1
|
Penn BH, Netter Z, Johnson JR, Von Dollen J, Jang GM, Johnson T, Ohol YM, Maher C, Bell SL, Geiger K, Golovkine G, Du X, Choi A, Parry T, Mohapatra BC, Storck MD, Band H, Chen C, Jäger S, Shales M, Portnoy DA, Hernandez R, Coscoy L, Cox JS, Krogan NJ. An Mtb-Human Protein-Protein Interaction Map Identifies a Switch between Host Antiviral and Antibacterial Responses. Mol Cell 2018; 71:637-648.e5. [PMID: 30118682 PMCID: PMC6329589 DOI: 10.1016/j.molcel.2018.07.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 04/24/2018] [Accepted: 07/11/2018] [Indexed: 11/29/2022]
Abstract
Although macrophages are armed with potent antibacterial functions, Mycobacterium tuberculosis (Mtb) replicates inside these innate immune cells. Determinants of macrophage intrinsic bacterial control, and the Mtb strategies to overcome them, are poorly understood. To further study these processes, we used an affinity tag purification mass spectrometry (AP-MS) approach to identify 187 Mtb-human protein-protein interactions (PPIs) involving 34 secreted Mtb proteins. This interaction map revealed two factors involved in Mtb pathogenesis-the secreted Mtb protein, LpqN, and its binding partner, the human ubiquitin ligase CBL. We discovered that an lpqN Mtb mutant is attenuated in macrophages, but growth is restored when CBL is removed. Conversely, Cbl-/- macrophages are resistant to viral infection, indicating that CBL regulates cell-intrinsic polarization between antibacterial and antiviral immunity. Collectively, these findings illustrate the utility of this Mtb-human PPI map for developing a deeper understanding of the intricate interactions between Mtb and its host.
Collapse
Affiliation(s)
- Bennett H Penn
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Zoe Netter
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jeffrey R Johnson
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94148, USA; Gladstone Institutes, San Francisco, CA 94158, USA
| | - John Von Dollen
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94148, USA; Gladstone Institutes, San Francisco, CA 94158, USA
| | - Gwendolyn M Jang
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94148, USA; Gladstone Institutes, San Francisco, CA 94158, USA
| | - Tasha Johnson
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94148, USA; Gladstone Institutes, San Francisco, CA 94158, USA
| | - Yamini M Ohol
- Department of Microbiology and Immunology, Program in Microbial Pathogenesis and Host Defense, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Cyrus Maher
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Samantha L Bell
- Department of Microbiology and Immunology, Program in Microbial Pathogenesis and Host Defense, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kristina Geiger
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Guillaume Golovkine
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Xiaotang Du
- Department of Microbiology and Immunology, Program in Microbial Pathogenesis and Host Defense, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Alex Choi
- Department of Microbiology and Immunology, Program in Microbial Pathogenesis and Host Defense, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Trevor Parry
- Department of Microbiology and Immunology, Program in Microbial Pathogenesis and Host Defense, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Bhopal C Mohapatra
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska, Omaha, NE 68182, USA
| | - Matthew D Storck
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska, Omaha, NE 68182, USA
| | - Hamid Band
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska, Omaha, NE 68182, USA
| | - Chen Chen
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Stefanie Jäger
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94148, USA; Gladstone Institutes, San Francisco, CA 94158, USA
| | - Michael Shales
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94148, USA; Gladstone Institutes, San Francisco, CA 94158, USA
| | - Dan A Portnoy
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; School of Public Health, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ryan Hernandez
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Laurent Coscoy
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jeffery S Cox
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Microbiology and Immunology, Program in Microbial Pathogenesis and Host Defense, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94148, USA; Gladstone Institutes, San Francisco, CA 94158, USA.
| |
Collapse
|
2
|
Chhotaray C, Tan Y, Mugweru J, Islam MM, Adnan Hameed HM, Wang S, Lu Z, Wang C, Li X, Tan S, Liu J, Zhang T. Advances in the development of molecular genetic tools for Mycobacterium tuberculosis. J Genet Genomics 2018; 45:S1673-8527(18)30114-0. [PMID: 29941353 DOI: 10.1016/j.jgg.2018.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Mycobacterium tuberculosis, a clinically relevant Gram-positive bacterium of great clinical relevance, is a lethal pathogen owing to its complex physiological characteristics and development of drug resistance. Several molecular genetic tools have been developed in the past few decades to study this microorganism. These tools have been instrumental in understanding how M. tuberculosis became a successful pathogen. Advanced molecular genetic tools have played a significant role in exploring the complex pathways involved in M. tuberculosis pathogenesis. Here, we review various molecular genetic tools used in the study of M. tuberculosis. Further, we discuss the applications of clustered regularly interspaced short palindromic repeat interference (CRISPRi), a novel technology recently applied in M. tuberculosis research to study target gene functions. Finally, prospective outcomes of the applications of molecular techniques in the field of M. tuberculosis genetic research are also discussed.
Collapse
Affiliation(s)
- Chiranjibi Chhotaray
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaoju Tan
- State Key Laboratory of Respiratory Disease, Department of Clinical Laboratory, Guangzhou Chest Hospital, Guangzhou 510095, China
| | - Julius Mugweru
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China; Department of Biological Sciences, University of Embu, P.O Box 6 -60100, Embu, Kenya
| | - Md Mahmudul Islam
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - H M Adnan Hameed
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuai Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhili Lu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Changwei Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xinjie Li
- State Key Laboratory of Respiratory Disease, Department of Clinical Laboratory, Guangzhou Chest Hospital, Guangzhou 510095, China
| | - Shouyong Tan
- State Key Laboratory of Respiratory Disease, Department of Clinical Laboratory, Guangzhou Chest Hospital, Guangzhou 510095, China
| | - Jianxiong Liu
- State Key Laboratory of Respiratory Disease, Department of Clinical Laboratory, Guangzhou Chest Hospital, Guangzhou 510095, China.
| | - Tianyu Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Mahant A, Saubi N, Eto Y, Guitart N, Gatell JM, Hanke T, Joseph J. Preclinical development of BCG.HIVA 2auxo.int, harboring an integrative expression vector, for a HIV-TB Pediatric vaccine. Enhancement of stability and specific HIV-1 T-cell immunity. Hum Vaccin Immunother 2017; 13:1798-1810. [PMID: 28426273 PMCID: PMC5557246 DOI: 10.1080/21645515.2017.1316911] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
One of the critical issues that should be addressed in the development of a BCG-based HIV vaccine is genetic plasmid stability. Therefore, to address this issue we have considered using integrative vectors and the auxotrophic mutant of BCG complemented with a plasmid carrying a wild-type complementing gene. In this study, we have constructed an integrative E. coli-mycobacterial shuttle plasmid, p2auxo.HIVAint, expressing the HIV-1 clade A immunogen HIVA. This shuttle vector uses an antibiotic resistance-free mechanism for plasmid selection and maintenance. It was first transformed into a glycine auxotrophic E. coli strain and subsequently transformed into a lysine auxotrophic Mycobacterium bovis BCG strain to generate the vaccine BCG.HIVA2auxo.int. Presence of the HIVA gene sequence and protein expression was confirmed. We demonstrated that the in vitro stability of the integrative plasmid p2auxo.HIVAint was increased 4-fold, as compared with the BCG strain harboring the episomal plasmid, and was genetically and phenotypically characterized. The BCG.HIVA2auxo.int vaccine in combination with modified vaccinia virus Ankara (MVA).HIVA was found to be safe and induced HIV-1 and Mycobacterium tuberculosis-specific interferon-γ-producing T-cell responses in adult BALB/c mice. We have engineered a more stable and immunogenic BCG-vectored vaccine using the prototype immunogen HIVA. Thus, the use of integrative expression vectors and the antibiotic-free plasmid selection system based on “double” auxotrophic complementation are likely to improve the mycobacterial vaccine stability in vivo and immunogenicity to develop not only recombinant BCG-based vaccines expressing second generation of HIV-1 immunogens but also other major pediatric pathogens to prime protective responses shortly following birth.
Collapse
Affiliation(s)
- Aakash Mahant
- a AIDS Research Group, Hospital Clínic/IDIBAPS-HIVACAT, School of Medicine , University of Barcelona , Barcelona , Catalonia , Spain
| | - Narcís Saubi
- a AIDS Research Group, Hospital Clínic/IDIBAPS-HIVACAT, School of Medicine , University of Barcelona , Barcelona , Catalonia , Spain
| | - Yoshiki Eto
- a AIDS Research Group, Hospital Clínic/IDIBAPS-HIVACAT, School of Medicine , University of Barcelona , Barcelona , Catalonia , Spain
| | - Núria Guitart
- a AIDS Research Group, Hospital Clínic/IDIBAPS-HIVACAT, School of Medicine , University of Barcelona , Barcelona , Catalonia , Spain
| | - Josep Ma Gatell
- a AIDS Research Group, Hospital Clínic/IDIBAPS-HIVACAT, School of Medicine , University of Barcelona , Barcelona , Catalonia , Spain
| | - Tomáš Hanke
- b The Jenner Institute , University of Oxford , Oxford , UK
| | - Joan Joseph
- a AIDS Research Group, Hospital Clínic/IDIBAPS-HIVACAT, School of Medicine , University of Barcelona , Barcelona , Catalonia , Spain
| |
Collapse
|
4
|
Lee H, Kim BJ, Kim BR, Kook YH, Kim BJ. The development of a novel Mycobacterium-Escherichia coli shuttle vector system using pMyong2, a linear plasmid from Mycobacterium yongonense DSM 45126T. PLoS One 2015; 10:e0122897. [PMID: 25822634 PMCID: PMC4378964 DOI: 10.1371/journal.pone.0122897] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 02/24/2015] [Indexed: 11/18/2022] Open
Abstract
The Mycobacterium-Escherichia coli shuttle vector system, equipped with the pAL5000 replicon, is widely used for heterologous gene expression and gene delivery in mycobacteria. Despite its extensive use, this system has certain limitations, which has led to the development of alternative mycobacterial vector systems. The present study describes the molecular structure and expression profiles of a novel 18-kb linear plasmid, pMyong2, from Mycobacterium yongonense. Sixteen open reading frames and a putative origin of replication were identified, and the compatibility of the pMyong2 and pAL5000 vector systems was demonstrated. In recombinant Mycobacterium smegmatis (rSmeg), the pMyong2 vector system showed a copy number that was approximately 37 times greater than that of pAL5000. Furthermore, pMyong2 increased the mRNA and protein expression of the human macrophage migration inhibitory factor (hMIF) over pAL5000 levels by approximately 10-fold and 50-fold, respectively, demonstrating the potential utility of the pMyong2 vector system in heterologous gene expression in mycobacteria. Successful delivery of the EGFP gene into mammalian cells via rSmeg carrying the pMyong2 vector system was also observed, demonstrating the feasibility of this system for DNA delivery. In conclusion, the pMyong2 vector system could be effectively used not only for the in vivo delivery of recombinant protein and DNA but also for mycobacterial genetic studies as an alternative or a complement to the pAL5000 vector system.
Collapse
Affiliation(s)
- Hyungki Lee
- Department of Microbiology and Immunology, Biomedical Sciences, Liver Research Institute and Cancer Research Institute, College of Medicine, Seoul National University, Seoul, Korea
| | - Byoung-Jun Kim
- Department of Microbiology and Immunology, Biomedical Sciences, Liver Research Institute and Cancer Research Institute, College of Medicine, Seoul National University, Seoul, Korea
| | - Bo-Ram Kim
- Department of Microbiology and Immunology, Biomedical Sciences, Liver Research Institute and Cancer Research Institute, College of Medicine, Seoul National University, Seoul, Korea
| | - Yoon-Hoh Kook
- Department of Microbiology and Immunology, Biomedical Sciences, Liver Research Institute and Cancer Research Institute, College of Medicine, Seoul National University, Seoul, Korea
| | - Bum-Joon Kim
- Department of Microbiology and Immunology, Biomedical Sciences, Liver Research Institute and Cancer Research Institute, College of Medicine, Seoul National University, Seoul, Korea
| |
Collapse
|
5
|
Doz E, Lombard R, Carreras F, Buzoni-Gatel D, Winter N. Mycobacteria-Infected Dendritic Cells Attract Neutrophils That Produce IL-10 and Specifically Shut Down Th17 CD4 T Cells through Their IL-10 Receptor. THE JOURNAL OF IMMUNOLOGY 2013; 191:3818-26. [DOI: 10.4049/jimmunol.1300527] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
6
|
Abstract
The study of mycobacteriophages provides insights into viral diversity and evolution, as well as the genetics and physiology of their pathogenic hosts. Genomic characterization of 80 mycobacteriophages reveals a high degree of genetic diversity and an especially rich reservoir of interesting genes. These include a vast number of genes of unknown function that do not match known database entries and many genes whose functions can be predicted but which are not typically found as components of phage genomes. Thus many mysteries surround these genomes, such as why the genes are there, what do they do, how are they expressed and regulated, how do they influence the physiology of the host bacterium, and what forces of evolution directed them to their genomic homes? Although the genetic diversity and novelty of these phages is full of intrigue, it is a godsend for the mycobacterial geneticist, presenting an abundantly rich toolbox that can be exploited to devise new and effective ways for understanding the genetics and physiology of human tuberculosis. As the number of sequenced genomes continues to grow, their mysteries continue to thicken, and the time has come to learn more about the secret lives of mycobacteriophages.
Collapse
Affiliation(s)
- Graham F Hatfull
- Department of Biological Sciences, Pittsburgh Bacteriophage Institute, University of Pittsburgh, Pittsburgh, Pennslyvania, USA
| |
Collapse
|
7
|
Development of a new generation of vectors for gene expression, gene replacement, and protein-protein interaction studies in mycobacteria. Appl Environ Microbiol 2013; 79:1718-29. [PMID: 23315736 DOI: 10.1128/aem.03695-12] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli-mycobacterium shuttle vectors are important tools for gene expression and gene replacement in mycobacteria. However, most of the currently available vectors are limited in their use because of the lack of extended multiple cloning sites (MCSs) and convenience of appending an epitope tag(s) to the cloned open reading frames (ORFs). Here we report a new series of vectors that allow for the constitutive and regulatable expression of proteins, appended with peptide tag sequences at their N and C termini, respectively. The applicability of these vectors is demonstrated by the constitutive and induced expression of the Mycobacterium tuberculosis pknK gene, coding for protein kinase K, a serine-threonine protein kinase. Furthermore, a suicide plasmid with expanded MCS for creating gene replacements, a plasmid for chromosomal integrations at the commonly used L5 attB site, and a hypoxia-responsive vector, for expression of a gene(s) under hypoxic conditions that mimic latency, have also been created. Additionally, we have created a vector for the coexpression of two proteins controlled by two independent promoters, with each protein being in fusion with a different tag. The shuttle vectors developed in the present study are excellent tools for the analysis of gene function in mycobacteria and are a valuable addition to the existing repertoire of vectors for mycobacterial research.
Collapse
|
8
|
Cordone A, Audrain B, Calabrese I, Euphrasie D, Reyrat JM. Characterization of a Mycobacterium smegmatis uvrA mutant impaired in dormancy induced by hypoxia and low carbon concentration. BMC Microbiol 2011; 11:231. [PMID: 22008214 PMCID: PMC3207969 DOI: 10.1186/1471-2180-11-231] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 10/18/2011] [Indexed: 11/25/2022] Open
Abstract
Background The aerobic fast-growing Mycobacterium smegmatis, like its slow-growing pathogenic counterpart Mycobacterium tuberculosis, has the ability to adapt to microaerobiosis by shifting from growth to a non-proliferating or dormant state. The molecular mechanism of dormancy is not fully understood and various hypotheses have been formulated to explain it. In this work, we open new insight in the knowledge of M. smegmatis dormancy, by identifying and characterizing genes involved in this behavior. Results In a library generated by transposon mutagenesis, we searched for M. smegmatis mutants unable to survive a coincident condition of hypoxia and low carbon content, two stress factors supposedly encountered in the host and inducing dormancy in tubercle bacilli. Two mutants were identified that mapped in the uvrA gene, coding for an essential component of the Nucleotide Excision Repair system (NER). The two mutants showed identical phenotypes, although the respective transposon insertions hit different regions of the uvrA gene. The restoration of the uvrA activity in M. smegmatis by complementation with the uvrA gene of M. tuberculosis, confirmed that i) uvrA inactivation was indeed responsible for the inability of M. smegmatis cells to enter or exit dormancy and, therefore, survive hypoxia and presence of low carbon and ii) showed that the respective uvrA genes of M. tuberculosis and M. smegmatis are true orthologs. The rate of survival of wild type, uvrA mutant and complemented strains under conditions of oxidative stress and UV irradiation was determined qualitatively and quantitatively. Conclusions Taken together our results confirm that the mycobacterial NER system is involved in adaptation to various stress conditions and suggest that cells with a compromised DNA repair system have an impaired dormancy behavior.
Collapse
Affiliation(s)
- Angela Cordone
- Dipartimento di Biologia Strutturale e Funzionale, Università Federico II di Napoli, Via Cinthia 4, 80126 Napoli, Italy.
| | | | | | | | | |
Collapse
|
9
|
Roy S, Narayana Y, Balaji KN, Ajitkumar P. Highly fluorescent GFPm 2+ -based genome integration-proficient promoter probe vector to study Mycobacterium tuberculosis promoters in infected macrophages. Microb Biotechnol 2011; 5:98-105. [PMID: 21958386 PMCID: PMC3815276 DOI: 10.1111/j.1751-7915.2011.00305.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Study of activity of cloned promoters in slow‐growing Mycobacterium tuberculosis during long‐term growth conditions in vitro or inside macrophages, requires a genome‐integration proficient promoter probe vector, which can be stably maintained even without antibiotics, carrying a substrate‐independent, easily scorable and highly sensitive reporter gene. In order to meet this requirement, we constructed pAKMN2, which contains mycobacterial codon‐optimized gfpm2+ gene, coding for GFPm2+ of highest fluorescence reported till date, mycobacteriophage L5 attP‐int sequence for genome integration, and a multiple cloning site. pAKMN2 showed stable integration and expression of GFPm2+ from M. tuberculosis and M. smegmatis genome. Expression of GFPm2+, driven by the cloned minimal promoters of M. tuberculosis cell division gene, ftsZ (MtftsZ), could be detected in the M. tuberculosis/pAKMN2‐promoter integrants, growing at exponential phase in defined medium in vitro and inside macrophages. Stable expression from genome‐integrated format even without antibiotic, and high sensitivity of detection by flow cytometry and fluorescence imaging, in spite of single copy integration, make pAKMN2 useful for the study of cloned promoters of any mycobacterial species under long‐term in vitro growth or stress conditions, or inside macrophages.
Collapse
Affiliation(s)
- Sougata Roy
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore - 560012, Karnataka, India
| | | | | | | |
Collapse
|
10
|
Abstract
The importance of plasmids for molecular research cannot be underestimated. These double-stranded DNA units that replicate independently of the chromosomal DNA are as valuable to bacterial geneticists as a carpenter's hammer. Fortunately, today the mycobacterial research community has a number of these genetic tools at its disposal, and the development of these tools has greatly accelerated the study of mycobacterial pathogens. However, working with mycobacterial cloning plasmids is still not always as straightforward as working with Escherichia coli plasmids, and therefore a number of precautions and potential pitfalls will be discussed in this chapter.
Collapse
Affiliation(s)
- Farahnaz Movahedzadeh
- Institute for Tuberculosis Research, College of Pharmacy, Rm 412, University of Illinois at Chicago, 833 S Wood St, Chicago, Illinois 60612-7231, USA.
| | | |
Collapse
|
11
|
SigF controls carotenoid pigment production and affects transformation efficiency and hydrogen peroxide sensitivity in Mycobacterium smegmatis. J Bacteriol 2008; 190:7859-63. [PMID: 18805974 DOI: 10.1128/jb.00714-08] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Carotenoids are complex lipids that are known for acting against photodynamic injury and free radicals. We demonstrate here that sigma(F) is required for carotenoid pigment production in Mycobacterium smegmatis. We further show that a sigF mutant exhibits a transformation efficiency 10(4)-fold higher than that of the parental strain, suggesting that sigma(F) regulates the production of components affecting cell wall permeability. In addition, a sigF mutant showed an increased sensitivity to hydrogen peroxide. An in silico search of the M. smegmatis genome identified a number of SigF consensus sites, including sites upstream of the carotenoid synthesis locus, which explains its SigF regulation.
Collapse
|
12
|
Pham TT, Jacobs-Sera D, Pedulla ML, Hendrix RW, Hatfull GF. Comparative genomic analysis of mycobacteriophage Tweety: evolutionary insights and construction of compatible site-specific integration vectors for mycobacteria. MICROBIOLOGY-SGM 2007; 153:2711-2723. [PMID: 17660435 PMCID: PMC2884959 DOI: 10.1099/mic.0.2007/008904-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Mycobacteriophage Tweety is a newly isolated phage of Mycobacterium smegmatis. It has a viral morphology with an isometric head and a long flexible tail, and forms turbid plaques from which stable lysogens can be isolated. The Tweety genome is 58 692 bp in length, contains 109 protein-coding genes, and shows significant but interrupted nucleotide sequence similarity with the previously described mycobacteriophages Llij, PMC and Che8. However, overall the genome possesses mosaic architecture, with gene products being related to other mycobacteriophages such as Che9d, Omega and Corndog. A gene encoding an integrase of the tyrosine-recombinase family is located close to the centre of the genome, and a putative attP site has been identified within a short intergenic region immediately upstream of int. This Tweety attP–int cassette was used to construct a new set of integration-proficient plasmid vectors that efficiently transform both fast- and slow-growing mycobacteria through plasmid integration at a chromosomal locus containing a tRNALys gene. These vectors are maintained well in the absence of selection and are completely compatible with integration vectors derived from mycobacteriophage L5, enabling the simple construction of complex recombinants with genes integrated simultaneously at different chromosomal positions.
Collapse
Affiliation(s)
- Thuy T. Pham
- Department of Biological Sciences and Pittsburgh Bacteriophage Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Deborah Jacobs-Sera
- Department of Biological Sciences and Pittsburgh Bacteriophage Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Marisa L. Pedulla
- Department of Biology, Montana Tech, University of Montana, Butte, MT 59701, USA
| | - Roger W. Hendrix
- Department of Biological Sciences and Pittsburgh Bacteriophage Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Graham F. Hatfull
- Department of Biological Sciences and Pittsburgh Bacteriophage Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
13
|
Borsuk S, Mendum TA, Fagundes MQ, Michelon M, Cunha CW, McFadden J, Dellagostin OA. Auxotrophic complementation as a selectable marker for stable expression of foreign antigens in Mycobacterium bovis BCG. Tuberculosis (Edinb) 2007; 87:474-80. [PMID: 17888740 DOI: 10.1016/j.tube.2007.07.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Revised: 06/20/2007] [Accepted: 07/19/2007] [Indexed: 10/22/2022]
Abstract
Mycobacterium bovis BCG has the potential to be an effective live vector for multivalent vaccines. However, most mycobacterial cloning vectors rely on antibiotic resistance genes as selectable markers, which would be undesirable in any practical vaccine. Here we report the use of auxotrophic complementation as a selectable marker that would be suitable for use in a recombinant vaccine. A BCG auxotrophic for the amino acid leucine was constructed by knocking out the leuD gene by unmarked homologous recombination. Expression of leuD on a plasmid not only allowed complementation, but also acted as a selectable marker. Removal of the kanamycin resistance gene, which remained necessary for plasmid manipulations in Escherichia coli, was accomplished by two different methods: restriction enzyme digestion followed by re-ligation before BCG transformation, or by Cre-loxP in vitro recombination mediated by the bacteriophage P1 Cre Recombinase. Stability of the plasmid was evaluated during in vitro and in vivo growth of the recombinant BCG in comparison to selection by antibiotic resistance. The new system was highly stable even during in vivo growth, as the selective pressure is maintained, whereas the conventional vector was unstable in the absence of selective pressure. This new system will now allow the construction of potential recombinante vaccine strains using stable multicopy plasmid vectors without the inclusion of antibiotic resistance markers.
Collapse
Affiliation(s)
- Sibele Borsuk
- Centro de Biotecnologia, Universidade Federal de Pelotas, CP-354, 96010-900 Pelotas, RS, Brazil
| | | | | | | | | | | | | |
Collapse
|
14
|
Genomics of glycopeptidolipid biosynthesis in Mycobacterium abscessus and M. chelonae. BMC Genomics 2007; 8:114. [PMID: 17490474 PMCID: PMC1885439 DOI: 10.1186/1471-2164-8-114] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Accepted: 05/09/2007] [Indexed: 11/22/2022] Open
Abstract
Background The outermost layer of the bacterial surface is of crucial importance because it is in constant interaction with the host. Glycopeptidolipids (GPLs) are major surface glycolipids present on various mycobacterial species. In the fast-grower model organism Mycobacterium smegmatis, GPL biosynthesis involves approximately 30 genes all mapping to a single region of 65 kb. Results We have recently sequenced the complete genomes of two fast-growers causing human infections, Mycobacterium abscessus (CIP 104536T) and M. chelonae (CIP 104535T). We show here that these two species contain genes corresponding to all those of the M. smegmatis "GPL locus", with extensive conservation of the predicted protein sequences consistent with the production of GPL molecules indistinguishable by biochemical analysis. However, the GPL locus appears to be split into several parts in M. chelonae and M. abscessus. One large cluster (19 genes) comprises all genes involved in the synthesis of the tripeptide-aminoalcohol moiety, the glycosylation of the lipopeptide and methylation/acetylation modifications. We provide evidence that a duplicated acetyltransferase (atf1 and atf2) in M. abscessus and M. chelonae has evolved through specialization, being able to transfer one acetyl at once in a sequential manner. There is a second smaller and distant (M. chelonae, 900 kb; M. abscessus, 3 Mb) cluster of six genes involved in the synthesis of the fatty acyl moiety and its attachment to the tripeptide-aminoalcohol moiety. The other genes are scattered throughout the genome, including two genes encoding putative regulatory proteins. Conclusion Although these three species produce identical GPL molecules, the organization of GPL genes differ between them, thus constituting species-specific signatures. An hypothesis is that the compact organization of the GPL locus in M. smegmatis represents the ancestral form and that evolution has scattered various pieces throughout the genome in M. abscessus and M. chelonae.
Collapse
|