1
|
Kumar D, Roy S, Babu A, Pandey AK. Harnessing Fungal Bioagents Rich in Volatile Metabolites for Sustainable Crop Protection: A Critical Review. J Basic Microbiol 2025; 65:e70003. [PMID: 40007229 DOI: 10.1002/jobm.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/29/2024] [Accepted: 01/11/2025] [Indexed: 02/27/2025]
Abstract
Pests and diseases have a significant impact on crop health and yields, posing a serious threat to global agriculture. Effective management strategies, such as integrated pest management (IPM), including crop rotation, use of synthetic pesticides, biological control, and resistant/tolerant crop varieties, are essential to mitigate these risks and ensure sustainable agricultural practices. Fungal bioagents play an important role in managing phytopathogens and insect pests by acting as biological agents. They promote healthy plant growth by enhancing the uptake of nutrients and combating systemic resistance in plants. Furthermore, fungal bioagents are environmentally friendly, reducing application of fungicides and insecticides and minimizing their negative impact on the crops and environment. Their use in IPM promotes sustainable agriculture and ensures high-quality crops while maintaining soil health and microbial biodiversity. These fungal bioagents are rich sources of volatile organic compounds (VOCs), which play an important role in biological communication during interaction with insect pests and phytopathogens. In pest management, VOC production by beneficial fungi is accountable for their efficacy against pests and pathogens. Thus, this review discusses the important fungal bioagents producing VOCs, extraction methods of VOC, and the use of VOC-producing fungi in pest and disease management, knowledge gaps, and future research areas.
Collapse
Affiliation(s)
- Dheeraj Kumar
- Department of Mycology & Microbiology, Tea Research Association, North Bengal Regional R & D Center, Nagrakata, India
| | - Somnath Roy
- Entomology Department, Tea Research Association, Tocklai Tea Research Institute, Jorhat, India
| | - Azariah Babu
- Entomology Department, Tea Research Association, Tocklai Tea Research Institute, Jorhat, India
| | - Abhay K Pandey
- Department of Mycology & Microbiology, Tea Research Association, North Bengal Regional R & D Center, Nagrakata, India
| |
Collapse
|
2
|
Ongaga EG, Muli JK, Kamau PK, Budambula NL. Endophytic Microflora of Crotalaria: Their Diversity and Role in Plant Growth Promotion. Curr Microbiol 2025; 82:214. [PMID: 40140094 DOI: 10.1007/s00284-025-04181-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 03/09/2025] [Indexed: 03/28/2025]
Abstract
The endophytic microflora of Crotalaria constitute a heterogeneous community of beneficial microorganisms that colonize healthy tissues of the host plant without causing any apparent harm. The microflora play a crucial role in promoting plant growth, nutrient gain, and resilience to various biotic and abiotic stresses. This review highlights the range of endophytic microorganisms that reside in Crotalaria tissues, providing insights on the methods of detection and the role played by endophytes in promoting host plant growth. Diverse groups of endophytes ranging from bacteria, fungi, and actinomycetes colonize internal organs of Crotalaria species. Key findings indicate that Crotalaria-associated endophytes, including species of Bradyrhizobium, Rhizobium, Burkholderia, and Methylobacterium, exhibit plant growth-promoting traits such as nitrogen fixation, phytohormone production, phosphate solubilization, and resistance to abiotic stresses. Additionally, some endophytes produce metabolites that serve as biocontrol agents, protecting Crotalaria against phytopathogens. This review offers valuable insights for future exploitation of endophytic microflora of Crotalaria in enhancing crop productivity and stress tolerance.
Collapse
Affiliation(s)
- Edinah G Ongaga
- Department of Biological Sciences, University of Embu (UoEm), P.O Box 6-60100, Embu, Kenya
| | - Joshua K Muli
- Department of Biological Sciences, University of Embu (UoEm), P.O Box 6-60100, Embu, Kenya
| | - Peter K Kamau
- Department of Life Sciences, South Eastern Kenya University (SEKU), P.O. Box 170-90200, Kitui, Kenya
| | - Nancy L Budambula
- Department of Biological Sciences, University of Embu (UoEm), P.O Box 6-60100, Embu, Kenya.
| |
Collapse
|
3
|
Dargiri SA, Naeimi S, Nekouei MK. Enhancing wheat resilience to salinity: the role of endophytic Penicillium chrysogenum as a biological agent for improved crop performance. BMC PLANT BIOLOGY 2025; 25:354. [PMID: 40102779 PMCID: PMC11921529 DOI: 10.1186/s12870-025-06388-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 03/12/2025] [Indexed: 03/20/2025]
Abstract
Salinity stress severely impacts wheat productivity, necessitating effective strategies to enhance crop resilience. This study investigates the potential of Penicillium chrysogenum CM022 as a biological agent to alleviate the impact of salinity stress on wheat (Triticum aestivum L.). P. chrysogenum CM022 improved germination of wheat seeds, particularly under salinity of 150 mM NaCl. Fungal inoculation significantly improved plant growth in terms of root length, plant height, and seedling biomass, even under high salinity conditions. Notably, inoculated plants preserved photosynthetic pigments and reduced oxidative damage, evidenced by lower levels of hydrogen peroxide (H₂O₂) and malondialdehyde (MDA), compared to non-inoculated controls. The inoculated plants also exhibited enhanced proline and soluble sugar contents, which are crucial for osmotic adjustment under stress. Additionally, P. chrysogenum CM022 significantly increased the antioxidant capacity of wheat, boosting total phenolic and flavonoid contents, and enhancing antioxidant enzyme activity under high salinity. These findings underscore the potential of P. chrysogenum CM022 in improving wheat tolerance to salinity stress through physiological, biochemical, and antioxidant defense mechanisms, supporting its use in sustainable agricultural practices to mitigate the adverse effects of salinity on crop production.
Collapse
Affiliation(s)
- Soheila Aghaei Dargiri
- Department of Biological Control Research, Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), Tehran, 19858-13111, Iran
| | - Shahram Naeimi
- Department of Biological Control Research, Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), Tehran, 19858-13111, Iran.
| | | |
Collapse
|
4
|
Fei L, Hou Z, Wang Y, Sun J, An T, Li Q. Isolation and evaluation of growth-promoting endophytic bacteria from Zanthoxylum dissitum Hemsl. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2025; 31:299-310. [PMID: 40070537 PMCID: PMC11890836 DOI: 10.1007/s12298-025-01552-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/20/2024] [Accepted: 01/09/2025] [Indexed: 03/14/2025]
Abstract
The slow growth rate of Zanthoxylum dissitum Hemsl. (Zanthoxylum) is the important factor causing the scarcity of its available wild resource. It has been reported that the plant endophytes can promote the plant growth and the synthesis of secondary metabolitesby by enhancing the efficiency of nutrient absorption by plants and regulating plant hormones. It is important to explore the promoting effects of endophytes on the growth of Zanthoxylum. The application of high-throughput sequencing technology in this study revealed the presence of three phyla, five classes, seven orders, and eleven genera of endophytic bacteria in Zanthoxylum. The most prevalent phyla, classes, orders, and genera were identified respectively as Proteobacteria, Gammaproteobacteria, Burkholderiales, and Pseudomonas. In this study, an endophytic growth-promoting bacterium was isolated and identified as Sphingomonas sp. The results revealed that the bacterium exhibited robust nitrogen fixation, phosphorus solubilization, and effective siderophore production capabilities. The phosphate solubilization index (SI) was found to be (1.266 ± 0.0157). Following a 48-h incubation period in an inorganic phosphorus liquid medium (PKO), the concentration of auxin (IAA) and gibberellin (GA) reached their highest levels, at (138.145 ± 65.111) μg/mL and (805.74 ± 123.86) μg/mL, respectively. Moreover, the study showed that the endophytic bacteria markedly enhanced the germination potential and rate of sorghum seeds, and promoted significantly the growth of the tissue culture seedlings of Zanthoxylum.
Collapse
Affiliation(s)
- Lingyu Fei
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha, Hunan China
| | - Ziying Hou
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha, Hunan China
| | - Yuan Wang
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha, Hunan China
| | - Jikang Sun
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha, Hunan China
| | - Tingting An
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha, Hunan China
| | - Qiuyun Li
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha, Hunan China
| |
Collapse
|
5
|
Sharma K, Verma R, Kumar D, Kumar V. Impact of Irpex lenis and Schizophyllum commune endophytic fungi on Perilla frutescens: enhancing nutritional uptake, phytochemicals, and antioxidant potential. Microb Cell Fact 2024; 23:226. [PMID: 39127680 DOI: 10.1186/s12934-024-02491-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Endophytic fungi (EF) reside within plants without causing harm and provide benefits such as enhancing nutrients and producing bioactive compounds, which improve the medicinal properties of host plants. Selecting plants with established medicinal properties for studying EF is important, as it allows a deeper understanding of their influence. Therefore, the study aimed to investigate the impact of EF after inoculating the medicinal plant Perilla frutescens, specifically focusing on their role in enhancing medicinal properties. RESULTS In the current study, the impact of two EF i.e., Irpex lenis and Schizophyllum commune isolated from A. bracteosa was observed on plant Perilla frutescens leaves after inoculation. Plants were divided into four groups i.e., group A: the control group, group B: inoculated with I. lenis; group C: inoculated with S. commune and group D: inoculated with both the EF. Inoculation impact of I. lenis showed an increase in the concentration of chlorophyll a (5.32 mg/g), chlorophyll b (4.46 mg/g), total chlorophyll content (9.78 mg/g), protein (68.517 ± 0.77 mg/g), carbohydrates (137.886 ± 13.71 mg/g), and crude fiber (3.333 ± 0.37%). Furthermore, the plants inoculated with I. lenis showed the highest concentrations of P (14605 mg/kg), Mg (4964.320 mg/kg), Ca (27389.400 mg/kg), and Mn (86.883 mg/kg). The results of the phytochemical analysis also indicated an increased content of total flavonoids (2.347 mg/g), phenols (3.086 mg/g), tannins (3.902 mg/g), and alkaloids (1.037 mg/g) in the leaf extract of P. frutescens inoculated with I. lenis. Thus, overall the best results of inoculation were observed in Group B i.e. inoculated with I. lenis. GC-MS analysis of methanol leaf extract showed ten bioactive constituents, including 9-Octadecenoic acid (Z)-, methyl ester, and hexadecanoic acid, methyl ester as major constituents found in all the groups of P. frutescens leaves. The phenol (gallic acid) and flavonoids (rutin, kaempferol, and quercetin) were also observed to increase after inoculation by HPTLC analysis. The enhancement in the phytochemical content was co-related with improved anti-oxidant potential which was analyzed by DPPH (% Inhibition: 83.45 µg/ml) and FRAP (2.980 µM Fe (II) equivalent) assay as compared with the control group. CONCLUSION Inoculation with I. lenis significantly enhances the uptake of nutritional constituents, phytochemicals, and antioxidant properties in P. frutescens, suggesting its potential to boost the therapeutic properties of host plants.
Collapse
Affiliation(s)
- Kiran Sharma
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, 173229, India
| | - Rachna Verma
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, 173229, India.
- Department of Chemsitry, Faculty of Science, University of Hradek Kralove, Rokitanskeho 62, 500 03 Hradec Kralove , Czech Republic.
| | - Dinesh Kumar
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, 173229, India
| | - Vinod Kumar
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK430AL, UK.
| |
Collapse
|
6
|
Acharya BR, Gill SP, Kaundal A, Sandhu D. Strategies for combating plant salinity stress: the potential of plant growth-promoting microorganisms. FRONTIERS IN PLANT SCIENCE 2024; 15:1406913. [PMID: 39077513 PMCID: PMC11284086 DOI: 10.3389/fpls.2024.1406913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/24/2024] [Indexed: 07/31/2024]
Abstract
Global climate change and the decreasing availability of high-quality water lead to an increase in the salinization of agricultural lands. This rising salinity represents a significant abiotic stressor that detrimentally influences plant physiology and gene expression. Consequently, critical processes such as seed germination, growth, development, and yield are adversely affected. Salinity severely impacts crop yields, given that many crop plants are sensitive to salt stress. Plant growth-promoting microorganisms (PGPMs) in the rhizosphere or the rhizoplane of plants are considered the "second genome" of plants as they contribute significantly to improving the plant growth and fitness of plants under normal conditions and when plants are under stress such as salinity. PGPMs are crucial in assisting plants to navigate the harsh conditions imposed by salt stress. By enhancing water and nutrient absorption, which is often hampered by high salinity, these microorganisms significantly improve plant resilience. They bolster the plant's defenses by increasing the production of osmoprotectants and antioxidants, mitigating salt-induced damage. Furthermore, PGPMs supply growth-promoting hormones like auxins and gibberellins and reduce levels of the stress hormone ethylene, fostering healthier plant growth. Importantly, they activate genes responsible for maintaining ion balance, a vital aspect of plant survival in saline environments. This review underscores the multifaceted roles of PGPMs in supporting plant life under salt stress, highlighting their value for agriculture in salt-affected areas and their potential impact on global food security.
Collapse
Affiliation(s)
- Biswa R. Acharya
- US Salinity Laboratory, USDA-ARS, Riverside, CA, United States
- College of Natural and Agricultural Sciences, University of California Riverside, Riverside, CA, United States
| | - Satwinder Pal Gill
- Plants, Soils, and Climate, College of Agricultural and Applied Sciences, Utah State University, Logan, UT, United States
| | - Amita Kaundal
- Plants, Soils, and Climate, College of Agricultural and Applied Sciences, Utah State University, Logan, UT, United States
| | - Devinder Sandhu
- US Salinity Laboratory, USDA-ARS, Riverside, CA, United States
| |
Collapse
|
7
|
Aylward J, Wilson AM, Visagie CM, Spraker J, Barnes I, Buitendag C, Ceriani C, Del Mar Angel L, du Plessis D, Fuchs T, Gasser K, Krämer D, Li W, Munsamy K, Piso A, Price JL, Sonnekus B, Thomas C, van der Nest A, van Dijk A, van Heerden A, van Vuuren N, Yilmaz N, Duong TA, van der Merwe NA, Wingfield MJ, Wingfield BD. IMA Genome - F19 : A genome assembly and annotation guide to empower mycologists, including annotated draft genome sequences of Ceratocystis pirilliformis, Diaporthe australafricana, Fusarium ophioides, Paecilomyces lecythidis, and Sporothrix stenoceras. IMA Fungus 2024; 15:12. [PMID: 38831329 PMCID: PMC11149380 DOI: 10.1186/s43008-024-00142-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2024] [Indexed: 06/05/2024] Open
Abstract
The pace at which Next Generation Sequence data is being produced continues to accelerate as technology improves. As a result, such data are increasingly becoming accessible to biologists outside of the field of bioinformatics. In contrast, access to training in the methods of genome assembly and annotation are not growing at a similar rate. In this issue, we report on a Genome Assembly Workshop for Mycologists that was held at the Forestry and Agricultural Biotechnology Institute (FABI) at the University of Pretoria, South Africa and make available the 12 draft genome sequences emanating from the event. With the aim of making the process of genome assembly and annotation more accessible to biologists, we provide a step-by-step guide to both genome assembly and annotation, intended to encourage and empower mycologists to use genome data in their research.
Collapse
Affiliation(s)
- Janneke Aylward
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
- Department of Conservation Ecology and Entomology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Andi M Wilson
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Cobus M Visagie
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Joseph Spraker
- Hexagon Bio, 1490 O'Brien Dr, Menlo Park, CA, 94025, USA
| | - Irene Barnes
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Carla Buitendag
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Callin Ceriani
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Lina Del Mar Angel
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Deanné du Plessis
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Taygen Fuchs
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Katharina Gasser
- Department of Crop Sciences, University of Natural Resources and Life Sciences (BOKU), Institute of Plant Protection, Konrad Lorenz-Strasse 24, Tulln an Der Donau, 3430, Vienna, Austria
| | - Daniella Krämer
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - WenWen Li
- Department of Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Kiara Munsamy
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Anja Piso
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Jenna-Lee Price
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Byron Sonnekus
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Chanel Thomas
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Ariska van der Nest
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Alida van Dijk
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Alishia van Heerden
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Nicole van Vuuren
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Neriman Yilmaz
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Tuan A Duong
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Nicolaas A van der Merwe
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Michael J Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Brenda D Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa.
| |
Collapse
|
8
|
El-Khawaga HA, Mustafa AE, El Khawaga MA, Mahfouz AY, Daigham GE. Bio-stimulating effect of endophytic Aspergillus flavus AUMC 16068 and its respective ex-polysaccharides in lead stress tolerance of Triticum aestivum plant. Sci Rep 2024; 14:11952. [PMID: 38796501 PMCID: PMC11127936 DOI: 10.1038/s41598-024-61936-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 05/11/2024] [Indexed: 05/28/2024] Open
Abstract
Heavy metal accumulation is one of the major agronomic challenges that has seriously threatened food safety. As a result, metal-induced phytotoxicity concerns require quick and urgent action to retain and maintain the physiological activities of microorganisms, the nitrogen pool of soils, and the continuous yields of wheat in a constantly worsening environment. The current study was conducted to evaluate the plant growth-promoting endophytic Aspergillus flavus AUMC 16,068 and its EPS for improvement of plant growth, phytoremediation capacity, and physiological consequences on wheat plants (Triticum aestivum) under lead stress. After 60 days of planting, the heading stage of wheat plants, data on growth metrics, physiological properties, minerals content, and lead content in wheat root, shoot, and grains were recorded. Results evoked that lead pollution reduced wheat plants' physiological traits as well as growth at all lead stress concentrations; however, inoculation with lead tolerant endophytic A. flavus AUMC 16,068 and its respective EPS alleviated the detrimental impact of lead on the plants and promoted the growth and physiological characteristics of wheat in lead-contaminated conditions and also lowering oxidative stress through decreasing (CAT, POD, and MDA), in contrast to plants growing in the un-inoculated lead polluted dealings. In conclusion, endophytic A. flavus AUMC 16,068 spores and its EPS are regarded as eco-friendly, safe, and powerful inducers of wheat plants versus contamination with heavy metals, with a view of protecting plant, soil, and human health.
Collapse
Affiliation(s)
- Hend A El-Khawaga
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, (Girls Branch), Cairo, Egypt
| | - Abeer E Mustafa
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, (Girls Branch), Cairo, Egypt
| | - Maie A El Khawaga
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, (Girls Branch), Cairo, Egypt
| | - Amira Y Mahfouz
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, (Girls Branch), Cairo, Egypt.
| | - Ghadir E Daigham
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, (Girls Branch), Cairo, Egypt
| |
Collapse
|
9
|
Wang Z, Wang L, Liang X, Zhang G, Li Z, Yang Z, Zhan F. The coexistence of arbuscular mycorrhizal fungi and dark septate endophytes synergistically enhanced the cadmium tolerance of maize. FRONTIERS IN PLANT SCIENCE 2024; 15:1349202. [PMID: 38855464 PMCID: PMC11157013 DOI: 10.3389/fpls.2024.1349202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/29/2024] [Indexed: 06/11/2024]
Abstract
Introduction Arbuscular mycorrhizal fungi (AMF) and dark septate endophytic fungi (DSEs) generally coexist in the roots of plants. However, our understanding of the effects of their coexistence on plant growth and stress resistance is limited. Methods In the present study, the effects of single and dual inoculation of AMF and DSE on the growth, photosynthetic physiology, glutathione (GSH) metabolism, endogenous hormones, and cadmium (Cd) content of maize under 25 mg•kg-1 Cd stress were investigated. Results Compared with that after the non-inoculation treatment, AMF+DSE co-inoculation significantly increased the photosynthetic rate (Pn) of maize leaves; promoted root GSH metabolism; increased the root GSH concentration and activity of γ-glutamyl cysteine synthase (γ-GCS), ATP sulfatase (ATPS) and sulfite reductase (SIR) by 215%, 117%, 50%, and 36%, respectively; and increased the concentration of endogenous hormones in roots, with increases in zeatin (ZR), indole-3 acetic acid (IAA), and abscisic acid (ABA) by 81%, 209%, and 72%, respectively. AMF inoculation, DSE inoculation and AMF+DSE co-inoculation significantly increased maize biomass, and single inoculation with AMF or DSE increased the Cd concentration in roots by 104% or 120%, respectively. Moreover, significant or highly significant positive correlations were observed between the contents of ZR, IAA, and ABA and the activities of γ-GCS, ATPS, and SIR and the glutathione (GSH) content. There were significant or highly significant positive interactions between AMF and DSE on the Pn of leaves, root GSH metabolism, and endogenous hormone contents according to two-way analysis of variance. Therefore, the coexistence of AMF and DSE synergistically enhanced the Cd tolerance of maize.
Collapse
Affiliation(s)
- Zhaodi Wang
- College of Resources and Environment, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Lei Wang
- College of Resources and Environment, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Xinran Liang
- College of Resources and Environment, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Guangqun Zhang
- College of Resources and Environment, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Zuran Li
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Zhixin Yang
- College of Resources and Environment, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Fangdong Zhan
- College of Resources and Environment, Yunnan Agricultural University, Kunming, Yunnan, China
| |
Collapse
|
10
|
Rehan N, Farhat H, Shafique HA, Shaheen S. A Comprehensive Perception of Biological Control Potential of Endophytes and Quality Refinement of Lagenaria siceraria. Curr Microbiol 2024; 81:184. [PMID: 38771325 DOI: 10.1007/s00284-024-03706-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 04/19/2024] [Indexed: 05/22/2024]
Abstract
Agriculture and livestock management practices known as organic farming rely more on internal processes than external inputs. Natural environments depend heavily on diversity, and organic farming incorporates both the stated purpose of fostering diversity as well as the use of diversity as a management tool. A more complete understanding of agriculture in terms of agro-ecology has begun to be questioned by the traditional reductionist approach to the study of agriculture. Therefore it is necessary to be aware more about the significance of microbes in processes including soil growth, plant nourishment, and the eradication of plant disease, pest, and weeds. In this study, fluorescent Pseudomonas strain (EFP56) and Trichoderma harzianum were studied for antifungal and antibacterial activity against four common root rot fungi and four common laboratory bacteria in vitro experiments. Furthermore, soil-borne disease surveillance and nutritional quality of Lagenaria siceraria, fluorescent Pseudomonas strain (EFP56) and Trichoderma harzianum were combined with neem cake and cotton cake to check their efficacy. Through the application of organic soil amendments in combination with biocontrol agents improved the quality of vegetables and their nutritional value by raising their polyphenol, carbohydrate, and protein content as well as enhancing antioxidant scavenging status. The experiments were conducted in pots and in fields to confirm their efficacy rate. The final outcomes also revealed greater induction of defense system, disease lessening and enriched fruit quality. Consortium of neem cake and cotton cake with bio-stimulants can regulate biotic as well as abiotic stress.
Collapse
Affiliation(s)
- Noureen Rehan
- Department of Botany, University of Karachi, Karachi, 75270, Pakistan
| | - Hafiza Farhat
- Department of Botany, University of Karachi, Karachi, 75270, Pakistan.
- Institute of Biological Sciences, Gomal University, D.I Khan, D.I Khan, 29050, Pakistan.
| | | | - Sumera Shaheen
- Department of Botany, University of Karachi, Karachi, 75270, Pakistan
| |
Collapse
|
11
|
Huertas V, Jiménez A, Diánez F, Chelhaoui R, Santos M. Importance of Dark Septate Endophytes in Agriculture in the Face of Climate Change. J Fungi (Basel) 2024; 10:329. [PMID: 38786684 PMCID: PMC11122602 DOI: 10.3390/jof10050329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/22/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024] Open
Abstract
Climate change is a notable challenge for agriculture as it affects crop productivity and yield. Increases in droughts, salinity, and soil degradation are some of the major consequences of climate change. The use of microorganisms has emerged as an alternative to mitigate the effects of climate change. Among these microorganisms, dark septate endophytes (DSEs) have garnered increasing attention in recent years. Dark septate endophytes have shown a capacity for mitigating and reducing the harmful effects of climate change in agriculture, such as salinity, drought, and the reduced nutrient availability in the soil. Various studies show that their association with plants helps to reduce the harmful effects of abiotic stresses and increases the nutrient availability, enabling the plants to thrive under adverse conditions. In this study, the effect of DSEs and the underlying mechanisms that help plants to develop a higher tolerance to climate change were reviewed.
Collapse
Affiliation(s)
| | | | | | | | - Mila Santos
- Departamento de Agronomía, Escuela Superior de Ingeniería, Universidad de Almería, 04120 Almería, Spain; (V.H.); (A.J.); (F.D.); (R.C.)
| |
Collapse
|
12
|
Vimal SR, Singh JS, Kumar A, Prasad SM. The plant endomicrobiome: Structure and strategies to produce stress resilient future crop. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 6:100236. [PMID: 38756233 PMCID: PMC11097330 DOI: 10.1016/j.crmicr.2024.100236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024] Open
Abstract
Plants have a microbiome, a diverse community of microorganisms, including bacteria, fungi, and viruses, living inside and on their tissues. Versatile endophytic microorganisms inhabited in every plant part without causing disease and develop endophytic microbiome or endo-microbiome. Plant endo-microbiome are drawn by the nutrient rich micro-environment, and in turn some microbes mutualistically endorse and protect plant from adverse environmental stresses. Plant endo-microbiome interact within well-designed host equilibrium containing xylem, phloem, nutrients, phytohormones, metabolites and shift according to environmental and nutritional change. Plant endo-microbiome regulate and respond to environmental variations, pathogens, herbivores by producing stress regulators, organic acids, secondary metabolites, stress hormones as well as unknown substances and signalling molecules. Endomicrobiome efficiently synthesizes multiple bioactive compounds, stress phytohormones with high competence. The technological innovation as next generation genomics biology and high-throughput multiomics techniques stepping stones on the illumination of critical endo-microbiome communities and functional characterization that aid in improving plant physiology, biochemistry and immunity interplay for best crop productivity. This review article contains deeper insight in endomicrobiome related research work in last years, recruitment, niche development, nutrient dynamics, stress removal mechanisms, bioactive services in plant health development, community architecture and communication, and immunity interplay in producing stress resilient future crop.
Collapse
Affiliation(s)
- Shobhit Raj Vimal
- Ranjan Plant Physiology & Biochemistry Laboratory, Department of Botany, University of Allahabad, Prayagraj 211002, Uttar Pradesh, India
| | - Jay Shankar Singh
- Department of Environmental Microbiology, School for Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, Uttar Pradesh, India
| | - Ashwani Kumar
- Metagenomics and Secretomics Research Laboratory, Department of Botany, University of Allahabad (A Central University), Prayagraj 211002, Uttar Pradesh, India
| | - Sheo Mohan Prasad
- Ranjan Plant Physiology & Biochemistry Laboratory, Department of Botany, University of Allahabad, Prayagraj 211002, Uttar Pradesh, India
| |
Collapse
|
13
|
Qin X, Xu J, An X, Yang J, Wang Y, Dou M, Wang M, Huang J, Fu Y. Insight of endophytic fungi promoting the growth and development of woody plants. Crit Rev Biotechnol 2024; 44:78-99. [PMID: 36592988 DOI: 10.1080/07388551.2022.2129579] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/04/2022] [Accepted: 04/16/2022] [Indexed: 01/04/2023]
Abstract
Microorganisms play an important role in plant growth and development. In particular, endophytic fungi is one of the important kinds of microorganisms and has a mutually beneficial symbiotic relationship with host plants. Endophytic fungi have many substantial benefits to host plants, especially for woody plants, such as accelerating plant growth, enhancing stress resistance, promoting nutrient absorption, resisting pathogens and etc. However, the effects of endophytic fungi on the growth and development of woody plants have not been systematically summarized. In this review, the functions of endophytic fungi for the growth and development of woody plants have been mainly reviewed, including regulating plant growth (e.g., flowering, root elongation, etc.) by producing nutrients and plant hormones, and improving plant disease, insect resistance and heavy metal resistance by producing secondary metabolites. In addition, the diversity of endophytic fungi could improve the ability of woody plants to adapt to adverse environment. The components produced by endophytic fungi have excellent potential for the growth and development of woody plants. This review has systematically discussed the potential regulation mechanism of endophytic fungi regulating the growth and development of woody plants, it would be of great significance for the development and utilization of endophytic fungi resource from woody plants for the protection of forest resources.
Collapse
Affiliation(s)
- Xiangyu Qin
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, PR China
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, PR China
| | - Jian Xu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, PR China
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, PR China
| | - Xiaoli An
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, PR China
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, PR China
| | - Jie Yang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, PR China
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, PR China
| | - Yao Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, PR China
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, PR China
| | - Meijia Dou
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, PR China
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, PR China
| | - Minggang Wang
- The College of Forestry, Beijing Forestry University, Beijing, PR China
| | - Jin Huang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, PR China
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, PR China
| | - Yujie Fu
- The College of Forestry, Beijing Forestry University, Beijing, PR China
| |
Collapse
|
14
|
Gowtham HG, Hema P, Murali M, Shilpa N, Nataraj K, Basavaraj GL, Singh SB, Aiyaz M, Udayashankar AC, Amruthesh KN. Fungal Endophytes as Mitigators against Biotic and Abiotic Stresses in Crop Plants. J Fungi (Basel) 2024; 10:116. [PMID: 38392787 PMCID: PMC10890593 DOI: 10.3390/jof10020116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 02/24/2024] Open
Abstract
The escalating global food demand driven by a gradually expanding human population necessitates strategies to improve agricultural productivity favorably and mitigate crop yield loss caused by various stressors (biotic and abiotic). Biotic stresses are caused by phytopathogens, pests, and nematodes, along with abiotic stresses like salt, heat, drought, and heavy metals, which pose serious risks to food security and agricultural productivity. Presently, the traditional methods relying on synthetic chemicals have led to ecological damage through unintended impacts on non-target organisms and the emergence of microbes that are resistant to them. Therefore, addressing these challenges is essential for economic, environmental, and public health concerns. The present review supports sustainable alternatives, emphasizing the possible application of fungal endophytes as innovative and eco-friendly tools in plant stress management. Fungal endophytes demonstrate capabilities for managing plants against biotic and abiotic stresses via the direct or indirect enhancement of plants' innate immunity. Moreover, they contribute to elevated photosynthesis rates, stimulate plant growth, facilitate nutrient mineralization, and produce bioactive compounds, hormones, and enzymes, ultimately improving overall productivity and plant stress resistance. In conclusion, harnessing the potentiality of fungal endophytes represents a promising approach toward the sustainability of agricultural practices, offering effective alternative solutions to reduce reliance on chemical treatments and address the challenges posed by biotic and abiotic stresses. This approach ensures long-term food security and promotes environmental health and economic viability in agriculture.
Collapse
Affiliation(s)
- H G Gowtham
- Department of Studies and Research in Food Science and Nutrition, KSOU, Mysuru 570006, Karnataka, India
| | - P Hema
- Department of Studies in Botany, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India
| | - Mahadevamurthy Murali
- Department of Studies in Botany, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India
| | - N Shilpa
- Department of Studies in Microbiology, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India
| | - K Nataraj
- Department of Studies in Botany, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India
- PG Department of Botany, Maharani's Science College for Women, JLB Road, Mysuru 570005, Karnataka, India
| | - G L Basavaraj
- PG Department of Botany, Maharani's Science College for Women, JLB Road, Mysuru 570005, Karnataka, India
| | - Sudarshana Brijesh Singh
- Department of Studies in Botany, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India
| | - Mohammed Aiyaz
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India
| | - A C Udayashankar
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India
| | - Kestur Nagaraj Amruthesh
- Department of Studies in Botany, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India
| |
Collapse
|
15
|
Zhang L, Yu J, Zheng J, Wu L, Zhou X, Ban Y, Sun Y, Zhang H, Feng Y. A new l-serine binding orphan SerBP affects indole synthesis in Pantoea ananatis. J Basic Microbiol 2023; 63:1348-1360. [PMID: 37495561 DOI: 10.1002/jobm.202300165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/12/2023] [Accepted: 07/15/2023] [Indexed: 07/28/2023]
Abstract
Indole is traditionally known as a metabolite of l-tryptophan and now as an important signaling molecule in bacteria, however, the understanding of its upstream synthesis regulation is very limited. Pantoea ananatis YJ76, a predominant diazotrophic endophyte isolated from rice (Oryza sativa), can produce indole to regulate various physiological and biochemical behaviors. We constructed a mutant library of YJ76 using the mTn5 transposon insertion mutation method, from which an indole-deficient mutant was screened out. Via high-efficiency thermal asymmetric interlaced PCR (hiTAIL-PCR), the transposon was determined to be inserted in a gene (RefSeq: WP014605468.1) of unknown function that is highly conserved at the intraspecific level. Bioinformatics analysis implied that the protein (Protein ID: WP089517194.1) encoded by the mutant gene is most likely to be a new orphan substrate-binding protein (SBP) for amino acid ABC transporters. Amino acid supplement cultivation experiments and surface plasmon resonance revealed that the protein could bind to l-serine (KD = 6.149 × 10-5 M). Therefore, the SBP was named as SerBP. This is the first case that a SBP responds to l-serine ABC transports. As a precursor of indole synthesis, the transmembrane transported l-serine was directly correlated with indole signal production and the mutation of serBP gene weakened the resistance of YJ76 to antibiotics, alkali, heavy metals, and starvation. This study provided a new paradigm for exploring the upstream regulatory pathway for indole synthesis of bacteria.
Collapse
Affiliation(s)
- Lei Zhang
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Jiajia Yu
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Jing Zheng
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Liqing Wu
- Center of Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Xinyi Zhou
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yali Ban
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yuanhao Sun
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Haotian Zhang
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yongjun Feng
- School of Life Science, Beijing Institute of Technology, Beijing, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| |
Collapse
|
16
|
Singh S, Kaur S, Kaur R, Kaur A. Impact of Plant Symbiotic Endophytic Fungus, Aspergillus terreus on Insect Herbivore Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae). NEOTROPICAL ENTOMOLOGY 2023; 52:932-944. [PMID: 37530941 DOI: 10.1007/s13744-023-01070-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/10/2023] [Indexed: 08/03/2023]
Abstract
Herbivorous insects are known to be resistant to fungal endophytes that asymptomatically inhabit plant tissues. The insecticidal ability of the endophytic fungus Aspergillus terreus isolated from Catharanthus roseus against Spodoptera litura (Fabricius) was assessed in the current study. The survival and growth of S. litura were adversely impacted by the ethyl acetate extract of endophytic A. terreus. Fungal extract supplemented diet caused 14 to 94% larval mortality in comparison to 2% in control. Additionally, retarded insect growth was observed after ingestion of supplemented diet. The fungal metabolites were also observed to have an inhibitory influence on the adult emergence and reproductive potential of adults. Phytochemical analysis revealed the presence of phenolic compounds in the crude extract of endophytic fungus which may be responsible for toxicity. It was also determined how endophyte-infected cauliflower plants affected S. litura's survival and growth. Endophyte-infected plants exhibited resistance to S. litura by causing 54% larval mortality and delaying development by 5.2 days. In comparison to uninfected plants, adult emergence, lifespan, fecundity and egg hatchability of insects was significantly decreased on infected plants. There was a significant decrease in relative growth and consumption rates as well as in the efficiency of food conversion, which indicates toxic and antifeedant effect of the fungus on S. litura. This suggests that endophyte-inoculated plants exhibit antibiosis against S. litura. In conclusion, the endophytic fungi having insecticidal activity could be used to develop alternative ecologically safe control strategies.
Collapse
Affiliation(s)
- Surbjit Singh
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Sanehdeep Kaur
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, India.
| | - Rajvir Kaur
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Amarjeet Kaur
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, India
| |
Collapse
|
17
|
Hu D, Long X, Luobu T, Wang Q. Current status of research on endophytes of traditional Tibetan medicinal plant and their metabolites. 3 Biotech 2023; 13:338. [PMID: 37705864 PMCID: PMC10495306 DOI: 10.1007/s13205-023-03720-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 07/29/2023] [Indexed: 09/15/2023] Open
Abstract
The Qinghai-Tibet Plateau, known as the "Third Pole of the World," has a rich variety of medicinal plants that play an important role in the field of medicine due to its unique geographical environment. However, due to the limited resources of Tibetan medicinal plants and the fragility of the ecological environment of the Qinghai-Tibet Plateau, more and more Tibetan medicinal plants are on the verge of extinction. As a reservoir of biologically active metabolites, endophytes of medicinal plants produce a large number of compounds with potential applications in modern medicine (including antibacterial, immunosuppressive, antiviral, and anticancer) and are expected to be substitutes for Tibetan medicinal plants. This paper reviews 12 Tibetan medicinal plants from the Qinghai-Tibet Plateau, highlighting the diversity of their endophytes, the diversity of their metabolites and their applications. The results show that the endophytes of Tibetan medicinal plants are remarkably diverse, and the efficacy of their metabolites involves various aspects, such as antioxidant, anti-disease and anti-parasitic. In addition, conservation measures for the resources of Tibetan medicinal plants are summarised to provide a reference for an in-depth understanding of the endophytes of Tibetan medicinal plants and to stimulate the scientific community to bioprospect for the endophytes of Tibetan medicinal plants, as well as to provide ideas for their rational exploitation.
Collapse
Affiliation(s)
- Danni Hu
- Wuhan University of Technology, Wuhan, China
| | | | - Tudan Luobu
- Pharmacy Department, Tibetan Hospital of Gongga County, Shannan, China
| | - Qi Wang
- Wuhan University of Technology, Wuhan, China
| |
Collapse
|
18
|
Chen CY, Selvaraj P, Naqvi NI. Functional analysis of auxin derived from a symbiotic mycobiont. FRONTIERS IN PLANT SCIENCE 2023; 14:1216680. [PMID: 37745999 PMCID: PMC10515717 DOI: 10.3389/fpls.2023.1216680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/16/2023] [Indexed: 09/26/2023]
Abstract
The biosynthesis of auxin or indole-3-acetic acid by microorganisms has a major impact on plant-microbe interactions. Several beneficial microbiota are known to produce auxin, which largely influences root development and growth in the host plants. Akin to findings in rhizobacteria, recent studies have confirmed the production of auxin by plant growth-promoting fungi too. Here, we show that Penicillium citrinum isolate B9 produces auxin as deduced by liquid chromatography tandem-mass spectrometry analysis. Such fungal auxin is secreted and contributes directly to enhanced root and shoot development and overall plant growth in Arabidopsis thaliana. Furthermore, auxin production by P. citrinum likely involves more than one tryptophan-dependent pathway. Using auxin biosynthesis inhibitor L-Kynurenine, we show that the indole-3-pyruvate pathway might be one of the key biosynthetic routes involved in such auxin production. Confocal microscopy of the DR5rev:GFP Arabidopsis reporter line helped demonstrate that P. citrunum B9-derived auxin is biologically active and is able to significantly enhance auxin signaling in roots during such improved root growth and plant development. Furthermore, the phenotypic growth defects arising from impaired auxin signaling in Arabidopsis taa1 mutant or upon L-Kynurenine treatment of wild-type Arabidopsis seedlings could be significantly alleviated by fungus B9-derived auxin, thus suggesting its positive role in plant growth promotion. Collectively, our results provide clear evidence that the production of auxin is one of the main mechanisms involved in induction of the beneficial plant growth by P. citrinum.
Collapse
Affiliation(s)
- Cheng-Yen Chen
- Fungal Patho-Biology, Temasek Life Sciences Laboratory, Singapore, Singapore
| | | | - Naweed I. Naqvi
- Fungal Patho-Biology, Temasek Life Sciences Laboratory, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
19
|
Choudhary N, Dhingra N, Gacem A, Yadav VK, Verma RK, Choudhary M, Bhardwaj U, Chundawat RS, Alqahtani MS, Gaur RK, Eltayeb LB, Al Abdulmonem W, Jeon BH. Towards further understanding the applications of endophytes: enriched source of bioactive compounds and bio factories for nanoparticles. FRONTIERS IN PLANT SCIENCE 2023; 14:1193573. [PMID: 37492778 PMCID: PMC10364642 DOI: 10.3389/fpls.2023.1193573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 05/31/2023] [Indexed: 07/27/2023]
Abstract
The most significant issues that humans face today include a growing population, an altering climate, an growing reliance on pesticides, the appearance of novel infectious agents, and an accumulation of industrial waste. The production of agricultural goods has also been subject to a great number of significant shifts, often known as agricultural revolutions, which have been influenced by the progression of civilization, technology, and general human advancement. Sustainable measures that can be applied in agriculture, the environment, medicine, and industry are needed to lessen the harmful effects of the aforementioned problems. Endophytes, which might be bacterial or fungal, could be a successful solution. They protect plants and promote growth by producing phytohormones and by providing biotic and abiotic stress tolerance. Endophytes produce the diverse type of bioactive compounds such as alkaloids, saponins, flavonoids, tannins, terpenoids, quinones, chinones, phenolic acids etc. and are known for various therapeutic advantages such as anticancer, antitumor, antidiabetic, antifungal, antiviral, antimicrobial, antimalarial, antioxidant activity. Proteases, pectinases, amylases, cellulases, xylanases, laccases, lipases, and other types of enzymes that are vital for many different industries can also be produced by endophytes. Due to the presence of all these bioactive compounds in endophytes, they have preferred sources for the green synthesis of nanoparticles. This review aims to comprehend the contributions and uses of endophytes in agriculture, medicinal, industrial sectors and bio-nanotechnology with their mechanism of action.
Collapse
Affiliation(s)
- Nisha Choudhary
- Dept of Biosciences, School of Liberal Arts and Sciences, Mody University of Science and Technology, Lakshmangarh, Sikar, Rajasthan, India
| | - Naveen Dhingra
- Department of Agriculture, Medi-Caps University, Pigdamber Road, Rau, Indore, Madhya Pradesh, India
| | - Amel Gacem
- Department of Physics, Faculty of Sciences, University 20 Août 1955, Skikda, Algeria
| | - Virendra Kumar Yadav
- Dept of Biosciences, School of Liberal Arts and Sciences, Mody University of Science and Technology, Lakshmangarh, Sikar, Rajasthan, India
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| | - Rakesh Kumar Verma
- Dept of Biosciences, School of Liberal Arts and Sciences, Mody University of Science and Technology, Lakshmangarh, Sikar, Rajasthan, India
| | - Mahima Choudhary
- Dept of Biosciences, School of Liberal Arts and Sciences, Mody University of Science and Technology, Lakshmangarh, Sikar, Rajasthan, India
| | - Uma Bhardwaj
- Department of Biotechnology, Noida International University, Noida, U.P., India
| | - Rajendra Singh Chundawat
- Dept of Biosciences, School of Liberal Arts and Sciences, Mody University of Science and Technology, Lakshmangarh, Sikar, Rajasthan, India
| | - Mohammed S. Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
- BioImaging Unit, Space Research Centre, University of Leicester, Leicester, United Kingdom
| | - Rajarshi Kumar Gaur
- Department of Biotechnology, Deen Dayal Upadhyaya (D.D.U.) Gorakhpur University, Gorakhpur, Uttar Pradesh, India
| | - Lienda Bashier Eltayeb
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin AbdulAziz University- Al-Kharj, Riyadh, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
20
|
War AF, Bashir I, Reshi ZA, Kardol P, Rashid I. Insights into the seed microbiome and its ecological significance in plant life. Microbiol Res 2023; 269:127318. [PMID: 36753851 DOI: 10.1016/j.micres.2023.127318] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/12/2022] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
In recent years, the microbiome has attracted much attention because of the multiple roles and functions that microbes play in plants, animals, and human beings. Seed-associated microbes are of particular interest in being the initial microbial inoculum that affects the critical early life stages of a plant. The seed-microbe interactions are also known to improve nutrient acquisition, resilience against pathogens, and resistance against abiotic stresses. Despite these diverse roles, the seed microbiome has received little attention in plant ecology. Thus, we review the current knowledge on seed microbial diversity, community structure, and functions obtained through culture-dependent and culture-independent approaches. Furthermore, we present a comprehensive synthesis of the ecological literature on seed-microbe interactions to better understand the impact of these interactions on plant health and productivity. We suggest that future research should focus on the role of the seed microbiome in the establishment, colonization and spread of plant species in their native and non-native ranges as it may provide new insights into conservation biology and invasion ecology.
Collapse
Affiliation(s)
- Aadil Farooq War
- Department of Botany, University of Kashmir, Srinagar 190006, Jammu and Kashmir, India.
| | - Iqra Bashir
- Department of Botany, University of Kashmir, Srinagar 190006, Jammu and Kashmir, India
| | - Zafar A Reshi
- Department of Botany, University of Kashmir, Srinagar 190006, Jammu and Kashmir, India
| | - Paul Kardol
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, S 901 83 Umeå, Sweden
| | - Irfan Rashid
- Department of Botany, University of Kashmir, Srinagar 190006, Jammu and Kashmir, India
| |
Collapse
|
21
|
Gu K, Chen CY, Selvaraj P, Pavagadhi S, Yeap YT, Swarup S, Zheng W, Naqvi NI. Penicillium citrinum Provides Transkingdom Growth Benefits in Choy Sum (Brassica rapa var. parachinensis). J Fungi (Basel) 2023; 9:jof9040420. [PMID: 37108875 PMCID: PMC10143594 DOI: 10.3390/jof9040420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/22/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
Soil-borne beneficial microbes establish symbioses with plant hosts and play key roles during growth and development therein. In this study, two fungal strains, FLP7 and B9, were isolated from the rhizosphere microbiome associated with Choy Sum (Brassica rapa var. parachinensis) and barley (Hordeum vulgare), respectively. Sequence analyses of the internal transcribed spacer and 18S ribosomal RNA genes combined with colony and conidial morphology identified FLP7 and B9 to be Penicillium citrinum strains/isolates. Plant–fungus interaction assays revealed that isolate B9 showed significant growth promotion effects in Choy Sum plants cultivated in normal soil, as well as under phosphate-limiting conditions. In comparison to the mock control, B9-inoculated plants showed a 34% increase in growth in aerial parts and an 85% upsurge in the fresh weight of roots when cultivated in sterilized soil. The dry biomass of such fungus-inoculated Choy Sum increased by 39% and 74% for the shoots and roots, respectively. Root colonization assays showed that P. citrinum associates directly with the root surface but does not enter or invade the root cortex of the inoculated Choy Sum plants. Preliminary results also indicated that P. citrinum can promote growth in Choy Sum via volatile metabolites too. Interestingly, we detected relatively higher amounts of gibberellins and cytokinins in axenic P. citrinum culture filtrates through liquid chromatography–mass spectrometry analyses. This could plausibly explain the overall growth induction in P. citrinum-inoculated Choy Sum plants. Furthermore, the phenotypic growth defects associated with the Arabidopsis ga1 mutant could be chemically complemented by the exogenous application of P. citrinum culture filtrate, which also showed accumulation of fungus-derived active gibberellins. Our study underscores the importance of transkingdom beneficial effects of such mycobiome-assisted nutrient assimilation and beneficial fungus-derived phytohormone-like metabolites in the induction of robust growth in urban farmed crops.
Collapse
Affiliation(s)
- Keyu Gu
- School of Applied Science, Republic Polytechnic, Singapore 738964, Singapore
| | - Cheng-Yen Chen
- Temasek Life Sciences Laboratory, Singapore 117604, Singapore
| | | | - Shruti Pavagadhi
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
- NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore
- Singapore Centre for Environmental Life Sciences Engineering, Singapore 637551, Singapore
| | - Yoon Ting Yeap
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
- NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore
| | - Sanjay Swarup
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
- NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore
- Singapore Centre for Environmental Life Sciences Engineering, Singapore 637551, Singapore
| | - Wenhui Zheng
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Naweed I. Naqvi
- Temasek Life Sciences Laboratory, Singapore 117604, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| |
Collapse
|
22
|
Miranda V, Silva-Castro GA, Ruiz-Lozano JM, Fracchia S, García-Romera I. Fungal Endophytes Enhance Wheat and Tomato Drought Tolerance in Terms of Plant Growth and Biochemical Parameters. J Fungi (Basel) 2023; 9:jof9030384. [PMID: 36983552 PMCID: PMC10051184 DOI: 10.3390/jof9030384] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/08/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Drought is a major threat to plant growth in many parts of the world. During periods of drought, multiple aspects of plant physiology are negatively affected. For instance, water shortages induce osmotic imbalance, inhibit photosynthesis, decrease nutrient uptake, and increases the production of reactive oxygen species (ROS). In this context, it is necessary to develop sustainable strategies for crops that would help mitigate these conditions. In previous studies, endophytic Zopfiella erostrata strains were found to extensively colonize plant roots, forming a profuse melanized mycelium in the rhizosphere, which could be involved in improving water uptake and nutrient mineralization in plants. The aim of this study is to evaluate the effect of different strains of Z. erostrata on stress mitigation in wheat and tomato plants grown under water deficit conditions. General plant growth variables, as well as physiological and biochemical parameters, related to oxidative status were determined. Our data demonstrate that inoculation with both Zopfiella strains had a very significant effect on plant growth, even under water deficit conditions. However, we observed an even more pronounced impact, depending on the plant and strain involved, suggesting a certain degree of plant/strain compatibility. The biochemical aspects, the accumulation of proline, the oxidative damage to lipids, and the activity of antioxidant enzymes varied considerably depending on the endophyte and the plant evaluated.
Collapse
Affiliation(s)
- Victoria Miranda
- Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja (CRILAR-CONICET, Provincia de La Rioja, UNLAR, SEGEMAR, UNCa), Entre Ríos y Mendoza s/n, Anillaco La Rioja 5301, Argentina
| | - Gloria Andrea Silva-Castro
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1 Apdo. 419, E-18008 Granada, Spain
| | - Juan Manuel Ruiz-Lozano
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1 Apdo. 419, E-18008 Granada, Spain
| | - Sebastian Fracchia
- The Mycology Laboratory, PROPLAME-PRHIDEB-CONICET, Department of Biodiversity and Experimental Biology, Faculty of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires 1053, Argentina
| | - Inmaculada García-Romera
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1 Apdo. 419, E-18008 Granada, Spain
| |
Collapse
|
23
|
Digra S, Nonzom S. An insight into endophytic antimicrobial compounds: an updated analysis. PLANT BIOTECHNOLOGY REPORTS 2023; 17:1-31. [PMID: 37359493 PMCID: PMC10013304 DOI: 10.1007/s11816-023-00824-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 12/30/2022] [Accepted: 02/28/2023] [Indexed: 06/28/2023]
Abstract
Resistance in micro-organisms against antimicrobial compounds is an emerging phenomenon in the modern era as compared to the traditional world which brings new challenges to discover novel antimicrobial compounds from different available sources, such as, medicinal plants, various micro-organisms, like, bacteria, fungi, algae, actinomycetes, and endophytes. Endophytes reside inside the plants without exerting any harmful impact on the host plant along with providing ample of benefits. In addition, they are capable of producing diverse antimicrobial compounds similar to their host, allowing them to serve as useful micro-organism for a range of therapeutic purposes. In recent years, a large number of studies on the antimicrobial properties of endophytic fungi have been carried out globally. These antimicrobials have been used to treat various bacterial, fungal, and viral infections in humans. In this review, the potential of fungal endophytes to produce diverse antimicrobial compounds along with their various benefits to their host have been focused on. In addition, classification systems of endophytic fungi as well as the need for antimicrobial production with genetic involvement and some of the vital novel antimicrobial compounds of endophytic origin can further be utilized in the pharmaceutical industries for various formulations along with the role of nanoparticles as antimicrobial agents have been highlighted.
Collapse
Affiliation(s)
- Shivani Digra
- Depatment of Botany, University of Jammu, Jammu, J&K 180006 India
| | - Skarma Nonzom
- Depatment of Botany, University of Jammu, Jammu, J&K 180006 India
| |
Collapse
|
24
|
Wang L, Li Z, Zhang G, Liang X, Hu L, Li Y, He Y, Zhan F. Dark septate endophyte Exophiala pisciphila promotes maize growth and alleviates cadmium toxicity. Front Microbiol 2023; 14:1165131. [PMID: 37113231 PMCID: PMC10126344 DOI: 10.3389/fmicb.2023.1165131] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/16/2023] [Indexed: 04/29/2023] Open
Abstract
Dark septate endophytes (DSE) are typical root endophytes with the ability to enhance plant growth and tolerance to heavy metals, but the underlying mechanisms are unclear. Here, the physiological and molecular mechanisms of a DSE strain, Exophiala pisciphila, in mitigating cadmium (Cd, 20 mg/kg) toxicity in maize were investigated. Our results showed, under Cd stress, E. pisciphila inoculation enhanced the biomass of maize and reduced both inorganic and soluble forms of Cd (high toxicity) by 52.6% in maize leaves, which may be potentially contributing to Cd toxicity mitigation. Besides, E. pisciphila inoculation significantly affected the expression of genes involved in the signal transduction and polar transport of phytohormone, and then affected abscisic acid (ABA) and indole-3-acetic acid (IAA) contents in maize roots, which was the main reason for promoting maize growth. In addition, E. pisciphila also made a 27% increase in lignin content by regulating the expression of genes involved in the synthesis of it, which was beneficial to hinder the transport of Cd. In addition, E. pisciphila inoculation also activated glutathione metabolism by the up-regulation of genes related to glutathione S-transferase. This study helps to elucidate the functions of E. pisciphila under Cd stress, sheds light on the mechanism of detoxifying Cd and provides new insights into the protection of crops from heavy metals.
Collapse
Affiliation(s)
- Lei Wang
- College of Resources and Environment, Yunnan Agricultural University, Kunming, China
| | - Zuran Li
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, China
| | - Guangqun Zhang
- College of Resources and Environment, Yunnan Agricultural University, Kunming, China
| | - Xinran Liang
- College of Resources and Environment, Yunnan Agricultural University, Kunming, China
| | - Linyan Hu
- College of Resources and Environment, Yunnan Agricultural University, Kunming, China
| | - Yuan Li
- College of Resources and Environment, Yunnan Agricultural University, Kunming, China
| | - Yongmei He
- College of Resources and Environment, Yunnan Agricultural University, Kunming, China
| | - Fangdong Zhan
- College of Resources and Environment, Yunnan Agricultural University, Kunming, China
- *Correspondence: Fangdong Zhan,
| |
Collapse
|
25
|
Wang K, Wen Z, Asiegbu FO. The dark septate endophyte Phialocephala sphaeroides suppresses conifer pathogen transcripts and promotes root growth of Norway spruce. TREE PHYSIOLOGY 2022; 42:2627-2639. [PMID: 35878416 PMCID: PMC9743008 DOI: 10.1093/treephys/tpac089] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Plant-associated microbes including dark septate endophytes (DSEs) of forest trees play diverse functional roles in host fitness including growth promotion and increased defence. However, little is known about the impact on the fungal transcriptome and metabolites during tripartite interaction involving plant host, endophyte and pathogen. To understand the transcriptional regulation of endophyte and pathogen during co-infection, Norway spruce (Picea abies) seedlings were infected with DSE Phialocephala sphaeroides, or conifer root-rot pathogen Heterobasidion parviporum, or both. Phialocephala sphaeroides showed low but stable transcripts abundance (a decrease of 40%) during interaction with Norway spruce and conifer pathogen. By contrast, H. parviporum transcripts were significantly reduced (92%) during co-infection. With RNA sequencing analysis, P. sphaeroides experienced a shift from cell growth to anti-stress and antagonistic responses, while it repressed the ability of H. parviporum to access carbohydrate nutrients by suppressing its carbohydrate/polysaccharide-degrading enzyme machinery. The pathogen on the other hand secreted cysteine peptidase to restrict free growth of P. sphaeroides. The expression of both DSE P. sphaeroides and pathogen H. parviporum genes encoding plant growth promotion products were equally detected in both dual and tripartite interaction systems. This was further supported by the presence of tryptophan-dependent indolic compound in liquid culture of P. sphaeroides. Norway spruce and Arabidopsis seedlings treated with P. sphaeroides culture filtrate exhibited auxin-like phenotypes, such as enhanced root hairs, and primary root elongation at low concentration but shortened primary root at high concentration. The results suggested that the presence of the endophyte had strong repressive or suppressive effect on H. parviporum transcripts encoding genes involved in nutrient acquisition.
Collapse
Affiliation(s)
- Kai Wang
- Corresponding authors: K.Wang (; ) and F.Asiegbu ()
| | - Zilan Wen
- Department of Forest Sciences, University of Helsinki, PO Box 27, Helsinki FIN-00014, Finland
| | | |
Collapse
|
26
|
Hilário S, Gonçalves MFM. Endophytic Diaporthe as Promising Leads for the Development of Biopesticides and Biofertilizers for a Sustainable Agriculture. Microorganisms 2022; 10:2453. [PMID: 36557707 PMCID: PMC9784053 DOI: 10.3390/microorganisms10122453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
Plant pathogens are responsible for causing economic and production losses in several crops worldwide, thus reducing the quality and quantity of agricultural supplies. To reduce the usage of chemically synthesized pesticides, strategies and approaches using microorganisms are being used in plant disease management. Most of the studies concerning plant-growth promotion and biological agents to control plant diseases are mainly focused on bacteria. In addition, a great portion of registered and commercialized biopesticides are bacterial-based products. Despite fungal endophytes having been identified as promising candidates for their use in biological control, it is of the utmost importance to develop and improve the existing knowledge on this research field. The genus Diaporthe, encompasses plant pathogens, saprobes and endophytes that have been screened for secondary metabolite, mainly due to their production of polyketides and a variety of unique bioactive metabolites with agronomic importance. Some of these metabolites exhibit antifungal and antibacterial activity for controlling plant pathogens, and phytotoxic activity for the development of potential mycoherbicides. Moreover, species of Diaporthe are reported as promising agents in the development of biofertilizers. For this reason, in this review we summarize the potential of Diaporthe species to produce natural products with application in agriculture and describe the benefits of these fungi to promote their host plant's growth.
Collapse
Affiliation(s)
- Sandra Hilário
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Micael F. M. Gonçalves
- Division of Microbiology, Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| |
Collapse
|
27
|
Abdelaziz AM, Kalaba MH, Hashem AH, Sharaf MH, Attia MS. Biostimulation of tomato growth and biocontrol of Fusarium wilt disease using certain endophytic fungi. BOTANICAL STUDIES 2022; 63:34. [PMID: 36484866 PMCID: PMC9733755 DOI: 10.1186/s40529-022-00364-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/15/2022] [Indexed: 05/16/2023]
Abstract
BACKGROUND Tomato plant (Solanum lycopersicum L.) suffers from numerous fungal pathogens that cause damage to yeild production qualitatively and quantitatively. One of the most destructive disease of tomato is Fusarium wilt that caused by soil borne fungus called F. oxysporum. METHODS In this study, the anti-Fusarium capabilities of the foliar application of fungal endophytes extracts have been investigated on tomato under Fusarium challenges. Antifungal assay, inhibition of conidial germination, disease severity, photosynthetic pigments, osmolytes, secondary metabolites, oxidative stress, peroxidase (POD) and polyphenol oxidases (PPO) isozymes were tested for potential resistance of tomato growing under Fusarium infection. RESULTS Ethyl acetate extracts of A. flavus MZ045563, A. fumigatus MZ045562 and A. nidulans MZ045561 exhibited antifungal activity toward F. oxysporum where inhibition zone diameters were 15, 12 and 20 mm, respectively. Moreover, extracts of all fungal isolates at concentration 7.5 mg/mL reduced conidia germination from 94.4 to 100%. Fusarium infection caused a destructive effects on tomato plant, high severity desiese index 84.37%, reduction in growth parameters, photosynthetic pigments, and soluble protein. However, contents of proline, total phenol, malondialdehyde (MDA), hydrogen peroxide (H2O2) and antioxidant enzymes activity were increased in tomato plants grown under Fusarium wilt. Treatment of healthy or infected tomato plants by ethyl acetate fungal extracts showed improvements in morphological traits, photosynthetic pigments, osmolytes, total phenol and antioxidant enzymes activity. Besides, the harmful impacts of Fusarium wilt disease on tomato plants have also been reduced by lowering MDA and H2O2 levels. Also, treated tomato plants showed different responses in number and density of POD and PPO isozymes. CONCLUSION It could be suggested that application of ethyl acetate extracts of tested fungal endophytes especially combination of A. flavus, A. nidulans and A. fumigatus could be commercially used as safe biostimulation of tomato plants as well as biofungicide against tomato Fusarium wilt disease.
Collapse
Affiliation(s)
- Amer M Abdelaziz
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt.
| | - Mohamed H Kalaba
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Amr H Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Mohamed H Sharaf
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Mohamed S Attia
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| |
Collapse
|
28
|
Tarroum M, Romdhane WB, Al-Qurainy F, Ali AAM, Al-Doss A, Fki L, Hassairi A. A novel PGPF Penicillium olsonii isolated from the rhizosphere of Aeluropus littoralis promotes plant growth, enhances salt stress tolerance, and reduces chemical fertilizers inputs in hydroponic system. Front Microbiol 2022; 13:996054. [PMID: 36386667 PMCID: PMC9648140 DOI: 10.3389/fmicb.2022.996054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 10/05/2022] [Indexed: 12/02/2022] Open
Abstract
The hydroponic farming significantly enhances the yield and enables multiple cropping per year. These advantages can be improved by using plant growth-promoting fungi (PGPF) either under normal or stress conditions. In this study, the fungal strain (A3) isolated from the rhizosphere of the halophyte plant Aeluropus littoralis was identified as Penicillium olsonii based on sequence homology of its ITS region. The A3 fungus was shown to be halotolerant (up to 1 M NaCl) and its optimal growth was at 27°C, but inhibited at 40°C. In liquid culture medium, the A3 produced indole acetic acid (IAA) especially in the presence of L-tryptophan. Tobacco plants grown under hydroponic farming system were used to evaluate the promoting activity of the direct effect of A3 mycelium (DE) and the indirect effect (IDE) of its cell-free culture filtrate (A3CFF). The results showed that for the two conditions (DE or IDE) the tobacco seedlings exhibited significant increase in their height, leaf area, dry weight, and total chlorophyll content. Interestingly, the A3CFF (added to the MS liquid medium or to nutrient solution (NS), prepared from commercial fertilizers) induced significantly the growth parameters, the proline concentration, the catalase (CAT) and the superoxide dismutase (SOD) activities of tobacco plants. The A3CFF maintained its activity even after extended storage at 4°C for 1 year. Since the A3 is a halotolerant fungus, we tested its ability to alleviate salt stress effects. Indeed, when added at 1:50 dilution factor to NS in the presence of 250 mM NaCl, the A3CFF enhanced the plant salt tolerance by increasing the levels of total chlorophyll, proline, CAT, and SOD activities. In addition, the treated plants accumulated less Na+ in their roots but more K+ in their leaves. The A3CFF was also found to induce the expression of five salt stress related genes (NtSOS1, NtNHX1, NtHKT1, NtSOD, and NtCAT1). Finally, we proved that the A3CFF can reduce by half the chemical fertilizers inputs. Indeed, the tobacco plants grown in a hydroponic system using 0.5xNS supplemented with A3CFF (1:50) exhibited significantly higher growth than those grown in 0.5xNS or 1xNS. In an attempt to explain this mechanism, the expression profile of some growth related genes (nitrogen metabolism (NR1, NRT1), auxin (TRYP1, YUCCA6-like), and brassinosteroid (DET2, DWF4) biosynthesis) was performed. The results showed that all these genes were up-regulated following plant treatment with A3CFF. In summary the results revealed that the halotolerant fungus P. olsonii can stimulates tobacco plant growth, enhances its salt tolerance, and reduces by half the required chemical fertilizer inputs in a hydroponic farming system.
Collapse
Affiliation(s)
- Mohamed Tarroum
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
- *Correspondence: Mohamed Tarroum,
| | - Walid Ben Romdhane
- Department of Plant Production, College of Food and Agricultural Science, King Saud University, Riyadh, Saudi Arabia
| | - Fahad Al-Qurainy
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Abdelrahim Mohamed Ali
- Department of Plant Production, College of Food and Agricultural Science, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah Al-Doss
- Department of Plant Production, College of Food and Agricultural Science, King Saud University, Riyadh, Saudi Arabia
| | - Lotfi Fki
- Laboratory of Plant Biotechnology Applied to Crop Improvement, Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia
| | - Afif Hassairi
- Department of Plant Production, College of Food and Agricultural Science, King Saud University, Riyadh, Saudi Arabia
- Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
- Afif Hassairi,
| |
Collapse
|
29
|
Lu GH, Zheng K, Cao R, Fazal A, Na Z, Wang Y, Yang Y, Sun B, Yang H, Na ZY, Zhao X. Root-associated fungal microbiota of the perennial sweet sorghum cultivar under field growth. Front Microbiol 2022; 13:1026339. [PMID: 36386674 PMCID: PMC9643593 DOI: 10.3389/fmicb.2022.1026339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/20/2022] [Indexed: 12/01/2022] Open
Abstract
Root-associated fungal microbiota, which inhabit the rhizosphere, rhizoplane and endosphere, have a profound impact on plant growth and development. Sorghum bicolor (L.) Moench, also called broomcorn or sweet sorghum, is a multipurpose crop. The comparison between annual and perennial sweet sorghum cultivars in terms of plant growth, as well as their interactions with belowground fungal microbiota, is still poorly understood, although there has been growing interest in the mutualism between annual sweet sorghum and soil bacteria or bacterial endophytes. In this study, the perennial sweet sorghum cultivar N778 (N778 simply) and its control lines TP213 and TP60 were designed to grow under natural field conditions. Bulk soil, rhizosphere soil and sorghum roots were collected at the blooming and maturity stages, and then the fungal microbiota of those samples were characterized by high-throughput sequencing of the fungal ITS1 amplicon. Our results revealed that the alpha diversity of the fungal microbiota in rhizosphere soil and root samples was significantly different between N778 and the two control lines TP213 and TP60 at the blooming or maturity stage. Moreover, beta diversity in rhizosphere soil of N778 was distinct from those of TP213 and TP60, while beta diversity in root samples of N778 was distinct from those of TP213 but not TP60 by PCoA based on Bray–Curtis and WUF distance metrics. Furthermore, linear discriminant analysis (LDA) and multiple group comparisons revealed that OTU4372, a completely unclassified taxon but with symbiotroph mode, was enriched in sorghum roots, especially in N778 aerial roots at the blooming stage. Our results indicate that Cladosporium and Alternaria, two fungal genera in the rhizosphere soil, may also be dominant indicators of sorghum yield and protein content in addition to Fusarium at the maturity stage and imply that the perennial sweet sorghum N778 can primarily recruit dominant psychrotolerant bacterial taxa but not dominant cold-tolerant fungal taxa into its rhizosphere to support its survival below the freezing point.
Collapse
Affiliation(s)
- Gui-Hua Lu
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huai’an, China
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- *Correspondence: Gui-Hua Lu,
| | - Kezhi Zheng
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huai’an, China
| | - Rui Cao
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huai’an, China
| | - Aliya Fazal
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Zhiye Na
- Yunnan Eco-Agriculture Research Institute, Kunming, China
| | - Yuanyuan Wang
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huai’an, China
| | - Yonghua Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Bo Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Hongjun Yang
- Yunnan Eco-Agriculture Research Institute, Kunming, China
| | - Zhong-Yuan Na
- Yunnan Eco-Agriculture Research Institute, Kunming, China
- Zhong-Yuan Na,
| | - Xiangxiang Zhao
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huai’an, China
- Xiangxiang Zhao,
| |
Collapse
|
30
|
Chaudhary P, Agri U, Chaudhary A, Kumar A, Kumar G. Endophytes and their potential in biotic stress management and crop production. Front Microbiol 2022; 13:933017. [PMID: 36325026 PMCID: PMC9618965 DOI: 10.3389/fmicb.2022.933017] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 09/12/2022] [Indexed: 11/21/2022] Open
Abstract
Biotic stress is caused by harmful microbes that prevent plants from growing normally and also having numerous negative effects on agriculture crops globally. Many biotic factors such as bacteria, fungi, virus, weeds, insects, and nematodes are the major constrains of stress that tends to increase the reactive oxygen species that affect the physiological and molecular functioning of plants and also led to the decrease in crop productivity. Bacterial and fungal endophytes are the solution to overcome the tasks faced with conventional farming, and these are environment friendly microbial commodities that colonize in plant tissues without causing any damage. Endophytes play an important role in host fitness, uptake of nutrients, synthesis of phytohormone and diminish the injury triggered by pathogens via antibiosis, production of lytic enzymes, secondary metabolites, and hormone activation. They are also reported to help plants in coping with biotic stress, improving crops and soil health, respectively. Therefore, usage of endophytes as biofertilizers and biocontrol agent have developed an eco-friendly substitute to destructive chemicals for plant development and also in mitigation of biotic stress. Thus, this review highlighted the potential role of endophytes as biofertilizers, biocontrol agent, and in mitigation of biotic stress for maintenance of plant development and soil health for sustainable agriculture.
Collapse
Affiliation(s)
- Parul Chaudhary
- Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Upasana Agri
- Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | | | - Ashish Kumar
- Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Govind Kumar
- Indian Council of Agricultural Research (ICAR)-Central Institute for Subtropical Horticulture, Lucknow, India
| |
Collapse
|
31
|
Lastochkina O, Aliniaeifard S, SeifiKalhor M, Bosacchi M, Maslennikova D, Lubyanova A. Novel Approaches for Sustainable Horticultural Crop Production: Advances and Prospects. HORTICULTURAE 2022; 8:910. [DOI: 10.3390/horticulturae8100910] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Abstract
Reduction of plant growth, yield and quality due to diverse environmental constrains along with climate change significantly limit the sustainable production of horticultural crops. In this review, we highlight the prospective impacts that are positive challenges for the application of beneficial microbial endophytes, nanomaterials (NMs), exogenous phytohormones strigolactones (SLs) and new breeding techniques (CRISPR), as well as controlled environment horticulture (CEH) using artificial light in sustainable production of horticultural crops. The benefits of such applications are often evaluated by measuring their impact on the metabolic, morphological and biochemical parameters of a variety of cultures, which typically results in higher yields with efficient use of resources when applied in greenhouse or field conditions. Endophytic microbes that promote plant growth play a key role in the adapting of plants to habitat, thereby improving their yield and prolonging their protection from biotic and abiotic stresses. Focusing on quality control, we considered the effects of the applications of microbial endophytes, a novel class of phytohormones SLs, as well as NMs and CEH using artificial light on horticultural commodities. In addition, the genomic editing of plants using CRISPR, including its role in modulating gene expression/transcription factors in improving crop production and tolerance, was also reviewed.
Collapse
Affiliation(s)
- Oksana Lastochkina
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre RAS, 450054 Ufa, Russia
| | - Sasan Aliniaeifard
- Photosynthesis Laboratory, Department of Horticulture, Aburaihan Campus, University of Tehran, Tehran 33916-53755, Iran
| | | | | | - Dilara Maslennikova
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre RAS, 450054 Ufa, Russia
| | - Alsu Lubyanova
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre RAS, 450054 Ufa, Russia
| |
Collapse
|
32
|
Suyal DC, Joshi D, Kumar S, Bhatt P, Narayan A, Giri K, Singh M, Soni R, Kumar R, Yadav A, Devi R, Kaur T, Kour D, Yadav AN. Himalayan Microbiomes for Agro-environmental Sustainability: Current Perspectives and Future Challenges. MICROBIAL ECOLOGY 2022; 84:643-675. [PMID: 34647148 DOI: 10.1007/s00248-021-01849-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
The Himalayas are one of the most mystical, yet least studied terrains of the world. One of Earth's greatest multifaceted and diverse montane ecosystems is also one of the thirty-four global biodiversity hotspots of the world. These are supposed to have been uplifted about 60-70 million years ago and support, distinct environments, physiography, a variety of orogeny, and great biological diversity (plants, animals, and microbes). Microbes are the pioneer colonizer of the Himalayas that are involved in various bio-geological cycles and play various significant roles. The applications of Himalayan microbiomes inhabiting in lesser to greater Himalayas have been recognized. The researchers explored the applications of indigenous microbiomes in both agricultural and environmental sectors. In agriculture, microbiomes from Himalayan regions have been suggested as better biofertilizers and biopesticides for the crops growing at low temperature and mountainous areas as they help in the alleviation of cold stress and other biotic stresses. Along with alleviation of low temperature, Himalayan microbes also have the capability to enhance plant growth by availing the soluble form of nutrients like nitrogen, phosphorus, potassium, zinc, and iron. These microbes have been recognized for producing plant growth regulators (abscisic acid, auxin, cytokinin, ethylene, and gibberellins). These microbes have been reported for bioremediating the diverse pollutants (pesticides, heavy metals, and xenobiotics) for environmental sustainability. In the current perspectives, present review provides a detailed discussion on the ecology, biodiversity, and adaptive features of the native Himalayan microbiomes in view to achieve agro-environmental sustainability.
Collapse
Affiliation(s)
- Deep Chandra Suyal
- Department of Microbiology, Akal College of Basic Sciences, Eternal University, Sirmaur, Himachal Pradesh, India
| | - Divya Joshi
- Uttarakhand Pollution Control Board, Regional Office, Kashipur, Uttarakhand, India
| | - Saurabh Kumar
- Division of Crop Research, Research Complex for Eastern Region, Patna, Bihar, India
| | - Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China
| | - Arun Narayan
- Forest Research Institute, Dehradun, 2480 06, India
| | - Krishna Giri
- Rain Forest Research Institute, Jorhat, 785 010, India
| | - Manali Singh
- Department of Biotechnology, Invertis Institute of Engineering and Technology (IIET), Invertis University, Bareilly, 243123, Uttar Pradesh, India
| | - Ravindra Soni
- Department of Agricultural Microbiology, College of Agriculture, Indira Gandhi Krishi Vishwa Vidyalaya, Raipur, Chhattisgarh, India
| | - Rakshak Kumar
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Ashok Yadav
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Rubee Devi
- Microbial Biotechnology Laboratory, Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, Himachal Pradesh, India
| | - Tanvir Kaur
- Microbial Biotechnology Laboratory, Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, Himachal Pradesh, India
| | - Divjot Kour
- Microbial Biotechnology Laboratory, Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, Himachal Pradesh, India
| | - Ajar Nath Yadav
- Microbial Biotechnology Laboratory, Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, Himachal Pradesh, India.
| |
Collapse
|
33
|
Sharma VK, Parmar S, Tang W, Hu H, White JF, Li H. Effects of fungal seed endophyte FXZ2 on Dysphania ambrosioides Zn/Cd tolerance and accumulation. Front Microbiol 2022; 13:995830. [PMID: 36212824 PMCID: PMC9532605 DOI: 10.3389/fmicb.2022.995830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Metal-induced oxidative stress in contaminated soils affects plant growth. In the present study, we evaluated the role of seed endophyte FXZ2 on Dysphania ambrosioides Zn/Cd tolerance and accumulation. A series of pot experiments were conducted under variable Zn (500, 1,000, and 1,500 mg kg–1) and Cd (5, 15, 30, and 60 mg kg–1). The results demonstrated that FXZ2-inoculation significantly enhanced the growth of D. ambrosioides and improved its chlorophyll and GSH content. In the rhizosphere, FXZ2 inoculation changed the chemical speciation of Zn/Cd and thus affected their uptake and accumulation in host plants. The exchangeable and carbonate-bound fractions (F1 + F2) of Zn decreased in the rhizosphere of FXZ2-inoculated plants (E+) as compared to non-inoculated plants (E-) under Zn stress (500 and 1,000 mg kg–1), correspondingly, Zn in the shoots of E+ decreased (p < 0.05). However, at Cd stress (30 and 60 mg kg–1), the F1 + F2 fractions of Cd in E+ rhizospheric soils increased; subsequently, Cd in the shoots of E+ increased (p < 0.05). FXZ2 could exogenously secrete phytohormones IAA, GA, and JA. The study suggests that seed endophyte FXZ2 can increase Zn/Cd tolerance of host plant by altering Zn/Cd speciation in rhizospheric soils, as well as exogenous production of phytohormones to promote growth, lowering oxidative damage while enhancing antioxidant properties. For Zn/Cd accumulation, it has opposite effects: Zn uptake in E+ plants was significantly (p < 0.05) decreased, while Cd accumulation in E+ plants was significantly (p < 0.05) increased. Thus, FXZ2 has excellent application prospects in Cd phytoextraction and decreasing Zn toxicity in agriculturally important crops.
Collapse
Affiliation(s)
- Vijay K. Sharma
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Shobhika Parmar
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Wenting Tang
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Haiyan Hu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China
| | - James F. White
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, United States
| | - Haiyan Li
- Medical School, Kunming University of Science and Technology, Kunming, China
- *Correspondence: Haiyan Li,
| |
Collapse
|
34
|
Diversity of endophytic bacterial microbiota in grapevine shoot xylems varies depending on wine grape-growing region, cultivar, and shoot growth stage. Sci Rep 2022; 12:15772. [PMID: 36130998 PMCID: PMC9492663 DOI: 10.1038/s41598-022-20221-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022] Open
Abstract
Next-generation sequencing technology may clarify microbiota that are as yet poorly understood in the soil, the rhizosphere, and the phyllosphere of vineyards. To provide new information on the interaction between grapevine and microorganisms, we focused on the endophytic microbiota in grapevine. We performed endophytic microbiome analysis of the shoot xylems of four cultivars, Vitis vinifera cvs. Chardonnay, Pinot Noir, Cabernet Sauvignon, and Vitis sp. cv. Koshu, grown in eleven vineyards in Japan. The number of endophytic fungal species was small in the grapevine shoot xylems and could not be analyzed further, whereas a total of 7,019,600 amplicon sequences (46,642–285,003 per shoot xylem) and 1305 bacterial operational taxonomic units were obtained by analysis of the V3–V4 region of the bacterial 16S rRNA gene. Gammaproteobacteria was predominant in the shoot xylems at the shoot elongation stage irrespective of the cultivar, whereas Alphaproteobacteria and Oxyphotobacteria were predominant at véraison. Actinobacteria, Bacteroidia, Bacilli, and Clostridia were also detected in the shoot xylems. The endophytic bacterial microbiota in Koshu and Pinot Noir shoot xylems were similar irrespective of the grapevine-growing region. In contrast, the endophytic bacterial microbiota in Chardonnay and Cabernet Sauvignon showed diversity and complexity among grapevine-growing regions. Alpha diversity analysis revealed that Koshu shoot xylems had a higher diversity of endophytic bacterial microbiota than Pinot Noir, Chardonnay, and Cabernet Sauvignon shoot xylems, and that grapevine shoot xylems at the shoot elongation stage had a higher diversity of endophytic bacterial microbiota than those at véraison. Principal coordinate analysis (PCoA) demonstrated that the profiles of the endophytic bacterial microbiota in grapevine shoot xylems at véraison were relatively uniform compared with those at the shoot elongation stage. Multidimensional scaling analysis showed that the plots of all cultivars were generally apart from each other at the shoot elongation stage and then became close to each other at véraison. The plots of all grapevine-growing regions cultivating Koshu were close to each other, whereas those of grapevine-growing regions cultivating Chardonnay and Cabernet Sauvignon were apart from each other. The findings of this study suggest that the endophytic bacterial microbiota in grapevine shoot xylems varied depending on the cultivar and the grapevine-growing region even for the same cultivars, and that the microbiota fluctuated depending on the shoot growth stage.
Collapse
|
35
|
Ptak A, Morańska E, Warchoł M, Gurgul A, Skrzypek E, Dziurka M, Laurain-Mattar D, Spina R, Jaglarz A, Simlat M. Endophytic bacteria from in vitro culture of Leucojum aestivum L. a new source of galanthamine and elicitor of alkaloid biosynthesis. Sci Rep 2022; 12:13700. [PMID: 35953692 PMCID: PMC9371375 DOI: 10.1038/s41598-022-17992-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 08/03/2022] [Indexed: 11/28/2022] Open
Abstract
Leucojum aestivum is known for its ability to biosynthesize alkaloids with therapeutic properties, among which galanthamine used for the treatment of Alzheimer's disease. New sources of this alkaloid are still being explored. In this study, a novel strain PLV of endophytic bacterium Paenibacillus lautus was isolated from in vitro L. aestivum plants. We report the whole genome sequence of that strain and its capacity to produce alkaloids and growth regulators. The effect of elicitation with autoclaved bacteria on the production of alkaloids was examined. Ten alkaloids were identified in bacteria extracts: galanthamine, lycorine, ismine, lycoramine, haemanthamine, tazettine, galanthine, homolycorine, 1,2-dihydrochlidanthine, and hippeastrine. The mean contents of galanthamine and lycorine were 37.51 µg/g of dry weight (DW) and 129.93 µg/g of DW, respectively. Moreover, isolated P. lautus strain synthesized: indole-3-acetic acid, t-zeatin, c-zeatin, kinetin, gibberellin A1, abscisic acid, salicylic acid, benzoic acid. In vitro elicitation of cultures with P. lautus increased dry biomass, stimulated galanthamine and lycorine production, contributed to 8,9-desmethylenebis (oxy)-7,9 dimethoxy-crinan biosynthesis, change pigments content, and antioxidant enzymes activities. Our findings for the first time point out that galanthamine can be synthesized by an microorganism. Moreover isolated strain can be used as a new elictor of Amaryllidaceae alkaloids biosynthesis.
Collapse
Affiliation(s)
- Agata Ptak
- Department of Plant Breeding, Physiology and Seed Science, University of Agriculture in Krakow, Łobzowska 24, 31-140, Krakow, Poland.
| | - Emilia Morańska
- Department of Plant Breeding, Physiology and Seed Science, University of Agriculture in Krakow, Łobzowska 24, 31-140, Krakow, Poland
| | - Marzena Warchoł
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Krakow, Poland
| | - Artur Gurgul
- Centre for Experimental and Innovative Medicine, University of Agriculture in Krakow, Rędzina 1C, 30-248, Krakow, Poland
| | - Edyta Skrzypek
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Krakow, Poland
| | - Michał Dziurka
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Krakow, Poland
| | | | - Rosella Spina
- INRAE, LAE, Université de Lorraine, 54000, Nancy, France
| | - Anita Jaglarz
- Moredun Research Institute, Pentland Science Park, Bush Loan, Penicuik, EH26 0PZ, UK
| | - Magdalena Simlat
- Department of Plant Breeding, Physiology and Seed Science, University of Agriculture in Krakow, Łobzowska 24, 31-140, Krakow, Poland
| |
Collapse
|
36
|
Improved Tolerance of Artemisia ordosica to Drought Stress via Dark Septate Endophyte (DSE) Symbiosis. J Fungi (Basel) 2022; 8:jof8070730. [PMID: 35887485 PMCID: PMC9320036 DOI: 10.3390/jof8070730] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 12/14/2022] Open
Abstract
Dark septate endophytes (DSEs) usually colonize plant roots, especially in stress environments. However, their relationship with plants ranges from beneficial to harmful and has remained largely uncharacterized. In the present study, 14 DSE species grouped into 11 genera were isolated from the roots of a desert plant, Artemisia ordosica, which is widely distributed in northwest China. Three dominant DSE species—Paraphoma chrysanthemicola (Pc), Alternaria chartarum (Ac), and Acrocalymma vagum (Av)—were selected and tested for their resistance to drought in vitro. Furthermore, we characterized the responses of A. ordosica under drought conditions in relation to the presence of these DSEs following inoculation. The results showed that all three strains grew well under in vitro drought stress, and the biomass of Ac and Av was significantly higher than that of the unstressed control. The effects of DSE inoculation on the growth of A. ordosica under drought stress varied according to the different DSE species but were generally beneficial. Under drought stress, Av and Pc promoted plant growth, antioxidant enzyme activity, and root development of the hosts. The Ac strain conferred obvious positive effects on the antioxidant enzyme activity of the hosts. In general, Av and Pc demonstrated better application potential for improving the drought resistance of A. ordosica.
Collapse
|
37
|
Ali R, Gul H, Rauf M, Arif M, Hamayun M, Husna, Khilji SA, Ud-Din A, Sajid ZA, Lee IJ. Growth-Promoting Endophytic Fungus ( Stemphylium lycopersici) Ameliorates Salt Stress Tolerance in Maize by Balancing Ionic and Metabolic Status. FRONTIERS IN PLANT SCIENCE 2022; 13:890565. [PMID: 35898220 PMCID: PMC9311153 DOI: 10.3389/fpls.2022.890565] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 05/23/2022] [Indexed: 08/27/2023]
Abstract
Climate change is a major cause of the world's food security problems, and soil salinity is a severe hazard for a variety of crops. The exploitation of endophytic fungi that are known to have a positive association with plant roots is preferred for improving plant growth, yield, and overall performance under salt stress. The current study thus rationalized to address how salt stress affected the growth, biochemical properties, antioxidant capacity, endogenous indole-3-acetic acid (IAA), and the ionic status of maize associated with endophytic fungus (Stemphylium lycopersici). According to the findings, salt stress reduced chlorophyll a and b, total chlorophyll, total protein, sugars, lipids, and endogenous IAA levels. Enhanced values of chlorophyll a/b ratio, carotenoids, secondary metabolites (phenol, flavonoids, and tannins), antioxidant enzyme activity (catalase, ascorbate peroxidase), proline, and lipid peroxidation were noticed in maize plants under salt stress. Increased ionic content of Na+, Cl-, Na+/K+, and Na+/Ca2+ ratio, as well as decreased Ca2+, K+, Mg2+, N, and P contents, were also found in salt-stressed maize plants. In comparison to the non-saline medium, endophytic association promoted the antioxidant enzyme activities (798.7 U/g protein; catalase activity, 106 U/g protein; ascorbate peroxidase activity), IAA content (3.47 mg/g FW), and phenolics and flavonoids (88 and 1.68 μg/g FW, respectively), and decreased MDA content (0.016 nmol/g FW), Na+ ion content (18 mg/g dry weight), Cl- ion (16.6 mg/g dry weight), and Na+/K+ (0.78) and Na+/Ca2+ (1.79) ratios, in maize plants under salt stress, whereas Ca2+, K+, Mg2+, N, and P contents were increased in maize plants associated with S. lycopersici under salt stress. Current research exposed the role of S. lycopersici as an effective natural salt stress reducer and maize growth promoter; hence, it can be used as a biofertilizer to ameliorate salt stress tolerance in crops along with better growth performance in saline regions.
Collapse
Affiliation(s)
- Raid Ali
- Department of Botany, Abdul Wali Khan University, Mardan, Pakistan
| | - Humaira Gul
- Department of Botany, Abdul Wali Khan University, Mardan, Pakistan
| | - Mamoona Rauf
- Department of Botany, Abdul Wali Khan University, Mardan, Pakistan
| | - Muhammad Arif
- Department of Biotechnology, Abdul Wali Khan University, Mardan, Pakistan
| | - Muhammad Hamayun
- Department of Botany, Abdul Wali Khan University, Mardan, Pakistan
| | - Husna
- Department of Botany, Abdul Wali Khan University, Mardan, Pakistan
| | - Sheza Ayaz Khilji
- Department of Botany, Division of Science and Technology, University of Education Township, Lahore, Pakistan
| | - Aziz Ud-Din
- Department of Biotechnology and Genetic Engineering, Hazara University, Mansehra, Pakistan
| | | | - In-Jung Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
38
|
Ma L, Liu X, Lv W, Yang Y. Molecular Mechanisms of Plant Responses to Salt Stress. FRONTIERS IN PLANT SCIENCE 2022; 13:934877. [PMID: 35832230 PMCID: PMC9271918 DOI: 10.3389/fpls.2022.934877] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 05/23/2022] [Indexed: 06/12/2023]
Abstract
Saline-alkali soils pose an increasingly serious global threat to plant growth and productivity. Much progress has been made in elucidating how plants adapt to salt stress by modulating ion homeostasis. Understanding the molecular mechanisms that affect salt tolerance and devising strategies to develop/breed salt-resilient crops have been the primary goals of plant salt stress signaling research over the past few decades. In this review, we reflect on recent major advances in our understanding of the cellular and physiological mechanisms underlying plant responses to salt stress, especially those involving temporally and spatially defined changes in signal perception, decoding, and transduction in specific organelles or cells.
Collapse
Affiliation(s)
- Liang Ma
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiaohong Liu
- Department of Art and Design, Taiyuan University, Taiyuan, China
| | - Wanjia Lv
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yongqing Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
39
|
Toghueo RMK, Zabalgogeazcoa I, Pereira EC, Vazquez de Aldana BR. A Diaporthe Fungal Endophyte From a Wild Grass Improves Growth and Salinity Tolerance of Tritordeum and Perennial Ryegrass. FRONTIERS IN PLANT SCIENCE 2022; 13:896755. [PMID: 35720593 PMCID: PMC9198640 DOI: 10.3389/fpls.2022.896755] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/06/2022] [Indexed: 06/02/2023]
Abstract
Some microbiome components can provide functions that extend the capabilities of plants, increasing the environmental adaptability and performance of holobionts. Festuca rubra subsp. pruinosa is a perennial grass adapted to rocky sea cliffs, where soil and nutrients are very limited, and exposure to salinity is continuous. This study aimed to investigate if a Diaporthe fungal endophyte belonging to the core microbiome of Festuca rubra roots could improve the performance of two agricultural grasses. In a greenhouse experiment, plants of tritordeum (Triticum durum x Hordeum chilense) and perennial ryegrass (Lolium perenne) were inoculated with Diaporthe strain EB4 and subjected to two salinity conditions (0 and 200 mM NaCl). Biomass production, mineral elements, proline, hormone profiles, antioxidant capacity, and total phenolic compounds were examined in plants, and fungal functions potentially related to the promotion of plant growth were determined. The inoculation with Diaporthe promoted plant growth of both grasses, increasing leaf biomass (84% in tritordeum and 29% in perennial ryegrass), root biomass, nutrient content (N, Ca, Mg, and Fe), and the production of indole 3-acetic acid, regardless of the salinity treatment. Improved growth and nutrient uptake might occur because Diaporthe produces several extracellular enzymes capable of recycling organic nutrient pools. In addition, the fungus produced indole 3-acetic acid in vitro and modulated the production of this phytohormone in the plant. Under salinity, the activity of Diaporthe ameliorated the stress, increasing proline, nutrient uptake in roots, gibberellins, and indole 3-acetic acid, which in turn results into improved growth. Thus, this fungus can transfer to alternative hosts some advantages useful at its original habitat.
Collapse
Affiliation(s)
| | | | | | - Beatriz R. Vazquez de Aldana
- Plant-Microorganism Interaction Research Group, Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Salamanca, Spain
| |
Collapse
|
40
|
Dong QY, Wang Y, Wang ZQ, Tang DX, Zhao ZY, Wu HJ, Yu H. Morphology and Phylogeny Reveal Five Novel Species in the Genus Cordyceps (Cordycipitaceae, Hypocreales) From Yunnan, China. Front Microbiol 2022; 13:846909. [PMID: 35495705 PMCID: PMC9044072 DOI: 10.3389/fmicb.2022.846909] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/16/2022] [Indexed: 11/13/2022] Open
Abstract
The current study was aimed to introduce five new species of Cordyceps from Yunnan, with morphological descriptions, illustrations, color photographs, phylogenetic placement, associated host, and a comparison with allied taxa. The five new species were morphologically distinct from all other Cordyceps sensu lato species, and it was also suggested that they should differ from other species in the genus Cordyceps based on combined multigene analyses. Employing DNA nucleotide sequences of the nrLSU, nrSSU, tef-1α, rpb1, and rpb2, the five new species were recognized in the clade of Cordyceps by using molecular phylogenetic analyses, including five well-supported subclades: three new species, Cordyceps bullispora, Cordyceps longiphialis, and Cordyceps nabanheensis, were found in the subclade of C. pruinosa, and two new species, Cordyceps pseudotenuipes and Cordyceps simaoensis, were located in the subclade of C. tenuipes. The five novel species shared similar morphologies to other species in the genus Cordyceps, with fleshy and brightly pigmented stromata; perithecia superficial to completely immersed, ordinal in arrangement; and hyaline asci, with thickened cylindrical ascus apex. The morphological characteristics of 66 species in Cordyceps sensu stricto, namely, 5 novel species and 61 known taxa, were also compared.
Collapse
Affiliation(s)
- Quan-Ying Dong
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, China
- The International Joint Research Center for Sustainable Utilization of Cordyceps Bioresources in China and Southeast Asia, Yunnan University, Kunming, China
| | - Yao Wang
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, China
- The International Joint Research Center for Sustainable Utilization of Cordyceps Bioresources in China and Southeast Asia, Yunnan University, Kunming, China
| | - Zhi-Qin Wang
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, China
- The International Joint Research Center for Sustainable Utilization of Cordyceps Bioresources in China and Southeast Asia, Yunnan University, Kunming, China
| | - De-Xiang Tang
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, China
- The International Joint Research Center for Sustainable Utilization of Cordyceps Bioresources in China and Southeast Asia, Yunnan University, Kunming, China
| | - Zhi-Yuan Zhao
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, China
- The International Joint Research Center for Sustainable Utilization of Cordyceps Bioresources in China and Southeast Asia, Yunnan University, Kunming, China
| | - Hui-Juan Wu
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, China
- The International Joint Research Center for Sustainable Utilization of Cordyceps Bioresources in China and Southeast Asia, Yunnan University, Kunming, China
| | - Hong Yu
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, China
- The International Joint Research Center for Sustainable Utilization of Cordyceps Bioresources in China and Southeast Asia, Yunnan University, Kunming, China
| |
Collapse
|
41
|
Baron NC, Rigobelo EC. Endophytic fungi: a tool for plant growth promotion and sustainable agriculture. Mycology 2022. [PMID: 35186412 DOI: 10.1080/215012031945699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
Endophytic fungi are found in most, if not all, plant species on the planet. They colonise inner plant tissues without causing symptoms of disease, thus providing benefits to the host plant while also benefiting from this interaction. The global concern for the development of more sustainable agriculture has increased in recent years, and research has been performed to decipher ecology and explore the potential of endophytic interactions in plant growth. To date, many studies point to the positive aspects of endophytic colonisation, and in this review, such research is summarised based on the direct (acquisition of nutrients and phytohormone production) and indirect (induced resistance, production of antibiotics and secondary metabolites, production of siderophores and protection for abiotic and biotic stresses) benefits of endophytic colonisation. An in-depth discussion of the mechanisms is also presented.
Collapse
Affiliation(s)
- Noemi Carla Baron
- Agricultural and Livestock Microbiology Post Graduation Program, Department of Plant Production Sciences, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Access Way Prof. Paulo Donato Castellane, São Paulo, Brazil
| | - Everlon Cid Rigobelo
- Agricultural and Livestock Microbiology Post Graduation Program, Department of Plant Production Sciences, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Access Way Prof. Paulo Donato Castellane, São Paulo, Brazil
| |
Collapse
|
42
|
Abstract
Endophytic fungi are found in most, if not all, plant species on the planet. They colonise inner plant tissues without causing symptoms of disease, thus providing benefits to the host plant while also benefiting from this interaction. The global concern for the development of more sustainable agriculture has increased in recent years, and research has been performed to decipher ecology and explore the potential of endophytic interactions in plant growth. To date, many studies point to the positive aspects of endophytic colonisation, and in this review, such research is summarised based on the direct (acquisition of nutrients and phytohormone production) and indirect (induced resistance, production of antibiotics and secondary metabolites, production of siderophores and protection for abiotic and biotic stresses) benefits of endophytic colonisation. An in-depth discussion of the mechanisms is also presented.
Collapse
Affiliation(s)
- Noemi Carla Baron
- Agricultural and Livestock Microbiology Post Graduation Program, Department of Plant Production Sciences, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Access Way Prof. Paulo Donato Castellane, São Paulo, Brazil
| | - Everlon Cid Rigobelo
- Agricultural and Livestock Microbiology Post Graduation Program, Department of Plant Production Sciences, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Access Way Prof. Paulo Donato Castellane, São Paulo, Brazil
| |
Collapse
|
43
|
Siddiqui ZS, Wei X, Umar M, Abideen Z, Zulfiqar F, Chen J, Hanif A, Dawar S, Dias DA, Yasmeen R. Scrutinizing the Application of Saline Endophyte to Enhance Salt Tolerance in Rice and Maize Plants. FRONTIERS IN PLANT SCIENCE 2022; 12:770084. [PMID: 35251059 PMCID: PMC8891170 DOI: 10.3389/fpls.2021.770084] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/21/2021] [Indexed: 05/24/2023]
Abstract
The present study aimed to witness the plant-microbe interaction associated with salt tolerance in crops. We isolated the endophytic microbe from the root zone of halophytic grass. Later, the salt tolerance of the endophyte was tested in the saline medium and was identified using nucleotide sequencing (GenBank under the accession numbers: SUB9030920 AH1_AHK_ITS1 MW570850: SUB9030920 AH1_AHK_ITS4 MW570851). Rice and maize seeds were coated with identified endophyte Aspergillus terreus and were sown in separate plastic pots. Later 21-day-old seedlings were subjected to three NaCl concentrations, including 50, 100, and 150 mM salt stress. Under saline conditions, A. terreus showed a substantial increase in growth, biomass, relative water content, oxidative balance, and photochemical efficiency of rice and maize plants. The data reflected that the stimulation of gibberellic acid (GA) in treated leaves may be the main reason for the upregulation of photosynthesis and the antioxidant defense cascade. The data also depict the downregulation of oxidative damage markers malondialdehyde, hydrogen peroxide in rice and maize plants. Conclusively, salt-tolerant endophytic fungus A. terreus explicitly displayed the positive plant-microbe interaction by developing salt tolerance in rice and maize plants. Salt tolerance by endophytic fungus coincides with the enhanced GA concentration, which illustrated the stimulated physiological mechanism and gene in response to the extreme environmental crisis, resulting in improved crop productivity.
Collapse
Affiliation(s)
- Zamin Shaheed Siddiqui
- Stress Physiology Phenomics Centre, Department of Botany, University of Karachi, Karachi, Pakistan
| | - Xiangying Wei
- Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Muhammad Umar
- Stress Physiology Phenomics Centre, Department of Botany, University of Karachi, Karachi, Pakistan
| | - Zainul Abideen
- Muhammad Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi, Pakistan
| | - Faisal Zulfiqar
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Jianjun Chen
- Environmental Horticulture Department and Mid-Florida Research and Education Center, IFAS, University of Florida, Apopka, FL, United States
| | - Asma Hanif
- Stress Physiology Phenomics Centre, Department of Botany, University of Karachi, Karachi, Pakistan
| | - Shahnaz Dawar
- Stress Physiology Phenomics Centre, Department of Botany, University of Karachi, Karachi, Pakistan
| | - Daniel Anthony Dias
- School of Health and Biomedical Sciences, Discipline of Laboratory Medicine, RMIT University, Melbourne, VIC, Australia
| | - Roomana Yasmeen
- Stress Physiology Phenomics Centre, Department of Botany, University of Karachi, Karachi, Pakistan
| |
Collapse
|
44
|
Qadir M, Hussain A, Shah M, Lee IJ, Iqbal A, Irshad M, Sayyed A, Ahmad A, Hamayun M. Comparative assessment of chromate bioremediation potential of Pantoea conspicua and Aspergillus niger. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127314. [PMID: 34600376 DOI: 10.1016/j.jhazmat.2021.127314] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 09/18/2021] [Accepted: 09/19/2021] [Indexed: 05/20/2023]
Abstract
The recent work aims at the use of Pantoea conspicua (MT5) and Aspergillus niger (CRS3) to assess their bioremediation potential and growth restoration of Helianthus annuus L. under chromate (Cr+6) stress. The growth of the P. conspicua and A. niger was tested in Cr+6 supplemented media. The strains can withstand up to 1200 and 900 ppm respectively in the media and effectively bio-transform it to nontoxic form. Supplemented metal's levels significantly decreased the growth attribute of H. annuus (p< 0.05). On the other hand, P. conspicua and A. niger rescued the host plant by establishing higher colonization frequency with the host roots. Moreover, MT5 bio-transformed the toxic Cr+6 to non-toxic Cr+3 form in the rhizosphere. It also enhanced the host plant growth by producing phytohormones and ceasing Cr uptake and accumulation. Contrarily, CRS3 tends to accumulate and bio-transform metal in their hyphae. Nonetheless, both of the microbes tend to modulate phytohormones production and strengthening antioxidant system of the host. Improvement in the antioxidant system enabled the host plant to produce higher phenolics and flavonoids, and lower peroxidase. The associated plant species also exhibited higher ROS scavenging and lower ROS accumulation. Besides, the strains were able to produce higher amounts of phytohormones, including IAA, GA, and SA. Such activities rendered them as excellent phytostimulants, that can be used as biofertilizers in chromium polluted soils.
Collapse
Affiliation(s)
- Muhammad Qadir
- Department of Botany, Garden Campus, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Anwar Hussain
- Department of Botany, Garden Campus, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan.
| | - Mohib Shah
- Department of Botany, Garden Campus, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - In Jung Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu 702-701, Republic of Korea.
| | - Amjad Iqbal
- Department of Agriculture, Garden Campus, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Irshad
- Department of Botany, Garden Campus, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Aqib Sayyed
- Department of Botany, Garden Campus, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Ayaz Ahmad
- Department of Biotechnology, Garden Campus, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Hamayun
- Department of Botany, Garden Campus, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
45
|
Tian Y, Fu X, Zhang G, Zhang R, Kang Z, Gao K, Mendgen K. Mechanisms in Growth-Promoting of Cucumber by the Endophytic Fungus Chaetomium globosum Strain ND35. J Fungi (Basel) 2022; 8:jof8020180. [PMID: 35205933 PMCID: PMC8878499 DOI: 10.3390/jof8020180] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 02/01/2023] Open
Abstract
Endophytic fungi are effective in plant growth and development by secreting various kinds of plant hormones and nutrients. However, the cellular and molecular interactions between the endophytic fungi and plant growth-promoting have remained less explored. The present study was designed to explore the effects of the infection and colonization events of Chaetomium globosum strain ND35 on cucumber growth and the expression pattern of some metabolically important genes in development of the cucumber radicle. The results demonstrated that strain ND35 can infect and colonize the outer layers (cortical cells) of cucumber root and form a symbiotic structure with the host cell, similar to a periarbuscular membrane and establish chemical communication with the plant. Through transcriptome analysis, we found the differentially expressed genes (DEGs) caused by strain ND35 were mainly enriched in phenylpropanoid biosynthesis, plant hormone signal transduction, plant-pathogen interaction and photosynthesis. Correspondingly, the contents of reactive oxygen species (ROS), hydrogen peroxide (H2O2), indole-3-acetic acid (IAA), gibberellin (GA), zeatin (ZT), salicylic acid (SA), jasmonic acid (JA) and the activity of phenylalanine ammonia lyase (PAL), 4-coumarate-CoA ligase (4CL), cinnamyl alcohol dehydrogenase (CAD), and peroxidase (POD) in ND35-colonized seedlings were generally higher than those of non-inoculated seedlings. Overall, the infection and colonization events of C. globosum strain ND35 increased cucumber growth through complex regulation of plant hormones biosynthesis and metabolism. Furthermore, although the endophytic fungus strain ND35 produced IAA, GA, ZT, and ergosterol in the fermentation broth, and there are enabled to promote growth of cucumber, it is uncertain whether there are ND35-derived microbial hormones in plants. This study of the interaction between cucumber and strain ND35 contributes to a better understanding of the plant-endophytic fungi interactions, and may help to develop new strategies for crop production.
Collapse
Affiliation(s)
- Yehan Tian
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, China; (Y.T.); (X.F.); (R.Z.)
| | - Xuesong Fu
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, China; (Y.T.); (X.F.); (R.Z.)
| | - Gongchen Zhang
- Qingdao Academy of Agricultural Science, Qingdao 266100, China;
| | - Rui Zhang
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, China; (Y.T.); (X.F.); (R.Z.)
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China;
| | - Kexiang Gao
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, China; (Y.T.); (X.F.); (R.Z.)
- Correspondence:
| | - Kurt Mendgen
- Department of Biology, University of Constance, 78457 Constance, Germany;
| |
Collapse
|
46
|
Endophytic fungal communities and their biotechnological implications for agro-environmental sustainability. Folia Microbiol (Praha) 2022; 67:203-232. [PMID: 35122218 DOI: 10.1007/s12223-021-00939-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/07/2021] [Indexed: 02/05/2023]
Abstract
Endophytic fungal communities have attracted a great attention to chemists, ecologists, and microbiologists as a treasure trove of biological resource. Endophytic fungi play incredible roles in the ecosystem including abiotic and biotic stress tolerance, eco-adaptation, enhancing growth and development, and maintaining the health of their host. In recent times, endophytic fungi have drawn a special focus owing to their indispensable diversity, unique distribution, and unparalleled metabolic pathways. The endophytic fungal communities belong to three phyla, namely Mucoromycota, Basidiomycota, and Ascomycota with seven predominant classes Agaricomycetes, Dothideomycetes, Eurotiomycetes, Mortierellomycotina, Mucoromycotina, Saccharomycetes, and Sordariomycetes. In a review of a huge number of research finding, it was found that endophytic fungal communities of genera Aspergillus, Chaetomium, Fusarium, Gaeumannomyces, Metarhizium, Microsphaeropsis, Paecilomyces, Penicillium, Piriformospora, Talaromyces, Trichoderma, Verticillium, and Xylaria have been sorted out and well characterized for diverse biotechnological applications for future development. Furthermore, these communities are remarkable source of novel bioactive compounds with amazing biological activity for use in agriculture, food, and pharmaceutical industry. Endophytes are endowed with a broad range of structurally unique bioactive natural products, including alkaloids, benzopyranones, chinones, flavonoids, phenolic acids, and quinines. Subsequently, there is still an excellent opportunity to explore novel compounds from endophytic fungi among numerous plants inhabiting different niches. Furthermore, high-throughput sequencing could be a tool to study interaction between plants and endophytic fungi which may provide further opportunities to reveal unknown functions of endophytic fungal communities. The present review deals with the biodiversity of endophytic fungal communities and their biotechnological implications for agro-environmental sustainability.
Collapse
|
47
|
Chen XL, Sun MC, Chong SL, Si JP, Wu LS. Transcriptomic and Metabolomic Approaches Deepen Our Knowledge of Plant-Endophyte Interactions. FRONTIERS IN PLANT SCIENCE 2022; 12:700200. [PMID: 35154169 PMCID: PMC8828500 DOI: 10.3389/fpls.2021.700200] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 12/22/2021] [Indexed: 05/10/2023]
Abstract
In natural systems, plant-symbiont-pathogen interactions play important roles in mitigating abiotic and biotic stresses in plants. Symbionts have their own special recognition ways, but they may share some similar characteristics with pathogens based on studies of model microbes and plants. Multi-omics technologies could be applied to study plant-microbe interactions, especially plant-endophyte interactions. Endophytes are naturally occurring microbes that inhabit plants, but do not cause apparent symptoms in them, and arise as an advantageous source of novel metabolites, agriculturally important promoters, and stress resisters in their host plants. Although biochemical, physiological, and molecular investigations have demonstrated that endophytes confer benefits to their hosts, especially in terms of promoting plant growth, increasing metabolic capabilities, and enhancing stress resistance, plant-endophyte interactions consist of complex mechanisms between the two symbionts. Further knowledge of these mechanisms may be gained by adopting a multi-omics approach. The involved interaction, which can range from colonization to protection against adverse conditions, has been investigated by transcriptomics and metabolomics. This review aims to provide effective means and ways of applying multi-omics studies to solve the current problems in the characterization of plant-microbe interactions, involving recognition and colonization. The obtained results should be useful for identifying the key determinants in such interactions and would also provide a timely theoretical and material basis for the study of interaction mechanisms and their applications.
Collapse
Affiliation(s)
| | | | | | | | - Ling-shang Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
48
|
Parmar S, Sharma VK, Li T, Tang W, Li H. Fungal Seed Endophyte FZT214 Improves Dysphania ambrosioides Cd Tolerance Throughout Different Developmental Stages. Front Microbiol 2022; 12:783475. [PMID: 35058903 PMCID: PMC8764135 DOI: 10.3389/fmicb.2021.783475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/25/2021] [Indexed: 11/30/2022] Open
Abstract
Phytoremediation is a promising remediation method of heavy metal (HM)-contaminated soils. However, lower HM tolerance of metal accumulator inhibits its practical application and effects. The current study was aimed to illustrate the role of fungal seed endophyte (FZT214) in improving Dysphania ambrosioides Cd tolerance during different developmental stages under various Cd stresses (5, 15, 30 mg kg-1) by pot experiments. The results showed that FZT214 significantly (p < 0.05) improved the host plant's growth at the flowering and fruiting stage in most of the treatment, while at the growing stage the increase was less (p > 0.05). The seed yield was also improved (p < 0.05) in the FZT214-inoculated plants (E+) and induced early flowering was observed. Moreover, the inoculation also positively affected total chlorophyll content, antioxidant process, and lipid peroxidation in most of the treatments throughout three developmental stages. Not all but in most cases, IAA and GA were more in E+ plants while JA was more in the E- plants (non-inoculated plants) during three developmental stages. The results suggested that the colonization of FZT214 to the D. ambrosioides might trigger multiple and comprehensive protective strategies against Cd stress, which mainly include activation of the dilution effects, induced biochemical changes to overcome damage from Cd toxicity, and alteration of the endogenous phytohormones. FZT214 can find competent application in the future to improve the growth of other crop plants.
Collapse
Affiliation(s)
- Shobhika Parmar
- Medical School of Kunming University of Science and Technology, Kunming, China
| | - Vijay K. Sharma
- Medical School of Kunming University of Science and Technology, Kunming, China
| | - Tao Li
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, China
| | - Wenting Tang
- Medical School of Kunming University of Science and Technology, Kunming, China
| | - Haiyan Li
- Medical School of Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
49
|
Santra HK, Banerjee D. Production, Optimization, Characterization and Drought Stress Resistance by β-Glucan-Rich Heteropolysaccharide From an Endophytic Fungi Colletotrichum alatae LCS1 Isolated From Clubmoss ( Lycopodium clavatum). FRONTIERS IN FUNGAL BIOLOGY 2022; 2:796010. [PMID: 37744113 PMCID: PMC10512251 DOI: 10.3389/ffunb.2021.796010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/22/2021] [Indexed: 09/26/2023]
Abstract
Endophytic entities are ubiquitous in nature with all-square bioactivity ranging from therapeutic effects toward animals to growth promoting attributes and stress tolerance activities in case of green plants. In the present study, the club moss Lycopodium clavatum for the first time has been subjected for the isolation of endophytic fungi. An exopolysaccharide (EPS) extracted from Colletotrichum alatae LCS1, an endophytic fungi isolated from L. clavatum Linn., was characterized as a β-glucan heteropolymer (composed of mannose, rhamnose, arabinose, glucose, galactose, and fucose) which plays a pivotal role in obliterating the drought stress in rice seedlings (Oryza sativa) when applied at an amount of 20, 50, and 100 ppm. The fresh weight contents of rice tissue (39%), total chlorophyll (33%), proline (41%), soluble sugar content (26%) along with antioxidant enzymes such as catalase, peroxidase, and super-oxide dismutase increased (in comparison to control of non-EPS treated seedlings) while malondialdehyde content had reduced markedly after 30 days of regular treatment. The drought resistance of rice seedling was observed at peak when applied at 50 ppm dosage. Vital parameters for EPS production like fermentation duration (5 days), medium pH (6), nutrient (carbon (glucose-7 g%/l), nitrogen (yeast extract-0.4 g%/l), and mineral (NaCl-0.10 g%/l) sources, oxygen requirements (O2 vector or liquid alkane-n-hexane, n-heptane, n-hexadecane), and headspace volume (250 ml Erlenmeyer flask- 50 ml medium, 200 ml-headspace volume) were optimized to obtain an enhanced EPS yield of 17.38 g/L-59% higher than the preoptimized one. The present study, for the first time, reported the β-glucan rich heteropolysaccharide from Colletotrichum origin which is unique in structure and potent in its function of drought stress tolerance and could enhance the sustainable yield of rice cultivation in areas facing severe drought stress.
Collapse
Affiliation(s)
| | - Debdulal Banerjee
- Microbiology and Microbial Biotechnology Laboratory, Department of Botany and Forestry, Vidyasagar University, Midnapore, India
| |
Collapse
|
50
|
Antagonistic Fungi Against Plant Pathogens for Sustainable Agriculture. Fungal Biol 2022. [DOI: 10.1007/978-981-16-8877-5_29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|