1
|
Gao Y, Zhu L, An M, Wang Y, Li S, Dong Y, Yang S, Shi K, Fan S, Chen X, Ren H, Liu X. Zinc Finger-Homeodomain Transcriptional Factors (ZHDs) in Cucumber ( Cucumis sativus L.): Identification, Evolution, Expression Profiles, and Function under Abiotic Stresses. Int J Mol Sci 2024; 25:4408. [PMID: 38673993 PMCID: PMC11050092 DOI: 10.3390/ijms25084408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/09/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Cucumber (Cucumis sativus L.) is a globally prevalent and extensively cultivated vegetable whose yield is significantly influenced by various abiotic stresses, including drought, heat, and salinity. Transcription factors, such as zinc finger-homeodomain proteins (ZHDs), a plant-specific subgroup of Homeobox, play a crucial regulatory role in stress resistance. In this study, we identified 13 CsZHDs distributed across all six cucumber chromosomes except chromosome 7. Phylogenetic analysis classified these genes into five clades (ZHDI-IV and MIF) with different gene structures but similar conserved motifs. Collinearity analysis revealed that members of clades ZHD III, IV, and MIF experienced amplification through segmental duplication events. Additionally, a closer evolutionary relationship was observed between the ZHDs in Cucumis sativus (C. sativus) and Arabidopsis thaliana (A. thaliana) compared to Oryza sativa (O. sativa). Quantitative real-time PCR (qRT-PCR) analysis demonstrated the general expression of CsZHD genes across all tissues, with notable expression in leaf and flower buds. Moreover, most of the CsZHDs, particularly CsZHD9-11, exhibited varying responses to drought, heat, and salt stresses. Virus-induced gene silencing (VIGS) experiments highlighted the potential functions of CsZHD9 and CsZHD10, suggesting their positive regulation of stomatal movement and responsiveness to drought stress. In summary, these findings provide a valuable resource for future analysis of potential mechanisms underlying CsZHD genes in response to stresses.
Collapse
Affiliation(s)
- Yiming Gao
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Liyan Zhu
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Menghang An
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yaru Wang
- Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Sen Li
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yuming Dong
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Songlin Yang
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Kexin Shi
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Shanshan Fan
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Xiaofeng Chen
- College of Ocean and Agricultural Engineering, Yantai Institute of China Agricultural University, Yantai 264670, China
| | - Huazhong Ren
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
- Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Xingwang Liu
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
- Sanya Institute of China Agricultural University, Sanya 572025, China
| |
Collapse
|
2
|
Kaur H, Jha P, Ochatt SJ, Kumar V. Single-cell transcriptomics is revolutionizing the improvement of plant biotechnology research: recent advances and future opportunities. Crit Rev Biotechnol 2024; 44:202-217. [PMID: 36775666 DOI: 10.1080/07388551.2023.2165900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/04/2022] [Accepted: 12/08/2022] [Indexed: 02/14/2023]
Abstract
Single-cell approaches are a promising way to obtain high-resolution transcriptomics data and have the potential to revolutionize the study of plant growth and development. Recent years have seen the advent of unprecedented technological advances in the field of plant biology to study the transcriptional information of individual cells by single-cell RNA sequencing (scRNA-seq). This review focuses on the modern advancements of single-cell transcriptomics in plants over the past few years. In addition, it also offers a new insight of how these emerging methods will expedite advance research in plant biotechnology in the near future. Lastly, the various technological hurdles and inherent limitations of single-cell technology that need to be conquered to develop such outstanding possible knowledge gain is critically analyzed and discussed.
Collapse
Affiliation(s)
- Harmeet Kaur
- Division of Research and Development, Plant Biotechnology Lab, Lovely Professional University, Phagwara, Punjab, India
- Department of Biotechnology, Lovely Faculty of Technology and Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Priyanka Jha
- Department of Biotechnology, Lovely Faculty of Technology and Sciences, Lovely Professional University, Phagwara, Punjab, India
- Department of Research Facilitation, Division of Research and Development, Lovely Professional University, Phagwara, Punjab, India
| | - Sergio J Ochatt
- Agroécologie, InstitutAgro Dijon, INRAE, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Vijay Kumar
- Division of Research and Development, Plant Biotechnology Lab, Lovely Professional University, Phagwara, Punjab, India
- Department of Biotechnology, Lovely Faculty of Technology and Sciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
3
|
Ali M, Yang T, He H, Zhang Y. Plant biotechnology research with single-cell transcriptome: recent advancements and prospects. PLANT CELL REPORTS 2024; 43:75. [PMID: 38381195 DOI: 10.1007/s00299-024-03168-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 02/05/2024] [Indexed: 02/22/2024]
Abstract
KEY MESSAGE Single-cell transcriptomic techniques have emerged as powerful tools in plant biology, offering high-resolution insights into gene expression at the individual cell level. This review highlights the rapid expansion of single-cell technologies in plants, their potential in understanding plant development, and their role in advancing plant biotechnology research. Single-cell techniques have emerged as powerful tools to enhance our understanding of biological systems, providing high-resolution transcriptomic analysis at the single-cell level. In plant biology, the adoption of single-cell transcriptomics has seen rapid expansion of available technologies and applications. This review article focuses on the latest advancements in the field of single-cell transcriptomic in plants and discusses the potential role of these approaches in plant development and expediting plant biotechnology research in the near future. Furthermore, inherent challenges and limitations of single-cell technology are critically examined to overcome them and enhance our knowledge and understanding.
Collapse
Affiliation(s)
- Muhammad Ali
- School of Agriculture, Sun Yat-Sen University, Shenzhen, 518107, China
- Peking University-Institute of Advanced Agricultural Sciences, Weifang, China
| | - Tianxia Yang
- School of Agriculture, Sun Yat-Sen University, Shenzhen, 518107, China
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing, China
| | - Hai He
- School of Agriculture, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Yu Zhang
- School of Agriculture, Sun Yat-Sen University, Shenzhen, 518107, China.
| |
Collapse
|
4
|
Ferela A, Debernardi JM, Rosatti S, Liebsch D, Schommer C, Palatnik JF. Interplay among ZF-HD and GRF transcription factors during Arabidopsis leaf development. PLANT PHYSIOLOGY 2023; 191:1789-1802. [PMID: 36652435 PMCID: PMC10022616 DOI: 10.1093/plphys/kiad009] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
The growth-regulating factor (GRF) family of transcriptional factors are involved in the control of leaf size and senescence, inflorescence and root growth, grain size, and plant regeneration. However, there is limited information about the genes regulated by these transcriptional factors, which are in turn responsible for their functions. Using a meta-analysis approach, we identified genes encoding Arabidopsis (Arabidopsis thaliana) zinc-finger homeodomain (ZF-HD) transcriptional factors, as potential targets of the GRFs. We further showed that GRF3 binds to the promoter of one of the members of the ZF-HD family, HOMEOBOX PROTEIN 33 (HB33), and activates its transcription. Increased levels of HB33 led to different modifications in leaf cell number and size that were dependent on its expression levels. Furthermore, we found that expression of HB33 for an extended period during leaf development increased leaf longevity. To cope with the functional redundancy among ZF-HD family members, we generated a dominant repressor version of HB33, HB33-SRDX. Expression of HB33-SRDX from HB33 regulatory regions was seedling-lethal, revealing the importance of the ZF-HD family in plant development. Misexpression of HB33-SRDX in early leaf development caused a reduction in both cell size and number. Interestingly, the loss-of-function of HB33 in lines carrying a GRF3 allele insensitive to miR396 reverted the delay in leaf senescence characteristic of these plants. Our results revealed functions for ZF-HDs in leaf development and linked them to the GRF pathway.
Collapse
Affiliation(s)
- Antonella Ferela
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET and Universidad Nacional de Rosario, Rosario 2000, Argentina
| | - Juan Manuel Debernardi
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET and Universidad Nacional de Rosario, Rosario 2000, Argentina
| | - Santiago Rosatti
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET and Universidad Nacional de Rosario, Rosario 2000, Argentina
| | - Daniela Liebsch
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET and Universidad Nacional de Rosario, Rosario 2000, Argentina
| | - Carla Schommer
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET and Universidad Nacional de Rosario, Rosario 2000, Argentina
- Centro de Estudios Interdisciplinarios, Universidad Nacional de Rosario, Rosario 2000, Argentina
| | | |
Collapse
|
5
|
Cao J, Li X, Chen L, He M, Lan H. The Developmental Delay of Seedlings With Cotyledons Only Confers Stress Tolerance to Suaeda aralocaspica (Chenopodiaceae) by Unique Performance on Morphology, Physiology, and Gene Expression. FRONTIERS IN PLANT SCIENCE 2022; 13:844430. [PMID: 35734249 PMCID: PMC9208309 DOI: 10.3389/fpls.2022.844430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
Cotyledons play an important role in seedling establishment, although they may just exist for a short time and become senescent upon the emergence of euphylla. So far, the detailed function of cotyledons has not been well understood. Suaeda aralocaspica is an annual halophyte distributed in cold deserts; its cotyledons could exist for a longer time, even last until maturity, and they must exert a unique function in seedling development. Therefore, in this study, we conducted a series of experiments to investigate the morphological and physiological performances of cotyledons under salt stress at different developmental stages. The results showed that the cotyledons kept growing slowly to maintain the normal physiological activities of seedlings by balancing phytohormone levels, accumulating osmoprotectants and antioxidants, and scavenging reactive oxygen species (ROS). Salt stress activated the expression of osmoprotectant-related genes and enhanced the accumulation of related primary metabolites. Furthermore, differentially expressed transcriptional profiles of the cotyledons were also analyzed by cDNA-AFLP to gain an understanding of cotyledons in response to development and salt stress, and the results revealed a progressive increase in the expression level of development-related genes, which accounted for a majority of the total tested TDFs. Meanwhile, key photosynthetic and important salt stress-related genes also actively responded. All these performances suggest that "big cotyledons" are experiencing a delayed but active developmental process, by which S. aralocaspica may survive the harsh condition of the seedling stage.
Collapse
|
6
|
Mähler N, Schiffthaler B, Robinson KM, Terebieniec BK, Vučak M, Mannapperuma C, Bailey MES, Jansson S, Hvidsten TR, Street NR. Leaf shape in Populus tremula is a complex, omnigenic trait. Ecol Evol 2020; 10:11922-11940. [PMID: 33209260 PMCID: PMC7663049 DOI: 10.1002/ece3.6691] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/26/2020] [Accepted: 07/08/2020] [Indexed: 01/10/2023] Open
Abstract
Leaf shape is a defining feature of how we recognize and classify plant species. Although there is extensive variation in leaf shape within many species, few studies have disentangled the underlying genetic architecture. We characterized the genetic architecture of leaf shape variation in Eurasian aspen (Populus tremula L.) by performing genome-wide association study (GWAS) for physiognomy traits. To ascertain the roles of identified GWAS candidate genes within the leaf development transcriptional program, we generated RNA-Seq data that we used to perform gene co-expression network analyses from a developmental series, which is publicly available within the PlantGenIE resource. We additionally used existing gene expression measurements across the population to analyze GWAS candidate genes in the context of a population-wide co-expression network and to identify genes that were differentially expressed between groups of individuals with contrasting leaf shapes. These data were integrated with expression GWAS (eQTL) results to define a set of candidate genes associated with leaf shape variation. Our results identified no clear adaptive link to leaf shape variation and indicate that leaf shape traits are genetically complex, likely determined by numerous small-effect variations in gene expression. Genes associated with shape variation were peripheral within the population-wide co-expression network, were not highly connected within the leaf development co-expression network, and exhibited signatures of relaxed selection. As such, our results are consistent with the omnigenic model.
Collapse
Affiliation(s)
- Niklas Mähler
- Department of Plant PhysiologyUmeå Plant Science CentreUmeå UniversityUmeåSweden
| | - Bastian Schiffthaler
- Department of Plant PhysiologyUmeå Plant Science CentreUmeå UniversityUmeåSweden
| | - Kathryn M. Robinson
- Department of Plant PhysiologyUmeå Plant Science CentreUmeå UniversityUmeåSweden
| | | | - Matej Vučak
- School of Life SciencesCollege of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowScotland
| | - Chanaka Mannapperuma
- Department of Plant PhysiologyUmeå Plant Science CentreUmeå UniversityUmeåSweden
| | - Mark E. S. Bailey
- School of Life SciencesCollege of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowScotland
| | - Stefan Jansson
- Department of Plant PhysiologyUmeå Plant Science CentreUmeå UniversityUmeåSweden
| | - Torgeir R. Hvidsten
- Faculty of Chemistry, Biotechnology and Food ScienceNorwegian University of Life SciencesÅsNorway
| | - Nathaniel R. Street
- Department of Plant PhysiologyUmeå Plant Science CentreUmeå UniversityUmeåSweden
| |
Collapse
|
7
|
Zinkgraf M, Liu L, Groover A, Filkov V. Identifying gene coexpression networks underlying the dynamic regulation of wood-forming tissues in Populus under diverse environmental conditions. THE NEW PHYTOLOGIST 2017; 214:1464-1478. [PMID: 28248425 DOI: 10.1111/nph.14492] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 01/25/2017] [Indexed: 05/18/2023]
Abstract
Trees modify wood formation through integration of environmental and developmental signals in complex but poorly defined transcriptional networks, allowing trees to produce woody tissues appropriate to diverse environmental conditions. In order to identify relationships among genes expressed during wood formation, we integrated data from new and publically available datasets in Populus. These datasets were generated from woody tissue and include transcriptome profiling, transcription factor binding, DNA accessibility and genome-wide association mapping experiments. Coexpression modules were calculated, each of which contains genes showing similar expression patterns across experimental conditions, genotypes and treatments. Conserved gene coexpression modules (four modules totaling 8398 genes) were identified that were highly preserved across diverse environmental conditions and genetic backgrounds. Functional annotations as well as correlations with specific experimental treatments associated individual conserved modules with distinct biological processes underlying wood formation, such as cell-wall biosynthesis, meristem development and epigenetic pathways. Module genes were also enriched for DNase I hypersensitivity footprints and binding from four transcription factors associated with wood formation. The conserved modules are excellent candidates for modeling core developmental pathways common to wood formation in diverse environments and genotypes, and serve as testbeds for hypothesis generation and testing for future studies.
Collapse
Affiliation(s)
- Matthew Zinkgraf
- USDA Forest Service, Pacific Southwest Research Station, Davis, CA, 95618, USA
- Department of Computer Science, University of California, Davis, CA, 95618, USA
| | - Lijun Liu
- USDA Forest Service, Pacific Southwest Research Station, Davis, CA, 95618, USA
| | - Andrew Groover
- USDA Forest Service, Pacific Southwest Research Station, Davis, CA, 95618, USA
- Department of Plant Biology, University of California, Davis, CA, 95618, USA
| | - Vladimir Filkov
- Department of Computer Science, University of California, Davis, CA, 95618, USA
| |
Collapse
|
8
|
Giacomello S, Salmén F, Terebieniec BK, Vickovic S, Navarro JF, Alexeyenko A, Reimegård J, McKee LS, Mannapperuma C, Bulone V, Ståhl PL, Sundström JF, Street NR, Lundeberg J. Spatially resolved transcriptome profiling in model plant species. NATURE PLANTS 2017; 3:17061. [PMID: 28481330 DOI: 10.1038/nplants.2017.61] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 03/31/2017] [Indexed: 05/08/2023]
Abstract
Understanding complex biological systems requires functional characterization of specialized tissue domains. However, existing strategies for generating and analysing high-throughput spatial expression profiles were developed for a limited range of organisms, primarily mammals. Here we present the first available approach to generate and study high-resolution, spatially resolved functional profiles in a broad range of model plant systems. Our process includes high-throughput spatial transcriptome profiling followed by spatial gene and pathway analyses. We first demonstrate the feasibility of the technique by generating spatial transcriptome profiles from model angiosperms and gymnosperms microsections. In Arabidopsis thaliana we use the spatial data to identify differences in expression levels of 141 genes and 189 pathways in eight inflorescence tissue domains. Our combined approach of spatial transcriptomics and functional profiling offers a powerful new strategy that can be applied to a broad range of plant species, and is an approach that will be pivotal to answering fundamental questions in developmental and evolutionary biology.
Collapse
Affiliation(s)
- Stefania Giacomello
- Division of Gene Technology, School of Biotechnology, KTH Royal Institute of Technology, Science for Life Laboratory, 17165 Solna, Sweden
- Department of Biochemistry and Biophysics, Stockholm University, Science for Life Laboratory, 17165 Solna, Sweden
| | - Fredrik Salmén
- Division of Gene Technology, School of Biotechnology, KTH Royal Institute of Technology, Science for Life Laboratory, 17165 Solna, Sweden
| | - Barbara K Terebieniec
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90736 Umeå, Sweden
| | - Sanja Vickovic
- Division of Gene Technology, School of Biotechnology, KTH Royal Institute of Technology, Science for Life Laboratory, 17165 Solna, Sweden
| | | | - Andrey Alexeyenko
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, 17165 Solna, Sweden
- National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, 17121 Solna, Sweden
| | - Johan Reimegård
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, 75237 Uppsala, Sweden
| | - Lauren S McKee
- Division of Glycoscience, School of Biotechnology, KTH Royal Institute of Technology, AlbaNova University Centre, 11421 Stockholm, Sweden
| | - Chanaka Mannapperuma
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90736 Umeå, Sweden
| | - Vincent Bulone
- Division of Glycoscience, School of Biotechnology, KTH Royal Institute of Technology, AlbaNova University Centre, 11421 Stockholm, Sweden
- ARC Centre of Excellence in Plant and Cell Walls and School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, Adelaide, South Australia 5064, Australia
| | - Patrik L Ståhl
- Department of Cell and Molecular Biology, Karolinska Institute, 17165 Solna, Sweden
| | - Jens F Sundström
- Department of Plant Biology, Uppsala BioCenter, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
| | - Nathaniel R Street
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90736 Umeå, Sweden
| | - Joakim Lundeberg
- Division of Gene Technology, School of Biotechnology, KTH Royal Institute of Technology, Science for Life Laboratory, 17165 Solna, Sweden
| |
Collapse
|
9
|
Johnson KCM, Zhao J, Wu Z, Roth C, Lipka V, Wiermer M, Li X. The putative kinase substrate MUSE7 negatively impacts the accumulation of NLR proteins. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:1174-1183. [PMID: 28004865 DOI: 10.1111/tpj.13454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 12/08/2016] [Indexed: 06/06/2023]
Abstract
Stringent modulation of immune signaling in plants is necessary to enable a rapid response to pathogen attack without spurious defense activation. To identify genes involved in plant immunity, a forward genetic screen for enhancers of the autoimmune snc1 (suppressor of npr1, constitutive 1) mutant was conducted. The snc1 mutant contains a gain-of-function mutation in a gene encoding a NOD-like receptor (NLR) protein. The isolated muse7 (mutant, snc1-enhancing, 7) mutant was shown to confer a reversion to autoimmune phenotypes in the wild-type-like mos4 (modifier of snc1, 4) snc1 background. Positional cloning revealed that MUSE7 encodes an evolutionarily conserved putative kinase substrate of unknown function. The muse7 single mutants display enhanced resistance to the bacterial pathogen Pseudomonas syringae pv. tomato DC3000. While transcription of SNC1 is not enhanced, elevated SNC1 protein accumulation is associated with mutations in muse7. Accumulation of two additional NLR proteins, RPS2 (RESISTANCE TO PSEUDOMONAS SYRINGAE 2) and RPM1 (RESISTANCE TO PSEUDOMONAS SYRINGAE pv. MACULICOLA 1), was also observed in muse7 plants. Although proteasome-mediated degradation of NLR proteins is a well studied event in plant immunity, no interactions were detected between MUSE7 and selected components of this pathway. This study has demonstrated a role for MUSE7 in modulating plant immune responses through negatively affecting NLR accumulation, and will benefit future studies of MUSE7 homologs in other species.
Collapse
Affiliation(s)
- Kaeli C M Johnson
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Jin Zhao
- College of Life Science, Agricultural University of Hebei, 071000 Baoding, China
| | - Zhongshou Wu
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Charlotte Roth
- Department of Plant Cell Biology, Georg-August-University, 37077, Goettingen, Germany
| | - Volker Lipka
- Department of Plant Cell Biology, Georg-August-University, 37077, Goettingen, Germany
| | - Marcel Wiermer
- Department of Plant Cell Biology, Georg-August-University, 37077, Goettingen, Germany
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
10
|
Abstract
New crops are gradually establishing along with cultivation systems to reduce reliance on depleting fossil fuel reserves and sustain better adaptation to climate change. These biological assets could be efficiently exploited as bioenergy feedstocks. Bioenergy crops are versatile renewable sources with the potential to alternatively contribute on a daily basis towards the coverage of modern society's energy demands. Biotechnology may facilitate the breeding of elite energy crop genotypes, better suited for bio-processing and subsequent use that will improve efficiency, further reduce costs, and enhance the environmental benefits of biofuels. Innovative molecular techniques may improve a broad range of important features including biomass yield, product quality and resistance to biotic factors like pests or microbial diseases or environmental cues such as drought, salinity, freezing injury or heat shock. The current review intends to assess the capacity of biotechnological applications to develop a beneficial bioenergy pipeline extending from feedstock development to sustainable biofuel production and provide examples of the current state of the art on future energy crops.
Collapse
|
11
|
Das M, Haberer G, Panda A, Das Laha S, Ghosh TC, Schäffner AR. Expression Pattern Similarities Support the Prediction of Orthologs Retaining Common Functions after Gene Duplication Events. PLANT PHYSIOLOGY 2016; 171:2343-57. [PMID: 27303025 PMCID: PMC4972257 DOI: 10.1104/pp.15.01207] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 06/12/2016] [Indexed: 05/08/2023]
Abstract
The identification of functionally equivalent, orthologous genes (functional orthologs) across genomes is necessary for accurate transfer of experimental knowledge from well-characterized organisms to others. This frequently relies on automated, coding sequence-based approaches such as OrthoMCL, Inparanoid, and KOG, which usually work well for one-to-one homologous states. However, this strategy does not reliably work for plants due to the occurrence of extensive gene/genome duplication. Frequently, for one query gene, multiple orthologous genes are predicted in the other genome, and it is not clear a priori from sequence comparison and similarity which one preserves the ancestral function. We have studied 11 organ-dependent and stress-induced gene expression patterns of 286 Arabidopsis lyrata duplicated gene groups and compared them with the respective Arabidopsis (Arabidopsis thaliana) genes to predict putative expressologs and nonexpressologs based on gene expression similarity. Promoter sequence divergence as an additional tool to substantiate functional orthology only partially overlapped with expressolog classification. By cloning eight A. lyrata homologs and complementing them in the respective four Arabidopsis loss-of-function mutants, we experimentally proved that predicted expressologs are indeed functional orthologs, while nonexpressologs or nonfunctionalized orthologs are not. Our study demonstrates that even a small set of gene expression data in addition to sequence homologies are instrumental in the assignment of functional orthologs in the presence of multiple orthologs.
Collapse
Affiliation(s)
- Malay Das
- Institute of Biochemical Plant Pathology (M.D., A.R.S.) and Plant Genome and Systems Biology Group (G.H.), Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany;Department of Biological Sciences, Presidency University, Kolkata 700073, India (M.D., S.D.L.); andBioinformatics Center, Bose Institute, Centenary Campus, Kolkata 700073, India (A.P., T.C.G.)
| | - Georg Haberer
- Institute of Biochemical Plant Pathology (M.D., A.R.S.) and Plant Genome and Systems Biology Group (G.H.), Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany;Department of Biological Sciences, Presidency University, Kolkata 700073, India (M.D., S.D.L.); andBioinformatics Center, Bose Institute, Centenary Campus, Kolkata 700073, India (A.P., T.C.G.)
| | - Arup Panda
- Institute of Biochemical Plant Pathology (M.D., A.R.S.) and Plant Genome and Systems Biology Group (G.H.), Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany;Department of Biological Sciences, Presidency University, Kolkata 700073, India (M.D., S.D.L.); andBioinformatics Center, Bose Institute, Centenary Campus, Kolkata 700073, India (A.P., T.C.G.)
| | - Shayani Das Laha
- Institute of Biochemical Plant Pathology (M.D., A.R.S.) and Plant Genome and Systems Biology Group (G.H.), Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany;Department of Biological Sciences, Presidency University, Kolkata 700073, India (M.D., S.D.L.); andBioinformatics Center, Bose Institute, Centenary Campus, Kolkata 700073, India (A.P., T.C.G.)
| | - Tapas Chandra Ghosh
- Institute of Biochemical Plant Pathology (M.D., A.R.S.) and Plant Genome and Systems Biology Group (G.H.), Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany;Department of Biological Sciences, Presidency University, Kolkata 700073, India (M.D., S.D.L.); andBioinformatics Center, Bose Institute, Centenary Campus, Kolkata 700073, India (A.P., T.C.G.)
| | - Anton R Schäffner
- Institute of Biochemical Plant Pathology (M.D., A.R.S.) and Plant Genome and Systems Biology Group (G.H.), Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany;Department of Biological Sciences, Presidency University, Kolkata 700073, India (M.D., S.D.L.); andBioinformatics Center, Bose Institute, Centenary Campus, Kolkata 700073, India (A.P., T.C.G.)
| |
Collapse
|
12
|
Liu Y, Yang S, Song Y, Men S, Wang J. Gain-of-function analysis of poplar CLE genes in Arabidopsis by exogenous application and over-expression assays. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2309-24. [PMID: 26912800 DOI: 10.1093/jxb/erw045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Among 50 CLE gene family members in the Populus trichocarpa genome, three and six PtCLE genes encode a CLE motif sequence highly homologous to Arabidopsis CLV3 and TDIF peptides, respectively, which potentially make them functional equivalents. To test and compare their biological activity, we first chemically synthesized each dodecapeptide and analysed itsi n vitro bioactivity on Arabidopsis seedlings. Similarly, but to a different extent, three types of poplar CLV3-related peptides caused root meristem consumption, phyllotaxis disorder, anthocyanin accumulation and failure to enter the bolting stage. In comparison, application of two poplar TDIF-related peptides led to root length promotion in a dose-dependent manner with an even stronger effect observed for poplar TDIF-like peptide than TDIF. Next, we constructed CaMV35S:PtCLE transgenic plants for each of the nine PtCLE genes. Phenotypic abnormalities exemplified by arrested shoot apical meristem and abnormal flower structure were found to be more dominant and severe in 35S:PtCLV3 and 35S:PtCLV3-like2 lines than in the 35S:PtCLV3-like line. Disordered vasculature was detected in both stem and hypocotyl cross-sections in Arabidopsis plants over-expressing poplar TDIF-related genes with the most defective vascular patterning observed for TDIF2 and two TDIF-like genes. Phenotypic difference consistently observed in peptide application assay and transgenic analysis indicated the functional diversity of nine poplar PtCLE genes under investigation. This work represents the first report on the functional analysis of CLE genes in a tree species and constitutes a basis for further study of the CLE peptide signalling pathway in tree development.
Collapse
Affiliation(s)
- Yisen Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Shaohui Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yingjin Song
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Shuzhen Men
- College of Life Sciences, Nankai University, Tianjin 300072, China
| | - Jiehua Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
13
|
Sundell D, Mannapperuma C, Netotea S, Delhomme N, Lin YC, Sjödin A, Van de Peer Y, Jansson S, Hvidsten TR, Street NR. The Plant Genome Integrative Explorer Resource: PlantGenIE.org. THE NEW PHYTOLOGIST 2015; 208:1149-56. [PMID: 26192091 DOI: 10.1111/nph.13557] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 06/08/2015] [Indexed: 05/18/2023]
Abstract
Accessing and exploring large-scale genomics data sets remains a significant challenge to researchers without specialist bioinformatics training. We present the integrated PlantGenIE.org platform for exploration of Populus, conifer and Arabidopsis genomics data, which includes expression networks and associated visualization tools. Standard features of a model organism database are provided, including genome browsers, gene list annotation, Blast homology searches and gene information pages. Community annotation updating is supported via integration of WebApollo. We have produced an RNA-sequencing (RNA-Seq) expression atlas for Populus tremula and have integrated these data within the expression tools. An updated version of the ComPlEx resource for performing comparative plant expression analyses of gene coexpression network conservation between species has also been integrated. The PlantGenIE.org platform provides intuitive access to large-scale and genome-wide genomics data from model forest tree species, facilitating both community contributions to annotation improvement and tools supporting use of the included data resources to inform biological insight.
Collapse
Affiliation(s)
- David Sundell
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-907 81, Umeå, Sweden
- Computational Life Science Cluster (CLiC), Umeå University, SE-907 81, Umeå, Sweden
| | - Chanaka Mannapperuma
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-907 81, Umeå, Sweden
| | - Sergiu Netotea
- Computational Life Science Cluster (CLiC), Umeå University, SE-907 81, Umeå, Sweden
| | - Nicolas Delhomme
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-907 81, Umeå, Sweden
| | - Yao-Cheng Lin
- Department of Plant Systems Biology, VIB, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Andreas Sjödin
- Computational Life Science Cluster (CLiC), Umeå University, SE-907 81, Umeå, Sweden
- Department of Chemistry, Umeå University, SE-907 81, Umeå, Sweden
| | - Yves Van de Peer
- Department of Plant Systems Biology, VIB, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Genomics Research Institute, University of Pretoria, Hatfield Campus, 0028, Pretoria, South Africa
| | - Stefan Jansson
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-907 81, Umeå, Sweden
| | - Torgeir R Hvidsten
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-907 81, Umeå, Sweden
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, 1432, Ås, Norway
| | - Nathaniel R Street
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-907 81, Umeå, Sweden
- Computational Life Science Cluster (CLiC), Umeå University, SE-907 81, Umeå, Sweden
| |
Collapse
|
14
|
Liu Q, Wang Z, Xu X, Zhang H, Li C. Genome-Wide Analysis of C2H2 Zinc-Finger Family Transcription Factors and Their Responses to Abiotic Stresses in Poplar (Populus trichocarpa). PLoS One 2015; 10:e0134753. [PMID: 26237514 PMCID: PMC4523194 DOI: 10.1371/journal.pone.0134753] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 07/13/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND C2H2 zinc-finger (C2H2-ZF) proteins are a large gene family in plants that participate in various aspects of normal plant growth and development, as well as in biotic and abiotic stress responses. To date, no overall analysis incorporating evolutionary history and expression profiling of the C2H2-ZF gene family in model tree species poplar (Populus trichocarpa) has been reported. PRINCIPAL FINDINGS Here, we identified 109 full-length C2H2-ZF genes in P. trichocarpa, and classified them into four groups, based on phylogenetic analysis. The 109 C2H2-ZF genes were distributed unequally on 19 P. trichocarpa linkage groups (LGs), with 39 segmental duplication events, indicating that segmental duplication has been important in the expansion of the C2H2-ZF gene family. Promoter cis-element analysis indicated that most of the C2H2-ZF genes contain phytohormone or abiotic stress-related cis-elements. The expression patterns of C2H2-ZF genes, based on heatmap analysis, suggested that C2H2-ZF genes are involved in tissue and organ development, especially root and floral development. Expression analysis based on quantitative real-time reverse transcription polymerase chain reaction indicated that C2H2-ZF genes are significantly involved in drought, heat and salt response, possibly via different mechanisms. CONCLUSIONS This study provides a thorough overview of the P. trichocarpa C2H2-ZF gene family and presents a new perspective on the evolution of this gene family. In particular, some C2H2-ZF genes may be involved in environmental stress tolerance regulation. PtrZFP2, 19 and 95 showed high expression levels in leaves and/or roots under environmental stresses. Additionally, this study provided a solid foundation for studying the biological roles of C2H2-ZF genes in Populus growth and development. These results form the basis for further investigation of the roles of these candidate genes and for future genetic engineering and gene functional studies in Populus.
Collapse
Affiliation(s)
- Quangang Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang, People’s Republic of China
| | - Zhanchao Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang, People’s Republic of China
| | - Xuemei Xu
- Library of Northeast Forestry University, Harbin, Heilongjiang, People’s Republic of China
| | - Haizhen Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang, People’s Republic of China
| | - Chenghao Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang, People’s Republic of China
| |
Collapse
|
15
|
Drost DR, Puranik S, Novaes E, Novaes CRDB, Dervinis C, Gailing O, Kirst M. Genetical genomics of Populus leaf shape variation. BMC PLANT BIOLOGY 2015; 15:166. [PMID: 26122556 PMCID: PMC4486686 DOI: 10.1186/s12870-015-0557-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 06/16/2015] [Indexed: 05/04/2023]
Abstract
BACKGROUND Leaf morphology varies extensively among plant species and is under strong genetic control. Mutagenic screens in model systems have identified genes and established molecular mechanisms regulating leaf initiation, development, and shape. However, it is not known whether this diversity across plant species is related to naturally occurring variation at these genes. Quantitative trait locus (QTL) analysis has revealed a polygenic control for leaf shape variation in different species suggesting that loci discovered by mutagenesis may only explain part of the naturally occurring variation in leaf shape. Here we undertook a genetical genomics study in a poplar intersectional pseudo-backcross pedigree to identify genetic factors controlling leaf shape. The approach combined QTL discovery in a genetic linkage map anchored to the Populus trichocarpa reference genome sequence and transcriptome analysis. RESULTS A major QTL for leaf lamina width and length:width ratio was identified in multiple experiments that confirmed its stability. A transcriptome analysis of expanding leaf tissue contrasted gene expression between individuals with alternative QTL alleles, and identified an ADP-ribosylation factor (ARF) GTPase (PtARF1) as a candidate gene for regulating leaf morphology in this pedigree. ARF GTPases are critical elements in the vesicular trafficking machinery. Disruption of the vesicular trafficking function of ARF by the pharmacological agent Brefeldin A (BFA) altered leaf lateral growth in the narrow-leaf P. trichocarpa suggesting a molecular mechanism of leaf shape determination. Inhibition of the vesicular trafficking processes by BFA interferes with cycling of PIN proteins and causes their accumulation in intercellular compartments abolishing polar localization and disrupting normal auxin flux with potential effects on leaf expansion. CONCLUSIONS In other model systems, ARF proteins have been shown to control the localization of auxin efflux carriers, which function to establish auxin gradients and apical-basal cell polarity in developing plant organs. Our results support a model where PtARF1 transcript abundance changes the dynamics of endocytosis-mediated PIN localization in leaf cells, thus affecting lateral auxin flux and subsequently lamina leaf expansion. This suggests that evolution of differential cellular polarity plays a significant role in leaf morphological variation observed in subgenera of genus Populus.
Collapse
Affiliation(s)
- Derek R Drost
- School of Forest Resources and Conservation, University of Florida, P.O. Box 110410, Gainesville, FL, 32611, USA.
- Plant Molecular and Cellular Biology Graduate Program, University of Florida, P.O. Box 110690, Gainesville, FL, 32611, USA.
- Seminis, Inc., 37437 State Highway 16, Woodland, CA, 95695, USA.
| | - Swati Puranik
- School of Forest Resourse and Environmental Sciences, Michigan Technological University, Houghton, MI, 49931, USA.
| | - Evandro Novaes
- School of Forest Resources and Conservation, University of Florida, P.O. Box 110410, Gainesville, FL, 32611, USA.
- Escola de Agronomia, Universidade Federal de Goiás, Rodovia Goiânia/Nova Veneza, Km0 - Caixa Postal 131, Goiânia, GO, 74690-900, Brazil.
| | - Carolina R D B Novaes
- School of Forest Resources and Conservation, University of Florida, P.O. Box 110410, Gainesville, FL, 32611, USA.
- Escola de Agronomia, Universidade Federal de Goiás, Rodovia Goiânia/Nova Veneza, Km0 - Caixa Postal 131, Goiânia, GO, 74690-900, Brazil.
| | - Christopher Dervinis
- School of Forest Resources and Conservation, University of Florida, P.O. Box 110410, Gainesville, FL, 32611, USA.
| | - Oliver Gailing
- School of Forest Resourse and Environmental Sciences, Michigan Technological University, Houghton, MI, 49931, USA.
| | - Matias Kirst
- School of Forest Resources and Conservation, University of Florida, P.O. Box 110410, Gainesville, FL, 32611, USA.
- Plant Molecular and Cellular Biology Graduate Program, University of Florida, P.O. Box 110690, Gainesville, FL, 32611, USA.
- University of Florida Genetics Institute, University of Florida, P.O. Box 103610, Gainesville, FL, 32611, USA.
| |
Collapse
|
16
|
Xu Y, Wang Y, Long Q, Huang J, Wang Y, Zhou K, Zheng M, Sun J, Chen H, Chen S, Jiang L, Wang C, Wan J. Overexpression of OsZHD1, a zinc finger homeodomain class homeobox transcription factor, induces abaxially curled and drooping leaf in rice. PLANTA 2014; 239:803-16. [PMID: 24385091 DOI: 10.1007/s00425-013-2009-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 12/08/2013] [Indexed: 05/05/2023]
Abstract
Leaf rolling is receiving considerable attention as an important agronomic trait in rice (Oryza sativa L.). However, little has been known on the molecular mechanism of rice leaf rolling, especially the abaxial rolling. We identified a novel abaxially curled and drooping leaf-dominant mutant from a T₁ transgenic rice line. The abaxially curled leaf phenotypes, co-segregating with the inserted transferred DNA, were caused by overexpression of a zinc finger homeodomain class homeobox transcription factor (OsZHD1). OsZHD1 exhibited a constitutive expression pattern in wild-type plants and accumulated in the developing leaves and panicles. Artificial overexpression of OsZHD1 or its closest homolog OsZHD2 induced the abaxial leaf curling. Histological analysis indicated that both the increased number and the abnormal arrangement of bulliform cells in leaf were responsible for the abaxially curled leaves. We herein reported OsZHD1 with key roles in rice morphogenesis, especially in the modulating of leaf rolling, which provided a novel insight into the molecular mechanism of leaf development in rice.
Collapse
Affiliation(s)
- Yang Xu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Netotea S, Sundell D, Street NR, Hvidsten TR. ComPlEx: conservation and divergence of co-expression networks in A. thaliana, Populus and O. sativa. BMC Genomics 2014; 15:106. [PMID: 24498971 PMCID: PMC3925997 DOI: 10.1186/1471-2164-15-106] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 01/29/2014] [Indexed: 01/16/2023] Open
Abstract
Background Divergence in gene regulation has emerged as a key mechanism underlying species differentiation. Comparative analysis of co-expression networks across species can reveal conservation and divergence in the regulation of genes. Results We inferred co-expression networks of A. thaliana, Populus spp. and O. sativa using state-of-the-art methods based on mutual information and context likelihood of relatedness, and conducted a comprehensive comparison of these networks across a range of co-expression thresholds. In addition to quantifying gene-gene link and network neighbourhood conservation, we also applied recent advancements in network analysis to do cross-species comparisons of network properties such as scale free characteristics and gene centrality as well as network motifs. We found that in all species the networks emerged as scale free only above a certain co-expression threshold, and that the high-centrality genes upholding this organization tended to be conserved. Network motifs, in particular the feed-forward loop, were found to be significantly enriched in specific functional subnetworks but where much less conserved across species than gene centrality. Although individual gene-gene co-expression had massively diverged, up to ~80% of the genes still had a significantly conserved network neighbourhood. For genes with multiple predicted orthologs, about half had one ortholog with conserved regulation and another ortholog with diverged or non-conserved regulation. Furthermore, the most sequence similar ortholog was not the one with the most conserved gene regulation in over half of the cases. Conclusions We have provided a comprehensive analysis of gene regulation evolution in plants and built a web tool for Comparative analysis of Plant co-Expression networks (ComPlEx, http://complex.plantgenie.org/). The tool can be particularly useful for identifying the ortholog with the most conserved regulation among several sequence-similar alternatives and can thus be of practical importance in e.g. finding candidate genes for perturbation experiments.
Collapse
Affiliation(s)
| | | | | | - Torgeir R Hvidsten
- Umeå Plant Science Center, Department of Plant Physiology, Umeå University, Umeå, Sweden.
| |
Collapse
|
18
|
Lafon-Placette C, Faivre-Rampant P, Delaunay A, Street N, Brignolas F, Maury S. Methylome of DNase I sensitive chromatin in Populus trichocarpa shoot apical meristematic cells: a simplified approach revealing characteristics of gene-body DNA methylation in open chromatin state. THE NEW PHYTOLOGIST 2013; 197:416-430. [PMID: 23253333 DOI: 10.1111/nph.12026] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 10/02/2012] [Indexed: 05/17/2023]
Abstract
DNA methylation is involved in the control of plant development and adaptation to the environment through modifications of chromatin compaction and gene expression. In poplar (Populus trichocarpa), a perennial plant, variations in DNA methylation have been reported between genotypes and tissues or in response to drought. Nevertheless, the relationships between gene-body DNA methylation, gene expression and chromatin compaction still need clarification. Here, DNA methylation was mapped in the noncondensed chromatin fraction from P. trichocarpa shoot apical meristematic cells, the center of plant morphogenesis, where DNA methylation variations could influence the developmental trajectory. DNase I was used to isolate the noncondensed chromatin fraction. Methylated sequences were immunoprecipitated, sequenced using Illumina/Solexa technology and mapped on the v2.0 poplar genome. Bisulfite sequencing of candidate sequences was used to confirm mapping data and to assess cytosine contexts and methylation levels. While the methylated DNase I hypersensitive site fraction covered 1.9% of the poplar genome, it contained sequences corresponding to 74% of poplar gene models, mostly exons. The level and cytosine context of gene-body DNA methylation varied with the structural characteristics of the genes. Taken together, our data show that DNA methylation is widespread and variable among genes in open chromatin of meristematic cells, in agreement with a role in their developmental trajectory.
Collapse
Affiliation(s)
- Clément Lafon-Placette
- Université d'Orléans, Faculté des Sciences, Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), UPRES EA 1207, Orléans, 45067, France
- INRA, USC1328 Arbres et Réponses aux Contraintes Hydriques et Environnementales (ARCHE), Orléans, 45067, France
| | - Patricia Faivre-Rampant
- INRA, UMR1165, UMR INRA / Université d'Evry, Unité de Recherche en Génomique Végétale, Centre de Recherche de Versailles-Grignon, Evry, 91057, France
| | - Alain Delaunay
- Université d'Orléans, Faculté des Sciences, Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), UPRES EA 1207, Orléans, 45067, France
- INRA, USC1328 Arbres et Réponses aux Contraintes Hydriques et Environnementales (ARCHE), Orléans, 45067, France
| | - Nathaniel Street
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, 901 87, Sweden
| | - Franck Brignolas
- Université d'Orléans, Faculté des Sciences, Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), UPRES EA 1207, Orléans, 45067, France
- INRA, USC1328 Arbres et Réponses aux Contraintes Hydriques et Environnementales (ARCHE), Orléans, 45067, France
| | - Stéphane Maury
- Université d'Orléans, Faculté des Sciences, Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), UPRES EA 1207, Orléans, 45067, France
- INRA, USC1328 Arbres et Réponses aux Contraintes Hydriques et Environnementales (ARCHE), Orléans, 45067, France
| |
Collapse
|
19
|
Movahedi S, Van Bel M, Heyndrickx KS, Vandepoele K. Comparative co-expression analysis in plant biology. PLANT, CELL & ENVIRONMENT 2012; 35:1787-98. [PMID: 22489681 DOI: 10.1111/j.1365-3040.2012.02517.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The analysis of gene expression data generated by high-throughput microarray transcript profiling experiments has shown that transcriptionally coordinated genes are often functionally related. Based on large-scale expression compendia grouping multiple experiments, this guilt-by-association principle has been applied to study modular gene programmes, identify cis-regulatory elements or predict functions for unknown genes in different model plants. Recently, several studies have demonstrated how, through the integration of gene homology and expression information, correlated gene expression patterns can be compared between species. The incorporation of detailed functional annotations as well as experimental data describing protein-protein interactions, phenotypes or tissue specific expression, provides an invaluable source of information to identify conserved gene modules and translate biological knowledge from model organisms to crops. In this review, we describe the different steps required to systematically compare expression data across species. Apart from the technical challenges to compute and display expression networks from multiple species, some future applications of plant comparative transcriptomics are highlighted.
Collapse
Affiliation(s)
- Sara Movahedi
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | | | | | | |
Collapse
|
20
|
Nicotra AB, Leigh A, Boyce CK, Jones CS, Niklas KJ, Royer DL, Tsukaya H. The evolution and functional significance of leaf shape in the angiosperms. FUNCTIONAL PLANT BIOLOGY : FPB 2011; 38:535-552. [PMID: 32480907 DOI: 10.1071/fp11057] [Citation(s) in RCA: 218] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 05/30/2011] [Indexed: 05/18/2023]
Abstract
Angiosperm leaves manifest a remarkable diversity of shapes that range from developmental sequences within a shoot and within crown response to microenvironment to variation among species within and between communities and among orders or families. It is generally assumed that because photosynthetic leaves are critical to plant growth and survival, variation in their shape reflects natural selection operating on function. Several non-mutually exclusive theories have been proposed to explain leaf shape diversity. These include: thermoregulation of leaves especially in arid and hot environments, hydraulic constraints, patterns of leaf expansion in deciduous species, biomechanical constraints, adaptations to avoid herbivory, adaptations to optimise light interception and even that leaf shape variation is a response to selection on flower form. However, the relative importance, or likelihood, of each of these factors is unclear. Here we review the evolutionary context of leaf shape diversification, discuss the proximal mechanisms that generate the diversity in extant systems, and consider the evidence for each the above hypotheses in the context of the functional significance of leaf shape. The synthesis of these broad ranging areas helps to identify points of conceptual convergence for ongoing discussion and integrated directions for future research.
Collapse
Affiliation(s)
- Adrienne B Nicotra
- Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia
| | - Andrea Leigh
- School of the Environment, University of Technology, Sydney, PO Box 123, Broadway, NSW 2007, Australia
| | - C Kevin Boyce
- Department of the Geophysical Sciences, 5734 S. Ellis Avenue, Chicago, IL 60637, USA
| | - Cynthia S Jones
- Department of Ecology and Evolutionary Biology, University of Connecticut, 75 N. Eagleville Road, Unit-3043, Storrs, CT 06269, USA
| | - Karl J Niklas
- Department of Plant Biology, Cornell University, 412 Mann Library Building, Cornell University, Ithaca, NY 14853, USA
| | - Dana L Royer
- Department of Earth and Environmental Sciences, Wesleyan University, 265 Church Street, Middletown, CT 06459, USA
| | - Hirokazu Tsukaya
- Graduate School of Science, University of Tokyo, Science Build #2, 7-3-1 Hongo, Tokyo 113-0033, Japan
| |
Collapse
|
21
|
Movahedi S, Van de Peer Y, Vandepoele K. Comparative network analysis reveals that tissue specificity and gene function are important factors influencing the mode of expression evolution in Arabidopsis and rice. PLANT PHYSIOLOGY 2011; 156:1316-30. [PMID: 21571672 PMCID: PMC3135928 DOI: 10.1104/pp.111.177865] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Microarray experiments have yielded massive amounts of expression information measured under various conditions for the model species Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa). Expression compendia grouping multiple experiments make it possible to define correlated gene expression patterns within one species and to study how expression has evolved between species. We developed a robust framework to measure expression context conservation (ECC) and found, by analyzing 4,630 pairs of orthologous Arabidopsis and rice genes, that 77% showed conserved coexpression. Examples of nonconserved ECC categories suggested a link between regulatory evolution and environmental adaptations and included genes involved in signal transduction, response to different abiotic stresses, and hormone stimuli. To identify genomic features that influence expression evolution, we analyzed the relationship between ECC, tissue specificity, and protein evolution. Tissue-specific genes showed higher expression conservation compared with broadly expressed genes but were fast evolving at the protein level. No significant correlation was found between protein and expression evolution, implying that both modes of gene evolution are not strongly coupled in plants. By integration of cis-regulatory elements, many ECC conserved genes were significantly enriched for shared DNA motifs, hinting at the conservation of ancestral regulatory interactions in both model species. Surprisingly, for several tissue-specific genes, patterns of concerted network evolution were observed, unveiling conserved coexpression in the absence of conservation of tissue specificity. These findings demonstrate that orthologs inferred through sequence similarity in many cases do not share similar biological functions and highlight the importance of incorporating expression information when comparing genes across species.
Collapse
|
22
|
Uhlmann NK, Beckles DM. Storage products and transcriptional analysis of the endosperm of cultivated wheat and two wild wheat species. J Appl Genet 2011; 51:431-47. [PMID: 21063061 DOI: 10.1007/bf03208873] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The starch and protein in wheat (Triticum aestivum L.) endosperm provide 20 percent of the calories eaten by humans and were heavily selected for during domestication. We examined the main storage products and gene expression patterns that may embody compositional differences between two wild species Aegilops crassa and Aegilops tauschii and cultivated bread wheat. The storage product profiles differed significantly with T. aestivum accumulating twice as much carbon as the wild species, while the latter had 1.5 to 2-fold more total nitrogen per seed. Transcriptional analyses of endosperms of similar fresh weight were compared using a cDNA macroarray. Aegilops tauschii, and especially Ae. crassa had stronger hybridizations with storage protein sequences, but while there were differences in transcripts for starch biosynthetic genes, they were less dramatic. Of these, we cloned the Starch Branching Enzymes (SBE) IIa promoter region and the genomic clone of the Brittle-1 (Bt1) ADPglucose transporter. While Ae. crassa SBEIIa sequence was more divergent than that of Ae. tauschii’s compared to bread wheat, there were no sequence polymorphisms that would explain the observed expression differences in Bt1 between these species. Furthermore, while there were nucleotide differences between Bt1 in Ae. crassa and bread wheat, they were synonymous at the amino acid level. Some of transcriptional differences identified here, however, deserve further examination as part of a strategy to manipulate wheat starch and protein composition.
Collapse
Affiliation(s)
- N K Uhlmann
- DuPont-Pioneer, Crop Genetics Research, Experimental Station, Wilmington, USA
| | | |
Collapse
|
23
|
Kusano M, Fukushima A, Redestig H, Saito K. Metabolomic approaches toward understanding nitrogen metabolism in plants. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:1439-53. [PMID: 21220784 DOI: 10.1093/jxb/erq417] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Plants can assimilate inorganic nitrogen (N) sources to organic N such as amino acids. N is the most important of the mineral nutrients required by plants and its metabolism is tightly coordinated with carbon (C) metabolism in the fundamental processes that permit plant growth. Increased understanding of N regulation may provide important insights for plant growth and improvement of quality of crops and vegetables because N as well as C metabolism are fundamental components of plant life. Metabolomics is a global biochemical approach useful to study N metabolism because metabolites not only reflect the ultimate phenotypes (traits), but can mediate transcript levels as well as protein levels directly and/or indirectly under different N conditions. This review outlines analytical and bioinformatic techniques particularly used to perform metabolomics for studying N metabolism in higher plants. Examples are used to illustrate the application of metabolomic techniques to the model plants Arabidopsis and rice, as well as other crops and vegetables.
Collapse
Affiliation(s)
- Miyako Kusano
- RIKEN Plant Science Center, 1-7-22 Suehiro, Tsurumi, Yokohama 230-0045, Japan.
| | | | | | | |
Collapse
|
24
|
Street NR, Jansson S, Hvidsten TR. A systems biology model of the regulatory network in Populus leaves reveals interacting regulators and conserved regulation. BMC PLANT BIOLOGY 2011; 11:13. [PMID: 21232107 PMCID: PMC3030533 DOI: 10.1186/1471-2229-11-13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 01/13/2011] [Indexed: 05/23/2023]
Abstract
BACKGROUND Green plant leaves have always fascinated biologists as hosts for photosynthesis and providers of basic energy to many food webs. Today, comprehensive databases of gene expression data enable us to apply increasingly more advanced computational methods for reverse-engineering the regulatory network of leaves, and to begin to understand the gene interactions underlying complex emergent properties related to stress-response and development. These new systems biology methods are now also being applied to organisms such as Populus, a woody perennial tree, in order to understand the specific characteristics of these species. RESULTS We present a systems biology model of the regulatory network of Populus leaves. The network is reverse-engineered from promoter information and expression profiles of leaf-specific genes measured over a large set of conditions related to stress and developmental. The network model incorporates interactions between regulators, such as synergistic and competitive relationships, by evaluating increasingly more complex regulatory mechanisms, and is therefore able to identify new regulators of leaf development not found by traditional genomics methods based on pair-wise expression similarity. The approach is shown to explain available gene function information and to provide robust prediction of expression levels in new data. We also use the predictive capability of the model to identify condition-specific regulation as well as conserved regulation between Populus and Arabidopsis. CONCLUSIONS We outline a computationally inferred model of the regulatory network of Populus leaves, and show how treating genes as interacting, rather than individual, entities identifies new regulators compared to traditional genomics analysis. Although systems biology models should be used with care considering the complexity of regulatory programs and the limitations of current genomics data, methods describing interactions can provide hypotheses about the underlying cause of emergent properties and are needed if we are to identify target genes other than those constituting the "low hanging fruit" of genomic analysis.
Collapse
Affiliation(s)
- Nathaniel Robert Street
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 901 87 Umeå, Sweden
| | - Stefan Jansson
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 901 87 Umeå, Sweden
| | - Torgeir R Hvidsten
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 901 87 Umeå, Sweden
- Computational Life Science Cluster (CLiC), Umeå University, 901 87 Umeå, Sweden
| |
Collapse
|
25
|
Cohen D, Bogeat-Triboulot MB, Tisserant E, Balzergue S, Martin-Magniette ML, Lelandais G, Ningre N, Renou JP, Tamby JP, Le Thiec D, Hummel I. Comparative transcriptomics of drought responses in Populus: a meta-analysis of genome-wide expression profiling in mature leaves and root apices across two genotypes. BMC Genomics 2010; 11:630. [PMID: 21073700 PMCID: PMC3091765 DOI: 10.1186/1471-2164-11-630] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Accepted: 11/12/2010] [Indexed: 12/18/2022] Open
Abstract
Background Comparative genomics has emerged as a promising means of unravelling the molecular networks underlying complex traits such as drought tolerance. Here we assess the genotype-dependent component of the drought-induced transcriptome response in two poplar genotypes differing in drought tolerance. Drought-induced responses were analysed in leaves and root apices and were compared with available transcriptome data from other Populus species. Results Using a multi-species designed microarray, a genomic DNA-based selection of probesets provided an unambiguous between-genotype comparison. Analyses of functional group enrichment enabled the extraction of processes physiologically relevant to drought response. The drought-driven changes in gene expression occurring in root apices were consistent across treatments and genotypes. For mature leaves, the transcriptome response varied weakly but in accordance with the duration of water deficit. A differential clustering algorithm revealed similar and divergent gene co-expression patterns among the two genotypes. Since moderate stress levels induced similar physiological responses in both genotypes, the genotype-dependent transcriptional responses could be considered as intrinsic divergences in genome functioning. Our meta-analysis detected several candidate genes and processes that are differentially regulated in root and leaf, potentially under developmental control, and preferentially involved in early and long-term responses to drought. Conclusions In poplar, the well-known drought-induced activation of sensing and signalling cascades was specific to the early response in leaves but was found to be general in root apices. Comparing our results to what is known in arabidopsis, we found that transcriptional remodelling included signalling and a response to energy deficit in roots in parallel with transcriptional indices of hampered assimilation in leaves, particularly in the drought-sensitive poplar genotype.
Collapse
Affiliation(s)
- David Cohen
- INRA, Nancy Université, UMR1137 Ecologie et Ecophysiologie Forestières, IFR 110 EFABA, F-54280 Champenoux, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Lohse M, Nunes-Nesi A, Krüger P, Nagel A, Hannemann J, Giorgi FM, Childs L, Osorio S, Walther D, Selbig J, Sreenivasulu N, Stitt M, Fernie AR, Usadel B. Robin: an intuitive wizard application for R-based expression microarray quality assessment and analysis. PLANT PHYSIOLOGY 2010; 153:642-51. [PMID: 20388663 PMCID: PMC2879776 DOI: 10.1104/pp.109.152553] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Accepted: 04/06/2010] [Indexed: 05/17/2023]
Abstract
The wide application of high-throughput transcriptomics using microarrays has generated a plethora of technical platforms, data repositories, and sophisticated statistical analysis methods, leaving the individual scientist with the problem of choosing the appropriate approach to address a biological question. Several software applications that provide a rich environment for microarray analysis and data storage are available (e.g. GeneSpring, EMMA2), but these are mostly commercial or require an advanced informatics infrastructure. There is a need for a noncommercial, easy-to-use graphical application that aids the lab researcher to find the proper method to analyze microarray data, without this requiring expert understanding of the complex underlying statistics, or programming skills. We have developed Robin, a Java-based graphical wizard application that harnesses the advanced statistical analysis functions of the R/BioConductor project. Robin implements streamlined workflows that guide the user through all steps of two-color, single-color, or Affymetrix microarray analysis. It provides functions for thorough quality assessment of the data and automatically generates warnings to notify the user of potential outliers, low-quality chips, or low statistical power. The results are generated in a standard format that allows ready use with both specialized analysis tools like MapMan and PageMan and generic spreadsheet applications. To further improve user friendliness, Robin includes both integrated help and comprehensive external documentation. To demonstrate the statistical power and ease of use of the workflows in Robin, we present a case study in which we apply Robin to analyze a two-color microarray experiment comparing gene expression in tomato (Solanum lycopersicum) leaves, flowers, and roots.
Collapse
Affiliation(s)
- Marc Lohse
- Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Pérez-Rodríguez P, Riaño-Pachón DM, Corrêa LGG, Rensing SA, Kersten B, Mueller-Roeber B. PlnTFDB: updated content and new features of the plant transcription factor database. Nucleic Acids Res 2009; 38:D822-7. [PMID: 19858103 PMCID: PMC2808933 DOI: 10.1093/nar/gkp805] [Citation(s) in RCA: 503] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The Plant Transcription Factor Database (PlnTFDB; http://plntfdb.bio.uni-potsdam.de/v3.0/) is an integrative database that provides putatively complete sets of transcription factors (TFs) and other transcriptional regulators (TRs) in plant species (sensu lato) whose genomes have been completely sequenced and annotated. The complete sets of 84 families of TFs and TRs from 19 species ranging from unicellular red and green algae to angiosperms are included in PlnTFDB, representing >1.6 billion years of evolution of gene regulatory networks. For each gene family, a basic description is provided that is complemented by literature references, and multiple sequence alignments of protein domains. TF or TR gene entries include information of expressed sequence tags, 3D protein structures of homologous proteins, domain architecture and cross-links to other computational resources online. Moreover, the different species in PlnTFDB are linked to each other by means of orthologous genes facilitating cross-species comparisons.
Collapse
Affiliation(s)
- Paulino Pérez-Rodríguez
- Department of Molecular Biology, Institute of Biochemistry and Biology, GoFORSYS, University of Potsdam, Karl-Liebknecht-Str 24-25, Haus 20, 14476 Potsdam-Golm, Germany
| | | | | | | | | | | |
Collapse
|
28
|
Sjödin A, Street NR, Sandberg G, Gustafsson P, Jansson S. The Populus Genome Integrative Explorer (PopGenIE): a new resource for exploring the Populus genome. THE NEW PHYTOLOGIST 2009; 182:1013-1025. [PMID: 19383103 DOI: 10.1111/j.1469-8137.2009.02807.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Populus has become an important model plant system. However, utilization of the increasingly extensive collection of genetics and genomics data created by the community is currently hindered by the lack of a central resource, such as a model organism database (MOD). Such MODs offer a single entry point to the collection of resources available within a model system, typically including tools for exploring and querying those resources. As a starting point to overcoming the lack of such an MOD for Populus, we present the Populus Genome Integrative Explorer (PopGenIE), an integrated set of tools for exploring the Populus genome and transcriptome. The resource includes genome, synteny and quantitative trait locus (QTL) browsers for exploring genetic data. Expression tools include an electronic fluorescent pictograph (eFP) browser, expression profile plots, co-regulation within collated transcriptomics data sets, and identification of over-represented functional categories and genomic hotspot locations. A number of collated transcriptomics data sets are made available in the eFP browser to facilitate functional exploration of gene function. Additional homology and data extraction tools are provided. PopGenIE significantly increases accessibility to Populus genomics resources and allows exploration of transcriptomics data without the need to learn or understand complex statistical analysis methods. PopGenIE is available at www.popgenie.org or via www.populusgenome.info.
Collapse
Affiliation(s)
- Andreas Sjödin
- Umeå Plant Science Centre, Department of Plant Physiology, University of Umeå, SE-901-87 Umeå, Sweden
- CBRN Security and Defence, Swedish Defence Research Agency, SE-90182 Umeå, Sweden
| | - Nathaniel Robert Street
- Umeå Plant Science Centre, Department of Plant Physiology, University of Umeå, SE-901-87 Umeå, Sweden
| | - Göran Sandberg
- Umeå Plant Science Centre, Department of Plant Physiology, University of Umeå, SE-901-87 Umeå, Sweden
| | - Petter Gustafsson
- Umeå Plant Science Centre, Department of Plant Physiology, University of Umeå, SE-901-87 Umeå, Sweden
| | - Stefan Jansson
- Umeå Plant Science Centre, Department of Plant Physiology, University of Umeå, SE-901-87 Umeå, Sweden
| |
Collapse
|
29
|
Fujii YR. Oncoviruses and Pathogenic MicroRNAs in Humans. Open Virol J 2009; 3:37-51. [PMID: 19920887 PMCID: PMC2778015 DOI: 10.2174/1874357900903010037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Revised: 03/19/2009] [Accepted: 03/24/2009] [Indexed: 12/19/2022] Open
Abstract
For disease prognosis, the functional significance of the oncoviral integration locus in oncogenesis has remained enigmatic. The locus encodes several transcripts without protein products, but microRNAs (miRNAs) have recently been identified from a common oncoviral integration locus. miRNA is an endogenous, non-coding small RNA by which gene expression is suppressed. Although miRNA genes, such as let-7 in the nematode, have orthologs among animals, the relationship between miRNAs and tumorigenesis or tumor suppression has been mainly discovered in several human cancers. On the contrary, this review clearly demonstrates the potential for human tumorigenesis of both miRNA genes from oncoviral integration sites and other cellular onco-microRNA genes, and we conclude that alteration of the miRNA profile of cells can be defined as tumorigenic or tumor suppressive. Thus, we explain here that virally-pathogenic miRNAs could also be partly responsible for oncogenesis or oncogene suppression to confirm' the RNA wave', with the miRNAs hypothesized as a mobile and functional genetic element.
Collapse
|
30
|
Micol JL. Leaf development: time to turn over a new leaf? CURRENT OPINION IN PLANT BIOLOGY 2009; 12:9-16. [PMID: 19109050 DOI: 10.1016/j.pbi.2008.11.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Revised: 10/30/2008] [Accepted: 11/01/2008] [Indexed: 05/18/2023]
Abstract
Molecular cloning of mutations affecting the morphology of plant leaves has proven to be useful for the causal analysis of leaf development. Studies of leaf mutants have produced a wealth of biologically meaningful information on the genes that participate in leaf initiation, leaf polarity specification and maintenance, and leaf expansion and maturation. The availability of collections of gene-indexed insertional mutants, automated platforms for high-throughput imaging, and new morphometry software is making genome-wide leaf phenomics possible and complements classical forward genetics approaches. Large-scale phenomic studies will further our understanding, among others, of two intriguing phenomena that recently reentered the leaf scenario. One is the unexpected relationship between translation and leaf dorsoventrality, recently confirmed by the severe abaxialization of double mutants involving loss-of-function alleles of the developmental selector genes AS1 and AS2 and some genes encoding ribosomal proteins. The second unexplained phenomenon is the compensatory cell enlargement experienced by some leaf mutants, in which a reduced cell number is compensated by their increased cell size compared with the wild type. This compensation suggests that cell cycling and cell enlargement are integrated in leaf primordia via cell-to-cell communication.
Collapse
Affiliation(s)
- José Luis Micol
- División de Genética and Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, Elche, Alicante, Spain.
| |
Collapse
|