1
|
Birhanu AG, Riaz T, Støen M, Tønjum T. Differential Abundance of Protein Acylation in Mycobacterium tuberculosis Under Exposure to Nitrosative Stress. Proteomics Clin Appl 2024; 18:e202300212. [PMID: 39082596 DOI: 10.1002/prca.202300212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/05/2024] [Accepted: 07/15/2024] [Indexed: 11/15/2024]
Abstract
BACKGROUND Human macrophages generate antimicrobial reactive nitrogen species in response to infection by Mycobacterium tuberculosis (Mtb). Exposure to these redox-reactive compounds induces stress response in Mtb, which can affect posttranslational modifications (PTM). METHODS Here, we present the global analysis of the PTM acylation of Mtb proteins in response to a sublethal dose of nitrosative stress in the form of nitric oxide (NO) using label free quantification. RESULTS A total of 6437 acylation events were identified on 1496 Mtb proteins, and O-acylation accounted for 92.2% of the events identified, while 7.8% were N-acylation events. About 22% of the sites identified were found to be acylated by more than one acyl-group. Furthermore, the abundance of each acyl-group decreased as their molecular weight increased. Quantitative PTM analysis revealed differential abundance of acylation in proteins involved in stress response, iron ion homeostasis, growth, energy metabolism, and antimicrobial resistance (AMR) induced by nitrosative stress over time. CONCLUSIONS The results reveal a potential role of Mtb protein acylation in the bacterial stress responses and AMR. To our knowledge, this is the first report on global O-acylation profile of Mtb in response to NO. This will significantly improve our understanding of the changes in Mtb acylation under nitrosative stress, highly relevant for global health.
Collapse
Affiliation(s)
- Alemayehu Godana Birhanu
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Microbiology, University of Oslo, Nydalen, Oslo, Norway
| | - Tahira Riaz
- Department of Microbiology, University of Oslo, Nydalen, Oslo, Norway
| | - Mari Støen
- Department of Microbiology, Oslo University Hospital, Nydalen, Oslo, Norway
| | - Tone Tønjum
- Department of Microbiology, University of Oslo, Nydalen, Oslo, Norway
- Department of Microbiology, Oslo University Hospital, Nydalen, Oslo, Norway
| |
Collapse
|
2
|
Mwangi ZM, Ireri S, Opwaka H, Otieno L, Simam J, Onyambu FG, Mukiri N. Diagnostic Accuracy of FluoroCycler XT MTBDR Assay for Detection of Rifampicin and Isoniazid-resistant Mycobacteria tuberculosis in Clinical Isolates from Kenya. Int J Mycobacteriol 2024; 13:258-264. [PMID: 39277887 DOI: 10.4103/ijmy.ijmy_202_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/16/2024] [Indexed: 09/17/2024] Open
Abstract
BACKGROUND Drug-resistant tuberculosis (DR-TB) poses a major global challenge to public health and therapeutics. It is an emerging global concern associated with increased morbidity and mortality mostly seen in the low- and middle-income countries. Molecular techniques are highly sensitive and offer timely and accurate results for TB drug resistance testing, thereby positively influencing patient management plan. METHODS The study was carried out at the National Tuberculosis Reference Laboratory (NTRL) in Kenya in the period between January and October 2022. A total of 243 Mycobacterium tuberculosis (M.tb) clinical isolates were included in the study. These isolates comprised of 50 isolates with mutations in rpoB, 51 isolates with katG mutations, 51 isolates with mutations in inhA, and 91 M.tb isolates lacking mutations in these genes based on Genotype MTBDRplus results. DNA from the isolates was extracted using the FluoroLyse extraction kit. Real-time polymerase chain reaction targeting the rpoB, InhA, and katG genes was performed using the FluoroType MTBDR amplification mix. Isolates with discordant results between Genotype MTBDRplus and FluoroCycler® MTBDR assays underwent targeted sequencing for the respective genes, then, sequences were analyzed for mutations using Geneious version 11.0 software. RESULTS The sensitivity of the Fluorocycler XT MTBDR assay for the detection of mutations that confer drug resistance was 86% (95% confidence interval [CI] 73.0-94.0) for rpoB, 96% (95% CI 87-100) for katG and 92% (95% CI 81-98) for inhA. The assay's specificity was 97% (95% CI 93-99) for rpoB, 98% (95% CI 96-100) for katG, and 97% (95% CI 93-99) for inhA. CONCLUSION The diagnostic accuracy of FluoroType MTBDR for the detection of mutations conferring resistance to rifampicin and isoniazid was high compared with that of Genotype MTBDRplus and demonstrates its suitability as a replacement assay for Genotype MTBDRplus.
Collapse
Affiliation(s)
- Zakayo Maingi Mwangi
- Department of Medical Laboratory Sciences, Meru University of Science and Technology, Meru, Kenya
| | - Samson Ireri
- National Tuberculosis Reference Laboratory, National Public Health Laboratories, Nairobi, Kenya
| | - Haron Opwaka
- National Tuberculosis Reference Laboratory, National Public Health Laboratories, Nairobi, Kenya
| | - Leon Otieno
- Molecular Medicine and Infectious Diseases Laboratory, University of Nairobi, Institute of Tropical and Infectious Diseases, Nairobi, Kenya
| | - Joan Simam
- Department of Medical Laboratory Sciences, Meru University of Science and Technology, Meru, Kenya
| | - Frank Gekara Onyambu
- Department of Medical Laboratory Sciences, Meru University of Science and Technology, Meru, Kenya
- Centre for Molecular Biosciences and Genomics, Nairobi, Kenya
| | - Nellie Mukiri
- National Tuberculosis Reference Laboratory, National Public Health Laboratories, Nairobi, Kenya
| |
Collapse
|
3
|
Diriba G, Alemu A, Ayano BZ, Yenew B, Hailu M, Buta B, Wondimu A, Tefera Z, Ababu Z, Ebisa Y, Moga S, Tadesse G. Acquired bedaquiline and fluoroquinolones resistance during treatment follow-up in Oromia Region, North Shewa, Ethiopia. IDCases 2024; 36:e01988. [PMID: 38779144 PMCID: PMC11109312 DOI: 10.1016/j.idcr.2024.e01988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/01/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Background Bedaquiline (BDQ) is an effective drug currently used for multidrug-resistant or rifampicin-resistant TB (MDR/RR-TB) and pre-extensively drug-resistant TB (pre-XDR-TB) treatment. However, resistance to this new drug is emerging. We discussed the characteristics of the first patient in Ethiopia who acquired BDQ and fluoroquinolones (FQs) resistance during treatment follow-up. Case report In this case report, we present the case of a 28-year-old male pulmonary TB patient diagnosed with MDR-TB who is a resident of the Oromia Region of North Shewa, Mulona Sululta Woreda, Ethiopia. Sputum specimen was collected initially and for treatment monitoring using culture and for phenotypic drug susceptibility testing (DST) to first-line and second-line TB drugs. Initially, the patient was infected with a mycobacterial strain resistant to the first-line anti-TB drugs Rifampicin (RIF), Isoniazid (INH), and Pyrazinamide (PZA). Later, during treatment, he acquired additional drug resistance to ethambutol (EMB), ofloxacin (OFX), levofloxacin (LFX), moxifloxacin (MFX), and BDQ. The patient was tested with MTBDRplus and MTBDRsl to confirm the presence of resistance-conferring mutation and mutation was detected in rpoB, katG, and gyrA genes. Finally, the patient was registered as having extensively drug-resistant tuberculosis (XDR-TB) and immediately started an individualized treatment regimen. Conclusion This case report data has revealed the evolution of BDQ resistance during treatment with a BDQ-containing regimen in Ethiopia. Therefore, there is a need for DST to new second-line drugs to monitor and prevent the spread of DR-TB.
Collapse
Affiliation(s)
- Getu Diriba
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Ayinalem Alemu
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | | | - Bazezew Yenew
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Michael Hailu
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Bedo Buta
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | | | - Zigba Tefera
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | | | | | - Shewki Moga
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | | |
Collapse
|
4
|
Rozman V, Mohar Lorbeg P, Treven P, Accetto T, Janežič S, Rupnik M, Bogovič Matijašić B. Genomic insights into antibiotic resistance and mobilome of lactic acid bacteria and bifidobacteria. Life Sci Alliance 2023; 6:e202201637. [PMID: 36781180 PMCID: PMC9930590 DOI: 10.26508/lsa.202201637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 01/30/2023] [Accepted: 01/30/2023] [Indexed: 02/15/2023] Open
Abstract
Lactic acid bacteria (LAB) and Bifidobacterium sp. (bifidobacteria) can carry antimicrobial resistance genes (ARGs), yet data on resistance mechanisms in these bacteria are limited. The aim of our study was to identify the underlying genetic mechanisms of phenotypic resistance in 103 LAB and bifidobacteria using whole-genome sequencing. Sequencing data not only confirmed the presence of 36 acquired ARGs in genomes of 18 strains, but also revealed wide dissemination of intrinsic ARGs. The presence of acquired ARGs on known and novel mobile genetic elements raises the possibility of their horizontal spread. In addition, our data suggest that mutations may be a common mechanism of resistance. Several novel candidate resistance mechanisms were uncovered, providing a basis for further in vitro studies. Overall, 1,314 minimum inhibitory concentrations matched with genotypes in 92.4% of the cases; however, prediction of phenotype based on genotypic data was only partially efficient, especially with respect to aminoglycosides and chloramphenicol. Our study sheds light on resistance mechanisms and their transferability potential in LAB and bifidobacteria, which will be useful for risk assessment analysis.
Collapse
Affiliation(s)
- Vita Rozman
- University of Ljubljana, Biotechnical Faculty, Department of Animal Science, Institute of Dairy Science and Probiotics, Domžale, Slovenia
| | - Petra Mohar Lorbeg
- University of Ljubljana, Biotechnical Faculty, Department of Animal Science, Institute of Dairy Science and Probiotics, Domžale, Slovenia
| | - Primož Treven
- University of Ljubljana, Biotechnical Faculty, Department of Animal Science, Institute of Dairy Science and Probiotics, Domžale, Slovenia
| | - Tomaž Accetto
- University of Ljubljana, Biotechnical Faculty, Department of Microbiology, Chair of Microbial Diversity, Microbiomics and Biotechnology, Ljubljana, Slovenia
| | - Sandra Janežič
- National Laboratory of Health, Environment and Food, Maribor, Slovenia
- University of Maribor, Faculty of Medicine, Maribor, Slovenia
| | - Maja Rupnik
- National Laboratory of Health, Environment and Food, Maribor, Slovenia
- University of Maribor, Faculty of Medicine, Maribor, Slovenia
| | - Bojana Bogovič Matijašić
- University of Ljubljana, Biotechnical Faculty, Department of Animal Science, Institute of Dairy Science and Probiotics, Domžale, Slovenia
| |
Collapse
|
5
|
Rana V, Singh N, Nikam C, Kambli P, Singh PK, Singh U, Jain A, Rodrigues C, Sharma C. Molecular Epidemiology and Polymorphism Analysis in Drug-Resistant Genes in M. tuberculosis Clinical Isolates from Western and Northern India. Infect Drug Resist 2022; 15:1717-1732. [PMID: 35422638 PMCID: PMC9005233 DOI: 10.2147/idr.s345855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/02/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction The mechanistic details of first line drug (FLD) resistance have been thoroughly explored but the genetic resistance mechanisms of second line injectables, which form the backbone of the combinatorial drug resistant tuberculosis therapy, are partially identified. This study aims to highlight the genetic and spoligotypic differences in the second line drug (SLD) resistant and sensitive Mycobacterium tuberculosis (Mtb) clinical isolates from Mumbai (Western India) and Lucknow (Northern India). Methods The rrs, eis, whiB7, tlyA, gyrA and gyrB target loci were screened in 126 isolates and spoligotyped. Results The novel mutations were observed in whiB7 loci (A43T, C44A, C47A, G48T, G59A and T152G in 5’-UTR; A42C, C253T and T270G in gene), tlyA (+CG200, G165A, C415G, and +G543) and gyrB (+G1359 and +A1429). Altogether, the rrs, eis, and whiB7 loci harbored mutations in ~86% and ~47% kanamycin resistant isolates from Mumbai and Lucknow, respectively. Mumbai strains displayed higher prevalence of mutations in gyrA (~85%) and gyrB loci (~13%) as compared to those from Lucknow (~69% and ~3.0%, respectively). Further, spoligotyping revealed that Beijing lineage is distributed equally amongst the drug resistant strains of Mumbai and Lucknow, but EAI-5 is existed at a higher level only in Mumbai. The lineages Manu2, CAS1-Delhi and T1 are more prevalent in Lucknow. Conclusion Besides identifying novel mutations in whiB7, tlyA and gyrB target loci, our analyses unveiled a potential polymorphic and phylogeographical demarcation among two distinct regions.
Collapse
Affiliation(s)
- Vibhuti Rana
- CSIR- Institute of Microbial Technology, Chandigarh, 160036, India
| | - Nittu Singh
- CSIR- Institute of Microbial Technology, Chandigarh, 160036, India
| | - Chaitali Nikam
- Department of Microbiology, P. D. Hinduja National Hospital and Medical Research Centre, Mumbai, 400016, Maharashtra, India
| | - Priti Kambli
- Department of Microbiology, P. D. Hinduja National Hospital and Medical Research Centre, Mumbai, 400016, Maharashtra, India
| | - Pravin K Singh
- Department of Microbiology, King George Medical University, Lucknow, 226003, Uttar Pradesh, India
| | - Urmila Singh
- Department of Microbiology, King George Medical University, Lucknow, 226003, Uttar Pradesh, India
| | - Amita Jain
- Department of Microbiology, King George Medical University, Lucknow, 226003, Uttar Pradesh, India
| | - Camilla Rodrigues
- Department of Microbiology, P. D. Hinduja National Hospital and Medical Research Centre, Mumbai, 400016, Maharashtra, India
| | - Charu Sharma
- CSIR- Institute of Microbial Technology, Chandigarh, 160036, India
- Correspondence: Charu Sharma, CSIR-Institute of Microbial Technology, Sector 39-A, Chandigarh, 160036, India, Tel +911722880309/310, Fax +911722690585, Email
| |
Collapse
|
6
|
Ma P, Luo T, Ge L, Chen Z, Wang X, Zhao R, Liao W, Bao L. Compensatory effects of M. tuberculosis rpoB mutations outside the rifampicin resistance-determining region. Emerg Microbes Infect 2021; 10:743-752. [PMID: 33775224 PMCID: PMC8057087 DOI: 10.1080/22221751.2021.1908096] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Mycobacterium tuberculosis has been observed to develop resistance to the frontline anti-tuberculosis drug rifampicin, primarily through mutations in the rifampicin resistance-determining region (RRDR) of rpoB. While these mutations have been determined to confer a fitness cost, compensatory mutations in rpoA and rpoC that may enhance the fitness of resistant strains have been demonstrated. Recent genomic studies identified several rpoB non-RRDR mutations that co-occurred with RRDR mutations in clinical isolates without rpoA/rpoC mutations and may confer fitness compensation. In this study, we identified 33 evolutionarily convergent rpoB non-RRDR mutations through phylogenomic analysis of public genomic data for clinical M. tuberculosis isolates. We found that none of these mutations, except V170F and I491F, can cause rifampin resistance in Mycolicibacterium smegmatis. The compensatory effects of five representative mutations across rpoB were evaluated by an in vitro competition assay, through which we observed that each of these mutations can significantly improve the relative fitness of the initial S450L mutant (0.97–1.08 vs 0.87). Furthermore, we observed that the decreased RNAP transcription efficiency introduced by S450L was significantly alleviated by each of the five mutations. Structural analysis indicated that the fitness compensation observed for the non-RRDR mutations might be achieved by modification of the RpoB active centre or by changes in interactions between RNAP subunits. Our results provide experimental evidence supporting that compensatory effects are exerted by several rpoB non-RRDR mutations, which could be utilized as additional molecular markers for predicting the fitness of clinical rifampin-resistant M. tuberculosis strains.
Collapse
Affiliation(s)
- Pengjiao Ma
- Laboratory of Infection and Immunity, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, People's Republic of China
| | - Tao Luo
- Laboratory of Infection and Immunity, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, People's Republic of China
| | - Liang Ge
- Laboratory of Infection and Immunity, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, People's Republic of China
| | - Zonghai Chen
- Laboratory of Infection and Immunity, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, People's Republic of China
| | - Xinyan Wang
- Laboratory of Infection and Immunity, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, People's Republic of China
| | - Rongchuan Zhao
- Laboratory of Infection and Immunity, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, People's Republic of China
| | - Wei Liao
- Laboratory of Infection and Immunity, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, People's Republic of China
| | - Lang Bao
- Laboratory of Infection and Immunity, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
7
|
Li XH, Huang YY, Lu LM, Zhao LJ, Luo XK, Li RJ, Dai YY, Qin C, Huang YQ, Chen H. Early genetic diagnosis of clarithromycin resistance in Helicobacter pylori. World J Gastroenterol 2021; 27:3595-3608. [PMID: 34239272 PMCID: PMC8240046 DOI: 10.3748/wjg.v27.i24.3595] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/13/2021] [Accepted: 05/21/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The drug resistance rate of clinical Helicobacter pylori (H. pylori) isolates has increased. However, the mechanism of drug resistance remains unclear. In this study, drug-resistant H. pylori strains were isolated from different areas and different populations of Chinese for genomic analysis.
AIM To investigate drug-resistant genes in H. pylori and find the genes for the early diagnosis of clarithromycin resistance.
METHODS Three drug-resistant H. pylori strains were isolated from patients with gastritis in Bama County, China. Minimal inhibitory concentrations of clarithromycin, metronidazole, and levofloxacin were determined and complete genome sequencing was performed with annotation. Hp1181 and hp1184 genes were found in these strains and then detected by reverse transcription polymerase chain reaction. The relationships between hp1181 or hp1184 and clarithromycin resistance were ascertained with gene mutant and drug-resistant strains. The homology of the strains with hp26695 was assessed through complete genome detection and identification. Differences in genome sequences, gene quantity, and gene characteristics were detected amongst the three strains. Prediction and analysis of the function of drug-resistant genes indicated that the RNA expression of hp1181 and hp1184 increased in the three strains, which was the same in the artificially induced clarithromycin-resistant bacteria. After gene knockout, the drug sensitivity of the strains was assessed.
RESULTS The strains showing a high degree of homology with hp26695, hp1181, and hp1184 genes were found in these strains; the expression of the genes hp1184 and hp1181 was associated with clarithromycin resistance.
CONCLUSION Hp1181 and hp1184 mutations may be the earliest and most persistent response to clarithromycin resistance, and they may be the potential target genes for the diagnosis, prevention, and treatment of clarithromycin resistance.
Collapse
Affiliation(s)
- Xiao-Hua Li
- Research Center for the Prevention and Treatment of Drug Resistant Microbial Infection, Youjiang Medical University for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Yong-Yi Huang
- Research Center for the Prevention and Treatment of Drug Resistant Microbial Infection, Youjiang Medical University for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Lin-Ming Lu
- Department of Pathology, Wannan Medical College, Wuhu 241002, Anhui Province, China
| | - Li-Juan Zhao
- Research Center for the Prevention and Treatment of Drug Resistant Microbial Infection, Youjiang Medical University for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Xian-Ke Luo
- Department of Gastroenterology, National Hospital of Guangxi Zhuang Autonomous Region, Nanning Guangxi Zhuang Autonomous Region, 530001, China
| | - Ru-Jia Li
- Research Center for the Prevention and Treatment of Drug Resistant Microbial Infection, Youjiang Medical University for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Yuan-Yuan Dai
- Research Center for the Prevention and Treatment of Drug Resistant Microbial Infection, Youjiang Medical University for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Chun Qin
- Research Center for the Prevention and Treatment of Drug Resistant Microbial Infection, Youjiang Medical University for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Yan-Qiang Huang
- Research Center for the Prevention and Treatment of Drug Resistant Microbial Infection, Youjiang Medical University for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Hao Chen
- Department of Pathology, Wannan Medical College, Wuhu 241002, Anhui Province, China
| |
Collapse
|
8
|
Rocha DMGC, Magalhães C, Cá B, Ramos A, Carvalho T, Comas I, Guimarães JT, Bastos HN, Saraiva M, Osório NS. Heterogeneous Streptomycin Resistance Level Among Mycobacterium tuberculosis Strains From the Same Transmission Cluster. Front Microbiol 2021; 12:659545. [PMID: 34177837 PMCID: PMC8226182 DOI: 10.3389/fmicb.2021.659545] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/06/2021] [Indexed: 11/13/2022] Open
Abstract
Widespread and frequent resistance to the second-line tuberculosis (TB) medicine streptomycin, suggests ongoing transmission of low fitness cost streptomycin resistance mutations. To investigate this hypothesis, we studied a cohort of 681 individuals from a TB epidemic in Portugal. Whole-genome sequencing (WGS) analyses were combined with phenotypic growth studies in culture media and in mouse bone marrow derived macrophages. Streptomycin resistance was the most frequent resistance in the cohort accounting for 82.7% (n = 67) of the resistant Mycobacterium tuberculosis isolates. WGS of 149 clinical isolates identified 13 transmission clusters, including three clusters containing only streptomycin resistant isolates. The biggest cluster was formed by eight streptomycin resistant isolates with a maximum of five pairwise single nucleotide polymorphisms of difference. Interestingly, despite their genetic similarity, these isolates displayed different resistance levels to streptomycin, as measured both in culture media and in infected mouse bone marrow derived macrophages. The genetic bases underlying this phenotype are a combination of mutations in gid and other genes. This study suggests that specific streptomycin resistance mutations were transmitted in the cohort, with the resistant isolates evolving at the cluster level to allow low-to-high streptomycin resistance levels without a significative fitness cost. This is relevant not only to better understand transmission of streptomycin resistance in a clinical setting dominated by Lineage 4 M. tuberculosis infections, but mainly because it opens new prospects for the investigation of selection and spread of drug resistance in general.
Collapse
Affiliation(s)
- Deisy M G C Rocha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Portugal.,i3S - Instituto de Investigacão e Inovação em Saúde, University of Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), University of Porto, Porto, Portugal
| | - Carlos Magalhães
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Portugal
| | - Baltazar Cá
- i3S - Instituto de Investigacão e Inovação em Saúde, University of Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), University of Porto, Porto, Portugal
| | - Angelica Ramos
- Department of Clinical Pathology, Centro Hospitalar São João, Porto, Portugal
| | - Teresa Carvalho
- Department of Clinical Pathology, Centro Hospitalar São João, Porto, Portugal
| | - Iñaki Comas
- Biomedicine Institute of Valencia IBV-CSIC, Valencia, Spain.,CIBER in Epidemiology and Public Health, Valencia, Spain
| | - João Tiago Guimarães
- Department of Clinical Pathology, Centro Hospitalar São João, Porto, Portugal.,Institute of Public Health, University of Porto, Porto, Portugal.,Department of Biochemistry, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Helder Novais Bastos
- i3S - Instituto de Investigacão e Inovação em Saúde, University of Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), University of Porto, Porto, Portugal.,Serviço de Pneumologia, Centro Hospitalar Universitário de São João EPE, Porto, Portugal
| | - Margarida Saraiva
- i3S - Instituto de Investigacão e Inovação em Saúde, University of Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), University of Porto, Porto, Portugal
| | - Nuno S Osório
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Portugal
| |
Collapse
|
9
|
Chopyk J, Nasko DJ, Allard S, Bui A, Pop M, Mongodin EF, Sapkota AR. Seasonal dynamics in taxonomy and function within bacterial and viral metagenomic assemblages recovered from a freshwater agricultural pond. ENVIRONMENTAL MICROBIOME 2020; 15:18. [PMID: 33902740 PMCID: PMC8067656 DOI: 10.1186/s40793-020-00365-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/29/2020] [Indexed: 06/01/2023]
Abstract
BACKGROUND Ponds are important freshwater habitats that support both human and environmental activities. However, relative to their larger counterparts (e.g. rivers, lakes), ponds are understudied, especially with regard to their microbial communities. Our study aimed to fill this knowledge gap by using culture-independent, high-throughput sequencing to assess the dynamics, taxonomy, and functionality of bacterial and viral communities in a freshwater agricultural pond. RESULTS Water samples (n = 14) were collected from a Mid-Atlantic agricultural pond between June 2017 and May 2018 and filtered sequentially through 1 and 0.2 μm filter membranes. Total DNA was then extracted from each filter, pooled, and subjected to 16S rRNA gene and shotgun sequencing on the Illumina HiSeq 2500 platform. Additionally, on eight occasions water filtrates were processed for viral metagenomes (viromes) using chemical concentration and then shotgun sequenced. A ubiquitous freshwater phylum, Proteobacteria was abundant at all sampling dates throughout the year. However, environmental characteristics appeared to drive the structure of the community. For instance, the abundance of Cyanobacteria (e.g. Nostoc) increased with rising water temperatures, while a storm event appeared to trigger an increase in overall bacterial diversity, as well as the relative abundance of Bacteroidetes. This event was also associated with an increase in the number of antibiotic resistance genes. The viral fractions were dominated by dsDNA of the order Caudovirales, namely Siphoviridae and Myovirdae. CONCLUSIONS Overall, this study provides one of the largest datasets on pond water microbial ecology to date, revealing seasonal trends in the microbial taxonomic composition and functional potential.
Collapse
Affiliation(s)
- Jessica Chopyk
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, USA.
- Department of Pathology University of California San Diego, La Jolla, California, USA.
| | - Daniel J Nasko
- Center for Bioinformatics and Computational Biology, Institute for Advanced Computer Sciences, University of Maryland, College Park, MD, USA
| | - Sarah Allard
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, USA
| | - Anthony Bui
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, USA
| | - Mihai Pop
- Center for Bioinformatics and Computational Biology, Institute for Advanced Computer Sciences, University of Maryland, College Park, MD, USA
| | - Emmanuel F Mongodin
- Institute for Genome Sciences and Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Amy R Sapkota
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, USA
| |
Collapse
|
10
|
Krishnakumariamma K, Ellappan K, Muthuraj M, Tamilarasu K, Kumar SV, Joseph NM. Molecular diagnosis, genetic diversity and drug sensitivity patterns of Mycobacterium tuberculosis strains isolated from tuberculous meningitis patients at a tertiary care hospital in South India. PLoS One 2020; 15:e0240257. [PMID: 33017455 PMCID: PMC7535050 DOI: 10.1371/journal.pone.0240257] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 09/23/2020] [Indexed: 12/13/2022] Open
Abstract
Tuberculous meningitis (TBM) is the most severe form of Mycobacterium tuberculosis (Mtb) infection in humans and is a public health concern worldwide. We evaluated the performance of GeneXpert MTB/RIF (GeneXpert) for the diagnosis of TBM. In addition, genetic diversity and drug susceptibility profiling of Mtb strains isolated from TBM patients were also investigated. A total of 293 TBM suspected cerebrospinal fluid (CSF) samples were collected and subjected to GeneXpert and Mycobacterial Growth Indicator Tube (MGIT 960) culture, respectively. Sensitivity and specificity of GeneXpert was 72.7% and 98.5%, respectively by using MGIT 960 as a gold standard (GeneXpert (n = 20, 6.8%) vs MGIT 960 (n = 22, 7.5%)). All Mtb positive cultures were subjected to 24-locus Mycobacterial Interspersed Repetitive Unit Variable Number Tandem Repeat (MIRU-VNTR) typing, Line probe assay (LPA) and MGIT 960- Drug Susceptibility Testing (DST). The rpoB gene was amplified and sequenced for selected isolates. Among our TBM patients, East African Indian (EAI) lineage (n = 16, 72.7%) was most predominant followed by Beijing (n = 3, 13.6%), S-family (n = 2, 9.1%) and Delhi/CAS (n = 1, 4.5%). Three Mtb strains were found to be Isoniazid (INH) resistant by MGIT 960; however LPA revealed that two strains were INH resistant and one strain was multi drug resistant (MDR) (Resistant to Isoniazid and Rifampicin (RIF)). We identified rifampicin resistant isolate with the mutation D516F in rifampicin resistance-determining region (RRDR) and observed discordant results between LPA, GeneXpert and MGIT 960. In addition, GeneXpert showing false RIF resistance was identified (no mutation in RRDR). We conclude that GeneXpert is useful for the diagnostic confirmation of TBM; however a GeneXpert negative sample should be subjected to MGIT 960 culture or LPA to rule out TBM. EAI lineage was the most predominant among TBM patients in South India and associated with drug resistance. The discordance between GeneXpert, MGIT 960 and LPA with respect to rifampicin resistance has to be ruled out to avoid TB treatment failure or relapse.
Collapse
Affiliation(s)
- Krishnapriya Krishnakumariamma
- Department of Microbiology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Pondicherry, India
| | - Kalaiarasan Ellappan
- Department of Microbiology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Pondicherry, India
| | - Muthaiah Muthuraj
- Intermediate Reference Laboratory, Government Hospital for Chest Diseases, Pondicherry, India
| | - Kadhiravan Tamilarasu
- Department of Medicine, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Pondicherry, India
| | - Saka Vinod Kumar
- Department of Pulmonary Medicine, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Pondicherry, India
| | - Noyal Mariya Joseph
- Department of Microbiology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Pondicherry, India
- * E-mail:
| |
Collapse
|
11
|
Tania T, Sudarmono P, Kusumawati RL, Rukmana A, Pratama WA, Regmi SM, Kaewprasert O, Chaiprasert A, Chongsuvivatwong V, Faksri K. Whole-genome sequencing analysis of multidrug-resistant Mycobacterium tuberculosis from Java, Indonesia. J Med Microbiol 2020; 69:1013-1019. [PMID: 32579102 DOI: 10.1099/jmm.0.001221] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction. Multidrug-resistant tuberculosis (MDR-TB) is a major public health problem globally, including in Indonesia. Whole-genome sequencing (WGS) analysis has rarely been used for the study of TB and MDR-TB in Indonesia.Aim. We evaluated the use of WGS for drug-susceptibility testing (DST) and to investigate the population structure of drug-resistant Mycobacterium tuberculosis in Java, Indonesia.Methodology. Thirty suspected MDR-TB isolates were subjected to MGIT 960 system (MGIT)-based DST and to WGS. Phylogenetic analysis was done using the WGS data. Results obtained using MGIT-based DST and WGS-based DST were compared.Results. Agreement between WGS and MGIT was 93.33 % for rifampicin, 83.33 % for isoniazid and 76.67 % for streptomycin but only 63.33 % for ethambutol. Moderate WGS-MGIT agreement was found for second-line drugs including amikacin, kanamycin and fluoroquinolone (73.33-76.67 %). MDR-TB was more common in isolates of the East Asian Lineage (63.3%). No evidence of clonal transmission of DR-TB was found among members of the tested population.Conclusion. Our study demonstrated the applicability of WGS for DST and molecular epidemiology of DR-TB in Java, Indonesia. We found no transmission of DR-TB in Indonesia.
Collapse
Affiliation(s)
- Tryna Tania
- Department of Microbiology, Faculty of Medicine, Universitas Indonesia-Cipto Mangunkusumo National Central General Hospital, Jakarta, Indonesia
| | - Pratiwi Sudarmono
- Department of Microbiology, Faculty of Medicine, Universitas Indonesia-Cipto Mangunkusumo National Central General Hospital, Jakarta, Indonesia
| | - R Lia Kusumawati
- Department of Microbiology, Faculty of Medicine, Universitas Sumatera Utara-Adam Malik General Hospital, Medan, Indonesia
| | - Andriansjah Rukmana
- Department of Microbiology, Faculty of Medicine, Universitas Indonesia-Cipto Mangunkusumo National Central General Hospital, Jakarta, Indonesia
| | - Wahyu Agung Pratama
- Department of Microbiology, Faculty of Medicine, Universitas Indonesia-Cipto Mangunkusumo National Central General Hospital, Jakarta, Indonesia
| | - Sanjib Mani Regmi
- Department of Microbiology, Gandaki Medical College Teaching Hospital and Research Center, Pokhara, Nepal
| | - Orawee Kaewprasert
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Angkana Chaiprasert
- Office of Research Affairs, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | - Kiatichai Faksri
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
12
|
Chopyk J, Nasko DJ, Allard S, Callahan MT, Bui A, Ferelli AMC, Chattopadhyay S, Mongodin EF, Pop M, Micallef SA, Sapkota AR. Metagenomic analysis of bacterial and viral assemblages from a freshwater creek and irrigated field reveals temporal and spatial dynamics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 706:135395. [PMID: 31846873 DOI: 10.1016/j.scitotenv.2019.135395] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/04/2019] [Accepted: 11/04/2019] [Indexed: 06/10/2023]
Abstract
Lotic surface water sites (e.g. creeks) are important resources for localized agricultural irrigation. However, there is concern that microbial contaminants within untreated surface water may be transferred onto irrigated soil and crops. To evaluate this issue, water samples were collected between January 2017 and August 2018 from a freshwater creek used to irrigate kale and radish plants on a small farm in the Mid-Atlantic, United States. In addition, on one sampling date, a field survey was conducted in which additional water (creek source and point-of-use) and soil samples were collected to assess the viral and bacterial communities pre- and post- irrigation. All samples were processed for DNA extracts and shotgun sequenced on the Illumina HiSeq platform. The resulting metagenomic libraries were assembled de novo and taxonomic and functional features were assigned at the contig and peptide level. From these data, we observed that Betaproteobacteria (e.g. Variovorax) dominated the water, both at the source and point-of-use, and Alphaproteobacteria (e.g. Streptomyces) dominated both pre- and post-irrigated soil. Additionally, in the creek source water there were variations in the abundance of the dominant bacterial genera and functional annotations associated with seasonal characteristics (e.g. water temperature). Antibiotic resistance genes and virulence factors were also identified in the creek water and soil, with the majority specific to their respective habitat. Moreover, an analysis of clustered regularly interspaced short palindromic repeat (CRISPR) arrays showed the persistence of certain spacers through time in the creek water, as well as specific interactions between creek bacteriophages and their hosts. Overall, these findings provide a more holistic picture of bacterial and viral composition, dynamics, and interactions within a freshwater creek that can be utilized to further our knowledge on its suitability and safety for irrigation.
Collapse
Affiliation(s)
- Jessica Chopyk
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, USA
| | - Daniel J Nasko
- Center for Bioinformatics and Computational Biology, Institute for Advanced Computer Sciences, University of Maryland, College Park, MD, USA; University of Maryland Institute for Advanced Computer Studies, College Park, MD, USA
| | - Sarah Allard
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, USA
| | | | - Anthony Bui
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, USA
| | | | - Suhana Chattopadhyay
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, USA
| | - Emmanuel F Mongodin
- Institute for Genome Sciences and Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mihai Pop
- Center for Bioinformatics and Computational Biology, Institute for Advanced Computer Sciences, University of Maryland, College Park, MD, USA; University of Maryland Institute for Advanced Computer Studies, College Park, MD, USA
| | - Shirley A Micallef
- Department of Plant Science and Landscape Architecture, College Park, MD, USA; Center for Food Safety and Security Systems, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Amy R Sapkota
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, USA.
| |
Collapse
|
13
|
Chopyk J, Nasko DJ, Allard S, Bui A, Treangen T, Pop M, Mongodin EF, Sapkota AR. Comparative metagenomic analysis of microbial taxonomic and functional variations in untreated surface and reclaimed waters used in irrigation applications. WATER RESEARCH 2020; 169:115250. [PMID: 31726395 DOI: 10.1016/j.watres.2019.115250] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 10/08/2019] [Accepted: 10/27/2019] [Indexed: 05/08/2023]
Abstract
The use of irrigation water sourced from reclamation facilities and untreated surface water bodies may be a practical solution to attenuate the burden on diminishing groundwater aquifers. However, comprehensive microbial characterizations of these water sources are generally lacking, especially with regard to variations through time and across multiple water types. To address this knowledge gap we used a shotgun metagenomic approach to characterize the taxonomic and functional variations of microbial communities within two agricultural ponds, two freshwater creeks, two brackish rivers, and three water reclamation facilities located in the Mid-Atlantic, United States. Water samples (n = 24) were collected from all sites between October and November 2016, and filtered onto 0.2 μm membrane filters. Filters were then subjected to total DNA extraction and shotgun sequencing on the Illumina HiSeq platform. From these data, we found that Betaproteobacteria dominated the majority of freshwater sites, while Alphaproteobacteria were abundant at times in the brackish waters. One of these brackish sites was also host to a greater abundance of the bacterial genera Gimesia and Microcystis. Furthermore, predicted microbial features (e.g. antibiotic resistance genes (ARGs) and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) arrays) varied based on specific site and sampling date. ARGs were found across samples, with the diversity and abundance highest in those from a reclamation facility and a wastewater-impacted freshwater creek. Additionally, we identified over 600 CRISPR arrays, containing ∼2600 unique spacers, suggestive of a diverse and often site-specific phage community. Overall, these results provide a better understanding of the complex microbial community in untreated surface and reclaimed waters, while highlighting possible environmental and human health impacts associated with their use in agriculture.
Collapse
Affiliation(s)
- Jessica Chopyk
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, USA
| | - Daniel J Nasko
- Center for Bioinformatics and Computational Biology, Institute for Advanced Computer Sciences, University of Maryland, College Park, MD, USA
| | - Sarah Allard
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, USA
| | - Anthony Bui
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, USA
| | - Todd Treangen
- Department of Computer Science, Rice University, Houston, TX, USA
| | - Mihai Pop
- Center for Bioinformatics and Computational Biology, Institute for Advanced Computer Sciences, University of Maryland, College Park, MD, USA
| | - Emmanuel F Mongodin
- Institute for Genome Sciences and Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Amy R Sapkota
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, USA.
| |
Collapse
|
14
|
Haile B, Tafess K, Zewude A, Yenew B, Siu G, Ameni G. Spoligotyping and drug sensitivity of Mycobacterium tuberculosis isolated from pulmonary tuberculosis patients in the Arsi Zone of southeastern Ethiopia. New Microbes New Infect 2019; 33:100620. [PMID: 31908780 PMCID: PMC6938991 DOI: 10.1016/j.nmni.2019.100620] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/15/2019] [Accepted: 11/19/2019] [Indexed: 11/29/2022] Open
Abstract
Tuberculosis (TB) is one of the leading causes of morbidity and mortality in different zones of Ethiopia. This study was undertaken to identify the strains of Mycobacterium tuberculosis and evaluate their drug sensitivity profiles in the Arsi Zone. A total of 111 isolates of M. tuberculosis from individuals with pulmonary TB were included and speciation and strain identification were performed using Region of difference 9 and spoligotyping, respectively. The drug sensitivity patterns were assessed using Bactec MGIT 960 SIRE and GenoType MTBDRplus line probe assays. Of 111 isolates, 83% were interpretable and 56 different spoligotype patterns were identified. From these, 22 patterns were shared types while the remaining 34 were orphans. The predominant shared types were spoligotype international type (SIT) 149 and SIT53, comprising 12 and 11 isolates, respectively. Euro-American lineage was the dominant lineage followed by East-African-Indian. Phenotypically, 17.2% of tested isolates were resistant to any first-line drugs and 3.1% were multidrug-resistant. Higher (6.2%) mono-resistance was observed to streptomycin, and no resistance was observed to rifampicin or ethambutol. Genotypically, five (5.4%) isolates were resistant to isoniazid and mutated at codon S315T1 of katG. In contrast, only 1.1% of the isolates were resistant to rifampicin and were mutated at codon S531L of rpoB gene. In this study, a high proportion of orphan strains were isolated, which could suggest the presence of new strains and a high percentage of mono-resistance, warranting the need to strengthen control efforts.
Collapse
Affiliation(s)
- B Haile
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia.,College of Veterinary Medicine and Animal Science, Department of Veterinary Epidemiology and Public Health, University of Gondar, Gondar, Ethiopia
| | - K Tafess
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, Hong Kong.,Department of Medical Laboratory, College of Health Sciences, Arsi University, Asella, Ethiopia
| | - A Zewude
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - B Yenew
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - G Siu
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, Hong Kong
| | - G Ameni
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
15
|
Diefenbach-Elstob T, Guernier V, Burgess G, Pelowa D, Dowi R, Gula B, Puri M, Pomat W, McBryde E, Plummer D, Rush C, Warner J. Molecular Evidence of Drug-Resistant Tuberculosis in the Balimo Region of Papua New Guinea. Trop Med Infect Dis 2019; 4:tropicalmed4010033. [PMID: 30744192 PMCID: PMC6473227 DOI: 10.3390/tropicalmed4010033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/07/2019] [Accepted: 02/08/2019] [Indexed: 12/02/2022] Open
Abstract
Papua New Guinea (PNG) has a high burden of tuberculosis (TB), including drug-resistant TB (DR-TB). DR-TB has been identified in patients in Western Province, although there has been limited study outside the provincial capital of Daru. This study focuses on the Balimo region of Western Province, aiming to identify the proportion of DR-TB, and characterise Mycobacterium tuberculosis (MTB) drug resistance-associated gene mutations. Sputum samples were investigated for MTB infection using published molecular methods. DNA from MTB-positive samples was amplified and sequenced, targeting the rpoB and katG genes to identify mutations associated with rifampicin and isoniazid resistance respectively. A total of 240 sputum samples were collected at Balimo District Hospital (BDH). Of these, 86 were classified as positive based on the results of the molecular assays. For samples where rpoB sequencing was successful, 10.0% (5/50, 95% CI 4.4–21.4%) were considered rifampicin-resistant through detection of drug resistance-associated mutations. We have identified high rates of presumptive DR-TB in the Balimo region of Western Province, PNG. These results emphasise the importance of further surveillance, and strengthening of diagnostic and treatment services at BDH and throughout Western Province, to facilitate detection and treatment of DR-TB, and limit transmission in this setting.
Collapse
Affiliation(s)
- Tanya Diefenbach-Elstob
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville 4811, Australia.
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville 4811, Australia.
| | - Vanina Guernier
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville 4811, Australia.
| | - Graham Burgess
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville 4811, Australia.
| | - Daniel Pelowa
- Balimo District Hospital, Balimo, Western Province, Papua New Guinea.
| | - Robert Dowi
- Balimo District Hospital, Balimo, Western Province, Papua New Guinea.
| | - Bisato Gula
- Balimo District Hospital, Balimo, Western Province, Papua New Guinea.
| | - Munish Puri
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville 4811, Australia.
| | - William Pomat
- Papua New Guinea Institute of Medical Research, Goroka 441, Papua New Guinea.
| | - Emma McBryde
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville 4811, Australia.
| | - David Plummer
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville 4811, Australia.
| | - Catherine Rush
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville 4811, Australia.
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville 4811, Australia.
| | - Jeffrey Warner
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville 4811, Australia.
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville 4811, Australia.
| |
Collapse
|
16
|
Ko DH, Lee EJ, Lee SK, Kim HS, Shin SY, Hyun J, Kim JS, Song W, Kim HS. Application of next-generation sequencing to detect variants of drug-resistant Mycobacterium tuberculosis: genotype-phenotype correlation. Ann Clin Microbiol Antimicrob 2019; 18:2. [PMID: 30606210 PMCID: PMC6317249 DOI: 10.1186/s12941-018-0300-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 12/26/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Drug resistance in Mycobacterium tuberculosis (MTB) is a major health issue worldwide. Recently, next-generation sequencing (NGS) technology has begun to be used to detect resistance genes of MTB. We aimed to assess the clinical usefulness of Ion S5 NGS TB research panel for detecting MTB resistance in Korean tuberculosis patients. METHODS Mycobacterium tuberculosis with various drug resistance profiles including susceptible strains (N = 36) were isolated from clinical specimens. Nucleic acids were extracted from inactivated culture medium and underwent amplicon-based NGS to detect resistance variants in eight genes (gyrA, rpoB, pncA, katG, eis, rpsL, embB, and inhA). Data from previous studies using the same panel were merged to yield pooled sensitivity and specificity values for detecting drug resistance compared to phenotype-based methods. RESULTS The sequencing reactions were successful for all samples. A total of 24 variants were considered to be related to resistance, and 6 of them were novel. Agreement between the phenotypic and genotypic results was excellent for isoniazid, rifampicin, and ethambutol, and was poor for streptomycin, amikacin, and kanamycin. The negative predictive values were greater than 97% for all drug classes, while the positive predictive values varied (44% to 100%). There was a possibility that common mutations could not be detected owing to the low coverage. CONCLUSIONS We successfully applied NGS for genetic analysis of drug resistances in MTB, as well as for susceptible strains. We obtained lists of polymorphisms and possible polymorphisms, which could be used as a guide for future tests applying NGS in mycobacteriology laboratories. When analyzing the results of NGS, coverage analysis of each samples for each gene and benign polymorphisms not related to drug resistance should be considered.
Collapse
Affiliation(s)
- Dae-Hyun Ko
- Department of Laboratory Medicine, University of Ulsan College of Medicine and Asan Medical Center, Seoul, South Korea
| | - Eun Jin Lee
- Department of Laboratory Medicine, Hallym University College of Medicine, Chuncheon, South Korea
| | - Su-Kyung Lee
- Department of Laboratory Medicine, Hallym University College of Medicine, Chuncheon, South Korea
| | - Han-Sung Kim
- Department of Laboratory Medicine, Hallym University College of Medicine, Chuncheon, South Korea
| | - So Youn Shin
- Korean Institute of Tuberculosis, Cheongju, South Korea
| | - Jungwon Hyun
- Department of Laboratory Medicine, Hallym University College of Medicine, Chuncheon, South Korea
| | - Jae-Seok Kim
- Department of Laboratory Medicine, Hallym University College of Medicine, Chuncheon, South Korea
| | - Wonkeun Song
- Department of Laboratory Medicine, Hallym University College of Medicine, Chuncheon, South Korea
| | - Hyun Soo Kim
- Department of Laboratory Medicine, Hallym University College of Medicine, Chuncheon, South Korea. .,Department of Laboratory Medicine, Hallym University Dongtan Sacred Heart Hospital, Hallym University College of Medicine, 7, Keunjaebong-gil, Hwaseong-Si, Gyeonggi-Do, 18450, South Korea.
| |
Collapse
|
17
|
Genetics and roadblocks of drug resistant tuberculosis. INFECTION GENETICS AND EVOLUTION 2018; 72:113-130. [PMID: 30261266 DOI: 10.1016/j.meegid.2018.09.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/20/2018] [Accepted: 09/22/2018] [Indexed: 11/22/2022]
Abstract
Considering the extensive evolutionary history of Mycobacterium tuberculosis, anti-Tuberculosis (TB) drug therapy exerts a recent selective pressure. However, in a microorganism devoid of horizontal gene transfer and with a strictly clonal populational structure such as M. tuberculosis the usual, but not sole, path to overcome drug susceptibility is through de novo mutations on a relatively strict set of genes. The possible allelic diversity that can be associated with drug resistance through several mechanisms such as target alteration or target overexpression, will dictate how these genes can become associated with drug resistance. The success demonstrated by this pathogenic microbe in this latter process and its ability to spread is currently one of the major obstacles to an effective TB elimination. This article reviews the action mechanism of the more important anti-TB drugs, including bedaquiline and delamanid, along with new findings on specific resistance mechanisms. With the development, validation and endorsement of new in vitro molecular tests for drug resistance, knowledge on these resistance mechanisms and microevolutionary dynamics leading to the emergence and fixation of drug resistance mutations within the host is highly important. Additionally, the fitness toll imposed by resistance development is also herein discussed together with known compensatory mechanisms. By elucidating the possible mechanisms that enable one strain to reacquire the original fitness levels, it will be theoretically possible to make more informed decisions and develop novel strategies that can force M. tuberculosis microevolutionary trajectory down through a path of decreasing fitness levels.
Collapse
|
18
|
Characterization of Mutations Conferring Resistance to Rifampin in Mycobacterium tuberculosis Clinical Strains. Antimicrob Agents Chemother 2018; 62:AAC.01093-18. [PMID: 30061294 DOI: 10.1128/aac.01093-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 07/26/2018] [Indexed: 11/20/2022] Open
Abstract
Resistance of Mycobacterium tuberculosis to rifampin (RMP), mediated by mutations in the rpoB gene coding for the beta-subunit of RNA polymerase, poses a serious threat to the efficacy of clinical management and, thus, control programs for tuberculosis (TB). The contribution of many individual rpoB mutations to the development and level of RMP resistance remains elusive. In this study, the incidence of mutations throughout the rpoB gene among 115 Mycobacterium tuberculosis clinical isolates, both resistant and susceptible to RMP, was determined. Of the newly discovered rpoB mutations, the role of three substitutions in the causation of RMP resistance was empirically tested. The results from in vitro mutagenesis experiments were combined with the assessment of the prevalence of rpoB mutations, and their reciprocal co-occurrences, across global M. tuberculosis populations. Twenty-two different types of mutations in the rpoB gene were identified and distributed among 58 (89.2%) RMP-resistant strains. The MICs of RMP were within the range of 40 to 800 mg/liter, with MIC50 and MIC90 values of 400 and 800 mg/liter, respectively. None of the mutations (Gln429His, Met434Ile, and Arg827Cys) inspected for their role in the development of RMP resistance produced an RMP-resistant phenotype in isogenic M. tuberculosis H37Rv strain-derived mutants. These mutations are supposed to compensate for fitness impairment incurred by other mutations directly associated with drug resistance.
Collapse
|
19
|
Molecular epidemiology of tuberculosis in Tasmania and genomic characterisation of its first known multi-drug resistant case. PLoS One 2018; 13:e0192351. [PMID: 29466411 PMCID: PMC5821347 DOI: 10.1371/journal.pone.0192351] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/22/2018] [Indexed: 11/25/2022] Open
Abstract
Background The origin and spread of tuberculosis (TB) in Tasmania and the types of strains of Mycobacterium tuberculosis complex (MTBC) present in the population are largely unknown. Objective The aim of this study was to perform the first genomic analysis of MTBC isolates from Tasmania to better understand the epidemiology of TB in the state. Methods Whole-genome sequencing was performed on cultured isolates of MTBC collected from 2014–2016. Single-locus variant analysis was applied to determine the phylogeny of the isolates and the presence of drug-resistance mutations. The genomic data were then cross-referenced against public health surveillance records on each of the cases. Results We determined that 83.3% of TB cases in Tasmania from 2014–2016 occurred in non-Australian born individuals. Two possible TB clusters were identified based on single locus variant analysis, one from November-December 2014 (n = 2), with the second from May-August 2015 (n = 4). We report here the first known isolate of multi-drug resistant (MDR) M. tuberculosis in Tasmania from 2016 for which we established its drug resistance mutations and potential overseas origin. In addition, we characterised a case of M. bovis TB in a Tasmanian-born person who presented in 2014, approximately 40 years after the last confirmed case in the state’s bovids. Conclusions TB in Tasmania is predominantly of overseas origin with genotypically-unique drug-susceptible isolates of M. tuberculosis. However, the state also exhibits features of TB that are observed in other jurisdictions, namely, the clustering of cases, and drug resistance. Early detection of TB and contact tracing, particularly of overseas-born cases, coordinated with rapid laboratory drug-susceptibility testing and molecular typing, will be essential for Tasmania to reach the World Health Organisation’s TB eradication goals for low-incidence settings.
Collapse
|
20
|
Bainomugisa A, Lavu E, Hiashiri S, Majumdar S, Honjepari A, Moke R, Dakulala P, Hill-Cawthorne GA, Pandey S, Marais BJ, Coulter C, Coin L. Multi-clonal evolution of multi-drug-resistant/extensively drug-resistant Mycobacterium tuberculosis in a high-prevalence setting of Papua New Guinea for over three decades. Microb Genom 2018; 4. [PMID: 29310751 PMCID: PMC5857374 DOI: 10.1099/mgen.0.000147] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An outbreak of multi-drug resistant (MDR) tuberculosis (TB) has been reported on Daru Island, Papua New Guinea. Mycobacterium tuberculosis strains driving this outbreak and the temporal accrual of drug resistance mutations have not been described. Whole genome sequencing of 100 of 165 clinical isolates referred from Daru General Hospital to the Supranational reference laboratory, Brisbane, during 2012–2015 revealed that 95 belonged to a single modern Beijing sub-lineage strain. Molecular dating suggested acquisition of streptomycin and isoniazid resistance in the 1960s, with potentially enhanced virulence mediated by an mycP1 mutation. The Beijing sub-lineage strain demonstrated a high degree of co-resistance between isoniazid and ethionamide (80/95; 84.2 %) attributed to an inhA promoter mutation combined with inhA and ndh coding mutations. Multi-drug resistance, observed in 78/95 samples, emerged with the acquisition of a typical rpoB mutation together with a compensatory rpoC mutation in the 1980s. There was independent acquisition of fluoroquinolone and aminoglycoside resistance, and evidence of local transmission of extensively drug resistant (XDR) strains from 2009. These findings underline the importance of whole genome sequencing in informing an effective public health response to MDR/XDR TB.
Collapse
Affiliation(s)
- Arnold Bainomugisa
- 1Faculty of Medicine, University of Queensland, Brisbane, Australia.,2Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Evelyn Lavu
- 3Central Public Health Laboratory, Port Moresby, Papua New Guinea
| | - Stenard Hiashiri
- 4Western Province Health Office, Western Province, Papua New Guinea
| | | | - Alice Honjepari
- 4Western Province Health Office, Western Province, Papua New Guinea
| | - Rendi Moke
- 6National Department of Health, Port Moresby, Papua New Guinea
| | - Paison Dakulala
- 6National Department of Health, Port Moresby, Papua New Guinea
| | | | - Sushil Pandey
- 8Queensland Mycobacterium Reference Laboratory, Pathology Queensland, Brisbane, Australia
| | - Ben J Marais
- 7School of Public Health, University of Sydney, Sydney, Australia
| | - Chris Coulter
- 8Queensland Mycobacterium Reference Laboratory, Pathology Queensland, Brisbane, Australia
| | - Lachlan Coin
- 2Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| |
Collapse
|
21
|
Draft Genome Sequence of the First Confirmed Isolate of Multidrug-Resistant Mycobacterium tuberculosis in Tasmania. GENOME ANNOUNCEMENTS 2017; 5:5/44/e01230-17. [PMID: 29097470 PMCID: PMC5668546 DOI: 10.1128/genomea.01230-17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The spread of multidrug-resistant (MDR) tuberculosis (TB) has become a major global challenge. In 2016, Tasmania recorded its first known incidence of MDR-TB. Here, we report the draft whole-genome sequence of the Mycobacterium tuberculosis isolate from this case, TASMDR1, and describe single-nucleotide polymorphisms associated with its drug resistance.
Collapse
|
22
|
Diefenbach-Elstob T, Plummer D, Dowi R, Wamagi S, Gula B, Siwaeya K, Pelowa D, Siba P, Warner J. The social determinants of tuberculosis treatment adherence in a remote region of Papua New Guinea. BMC Public Health 2017; 17:70. [PMID: 28086845 PMCID: PMC5237215 DOI: 10.1186/s12889-016-3935-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 12/13/2016] [Indexed: 11/30/2022] Open
Abstract
Background Papua New Guinea (PNG) is a diverse and culturally-rich country with severe infrastructural and health problems. Tuberculosis (TB) is widespread, and the number of cases with drug resistance is rising. Treatment adherence is known to be important for both effective treatment and limiting the emergence of drug resistance. The aim of this study was to construct a matrix of the factors that act as facilitators or barriers to TB treatment adherence in a remote region of PNG. Methods The study was based in the Balimo region of the Western Province. People known to have undergone TB treatment, as well as staff involved in managing people with TB, were asked to participate in an in-depth interview about their experiences. Purposive sampling was used to identify a diverse range of participants, from different geographic locations, social backgrounds, and with successful and unsuccessful treatment outcomes. The interview data was analysed based on grounded theory methodology. Results The study identified a range of factors that influence TB treatment adherence, with these being classified as personal, systems, and sociocultural. These factors are presented along with suggested recommendations for adaptations to DOTS-based treatment in this region. Barriers included the challenges associated with travel to treatment sites, and the difficulties of undertaking treatment alongside the daily need to maintain subsistence food production. However, facilitators were also identified, including the positive influence of religious beliefs, and high confidence in the ability of DOTS-based treatment to cure TB. Conclusions Documenting the wide range of factors that influence treatment adherence in a severely affected remote population will assist in improving TB control. These results provide impetus for further community-based efforts aimed at improving access to TB diagnosis and treatment, and maintaining successful treatment outcomes in the face of emerging drug resistance. Electronic supplementary material The online version of this article (doi:10.1186/s12889-016-3935-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tanya Diefenbach-Elstob
- College of Public Health, Medical & Veterinary Sciences, James Cook University, Townsville, QLD, 4811, Australia.,Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, 4811, Australia
| | - David Plummer
- School of Medicine, Griffith University, Gold Coast, QLD, 4222, Australia
| | - Robert Dowi
- Balimo District Hospital, Balimo, Western Province, Papua New Guinea
| | - Sinba Wamagi
- Balimo District Hospital, Balimo, Western Province, Papua New Guinea
| | - Bisato Gula
- Balimo District Hospital, Balimo, Western Province, Papua New Guinea
| | - Keyanato Siwaeya
- District Health Services Hospital, Newtown-Balimo, Western Province, Papua New Guinea
| | - Daniel Pelowa
- Balimo District Hospital, Balimo, Western Province, Papua New Guinea
| | - Peter Siba
- College of Public Health, Medical & Veterinary Sciences, James Cook University, Townsville, QLD, 4811, Australia.,Papua New Guinea Institute of Medical Research, Goroka, Eastern Highlands Province, Papua New Guinea
| | - Jeffrey Warner
- College of Public Health, Medical & Veterinary Sciences, James Cook University, Townsville, QLD, 4811, Australia. .,Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, 4811, Australia.
| |
Collapse
|
23
|
Trauer JM, Denholm JT, Waseem S, Ragonnet R, McBryde ES. Scenario Analysis for Programmatic Tuberculosis Control in Western Province, Papua New Guinea. Am J Epidemiol 2016; 183:1138-48. [PMID: 27199387 DOI: 10.1093/aje/kwv323] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 11/16/2015] [Indexed: 01/12/2023] Open
Abstract
Tuberculosis (TB) and multidrug-resistant TB (MDR-TB) are major health problems in Western Province, Papua New Guinea. While comprehensive expansion of TB control programs is desirable, logistical challenges are considerable, and there is substantial uncertainty regarding the true disease burden. We parameterized our previously described mathematical model of Mycobacterium tuberculosis dynamics in Western Province, following an epidemiologic assessment. Five hypothetical scenarios representing alternative programmatic approaches during the period from 2013 to 2023 were developed with local staff. Bayesian uncertainty analyses were undertaken to explicitly acknowledge the uncertainty around key epidemiologic parameters, and an economic evaluation was performed. With continuation of existing programmatic strategies, overall TB incidence remained stable at 555 cases per 100,000 population per year (95% simulation interval (SI): 420, 807), but the proportion of incident cases attributable to MDR-TB increased from 16% to 35%. Comprehensive, provincewide strengthening of existing programs reduced incidence to 353 cases per 100,000 population per year (95% SI: 246, 558), with 46% being cases of MDR-TB, while incorporating programmatic management of MDR-TB into these programs reduced incidence to 233 cases per 100,000 population per year (95% SI: 198, 269) with 14% MDR-TB. Most economic costs were due to hospitalization during the intensive treatment phase. Broad scale-up of TB control activities in Western Province with incorporation of programmatic management of MDR-TB is vital if control is to be achieved. Community-based treatment approaches are important to reduce the associated economic costs.
Collapse
|
24
|
Makaen J, Maure T. Bleach processed smear for Acid fast bacilli staining in Papua New Guinea. Lab Med 2016; 45:e140-1. [PMID: 25378525 DOI: 10.1309/lmn45y0zmnpklrms] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
The conventional method of processing sputum for acid fast bacilli microscopy has been a primary tool for laboratory diagnosis of pulmonary tuberculosis in Papua New Guinea. In routine preparation, untreated sputum is directly smeared on a glass slide without undergoing any stage of processing. Mounting evidence suggests that direct smearing is less sensitive and, to a certain degree, compromises infection control. A few alternatives for processing sputum have been recommended in the literature; however, their consumables are not easily accessible and are expensive for wide use in rural laboratories. The bleach concentration and processing method appears to be the most preferable choice because bleach is inexpensive, readily available, and has bactericidal properties.
Collapse
Affiliation(s)
- Johnson Makaen
- Zoonoses and Neglected Diseases, Environmental and Emerging Diseases Unit, PNG Institute of Medical Research, Goroka, EHP, Papua New Guinea
| | - Tobbias Maure
- Zoonoses and Neglected Diseases, Environmental and Emerging Diseases Unit, PNG Institute of Medical Research, Goroka, EHP, Papua New Guinea
| |
Collapse
|
25
|
Tadesse M, Aragaw D, Dimah B, Efa F, Abdella K, Kebede W, Abdissa K, Abebe G. Drug resistance-conferring mutations in Mycobacterium tuberculosis from pulmonary tuberculosis patients in Southwest Ethiopia. Int J Mycobacteriol 2016; 5:185-91. [PMID: 27242230 DOI: 10.1016/j.ijmyco.2016.02.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 02/23/2016] [Indexed: 10/22/2022] Open
Abstract
OBJECTIVE/BACKGROUND The nature and frequency of mutations in rifampicin (RIF) and isoniazid (INH) resistant Mycobacterium tuberculosis isolates vary considerably according to geographic locations. However, information regarding specific mutational patterns in Ethiopia remains limited. METHODS A cross-sectional prospective study was carried out among confirmed pulmonary tuberculosis cases in Southwest Ethiopia. Mutations associated with RIF and INH resistances were studied using GenoType MTBDRplus line probe assay in 112 M. tuberculosis isolates. Culture (MGIT960) and identification tests were performed at the Mycobacteriology Research Center of Jimma University, Jimma, Ethiopia. RESULTS Mutations conferring resistance to INH, RIF, and multidrug resistance were detected in 36.6% (41/112), 30.4% (34/112), and 27.7% (31/112) of M. tuberculosis isolates respectively. Among 34 RIF-resistant isolates, 82.4% (28/34) had rpoB gene mutations at S531L, 2.9% (1/34) at H526D, and 14.7% (5/34) had mutations only at wild type probes. Of 41 INH-resistant strains, 87.8% (36/41) had mutations in the katG gene at Ser315Thr1 and 9.8% (4/41) had mutations in the inhA gene at C15T. Mutations in inhA promoter region were strongly associated with INH monoresistance. CONCLUSION A high rate of drug resistance was commonly observed among failure cases. The most frequent gene mutations associated with the resistance to INH and RIF were observed in the codon 315 of the katG gene and codon 531 of the rpoB gene, respectively. Further studies on mutations in different geographic regions using DNA sequencing techniques are warranted to improve the kit by including more specific mutation probes in the kit.
Collapse
Affiliation(s)
- Mulualem Tadesse
- Mycobacteriology Research Center, Institute of Biotechnology Research, Jimma University, Jimma, Ethiopia; Department of Medical Laboratory Sciences and Pathology, Jimma University, Jimma, Ethiopia.
| | - Dossegnaw Aragaw
- Mycobacteriology Research Center, Institute of Biotechnology Research, Jimma University, Jimma, Ethiopia; Department of Medical Laboratory Sciences and Pathology, Jimma University, Jimma, Ethiopia
| | - Belayneh Dimah
- Jimma University Specialized Hospital, Jimma University, Jimma, Ethiopia
| | - Feyisa Efa
- Jimma University Specialized Hospital, Jimma University, Jimma, Ethiopia
| | - Kedir Abdella
- Mycobacteriology Research Center, Institute of Biotechnology Research, Jimma University, Jimma, Ethiopia; Department of Medical Laboratory Sciences and Pathology, Jimma University, Jimma, Ethiopia
| | - Wakjira Kebede
- Department of Medical Laboratory Sciences and Pathology, Jimma University, Jimma, Ethiopia
| | - Ketema Abdissa
- Department of Medical Laboratory Sciences and Pathology, Jimma University, Jimma, Ethiopia
| | - Gemeda Abebe
- Mycobacteriology Research Center, Institute of Biotechnology Research, Jimma University, Jimma, Ethiopia; Department of Medical Laboratory Sciences and Pathology, Jimma University, Jimma, Ethiopia
| |
Collapse
|
26
|
Datta G, Nieto LM, Davidson RM, Mehaffy C, Pederson C, Dobos KM, Strong M. Longitudinal whole genome analysis of pre and post drug treatment Mycobacterium tuberculosis isolates reveals progressive steps to drug resistance. Tuberculosis (Edinb) 2016; 98:50-5. [PMID: 27156618 DOI: 10.1016/j.tube.2016.02.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 02/15/2016] [Accepted: 02/20/2016] [Indexed: 11/15/2022]
Abstract
Tuberculosis (TB) is one of the leading causes of death due to an infectious disease in the world. Understanding the mechanisms of drug resistance has become pivotal in the detection and treatment of newly emerging resistant TB cases. We have analyzed three pairs of Mycobacterium tuberculosis strains pre- and post-drug treatment to identify mutations involved in the progression of resistance to the drugs rifampicin and isoniazid. In the rifampicin resistant strain, we confirmed a mutation in rpoB (S450L) that is known to confer resistance to rifampicin. We discovered a novel L101R mutation in the katG gene of an isoniazid resistant strain, which may directly contribute to isoniazid resistance due to the proximity of the mutation to the katG isoniazid-activating site. Another isoniazid resistant strain had a rare mutation in the start codon of katG. We also identified a number of mutations in each longitudinal pair, such as toxin-antitoxin mutations that may influence the progression towards resistance or may play a role in compensatory fitness. These findings improve our knowledge of drug resistance progression during therapy and provide a methodology to monitor longitudinal strains using whole genome sequencing, polymorphism comparison, and functional annotation.
Collapse
Affiliation(s)
- Gargi Datta
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO 80206, USA; Computational Bioscience Program, University of Colorado, Denver, School of Medicine, Aurora, CO 80045, USA.
| | - Luisa M Nieto
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA.
| | - Rebecca M Davidson
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO 80206, USA.
| | - Carolina Mehaffy
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA.
| | | | - Karen M Dobos
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA.
| | - Michael Strong
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO 80206, USA; Computational Bioscience Program, University of Colorado, Denver, School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
27
|
Sun H, Zhang C, Xiang L, Pi R, Guo Z, Zheng C, Li S, Zhao Y, Tang K, Luo M, Rastogi N, Li Y, Sun Q. Characterization of mutations in streptomycin-resistant Mycobacterium tuberculosis isolates in Sichuan, China and the association between Beijing-lineage and dual-mutation in gidB. Tuberculosis (Edinb) 2015; 96:102-6. [PMID: 26786661 DOI: 10.1016/j.tube.2015.09.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 09/05/2015] [Accepted: 09/10/2015] [Indexed: 02/05/2023]
Abstract
Mutations in rpsL, rrs, and gidB are well linked to streptomycin (STR) resistance, some of which are suggested to be potentially associated with Mycobacterium tuberculosis genotypic lineages in certain geographic regions. In this study, we aimed to investigate the mutation characteristics of streptomycin resistance and the relationship between the polymorphism of drug-resistant genes and the lineage of M. tuberculosis isolates in Sichuan, China. A total of 227 M. tuberculosis clinical isolates, including 180 STR-resistant and 47 pan-susceptible isolates, were analyzed for presence of mutations in the rpsL, rrs and gidB loci. Mutation K43R in rpsL was strongly associated with high-level streptomycin resistance (P < 0.01), while mutations in rrs and gidB potentially contributed to low-level resistance (P < 0.05). No general association was exhibited between STR resistance and Beijing genotype, however, in STR-resistant strains, Beijing genotype was significantly correlated with high-level STR resistance, as well as the rpsL mutation K43R (P < 0.01), indicating that Beijing genotype has an evolutionary advantage under streptomycin pressure. Notably, in all isolates of Beijing genotype, a dual mutation E92D (a276c) and A205A (a615g) in gidB was detected, suggesting a highly significant association between this dual mutation and Beijing genotype.
Collapse
Affiliation(s)
- Honghu Sun
- Key Laboratory of Bio-resources and Eco-environment of The Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, PR China
| | - Congcong Zhang
- Chengdu Center for Food and Drug Control, Chengdu, Sichuan 610000, PR China
| | - Ling Xiang
- Key Laboratory of Bio-resources and Eco-environment of The Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, PR China
| | - Rui Pi
- Key Laboratory of Bio-resources and Eco-environment of The Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, PR China
| | - Zhen Guo
- Key Laboratory of Bio-resources and Eco-environment of The Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, PR China
| | - Chao Zheng
- Key Laboratory of Bio-resources and Eco-environment of The Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, PR China
| | - Song Li
- Key Laboratory of Bio-resources and Eco-environment of The Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, PR China
| | - Yuding Zhao
- Institute of Tropical Bioscience and Biotechnology, CATAS, Haikou, Hainan 571101, PR China
| | - Ke Tang
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan 610500, PR China
| | - Mei Luo
- Public Health Clinical Center of Chengdu, Chengdu, Sichuan 610000, PR China
| | - Nalin Rastogi
- WHO Supranational TB Reference Laboratory, Institut Pasteur de la Guadeloupe, Abymes 97183, Guadeloupe, France
| | - Yuqing Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610064, PR China
| | - Qun Sun
- Key Laboratory of Bio-resources and Eco-environment of The Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, PR China.
| |
Collapse
|
28
|
Field W, Hershberg R. Alarmingly High Segregation Frequencies of Quinolone Resistance Alleles within Human and Animal Microbiomes Are Not Explained by Direct Clinical Antibiotic Exposure. Genome Biol Evol 2015; 7:1743-57. [PMID: 26019163 PMCID: PMC4494058 DOI: 10.1093/gbe/evv102] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Antibiotic resistance poses a major threat to human health. It is therefore important to characterize the frequency of resistance within natural bacterial environments. Many studies have focused on characterizing the frequencies with which horizontally acquired resistance genes segregate within natural bacterial populations. Yet, very little is currently understood regarding the frequency of segregation of resistance alleles occurring within the housekeeping targets of antibiotics. We surveyed a large number of metagenomic datasets extracted from a large variety of host-associated and non host-associated environments for such alleles conferring resistance to three groups of broad spectrum antibiotics: streptomycin, rifamycins, and quinolones. We find notable segregation frequencies of resistance alleles occurring within the target genes of each of the three antibiotics, with quinolone resistance alleles being the most frequent and rifamycin resistance alleles being the least frequent. Resistance allele frequencies varied greatly between different phyla and as a function of environment. The frequency of quinolone resistance alleles was especially high within host-associated environments, where it averaged an alarming ∼40%. Within host-associated environments, resistance to quinolones was most often conferred by a specific resistance allele. High frequencies of quinolone resistance alleles were also found within hosts that were not directly treated with antibiotics. Therefore, the high segregation frequency of quinolone resistance alleles occurring within the housekeeping targets of antibiotics in host-associated environments does not seem to be the sole result of clinical antibiotic usage.
Collapse
Affiliation(s)
- Wesley Field
- Rachel & Menachem Mendelovitch Evolutionary Processes of Mutation & Natural Selection Research Laboratory, Department of Genetics and Developmental Biology, the Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ruth Hershberg
- Rachel & Menachem Mendelovitch Evolutionary Processes of Mutation & Natural Selection Research Laboratory, Department of Genetics and Developmental Biology, the Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
29
|
Makaen J, Omena M. Maintenance of a reliable laboratory service for tuberculosis intervention in Papua New Guinea. Lab Med 2015; 46:e35-7. [PMID: 25998134 DOI: 10.1309/lmbujnug639eelty] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
The reemergence of tuberculosis, including multidrug-resistant strains, in Papua New Guinea highlights the never ending nature of the antituberculosis (anti-TB) campaign in that country and warrants the need for constant vigilance against the condition. Through surveillance, early detection, and management, the spread and incidence of TB can be kept in check. To maintain successful TB control programs, the government and partners committed to this campaign need to overhaul essential aspects of laboratory services. Clinical laboratories play a critical role in diagnostics; their functions cannot be substituted nor relegated. It is time to end neglect of these services in Papua New Guinea and to arm the laboratories in that country with full financial and logistical support so that they can lead the campaign against TB.
Collapse
Affiliation(s)
- Johnson Makaen
- Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
| | - Mathew Omena
- Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
| |
Collapse
|
30
|
Ley SD, Harino P, Vanuga K, Kamus R, Carter R, Coulter C, Pandey S, Feldmann J, Ballif M, Siba PM, Phuanukoonnon S, Gagneux S, Beck HP. Diversity of Mycobacterium tuberculosis and drug resistance in different provinces of Papua New Guinea. BMC Microbiol 2014; 14:307. [PMID: 25476850 PMCID: PMC4264550 DOI: 10.1186/s12866-014-0307-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 11/24/2014] [Indexed: 01/07/2023] Open
Abstract
Background Papua New Guinea (PNG) is a high tuberculosis (TB) burden country of the WHO Western Pacific Region, but so far research on drug resistance (DR) and genotypes of Mycobacterium tuberculosis (M. tuberculosis) was only conducted in few provinces in the country. The aim of the present study was to obtain baseline data on the level of drug resistance and the genotypic diversity of circulating M. tuberculosis in additional provinces and to investigate the differences between three selected sites across PNG. Results Genotyping of 147 M. tuberculosis clinical isolates collected in Goroka, Eastern Highlands Province, in Alotau, Milne Bay Province and in Madang, Madang Province revealed three main lineages of M. tuberculosis: Lineage 4 (European-American lineage), Lineage 2 (East-Asian lineage) and Lineage 1 (Indo-Oceanic lineage). All three lineages were detected in all three sites, but the individual lineage compositions varied significantly between sites. In Madang Lineage 4 was the most prevalent lineage (76.6%), whereas in Goroka and Alotau Lineage 2 was dominating (60.5% and 84.4%, respectively) (p < 0.001). Overall, phenotypic drug susceptibility testing showed 10.8% resistance to at least one of the first-line drugs tested. Of all resistant strains (23/212) 30.4% were Streptomycin mono-resistant, 17.4% were Isoniazid mono-resistant and 13% were Rifampicin mono-resistant. Multi-drug resistant (MDR) TB was found in 2.8% of all tested cases (6/212). The highest amount of MDR TB was found in Alotau in Milne Bay Province (4.6%). Conclusion A large number of drug resistant TB infections are present in the country and MDR TB has already been detected in all three surveyed regions of PNG, highlighting the importance of monitoring drug resistance and making it a high priority for the National Control Program. Due to the high prevalence of Lineage 2 in Milne Bay Province and given the frequent association of this lineage with drug resistance, monitoring of the latter should especially be scaled up in that province.
Collapse
Affiliation(s)
- Serej D Ley
- Swiss Tropical and Public Health Institute, Basel, Switzerland. .,University of Basel, Basel, Switzerland. .,Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea.
| | - Paul Harino
- Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea.
| | - Kilagi Vanuga
- Goroka Provincial Hospital, Goroka, Papua New Guinea.
| | - Ruben Kamus
- Alotau Provincial Hospital, Alotau, Papua New Guinea.
| | - Robyn Carter
- Queensland Mycobacterium Reference Laboratory, Pathology Queensland, Brisbane, Australia.
| | - Christopher Coulter
- Queensland Mycobacterium Reference Laboratory, Pathology Queensland, Brisbane, Australia.
| | - Sushil Pandey
- Queensland Mycobacterium Reference Laboratory, Pathology Queensland, Brisbane, Australia.
| | - Julia Feldmann
- Swiss Tropical and Public Health Institute, Basel, Switzerland. .,University of Basel, Basel, Switzerland.
| | - Marie Ballif
- Swiss Tropical and Public Health Institute, Basel, Switzerland. .,University of Basel, Basel, Switzerland.
| | - Peter M Siba
- Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea.
| | | | - Sebastien Gagneux
- Swiss Tropical and Public Health Institute, Basel, Switzerland. .,University of Basel, Basel, Switzerland.
| | - Hans-Peter Beck
- Swiss Tropical and Public Health Institute, Basel, Switzerland. .,University of Basel, Basel, Switzerland.
| |
Collapse
|
31
|
Eldholm V, Norheim G, von der Lippe B, Kinander W, Dahle UR, Caugant DA, Mannsåker T, Mengshoel AT, Dyrhol-Riise AM, Balloux F. Evolution of extensively drug-resistant Mycobacterium tuberculosis from a susceptible ancestor in a single patient. Genome Biol 2014; 15:490. [PMID: 25418686 PMCID: PMC4223161 DOI: 10.1186/s13059-014-0490-3] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 10/08/2014] [Indexed: 11/29/2022] Open
Abstract
Background Mycobacterium tuberculosis is characterized by a low mutation rate and a lack of genetic recombination. Yet, the rise of extensively resistant strains paints a picture of a microbe with an impressive adaptive potential. Here we describe the first documented case of extensively drug-resistant tuberculosis evolved from a susceptible ancestor within a single patient. Results Genome sequences of nine serial M. tuberculosis isolates from the same patient uncovered a dramatic turnover of competing lineages driven by the emergence, and subsequent fixation or loss of single nucleotide polymorphisms. For most drugs, resistance arose through independent emergence of mutations in more than one clone, of which only one ultimately prevailed as the clone carrying it expanded, displacing the other clones in the process. The vast majority of mutations identified over 3.5 years were either involved in drug resistance or hitchhiking in the genetic background of these. Additionally, RNA-sequencing of isolates grown in the absence of drug challenge revealed that the efflux-associated iniBAC operon was up-regulated over time, whereas down-regulated genes include those involved in mycolic acid synthesis. Conclusions We observed both rapid acquisitions of resistance to antimicrobial compounds mediated by individual mutations as well as a gradual increase in fitness in the presence of antibiotics, likely driven by stable gene expression reprogramming. The rapid turnover of resistance mutations and hitchhiking neutral mutations has major implications for inferring tuberculosis transmission events in situations where drug resistance evolves within transmission chains. Electronic supplementary material The online version of this article (doi:10.1186/s13059-014-0490-3) contains supplementary material, which is available to authorized users.
Collapse
|
32
|
Clark AM, Sarker M, Ekins S. New target prediction and visualization tools incorporating open source molecular fingerprints for TB Mobile 2.0. J Cheminform 2014; 6:38. [PMID: 25302078 PMCID: PMC4190048 DOI: 10.1186/s13321-014-0038-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 06/30/2014] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND We recently developed a freely available mobile app (TB Mobile) for both iOS and Android platforms that displays Mycobacterium tuberculosis (Mtb) active molecule structures and their targets with links to associated data. The app was developed to make target information available to as large an audience as possible. RESULTS We now report a major update of the iOS version of the app. This includes enhancements that use an implementation of ECFP_6 fingerprints that we have made open source. Using these fingerprints, the user can propose compounds with possible anti-TB activity, and view the compounds within a cluster landscape. Proposed compounds can also be compared to existing target data, using a näive Bayesian scoring system to rank probable targets. We have curated an additional 60 new compounds and their targets for Mtb and added these to the original set of 745 compounds. We have also curated 20 further compounds (many without targets in TB Mobile) to evaluate this version of the app with 805 compounds and associated targets. CONCLUSIONS TB Mobile can now manage a small collection of compounds that can be imported from external sources, or exported by various means such as email or app-to-app inter-process communication. This means that TB Mobile can be used as a node within a growing ecosystem of mobile apps for cheminformatics. It can also cluster compounds and use internal algorithms to help identify potential targets based on molecular similarity. TB Mobile represents a valuable dataset, data-visualization aid and target prediction tool.
Collapse
Affiliation(s)
- Alex M Clark
- Molecular Materials Informatics, 1900 St. Jacques #302, Montreal H3J 2S1, Quebec, Canada
| | - Malabika Sarker
- SRI International, 333 Ravenswood Avenue, Menlo Park 94025, CA, USA
| | - Sean Ekins
- Collaborative Drug Discovery, 1633 Bayshore Highway, Suite 342, Burlingame 94010, CA, USA
- Collaborations in Chemistry, 5616 Hilltop Needmore Road, Fuquay-Varina 27526, NC, USA
| |
Collapse
|
33
|
Ley SD, Riley I, Beck HP. Tuberculosis in Papua New Guinea: from yesterday until today. Microbes Infect 2014; 16:607-14. [PMID: 25025486 DOI: 10.1016/j.micinf.2014.06.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 06/11/2014] [Accepted: 06/25/2014] [Indexed: 01/09/2023]
Abstract
Little is known about the situation of tuberculosis in Papua New Guinea despite its high TB burden, emerging drug resistance and rising HIV co-infection. This review gives an overview on the current situation of TB in PNG and identifies knowledge gaps that should urgently be addressed in the future.
Collapse
Affiliation(s)
- Serej D Ley
- Swiss Tropical and Public Health Institute, Socinstrasse 57, CH-4002 Basel, Switzerland; University of Basel, Petersgraben 2, CH-4002 Basel, Switzerland; Papua New Guinea Institute of Medical Research, Goroka EHP, Papua New Guinea
| | - Ian Riley
- School of Population Health, University of Queensland, School of Population Health Building, Herston Road, Herston Qld 4006, Australia
| | - Hans-Peter Beck
- Swiss Tropical and Public Health Institute, Socinstrasse 57, CH-4002 Basel, Switzerland; University of Basel, Petersgraben 2, CH-4002 Basel, Switzerland.
| |
Collapse
|
34
|
Jagielski T, Ignatowska H, Bakuła Z, Dziewit Ł, Napiórkowska A, Augustynowicz-Kopeć E, Zwolska Z, Bielecki J. Screening for streptomycin resistance-conferring mutations in Mycobacterium tuberculosis clinical isolates from Poland. PLoS One 2014; 9:e100078. [PMID: 24937123 PMCID: PMC4061058 DOI: 10.1371/journal.pone.0100078] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 05/21/2014] [Indexed: 11/19/2022] Open
Abstract
Currently, mutations in three genes, namely rrs, rpsL, and gidB, encoding 16S rRNA, ribosomal protein S12, and 16S rRNA-specific methyltransferase, respectively, are considered to be involved in conferring resistance to streptomycin (STR) in Mycobacterium tuberculosis. The aim of this study was to investigate the spectrum and frequency of these mutations in M. tuberculosis clinical isolates, both resistant and susceptible to STR. Sixty-four M. tuberculosis isolates recovered from as many TB patients from Poland in 2004 were included in the study. Within the sample were 50 multidrug-resistant (32 STR-resistant and 18 STR-susceptible) and 14 pan-susceptible isolates. Preliminary testing for STR resistance was performed with the 1% proportion method. The MICs of STR were determined by the Etest method. Mutation profiling was carried out by amplifying and sequencing the entire rrs, rpsL, and gidB genes. Non-synonymous mutations in either rrs or rpsL gene were detected in 23 (71.9%) of the STR-resistant and none of the STR-susceptible isolates. Mutations in the gidB gene were distributed among 12 (37.5%) STR-resistant and 13 (40.6%) STR-susceptible isolates. Four (12.5%) STR-resistant isolates were wild-type at all three loci examined. None of the rrs, rpsL or gidB mutations could be linked to low, intermediate or high level of STR resistance. In accordance with previous findings, the gidB 47T→G (L16R) mutation was associated with the Latin American-Mediterranean genotype family, whereas 276A→C (E92D) and 615A→G (A205A) mutations of the gidB gene were associated with the Beijing lineage. The study underlines the usefulness of rrs and rpsL mutations as molecular markers for STR resistance yet not indicative of its level. The gidB polymorphisms can serve as phylogenetic markers.
Collapse
Affiliation(s)
- Tomasz Jagielski
- Department of Applied Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
- * E-mail:
| | - Helena Ignatowska
- Department of Applied Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Zofia Bakuła
- Department of Applied Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Łukasz Dziewit
- Deparment of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Agnieszka Napiórkowska
- Department of Microbiology, National Tuberculosis and Lung Diseases Research Institute, Warsaw, Poland
| | - Ewa Augustynowicz-Kopeć
- Department of Microbiology, National Tuberculosis and Lung Diseases Research Institute, Warsaw, Poland
| | - Zofia Zwolska
- Department of Microbiology, National Tuberculosis and Lung Diseases Research Institute, Warsaw, Poland
| | - Jacek Bielecki
- Department of Applied Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
35
|
Brandis G, Hughes D. Genetic characterization of compensatory evolution in strains carrying rpoB Ser531Leu, the rifampicin resistance mutation most frequently found in clinical isolates. J Antimicrob Chemother 2013; 68:2493-7. [PMID: 23759506 DOI: 10.1093/jac/dkt224] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVES The evolution of rifampicin resistance in Mycobacterium tuberculosis is a major threat to effective tuberculosis therapy. Much is known about the initial emergence of rifampicin resistance, but the further evolution of these resistant strains has only lately been subject to investigation. Although resistance can be caused by many different mutations in rpoB, among clinical M. tuberculosis isolates the mutation rpoB S531L is overwhelmingly the most frequently found. Clinical isolates with rpoB S531L frequently carry additional mutations in genes for RNA polymerase subunits, and it has been speculated that these are fitness-compensatory mutations, ameliorating the fitness cost of the primary resistance mutation. We tested this hypothesis using Salmonella as a model organism. METHODS We created the rpoB S531L mutation in Salmonella and then evolved independent lineages with selection for mutants with increased relative fitness. Relative fitness associated with putative compensatory mutations was measured after genetic reconstruction in isogenic strains. RESULTS Compensatory mutations were identified in genes coding for different subunits of RNA polymerase: rpoA, rpoB and rpoC. Genetic reconstructions demonstrated that each of these secondary mutations reduced the fitness cost of the rpoB S531L resistance mutation. CONCLUSIONS The compensatory mutations identified in Salmonella cluster in similar locations to the additional mutations found in M. tuberculosis isolates. These new data strongly support the idea that many of the previously identified rpoA, rpoB and rpoC mutations in rifampicin-resistant M. tuberculosis (rpoB S531L) are indeed fitness-compensatory mutations.
Collapse
Affiliation(s)
- Gerrit Brandis
- Department of Medical Biochemistry and Microbiology, Box 582 Biomedical Center, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
36
|
Ding B, Li N, Wang W. Characterizing Binding of Small Molecules. II. Evaluating the Potency of Small Molecules to Combat Resistance Based on Docking Structures. J Chem Inf Model 2013; 53:1213-22. [DOI: 10.1021/ci400011c] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Bo Ding
- Department
of Chemistry and Biochemistry, ‡Department of Cellular and Molecular Medicine, UCSD, La Jolla, California 92093-0359,
United States
| | - Nan Li
- Department
of Chemistry and Biochemistry, ‡Department of Cellular and Molecular Medicine, UCSD, La Jolla, California 92093-0359,
United States
| | - Wei Wang
- Department
of Chemistry and Biochemistry, ‡Department of Cellular and Molecular Medicine, UCSD, La Jolla, California 92093-0359,
United States
| |
Collapse
|
37
|
Biadglegne F, Tessema B, Rodloff AC, Sack U. Magnitude of gene mutations conferring drug resistance in mycobacterium tuberculosis isolates from lymph node aspirates in ethiopia. Int J Med Sci 2013; 10:1589-94. [PMID: 24046537 PMCID: PMC3775120 DOI: 10.7150/ijms.6806] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 08/12/2013] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVE Resistance to drugs is due to particular genomic mutations in the specific genes of Mycobacterium tuberculosis. Timely genetic characterization will allow identification of resistance mutations that will optimize an effective antibiotic treatment regimen. We determine the magnitude of gene mutations conferring resistance to isoniazid (INH), rifampicin (RMP) and ethambutol (EMB) among tuberculosis (TB) lymphadenitis patients. METHODS A cross sectional prospective study was conducted among 226 M.tuberculosis isolates from culture positive lymph node aspirates collected from TB lymphadenitis patients between April 2012 and May 2012. Detection of mutations conferring resistance to drugs was carried out using GenoType(®) MTBDRplus and GenoType® MTBDRsl assay. RESULTS Out of the 226 strains, mutations conferring resistance to INH, RMP, multidrug resistance tuberculosis (MDR-TB) and EMB were 8, 3, 2 and 2 isolates, respectively. There was no isolated strain that showed mutation in the inhA promoter region gene. All INH resistant strains had mutations in the katG gene at codon 315 with amino acid change of S315T1. Among rifampicin resistant strains, two isolates displayed mutations at codon 531 in the rpoB gene with amino acid change of S531L and one isolate was by omission of wild type probes at Q513L. According to mutations associated with ethambutol resistance, all of the isolates had mutations in the embB gene with aminoacid change of M306I. All isolates resistant to INH, RMP and MDR using BacT/AlerT 3D system were correctly identified by GenoType® MTBDRplus assay. CONCLUSION We observed mutations conferring resistance to INH at S315T1 of the katG gene, RMP at S531L and Q513L in the rpoB genes and EMB at M306I of the embB gene. In the absence of conventional drug susceptibility testing, the effort to develop easy, rapid and cost effective molecular assays for drug resistance TB monitoring is definitely desirable and the GenoType® MTBDRplus assay was found to be a useful method for diagnosis of resistance to INH, RMP and MDR from lymph node aspirates. Further molecular cluster analysis to determine transmission dynamics of mutated strain is required.
Collapse
Affiliation(s)
- Fantahun Biadglegne
- 1. College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia; ; 2. Institute of Medical Microbiology and Epidemiology of Infectious Diseases, University Hospital, University of Leipzig, Leipzig, Germany; ; 3. Institute of Clinical Immunology, University Hospital, University of Leipzig, Leipzig, Germany; ; 5. Translational Centre for Regenerative Medicine (TRM)-Leipzig, University Hospital, University of Leipzig, Leipzig, Germany
| | | | | | | |
Collapse
|