1
|
Hamzabegovic F, Goll JB, Hooper WF, Frey S, Gelber CE, Abate G. Flagellin adjuvanted F1/V subunit plague vaccine induces T cell and functional antibody responses with unique gene signatures. NPJ Vaccines 2020; 5:6. [PMID: 31993217 PMCID: PMC6978331 DOI: 10.1038/s41541-020-0156-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 12/30/2019] [Indexed: 12/13/2022] Open
Abstract
Yersinia pestis, the cause of plague, could be weaponized. Unfortunately, development of new vaccines is limited by lack of correlates of protection. We used pre- and post-vaccination sera and peripheral blood mononuclear cells from a flagellin adjuvanted F1/V vaccine trial to evaluate for protective markers. Here, we report for the first time in humans that inverse caspase-3 levels, which are measures of protective antibody, significantly increased by 29% and 75% on days 14 and 28 post-second vaccination, respectively. In addition, there were significant increases in T-cell responses on day 28 post-second vaccination. The strongest positive and negative correlations between protective antibody levels and gene expression signatures were identified for IFNG and ENSG00000225107 genes, respectively. Flagellin/F1/V subunit vaccine induced macrophage-protective antibody and significant CD4+ T-cell responses. Several genes associated with these responses were identified that could serve as potential correlates of protection.
Collapse
Affiliation(s)
- Fahreta Hamzabegovic
- Division of Infectious Diseases, Allergy and Immunology, Saint Louis University, Saint Louis, MO USA
| | | | | | - Sharon Frey
- Division of Infectious Diseases, Allergy and Immunology, Saint Louis University, Saint Louis, MO USA
| | | | - Getahun Abate
- Division of Infectious Diseases, Allergy and Immunology, Saint Louis University, Saint Louis, MO USA
| |
Collapse
|
2
|
Kim J, Hajam IA, Lee JH. Human antigen presenting cells stimulated with Salmonella delivered influenza antigens induce cytokine production and proliferation of human CD4 + T cells in vitro. J Immunol Methods 2019; 470:20-26. [PMID: 31028753 DOI: 10.1016/j.jim.2019.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 03/19/2019] [Accepted: 04/23/2019] [Indexed: 11/15/2022]
Abstract
This study aimed to investigate whether the human antigen presenting cells (APCs) can process and present Salmonella expressing H7N9 hemagglutinin (Sal-HA), neuraminidase (Sal-NA) or M2 ectodomain (Sal-M2e) to T cells and subsequently activate CD4+ T cell responses in vitro. In this study, APCs generated from human peripheral blood mononuclear cells (PBMCs) were first treated with mitomycin-C, followed by stimulation with Sal-HA, Sal-M2e, Sal-NA or Salmonella alone for 24 h. Subsequently, stimulated APCs were coincubated with untreated PBMCs (1:10) of the same individual for 24 or 72 h and then analysed for cytokine induction and T cell proliferations by qRT-PCR assay and flow cytometry, respectively. Our results demonstrated that APCs stimulated with Sal-HA, Sal-M2e or Sal-NA induced significantly (p < .05) higher CD3+CD4+ T cell proliferations compared to the APCs treated with Salmonella alone. Our data further revealved that APCs treated with Sal-HA induced significantly (p < .05) higher CD3+CD4+ T cell responses compared to the APCs treated with either Sal-M2e or Sal-NA, which both induced almost comparable levels. The T cell proliferation responses were further measured by lymphocyte proliferation assay and the results showed that Sal-HA and Sal-M2e stimulated APCs induced significantly (p < .05) higher proliferations in T cells compared to the APCs stimulated with either Sal-NA or Salmonella alone. With respect to cytokine inductions, APCs treated with either Sal-HA or Sal-M2e induced significantly (p < .05) higher mRNA transcription levels of proinflammatory (IL-1β, IL-6, IL-12 and IL-23), Th1 (IFN-γ), Th17 (IL-17 and IL-21) and Th2 (IL-10 and TGF-β) cytokines in T cells compared to Sal-NA or Salmonella alone treated APCs. In conclusion, we show that Salmonella system can efficiently deliver vaccine antigens to APCs and is, thus, capable to elicit heterologous antigen-specific adaptive immunity.
Collapse
Affiliation(s)
- Jehyoung Kim
- College of Veterinary Medicine, Chonbuk National University, Iksan 54596, Republic of Korea
| | - Irshad Ahmed Hajam
- College of Veterinary Medicine, Chonbuk National University, Iksan 54596, Republic of Korea
| | - John Hwa Lee
- College of Veterinary Medicine, Chonbuk National University, Iksan 54596, Republic of Korea.
| |
Collapse
|
3
|
Hajam IA, Kim J, Lee JH. Salmonella Gallinarum delivering M2eCD40L in protein and DNA formats acts as a bivalent vaccine against fowl typhoid and H9N2 infection in chickens. Vet Res 2018; 49:99. [PMID: 30285855 PMCID: PMC6389227 DOI: 10.1186/s13567-018-0593-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 09/17/2018] [Indexed: 02/07/2023] Open
Abstract
Fowl typhoid (FT), a septicemic disease caused by Salmonella Gallinarum (SG), and H9N2 influenza infection are two economically important diseases that affect poultry industry worldwide. Herein, we exploited a live attenuated SG mutant (JOL967) to deliver highly conserved extracellular domains of H9N2 M2 (M2e) to induce protective immunity against both H9N2 infection and FT. To increase the immunogenicity of M2e, we physically linked it with CD40L and cloned the fusion gene into either prokaryotic constitutive expression vector pJHL65 or mammalian expression vector pcDNA3.1+. Then pJHL65-M2eCD40L or pcDNA-M2eCD40L recombinant plasmid was electroporated into JOL967 strain and the resultant clones were designated as JOL2074 and JOL2076, respectively. We demonstrated that the chickens vaccinated once orally with a co-mix of JOL2074 and JOL2076 strains elicited significantly (p < 0.05) higher M2e-specific humoral and cell-mediated immunity compared to JOL2074 alone vaccinated group. However, SG-specific immune responses were comparable in both the vaccination groups. On challenge with the virulent H9N2 virus (105 TCID50) at 28th day post-vaccination, chickens that received a co-mix of JOL2074 plus JOL2076 strains exhibited significantly (p < 0.05) lower lung inflammation and viral load in both lungs and cloacal samples than JOL2074 alone vaccinated group. Against challenge with the lethal wild-type SG, both the vaccination groups exhibited only 12.5% mortality compared to 75% mortality observed in the control group. In conclusion, we show that SG delivering M2eCD40L can act as a bivalent vaccine against FT and H9N2 infection and further studies are warranted to develop this SG-M2eCD40L vaccine as a broadly protective vaccine against avian influenza virus subtypes.
Collapse
Affiliation(s)
- Irshad Ahmed Hajam
- College of Veterinary Medicine, Chonbuk National University, Iksan, 54596 Republic of Korea
| | - Jehyoung Kim
- College of Veterinary Medicine, Chonbuk National University, Iksan, 54596 Republic of Korea
| | - John Hwa Lee
- College of Veterinary Medicine, Chonbuk National University, Iksan, 54596 Republic of Korea
| |
Collapse
|
4
|
Edwardsiella piscicida Type III Secretion System Effector EseK Inhibits Mitogen-Activated Protein Kinase Phosphorylation and Promotes Bacterial Colonization in Zebrafish Larvae. Infect Immun 2018; 86:IAI.00233-18. [PMID: 29986890 DOI: 10.1128/iai.00233-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/01/2018] [Indexed: 12/21/2022] Open
Abstract
Bacteria utilize type III secretion systems (T3SS) to deliver effectors directly into host cells. Hence, it is very important to identify the functions of bacterial (T3SS) effectors to understand host-pathogen interactions. Edwardsiella piscicida encodes a functional T3SS effector, EseK, which can be translocated into host cells and affect bacterial loads. Here, it was demonstrated that an eseK mutant (the ΔeseK mutant) significantly increased the phosphorylation levels of p38α, c-Jun NH2-terminal kinases (JNK), and extracellular signal-regulated protein kinases 1/2 (ERK1/2) in HeLa cells. Overexpression of EseK directly inhibited mitogen-activated protein kinase (MAPK) signaling pathways in HEK293T cells. The ΔeseK mutant consistently promoted the phosphorylation of MAPKs in zebrafish larva infection models. Further, it was shown that the ΔeseK mutant increased the expression of tumor necrosis factor alpha (TNF-α) in an MAPK-dependent manner. Importantly, the EseK-mediated inhibition of MAPKs in vivo attenuated bacterial clearance in larvae. Taken together, this work reveals that the E. piscicida T3SS effector EseK promotes bacterial infection by inhibiting MAPK activation, which provides insights into the molecular pathogenesis of E. piscicida in fish.
Collapse
|
5
|
Hyoung KJ, Hajam IA, Lee JH. A consensus-hemagglutinin-based vaccine delivered by an attenuated Salmonella mutant protects chickens against heterologous H7N1 influenza virus. Oncotarget 2018; 8:38780-38792. [PMID: 28418904 PMCID: PMC5503571 DOI: 10.18632/oncotarget.16353] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 02/15/2017] [Indexed: 12/14/2022] Open
Abstract
H7N3 and H7N7 are highly pathogenic avian influenza (HPAI) viruses and have posed a great threat not only for the poultry industry but for the human health as well. H7N9, a low pathogenic avian influenza (LPAI) virus, is also highly pathogenic to humans, and there is a great concern that these H7 subtypes would acquire the ability to spread efficiently between humans, thereby becoming a pandemic threat. A vaccine candidate covering all the three subtypes must, therefore, be an integral part of any pandemic preparedness plan. To address this need, we constructed a consensus hemagglutinin (HA) sequence of H7N3, H7N7, and H7N9 based on the data available in the NCBI in early 2012-2015. This artificial sequence was then optimized for protein expression before being transformed into an attenuated auxotrophic mutant of Salmonella Typhimurium, JOL1863 strain. Immunizing chickens with JOL1863, delivered intramuscularly, nasally or orally, elicited efficient humoral and cell mediated immune responses, independently of the route of vaccination. Our results also showed that JOL1863 deliver efficient maturation signals to chicken monocyte derived dendritic cells (MoDCs) which were characterized by upregulation of costimulatory molecules and higher cytokine induction. Moreover, immunization with JOL1863 in chickens conferred a significant protection against the heterologous LPAI H7N1 virus challenge as indicated by reduced viral sheddings in the cloacal swabs. We conclude that this vaccine, based on a consensus HA, could induce broader spectrum of protection against divergent H7 influenza viruses and thus warrants further study.
Collapse
Affiliation(s)
- Kim Je Hyoung
- College of Veterinary Medicine, Chonbuk National University, Iksan Campus, Iksan 54596, Republic of Korea
| | - Irshad Ahmed Hajam
- College of Veterinary Medicine, Chonbuk National University, Iksan Campus, Iksan 54596, Republic of Korea
| | - John Hwa Lee
- College of Veterinary Medicine, Chonbuk National University, Iksan Campus, Iksan 54596, Republic of Korea
| |
Collapse
|
6
|
Kim JH, Hajam IA, Lee JH. Oral immunization with a novel attenuated Salmonella Typhimurium encoding influenza HA, M2e and NA antigens protects chickens against H7N9 infection. Vet Res 2018; 49:12. [PMID: 29391053 PMCID: PMC5796500 DOI: 10.1186/s13567-018-0509-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/18/2018] [Indexed: 12/22/2022] Open
Abstract
Attenuated Salmonella strains constitute a promising technology for the development of efficient protein-based influenza vaccines. H7N9, a low pathogenic avian influenza (LPAI) virus, is a major public health concern and currently there are no effective vaccines against this subtype. Herein, we constructed a novel attenuated Salmonella Typhimurium strain for the delivery and expression of H7N9 hemagglutinin (HA), neuraminidase (NA) or the conserved extracellular domain of the matrix protein 2 (M2e). We demonstrated that the constructed Salmonella strains exhibited efficient HA, NA and M2e expressions, respectively, and the constructs were safe and immunogenic in chickens. Our results showed that chickens immunized once orally with Salmonella (Sal) mutants encoding HA (Sal-HA), M2e (Sal-M2e) or NA (Sal-NA), administered either alone or in combination, induced both antigen-specific humoral and cell mediated immune (CMI) responses, and protected chickens against the lethal H7N9 challenge. However, chickens immunized with Sal-HA+Sal-M2e+Sal-NA vaccine constructs exhibited efficient mucosal and CMI responses compared to the chickens that received only Sal-HA, Sal-M2e or Sal-M2e+Sal-NA vaccine. Further, chickens immunized with Sal-HA+Sal-M2e+Sal-NA constructs cleared H7N9 infection at a faster rate compared to the chickens that were vaccinated with Sal-HA, Sal-M2e or Sal-M2e+Sal-NA, as indicated by the reduced viral shedding in cloacal swabs of the immunized chickens. We conclude that this vaccination strategy, based on HA, M2e and NA, stimulated efficient induction of immune protection against the lethal H7N9 LPAI virus and, therefore, further studies are warranted to develop this approach as a potential prophylaxis against LPAI viruses affecting poultry birds.
Collapse
Affiliation(s)
- Je Hyoung Kim
- College of Veterinary Medicine, Chonbuk National University, Iksan, 54596, Republic of Korea
| | - Irshad Ahmed Hajam
- College of Veterinary Medicine, Chonbuk National University, Iksan, 54596, Republic of Korea
| | - John Hwa Lee
- College of Veterinary Medicine, Chonbuk National University, Iksan, 54596, Republic of Korea.
| |
Collapse
|
7
|
Davicino RC, Méndez-Huergo SP, Eliçabe RJ, Stupirski JC, Autenrieth I, Di Genaro MS, Rabinovich GA. Galectin-1–Driven Tolerogenic Programs AggravateYersinia enterocoliticaInfection by Repressing Antibacterial Immunity. THE JOURNAL OF IMMUNOLOGY 2017; 199:1382-1392. [DOI: 10.4049/jimmunol.1700579] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 06/15/2017] [Indexed: 12/19/2022]
|
8
|
Hajam IA, Lee JH. An Influenza HA and M2e Based Vaccine Delivered by a Novel Attenuated Salmonella Mutant Protects Mice against Homologous H1N1 Infection. Front Microbiol 2017; 8:872. [PMID: 28555133 PMCID: PMC5430049 DOI: 10.3389/fmicb.2017.00872] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 04/28/2017] [Indexed: 12/27/2022] Open
Abstract
Attenuated Salmonella strains constitute a promising technology for the development of a more efficient multivalent protein based vaccines. In this study, we constructed a novel attenuated strain of Salmonella for the delivery and expression of the H1N1 hemagglutinin (HA) and the conserved extracellular domain of the matrix protein 2 (M2e). We demonstrated that the constructed Salmonella strain exhibited efficient HA and M2e protein expressions and little cytotoxicity and pathogenicity in mice. Using BALB/c mice as the model, we showed that the mice vaccinated with a Salmonella strain expressing HA and M2e protein antigens, respectively, induced significant production of HA and M2e-specific serum IgG1 and IgG2a responses, and of anti-HA interferon-γ producing T cells. Furthermore, immunization with Salmonella-HA-M2e-based vaccine via different routes provided protection in 66.66% orally, 100% intramuscularly, and 100% intraperitoneally immunized mice against the homologous H1N1 virus while none of the animals survived treated with either the PBS or the Salmonella carrying empty expression vector. Ex vivo stimulated dendritic cells (DCs) with heat killed Salmonella expressing HA demonstrated that DCs play an important role in the elicitation of HA-specific humoral immune responses in mice. In summary, Salmonella-HA-M2e-based vaccine elicits efficient antigen-specific humoral and cellular immune responses, and provides significant immune protection against a highly pathogenic H1N1 influenza virus.
Collapse
Affiliation(s)
- Irshad A Hajam
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National UniversityIksan, South Korea
| | - John H Lee
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National UniversityIksan, South Korea
| |
Collapse
|
9
|
Tissue dual RNA-seq allows fast discovery of infection-specific functions and riboregulators shaping host-pathogen transcriptomes. Proc Natl Acad Sci U S A 2017; 114:E791-E800. [PMID: 28096329 DOI: 10.1073/pnas.1613405114] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Pathogenic bacteria need to rapidly adjust their virulence and fitness program to prevent eradication by the host. So far, underlying adaptation processes that drive pathogenesis have mostly been studied in vitro, neglecting the true complexity of host-induced stimuli acting on the invading pathogen. In this study, we developed an unbiased experimental approach that allows simultaneous monitoring of genome-wide infection-linked transcriptional alterations of the host and colonizing extracellular pathogens. Using this tool for Yersinia pseudotuberculosis-infected lymphatic tissues, we revealed numerous alterations of host transcripts associated with inflammatory and acute-phase responses, coagulative activities, and transition metal ion sequestration, highlighting that the immune response is dominated by infiltrating neutrophils and elicits a mixed TH17/TH1 response. In consequence, the pathogen's response is mainly directed to prevent phagocytic attacks. Yersinia up-regulates the gene and expression dose of the antiphagocytic type III secretion system (T3SS) and induces functions counteracting neutrophil-induced ion deprivation, radical stress, and nutritional restraints. Several conserved bacterial riboregulators were identified that impacted this response. The strongest influence on virulence was found for the loss of the carbon storage regulator (Csr) system, which is shown to be essential for the up-regulation of the T3SS on host cell contact. In summary, our established approach provides a powerful tool for the discovery of infection-specific stimuli, induced host and pathogen responses, and underlying regulatory processes.
Collapse
|
10
|
Yersinia enterocolitica YopH-Deficient Strain Activates Neutrophil Recruitment to Peyer's Patches and Promotes Clearance of the Virulent Strain. Infect Immun 2016; 84:3172-3181. [PMID: 27550935 DOI: 10.1128/iai.00568-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 08/18/2016] [Indexed: 01/06/2023] Open
Abstract
Yersinia enterocolitica evades the immune response by injecting Yersinia outer proteins (Yops) into the cytosol of host cells. YopH is a tyrosine phosphatase critical for Yersinia virulence. However, the mucosal immune mechanisms subverted by YopH during in vivo orogastric infection with Y. enterocolitica remain elusive. The results of this study revealed neutrophil recruitment to Peyer's patches (PP) after infection with a YopH-deficient mutant strain (Y. enterocolitica ΔyopH). While the Y. enterocolitica wild-type (WT) strain in PP induced the major neutrophil chemoattractant CXCL1 mRNA and protein levels, infection with the Y. enterocolitica ΔyopH mutant strain exhibited a higher expression of the CXCL1 receptor, CXCR2, in blood neutrophils, leading to efficient neutrophil recruitment to the PP. In contrast, migration of neutrophils into PP was impaired upon infection with Y. enterocolitica WT strain. In vitro infection of blood neutrophils revealed the involvement of YopH in CXCR2 expression. Depletion of neutrophils during Y. enterocolitica ΔyopH infection raised the bacterial load in PP. Moreover, the clearance of WT Y. enterocolitica was improved when an equal mixture of Y. enterocolitica WT and Y. enterocolitica ΔyopH strains was used in infecting the mice. This study indicates that Y. enterocolitica prevents early neutrophil recruitment in the intestine and that the effector protein YopH plays an important role in the immune evasion mechanism. The findings highlight the potential use of the Y. enterocolitica YopH-deficient strain as an oral vaccine carrier.
Collapse
|
11
|
Sajid A, Arora G, Singhal A, Kalia VC, Singh Y. Protein Phosphatases of Pathogenic Bacteria: Role in Physiology and Virulence. Annu Rev Microbiol 2015; 69:527-47. [DOI: 10.1146/annurev-micro-020415-111342] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Andaleeb Sajid
- Institute of Genomics and Integrative Biology, Council of Scientific and Industrial Research, Delhi 110007, India;
| | - Gunjan Arora
- Institute of Genomics and Integrative Biology, Council of Scientific and Industrial Research, Delhi 110007, India;
| | - Anshika Singhal
- Institute of Genomics and Integrative Biology, Council of Scientific and Industrial Research, Delhi 110007, India;
| | - Vipin C. Kalia
- Institute of Genomics and Integrative Biology, Council of Scientific and Industrial Research, Delhi 110007, India;
| | - Yogendra Singh
- Institute of Genomics and Integrative Biology, Council of Scientific and Industrial Research, Delhi 110007, India;
| |
Collapse
|
12
|
Siegfried A, Berchtold S, Manncke B, Deuschle E, Reber J, Ott T, Weber M, Kalinke U, Hofer MJ, Hatesuer B, Schughart K, Gailus-Durner V, Fuchs H, Hrabe de Angelis M, Weber F, Hornef MW, Autenrieth IB, Bohn E. IFIT2 is an effector protein of type I IFN-mediated amplification of lipopolysaccharide (LPS)-induced TNF-α secretion and LPS-induced endotoxin shock. THE JOURNAL OF IMMUNOLOGY 2013; 191:3913-21. [PMID: 24014876 DOI: 10.4049/jimmunol.1203305] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Type I IFN signaling amplifies the secretion of LPS-induced proinflammatory cytokines such as TNF-α or IL-6 and might thus contribute to the high mortality associated with Gram-negative septic shock in humans. The underlying molecular mechanism, however, is ill defined. In this study, we report the generation of mice deficient in IFN-induced protein with tetratricopeptide repeats 2 (Ifit2) and demonstrate that Ifit2 is a critical signaling intermediate for LPS-induced septic shock. Ifit2 expression was significantly upregulated in response to LPS challenge in an IFN-α receptor- and IFN regulatory factor (Irf)9-dependent manner. Also, LPS induced secretion of IL-6 and TNF-α by bone marrow-derived macrophages (BMDMs) was significantly enhanced in the presence of Ifit2. In accordance, Ifit2-deficient mice exhibited significantly reduced serum levels of IL-6 and TNF-α and reduced mortality in an endotoxin shock model. Investigation of the underlying signal transduction events revealed that Ifit2 upregulates Irf3 phosphorylation. In the absence of Irf3, reduced Ifn-β mRNA expression and Ifit2 protein expression after LPS stimulation was found. Also, Tnf-α and Il-6 secretion but not Tnf-α and Il-6 mRNA expression levels were reduced. Thus, IFN-stimulated Ifit2 via enhanced Irf3 phosphorylation upregulates the secretion of proinflammatory cytokines. It thereby amplifies LPS-induced cytokine production and critically influences the outcome of endotoxin shock.
Collapse
Affiliation(s)
- Alexandra Siegfried
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin, Eberhard Karl Universität Tuebingen, 72076 Tuebingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
DePaolo RW, Kamdar K, Khakpour S, Sugiura Y, Wang W, Jabri B. A specific role for TLR1 in protective T(H)17 immunity during mucosal infection. ACTA ACUST UNITED AC 2012; 209:1437-44. [PMID: 22778390 PMCID: PMC3409496 DOI: 10.1084/jem.20112339] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
TLR1/TLR2 complexes are required for induction of IL-6 and IL-23 to generate protective TH17-mediated immunity and IgA production after oral but not systemic Yersinia enterocolitica infection. The balance between regulatory and inflammatory immune responses is critical to maintain intestinal homeostasis. Furthermore, the nature of the inflammatory response needs to be tailored to the tissue to provide proper protective immunity while preserving host integrity. TLR2 (Toll-like receptor 2) is a unique TLR in that it has been shown to promote regulatory and inflammatory T cell responses. Using Yersinia enterocolitica, we show that oral infection promotes TH17 immunity, whereas systemic infection promotes TH1 immunity. Furthermore, induction of TH17 immunity during oral infection is dependent on TLR1 and results from the combinatorial effect of TLR2/TLR1-induced IL-6 and IL-23 and the presence of TGF-β in the intestinal environment. Interestingly, TLR2/TLR1 was not involved in TH1 immune responses during systemic infection, whereas the TLR2/TLR6 receptor complex induced IL-10+ regulatory T cell responses during both systemic and oral infections. Our results reveal that the route of infection is central in determining which pathways provide protective immunity. Furthermore, they also demonstrate that TLR2 has dual immune functions in the gut and identify TLR1 as a critical innate receptor for protective intestinal TH17 immunity.
Collapse
Affiliation(s)
- R William DePaolo
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | | | | | | | | | | |
Collapse
|
14
|
Chromy BA, Fodor IK, Montgomery NK, Luciw PA, McCutchen-Maloney SL. Cluster analysis of host cytokine responses to biodefense pathogens in a whole blood ex vivo exposure model (WEEM). BMC Microbiol 2012; 12:79. [PMID: 22607329 PMCID: PMC3430575 DOI: 10.1186/1471-2180-12-79] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 05/20/2012] [Indexed: 01/14/2023] Open
Abstract
Background Rapid detection and therapeutic intervention for infectious and emerging diseases is a major scientific goal in biodefense and public health. Toward this end, cytokine profiles in human blood were investigated using a human whole blood ex vivo exposure model, called WEEM. Results Samples of whole blood from healthy volunteers were incubated with seven pathogens including Yersinia pseudotuberculosis, Yersinia enterocolitica, Bacillus anthracis, and multiple strains of Yersinia pestis, and multiplexed protein expression profiling was conducted on supernatants of these cultures with an antibody array to detect 30 cytokines simultaneously. Levels of 8 cytokines, IL-1α, IL-1β, IL-6, IL-8, IL-10, IP-10, MCP-1 and TNFα, were significantly up-regulated in plasma after bacterial exposures of 4 hours. Statistical clustering was applied to group the pathogens based on the host response protein expression profiles. The nearest phylogenetic neighbors clustered more closely than the more distant pathogens, and all seven pathogens were clearly differentiated from the unexposed control. In addition, the Y. pestis and Yersinia near neighbors were differentiated from the B. anthracis strains. Conclusions Cluster analysis, based on host response cytokine profiles, indicates that distinct patterns of immunomodulatory proteins are induced by the different pathogen exposures and these patterns may enable further development into biomarkers for diagnosing pathogen exposure.
Collapse
Affiliation(s)
- Brett A Chromy
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550, USA.
| | | | | | | | | |
Collapse
|
15
|
Shah AA, Mihalj M, Ratkay I, Lubka-Pathak M, Balogh P, Klingel K, Bohn E, Blin N, Baus-Loncar M. Increased Susceptibility toYersinia enterocoliticaInfection ofTff2Deficient Mice. Cell Physiol Biochem 2012; 30:853-62. [DOI: 10.1159/000341463] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2012] [Indexed: 11/19/2022] Open
|
16
|
Sotolongo J, España C, Echeverry A, Siefker D, Altman N, Zaias J, Santaolalla R, Ruiz J, Schesser K, Adkins B, Fukata M. Host innate recognition of an intestinal bacterial pathogen induces TRIF-dependent protective immunity. ACTA ACUST UNITED AC 2011; 208:2705-16. [PMID: 22124111 PMCID: PMC3244044 DOI: 10.1084/jem.20110547] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
TRIF signaling triggers the amplification of macrophage bactericidal activity sufficient to eliminate invading intestinal pathogens through the sequential induction of IFN-β and IFN-γ from macrophages and NK cells, respectively. Toll-like receptor 4 (TLR4), which signals through the adapter molecules myeloid differentiation factor 88 (MyD88) and toll/interleukin 1 receptor domain-containing adapter inducing IFN-β (TRIF), is required for protection against Gram-negative bacteria. TRIF is known to be important in TLR3-mediated antiviral signaling, but the role of TRIF signaling against Gram-negative enteropathogens is currently unknown. We show that TRIF signaling is indispensable for establishing innate protective immunity against Gram-negative Yersinia enterocolitica. Infection of wild-type mice rapidly induced both IFN-β and IFN-γ in the mesenteric lymph nodes. In contrast, TRIF-deficient mice were defective in these IFN responses and showed impaired phagocytosis in regional macrophages, resulting in greater bacterial dissemination and mortality. TRIF signaling may be universally important for protection against Gram-negative pathogens, as TRIF-deficient macrophages were also impaired in killing both Salmonella and Escherichia coli in vitro. The mechanism of TRIF-mediated protective immunity appears to be orchestrated by macrophage-induced IFN-β and NK cell production of IFN-γ. Sequential induction of IFN-β and IFN-γ leads to amplification of macrophage bactericidal activity sufficient to eliminate the invading pathogens at the intestinal interface. Our results demonstrate a previously unknown role of TRIF in host resistance to Gram-negative enteropathogens, which may lead to effective strategies for combating enteric infections.
Collapse
Affiliation(s)
- John Sotolongo
- Division of Gastroenterology, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
YopJ-promoted cytotoxicity and systemic colonization are associated with high levels of murine interleukin-18, gamma interferon, and neutrophils in a live vaccine model of Yersinia pseudotuberculosis infection. Infect Immun 2010; 78:2329-41. [PMID: 20231414 DOI: 10.1128/iai.00094-10] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Several Yersinia species have been utilized as live attenuated vaccines to prime protective immunity against yersiniae and other pathogens. A type III secretion system effector known as YopJ in Y. pseudotuberculosis and Y. pestis and YopP in Y. enterocolitica has been shown to regulate host immune responses to live Yersinia vaccines. YopJ/P kills macrophages and dendritic cells, reduces their production of tumor necrosis factor alpha (TNF-alpha) and interleukin-12 (IL-12), and promotes systemic colonization in mouse models of intestinal Yersinia infection. Furthermore, YopP activity decreases antigen presentation by dendritic cells, and a yopP mutant of a live Y. enterocolitica carrier vaccine elicited effective priming of CD8 T cells to a heterologous antigen in mice. These results suggest that YopJ/P activity suppresses both innate and adaptive immune responses to live Yersinia vaccines. Here, a sublethal intragastric mouse infection model using wild-type and catalytically inactive yopJ mutant strains of Y. pseudotuberculosis was developed to further investigate how YopJ action impacts innate and adaptive immune responses to a live vaccine. Surprisingly, YopJ-promoted cytotoxicity and systemic colonization were associated with significant increases in neutrophils in spleens and the proinflammatory cytokines IL-18 and gamma interferon (IFN-gamma) in serum samples of mice vaccinated with Y. pseudotuberculosis. Secretion of IL-18 accompanied YopJ-mediated killing of macrophages infected ex vivo with Y. pseudotuberculosis, suggesting a mechanism by which this effector directly increases proinflammatory cytokine levels in vivo. Mice vaccinated with the wild-type strain or the yopJ mutant produced similar levels of antibodies to Y. pseudotuberculosis antigens and were equally resistant to lethal intravenous challenge with Y. pestis. The findings indicate that a proinflammatory, rather than anti-inflammatory, process accompanies YopJ-promoted cytotoxicity, leading to increased systemic colonization by Y. pseudotuberculosis and potentially enhancing adaptive immunity to a live vaccine.
Collapse
|