biology. Comprehensive study targeting all genes, transcripts (RNAs), proteins, metabolites, hormones, ions or phenotypes is called genomics, transcriptomics, proteomics, metabolomics, hormonomics, ionomics or phenomics, respectively. These omics are powerful approaches to identify key genes for important traits, to clarify events of physiological mechanisms and to reveal unknown metabolic pathways in crops. Recently, the use of omics approach has increased dramatically in fruit tree research. Although the most reported omics studies on fruit trees are transcriptomics, proteomics and metabolomics, and a few is reported on hormonomics and ionomics. In this article, we reviewed recent omics studies of major fruit trees, i.e. citrus, grapevine and rosaceae fruit trees. The effectiveness and prospects of omics in fruit tree research will as well be highlighted.
Collapse
Affiliation(s)
- Katsuhiro Shiratake
- Graduate School of Bioagricultural Sciences, Nagoya University,
Chikusa, Nagoya, Aichi 464-8601,
Japan
- Corresponding author (e-mail: )
| | - Mami Suzuki
- Graduate School of Bioagricultural Sciences, Nagoya University,
Chikusa, Nagoya, Aichi 464-8601,
Japan
| |
Collapse
|
18
|
Zhang H, Li H, Lai B, Xia H, Wang H, Huang X. Morphological Characterization and Gene Expression Profiling during Bud Development in a Tropical Perennial, Litchi chinensis Sonn. FRONTIERS IN PLANT SCIENCE 2016; 7:1517. [PMID: 27833615 PMCID: PMC5080376 DOI: 10.3389/fpls.2016.01517] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 09/26/2016] [Indexed: 05/11/2023]
Abstract
Tropical evergreen perennials undergo recurrent flush growth, and their terminal buds alternate between growth and dormancy. In sharp contrast to the intensive studies on bud development in temperate deciduous trees, there is little information about bud development regulation in tropical trees. In this study, litchi (Litchi chinensis Sonn.) was used as a model tropical perennial for morphological characterization and transcriptomic analysis of bud development. Litchi buds are naked with apical meristem embraced by rudimentary leaves, which are brown at dormant stage (Stage I). They swell and turn greenish as buds break (Stage II), and as growth accelerates, the rudimentary leaves elongate and open exposing the inner leaf primodia. With the outgrowth of the needle-like leaflets, bud growth reaches a maximum (Stage III). When leaflets expand, bud growth cease with the abortion of the rudimentary leaves at upper positions (Stage IV). Then buds turn brown and reenter dormant status. Budbreak occurs again when new leaves become hard green. Buds at four stages (Stage I to IV) were collected for respiration measurements and in-depth RNA sequencing. Respiration rate was the lowest at Stage I and highest at Stage II, decreasing toward growth cessation. RNA sequencing obtained over 5 Gb data from each of the bud samples and de novo assembly generated a total of 59,999 unigenes, 40,119 of which were annotated. Pair-wise comparison of gene expression between stages, gene profiling across stages, GO/KEGG enrichment analysis, and the expression patterns of 17 major genes highlighted by principal component (PC) analysis displayed significant changes in stress resistance, hormone signal pathways, circadian rhythm, photosynthesis, cell division, carbohydrate metabolism, programmed cell death during bud development, which might be under epigenetic control involving chromatin methylation. The qPCR results of 8 selected unigenes with high PC scores agreed with the RPKM values obtained from RNA-seq. Three Short Vegetative Phase (SVP) genes, namely LcSVP1, LcSVP2, and LcSVP3 displayed different expression patterns, suggesting their differential roles in bud development regulation. The study brought an understanding about biological processes associated with the phase transitions, molecular regulation of bud development, as well as cyclic bud growth as a strategy to survive tropical conditions.
Collapse
Affiliation(s)
- Huifen Zhang
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural UniversityGuangzhou, China
| | - Hua Li
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural UniversityGuangzhou, China
| | - Biao Lai
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural UniversityGuangzhou, China
| | - Haoqiang Xia
- Gene Denovo Biotechnology Co. Ltd.Guangzhou, China
| | - Huicong Wang
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural UniversityGuangzhou, China
| | - Xuming Huang
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural UniversityGuangzhou, China
- *Correspondence: Xuming Huang
| |
Collapse
|
19
|
Li C, Wang Y, Huang X, Li J, Wang H, Li J. An improved fruit transcriptome and the identification of the candidate genes involved in fruit abscission induced by carbohydrate stress in litchi. FRONTIERS IN PLANT SCIENCE 2015; 6:439. [PMID: 26124768 PMCID: PMC4466451 DOI: 10.3389/fpls.2015.00439] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 05/28/2015] [Indexed: 05/18/2023]
Abstract
Massive young fruit abscission usually causes low and unstable yield in litchi (Litchi chinensis Sonn.), an important fruit crop cultivated in tropical and subtropical areas. However, the molecular mechanism of fruit drop has not been fully characterized. This study aimed at identification of molecular components involved in fruitlet abscission in litchi, for which reference genome is not available at present. An improved de novo transcriptome assembly was firstly achieved by using an optimized assembly software, Trinity. Using improved transcriptome assembly as reference, digital transcript abundance (DTA) profiling was performed to screen and identify candidate genes involved in fruit abscission induced by girdling plus defoliation (GPD), a treatment significantly decreased the soluble sugar contents causing carbohydrate stress to fruit. Our results showed that the increasing fruit abscission rate after GPD treatment was associated with higher ethylene production and lower glucose levels in fruit. A total of 2,771 differentially expressed genes were identified as GPD-responsive genes, 857 of which were defined by GO and KEGG enrichment analyses as the candidate genes involved in fruit abscission process. These genes were involved in diverse metabolic processes and pathways, including carbohydrate metabolism, plant hormone synthesis, and signaling, transcription factor activity and cell wall modification that were rapidly induced in the early stages (within 2 days after treatment). qRT-PCR was used to explore the expression pattern of 15 selected candidate genes in the abscission zone, pericarp, and seed, which confirmed the accuracy of our DTA data. More detailed information for different functional categories was also analyzed. This study profiled the gene expression related to fruit abscission induced by carbohydrate stress at whole transcriptome level and thus provided a better understanding of the regulatory mechanism of young fruit abscission in litchi.
Collapse
Affiliation(s)
- Caiqin Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, China Litchi Research Center, South China Agricultural University, GuangzhouChina
- Physiological Laboratory for South China Fruits, College of Horticulture, South China Agricultural University, GuangzhouChina
| | - Yan Wang
- Physiological Laboratory for South China Fruits, College of Horticulture, South China Agricultural University, GuangzhouChina
- Beijing Genomics Institute at Shenzhen, ShenzhenChina
| | - Xuming Huang
- Physiological Laboratory for South China Fruits, College of Horticulture, South China Agricultural University, GuangzhouChina
| | - Jiang Li
- Beijing Genomics Institute at Shenzhen, ShenzhenChina
| | - Huicong Wang
- Physiological Laboratory for South China Fruits, College of Horticulture, South China Agricultural University, GuangzhouChina
| | - Jianguo Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, China Litchi Research Center, South China Agricultural University, GuangzhouChina
- Physiological Laboratory for South China Fruits, College of Horticulture, South China Agricultural University, GuangzhouChina
| |
Collapse
|
20
|
Sundaresan S, Philosoph-Hadas S, Riov J, Mugasimangalam R, Kuravadi NA, Kochanek B, Salim S, Tucker ML, Meir S. De novo Transcriptome Sequencing and Development of Abscission Zone-Specific Microarray as a New Molecular Tool for Analysis of Tomato Organ Abscission. FRONTIERS IN PLANT SCIENCE 2015; 6:1258. [PMID: 26834766 PMCID: PMC4712312 DOI: 10.3389/fpls.2015.01258] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 12/24/2015] [Indexed: 05/19/2023]
Abstract
Abscission of flower pedicels and leaf petioles of tomato (Solanum lycopersicum) can be induced by flower removal or leaf deblading, respectively, which leads to auxin depletion, resulting in increased sensitivity of the abscission zone (AZ) to ethylene. However, the molecular mechanisms that drive the acquisition of abscission competence and its modulation by auxin gradients are not yet known. We used RNA-Sequencing (RNA-Seq) to obtain a comprehensive transcriptome of tomato flower AZ (FAZ) and leaf AZ (LAZ) during abscission. RNA-Seq was performed on a pool of total RNA extracted from tomato FAZ and LAZ, at different abscission stages, followed by de novo assembly. The assembled clusters contained transcripts that are already known in the Solanaceae (SOL) genomics and NCBI databases, and over 8823 identified novel tomato transcripts of varying sizes. An AZ-specific microarray, encompassing the novel transcripts identified in this study and all known transcripts from the SOL genomics and NCBI databases, was constructed to study the abscission process. Multiple probes for longer genes and key AZ-specific genes, including antisense probes for all transcripts, make this array a unique tool for studying abscission with a comprehensive set of transcripts, and for mining for naturally occurring antisense transcripts. We focused on comparing the global transcriptomes generated from the FAZ and the LAZ to establish the divergences and similarities in their transcriptional networks, and particularly to characterize the processes and transcriptional regulators enriched in gene clusters that are differentially regulated in these two AZs. This study is the first attempt to analyze the global gene expression in different AZs in tomato by combining the RNA-Seq technique with oligonucleotide microarrays. Our AZ-specific microarray chip provides a cost-effective approach for expression profiling and robust analysis of multiple samples in a rapid succession.
Collapse
Affiliation(s)
- Srivignesh Sundaresan
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, The Volcani CenterBet-Dagan, Israel
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of JerusalemRehovot, Israel
| | - Sonia Philosoph-Hadas
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, The Volcani CenterBet-Dagan, Israel
| | - Joseph Riov
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of JerusalemRehovot, Israel
| | - Raja Mugasimangalam
- Department of Bioinformatics, QTLomics Technologies Pvt. LtdBangalore, India
| | - Nagesh A. Kuravadi
- Department of Bioinformatics, QTLomics Technologies Pvt. LtdBangalore, India
| | - Bettina Kochanek
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, The Volcani CenterBet-Dagan, Israel
| | - Shoshana Salim
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, The Volcani CenterBet-Dagan, Israel
| | - Mark L. Tucker
- Soybean Genomics and Improvement Laboratory, United States Department of Agriculture, Agricultural Research ServiceBeltsville, MD, USA
| | - Shimon Meir
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, The Volcani CenterBet-Dagan, Israel
- *Correspondence: Shimon Meir
| |
Collapse
|