1
|
Malone K, LaCasse E, Beug ST. Cell death in glioblastoma and the central nervous system. Cell Oncol (Dordr) 2025; 48:313-349. [PMID: 39503973 PMCID: PMC11997006 DOI: 10.1007/s13402-024-01007-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2024] [Indexed: 04/15/2025] Open
Abstract
Glioblastoma is the commonest and deadliest primary brain tumor. Glioblastoma is characterized by significant intra- and inter-tumoral heterogeneity, resistance to treatment and dismal prognoses despite decades of research in understanding its biological underpinnings. Encompassed within this heterogeneity and therapy resistance are severely dysregulated programmed cell death pathways. Glioblastomas recapitulate many neurodevelopmental and neural injury responses; in addition, glioblastoma cells are composed of multiple different transformed versions of CNS cell types. To obtain a greater understanding of the features underlying cell death regulation in glioblastoma, it is important to understand the control of cell death within the healthy CNS during homeostatic and neurodegenerative conditions. Herein, we review apoptotic control within neural stem cells, astrocytes, oligodendrocytes and neurons and compare them to glioblastoma apoptotic control. Specific focus is paid to the Inhibitor of Apoptosis proteins, which play key roles in neuroinflammation, CNS cell survival and gliomagenesis. This review will help in understanding glioblastoma as a transformed version of a heterogeneous organ composed of multiple varied cell types performing different functions and possessing different means of apoptotic control. Further, this review will help in developing more glioblastoma-specific treatment approaches and will better inform treatments looking at more direct brain delivery of therapeutic agents.
Collapse
Affiliation(s)
- Kyle Malone
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON, K1H 8L1, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Eric LaCasse
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON, K1H 8L1, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Shawn T Beug
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON, K1H 8L1, Canada.
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
- Centre for Infection, Immunity and Inflammation, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
- Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
2
|
Srinivas V, Varma S, Kona SR, Ibrahim A, Duttaroy AK, Basak S. Dietary omega-3 fatty acid deficiency from pre-pregnancy to lactation affects expression of genes involved in hippocampal neurogenesis of the offspring. Prostaglandins Leukot Essent Fatty Acids 2023; 191:102566. [PMID: 36924605 DOI: 10.1016/j.plefa.2023.102566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 03/06/2023] [Accepted: 03/06/2023] [Indexed: 03/17/2023]
Abstract
Maternal n-3 PUFA (omega-3) deficiency can affect brain development in utero and postnatally. Despite the evidence, the impacts of n-3 PUFA deficiency on the expression of neurogenesis genes in the postnatal hippocampus remained elusive. Since postnatal brain development requires PUFAs via breast milk, we examined the fatty acid composition of breast milk and hippocampal expression of neurogenesis genes in n-3 PUFA deficient 21d mice. In addition, the expression of fatty acid desaturases, elongases, free fatty acids signaling receptors, insulin and leptin, and glucose transporters were measured. Among the genes involved in neurogenesis, the expression of brain-specific tenascin-R (TNR) was downregulated to a greater extent (∼31 fold), followed by adenosine A2A receptor (A2AAR), dopamine receptor D2 (DRD2), glial cell line-derived neurotrophic factor (GDNF) expression in the n-3 PUFA deficient hippocampus. Increasing dietary LA to ALA (50:1) elevated the ARA to DHA ratio by ∼8 fold in the n-3 PUFA deficient breast milk, with an overall increase of total n-6/n-3 PUFAs by ∼15:1 (p<0.05) compared to n-3 PUFA sufficient (LA to ALA: 2:1) diet. The n-3 PUFA deficient mice exhibited upregulation of FADS1, FADS2, ELOVL2, ELOVL5, ELOVL6, GPR40, GPR120, LEPR, IGF1 and downregulation of GLUT1, GLUT3, and GLUT4 mRNA expression in hippocampus (p<0.05). Maternal n-3 PUFA deficiency affects the hippocampal expression of key neurogenesis genes in the offspring with concomitant expression of desaturase and elongase genes, suggesting the importance of dietary n-3 PUFA for neurodevelopment.
Collapse
Affiliation(s)
- Vilasagaram Srinivas
- Molecular Biology Division, National Institute of Nutrition, Indian Council of Medical Research, Hyderabad 500 007, India
| | - Saikanth Varma
- Molecular Biology Division, National Institute of Nutrition, Indian Council of Medical Research, Hyderabad 500 007, India
| | - Suryam Reddy Kona
- Molecular Biology Division, National Institute of Nutrition, Indian Council of Medical Research, Hyderabad 500 007, India
| | - Ahamed Ibrahim
- Molecular Biology Division, National Institute of Nutrition, Indian Council of Medical Research, Hyderabad 500 007, India
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Norway
| | - Sanjay Basak
- Molecular Biology Division, National Institute of Nutrition, Indian Council of Medical Research, Hyderabad 500 007, India.
| |
Collapse
|
3
|
Kumar S, Attrish D, Srivastava A, Banerjee J, Tripathi M, Chandra PS, Dixit AB. Non-histone substrates of histone deacetylases as potential therapeutic targets in epilepsy. Expert Opin Ther Targets 2020; 25:75-85. [PMID: 33275850 DOI: 10.1080/14728222.2021.1860016] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Epilepsy is a network-level neurological disorder characterized by unprovoked recurrent seizures and associated comorbidities. Aberrant activity and localization of histone deacetylases (HDACs) have been reported in epilepsy and HDAC inhibitors (HDACi) have been used for therapeutic purposes. Several non-histone targets of HDACs have been recognized whose reversible acetylation can modulate protein functions and can contribute to disease pathology. Areas covered: This review provides an overview of HDACs in epilepsy and reflects its action on non-histone substrates involved in the pathogenesis of epilepsy and explores the effectiveness of HDACi as anti-epileptic drugs (AEDs). It also covers the efforts undertaken to target the interaction of HDACs with their substrates. We have further discussed non-deacetylase activity possessed by specific HDACs that might be essential in unraveling the molecular mechanism underlying the disease. For this purpose, relevant literature from 1996 to 2020 was derived from PubMed. Expert opinion: The interaction of HDACs and their non-histone substrates can serve as a promising therapeutic target for epilepsy. Pan-HDACi offers limited benefits to the epileptic patients. Thus, identification of novel targets of HDACs contributing to the disease and designing inhibitors targeting these complexes would be more effective and holds a greater potential as an anti-epileptogenic therapy.
Collapse
Affiliation(s)
- Sonali Kumar
- Dr. B.R. Ambedkar Centre for Biomedical Research (ACBR), University of Delhi , New Delhi, India
| | - Diksha Attrish
- Dr. B.R. Ambedkar Centre for Biomedical Research (ACBR), University of Delhi , New Delhi, India
| | | | | | | | | | - Aparna Banerjee Dixit
- Dr. B.R. Ambedkar Centre for Biomedical Research (ACBR), University of Delhi , New Delhi, India
| |
Collapse
|
4
|
ROCK/PKA Inhibition Rescues Hippocampal Hyperexcitability and GABAergic Neuron Alterations in a Oligophrenin-1 Knock-Out Mouse Model of X-Linked Intellectual Disability. J Neurosci 2020; 40:2776-2788. [PMID: 32098904 DOI: 10.1523/jneurosci.0462-19.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 01/28/2020] [Accepted: 02/03/2020] [Indexed: 01/19/2023] Open
Abstract
Oligophrenin-1 (Ophn1) encodes a Rho GTPase activating protein whose mutations cause X-linked intellectual disability (XLID) in humans. Loss of function of Ophn1 leads to impairments in the maturation and function of excitatory and inhibitory synapses, causing deficits in synaptic structure, function and plasticity. Epilepsy is a frequent comorbidity in patients with Ophn1-dependent XLID, but the cellular bases of hyperexcitability are poorly understood. Here we report that male mice knock-out (KO) for Ophn1 display hippocampal epileptiform alterations, which are associated with changes in parvalbumin-, somatostatin- and neuropeptide Y-positive interneurons. Because loss of function of Ophn1 is related to enhanced activity of Rho-associated protein kinase (ROCK) and protein kinase A (PKA), we attempted to rescue Ophn1-dependent pathological phenotypes by treatment with the ROCK/PKA inhibitor fasudil. While acute administration of fasudil had no impact on seizure activity, seven weeks of treatment in adulthood were able to correct electrographic, neuroanatomical and synaptic alterations of Ophn1 deficient mice. These data demonstrate that hyperexcitability and the associated changes in GABAergic markers can be rescued at the adult stage in Ophn1-dependent XLID through ROCK/PKA inhibition.SIGNIFICANCE STATEMENT In this study we demonstrate enhanced seizure propensity and impairments in hippocampal GABAergic circuitry in Ophn1 mouse model of X-linked intellectual disability (XLID). Importantly, the enhanced susceptibility to seizures, accompanied by an alteration of GABAergic markers were rescued by Rho-associated protein kinase (ROCK)/protein kinase A (PKA) inhibitor fasudil, a drug already tested on humans. Because seizures can significantly impact the quality of life of XLID patients, the present data suggest a potential therapeutic pathway to correct alterations in GABAergic networks and dampen pathological hyperexcitability in adults with XLID.
Collapse
|
5
|
Tang M, Zhang M, Wang L, Li H, Cai H, Dang R, Jiang P, Liu Y, Xue Y, Wu Y. Maternal dietary of n-3 polyunsaturated fatty acids affects the neurogenesis and neurochemical in female rat at weaning. Prostaglandins Leukot Essent Fatty Acids 2018; 128:11-20. [PMID: 29413357 DOI: 10.1016/j.plefa.2017.11.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 10/16/2017] [Accepted: 11/08/2017] [Indexed: 12/17/2022]
Abstract
Long-chain polyunsaturated fatty acids (LC-PUFAs) are rapidly accumulated in brain during pre- and neonatal life, which is important for the development and function of central nervous system. Deficiency of biologically important n-3 PUFA docosahexaenoic acid (C22:6n-3, DHA) is associated with impaired visual, attention and cognition, and would precipitate psychiatric symptoms. However, clinical studies of the potential mechanism on the effect of dietary DHA deficiency on neural development remain unclear. In addition, the effects of n-6 PUFAs and n-3 PUFAs ingestion on the dynamic process of the cell proliferation in neurogenesis of offspring were investigated using immunefluorescence. And GC-MS was used to determine the fatty acid content in the liver of offspring. To further investigate the neurochemical influence on maternal PUFAs levels, we assessed the functioning of various neurotransmitter systems including glutamatergic, dopaminergic, norepinephrinergic and serotoninergic systems in the brain of female rats at weaning by HPLC-MS/MS. Lastly, we analyzed the turnover rates and between-metabolite ratios (the ratios between metabolites of monoamine neurotransmitters) to seek potential links between the neurotransmitters and dietary fatty acids compositions. There were significant differences between the deficiency group and the control or supplementary group in liver fatty acids compositions, showing that n-3 PUFAs were largely replaced by n-6 PUFAs. The generation of n-3 PUFAs deficiency rats exhibited abnormal neurogenesis and neurochemical. Altered dopamine or norepinephrine transmission and between-metabolite ratios in brain areas may be a key neuronal mechanism that contributes to the potential detrimental effects of n-3 PUFAs deficiency for mental health.
Collapse
Affiliation(s)
- Mimi Tang
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China; School of Pharmaceutical Sciences, Central South University, Changsha, PR China.
| | - Min Zhang
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China; School of Pharmaceutical Sciences, Central South University, Changsha, PR China.
| | - Lu Wang
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China; Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China.
| | - Huande Li
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China.
| | - Hualin Cai
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China.
| | - Ruili Dang
- Institute of Clinical Pharmacy, Jining First People's Hospital, Jining Medical University, Jining 272000, PR China.
| | - Pei Jiang
- Institute of Clinical Pharmacy, Jining First People's Hospital, Jining Medical University, Jining 272000, PR China.
| | - Yiping Liu
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China.
| | - Ying Xue
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China; School of Pharmaceutical Sciences, Central South University, Changsha, PR China.
| | - Yanqin Wu
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China; School of Pharmaceutical Sciences, Central South University, Changsha, PR China.
| |
Collapse
|
6
|
Tang M, Zhang M, Cai H, Li H, Jiang P, Dang R, Liu Y, He X, Xue Y, Cao L, Wu Y. Maternal diet of polyunsaturated fatty acid altered the cell proliferation in the dentate gyrus of hippocampus and influenced glutamatergic and serotoninergic systems of neonatal female rats. Lipids Health Dis 2016; 15:71. [PMID: 27048382 PMCID: PMC4822267 DOI: 10.1186/s12944-016-0236-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 03/29/2016] [Indexed: 02/07/2023] Open
Abstract
Background Long-chain polyunsaturated fatty acids (PUFAs) are major components of the phospholipids that forming the cell membrane. Insufficient availability of PUFAs during prenatal period decreases accretion of docosahexaenoic acid (DHA) in the developing brain. DHA deficiency is associated with impaired attention and cognition, and would precipitate psychiatric symptoms. However, clinical studies on the potential benefits of dietary DHA supplementation to neural development have yielded conflicting results. Methods To further investigate the neurochemical influence of maternal PUFAs levels, we assessed the functioning of various neurotransmitter systems including glutamatergic, dopaminergic, norepinephrinergic and serotoninergic systems in the brain of neonatal female rats by HPLC-MS/MS. Meanwhile, the cell proliferation of neonatal rats was investigated using immunefluorescence. Results Different maternal n-3 PUFAs dietary influenced the FA composition, cell proliferation in the dentate gyrus of hippocampus and the contents of γ-aminobutyric acid (GABA), glutamine (GLN), dopamine (DA) and its metabolites [3,4- dihydroxyphenyl acetic acid (DOPAC) and homovanillic acid (HVA)], norepinephrine (NE), vanilmandelic acid (VMA) and 5-HT turnover in the brain of neonatal rats. However, the mRNA expression of key synthase of neurotransmitters remains stable. Conclusions Our study showed that maternal deficiency of n-3 PUFAs might play an important role in central nervous system of neonatal female rats mainly through impairing the normal neurogenesis and influencing glutamatergic system and 5-HT turnover. Electronic supplementary material The online version of this article (doi:10.1186/s12944-016-0236-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mimi Tang
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, PR China.,School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Min Zhang
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, PR China.,School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Hualin Cai
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, PR China
| | - Huande Li
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, PR China.
| | - Pei Jiang
- Institute of Clinical Pharmacy, Jining First People's Hospital, Jining Medical University, Jining, 272000, PR China
| | - Ruili Dang
- Institute of Clinical Pharmacy, Jining First People's Hospital, Jining Medical University, Jining, 272000, PR China
| | - Yiping Liu
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, PR China
| | - Xin He
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, PR China.,School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Ying Xue
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, PR China.,School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Lingjuan Cao
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, PR China.,School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Yanqin Wu
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, PR China.,School of Pharmaceutical Sciences, Central South University, Changsha, China
| |
Collapse
|
7
|
Chu SF, Zhang Z, Zhang W, Zhang MJ, Gao Y, Han N, Zuo W, Huang HY, Chen NH. Upregulating the Expression of Survivin-HBXIP Complex Contributes to the Protective Role of IMM-H004 in Transient Global Cerebral Ischemia/Reperfusion. Mol Neurobiol 2016; 54:524-540. [DOI: 10.1007/s12035-015-9673-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 12/17/2015] [Indexed: 12/30/2022]
|
8
|
Zhang Z, Wang H, Jin Z, Cai X, Gao N, Cui X, Liu P, Zhang J, Yang S, Yang X. Downregulation of survivin regulates adult hippocampal neurogenesis and apoptosis, and inhibits spatial learning and memory following traumatic brain injury. Neuroscience 2015; 300:219-28. [PMID: 25987205 DOI: 10.1016/j.neuroscience.2015.05.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 05/09/2015] [Accepted: 05/11/2015] [Indexed: 10/23/2022]
Abstract
Survivin, a unique member of the inhibitor of the apoptosis protein (IAP) family, has been suggested to play a crucial role in promoting the cell cycle and mediates mitosis during embryonic development. However, the role of survivin following traumatic brain injury (TBI) in adult neurogenesis and apoptosis in the mouse dentate gyrus (DG) remains only partially understood. We adopted adenovirus-mediated RNA interference (RNAi) as a means of suppressing the expression of survivin and observed its effects on adult regeneration and neurological function in mice after brain injury. The mice were subjected to TBI, and the ipsilateral hippocampus was then examined using reverse transcription polymerase chain reaction (RT-PCR) and Western blotting analyses. Brain slices were stained for 5'-bromo-2'-deoxyuridine (BrdU) and doublecortin (DCX). Our data showed that survivin knockdown inhibits the proliferation and differentiation of neural precursor cells (NPCs) in the DG of the hippocampus soon after TBI. Furthermore, downregulation of survivin results in a significant increase in programmed cell death in the DG, as assessed using terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and 4',6-diamidino-2-phenylindole (DAPI) double staining. The Morris water maze (MWM) test was adopted to evaluate neurological function, which confirmed that knockdown of survivin worsened the memory capacity that was already compromised following TBI. Survivin in adult mice brains after TBI can be successfully down-regulated by RNAi, which inhibited adult hippocampal neurogenesis, promoted apoptotic cell death, and resulted in a negative role in the recovery of dysfunction following injury.
Collapse
Affiliation(s)
- Z Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, PR China; Tianjin Neurological Institute, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, 154 Anshan Road, Heping District, Tianjin 300052, PR China
| | - H Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, PR China; Tianjin Neurological Institute, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, 154 Anshan Road, Heping District, Tianjin 300052, PR China
| | - Z Jin
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, PR China; Tianjin Neurological Institute, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, 154 Anshan Road, Heping District, Tianjin 300052, PR China
| | - X Cai
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, PR China; Tianjin Neurological Institute, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, 154 Anshan Road, Heping District, Tianjin 300052, PR China
| | - N Gao
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, PR China; Tianjin Neurological Institute, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, 154 Anshan Road, Heping District, Tianjin 300052, PR China
| | - X Cui
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, PR China; Tianjin Neurological Institute, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, 154 Anshan Road, Heping District, Tianjin 300052, PR China
| | - P Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, PR China; Tianjin Neurological Institute, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, 154 Anshan Road, Heping District, Tianjin 300052, PR China
| | - J Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, PR China; Tianjin Neurological Institute, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, 154 Anshan Road, Heping District, Tianjin 300052, PR China
| | - S Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, PR China; Tianjin Neurological Institute, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, 154 Anshan Road, Heping District, Tianjin 300052, PR China
| | - X Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, PR China; Tianjin Neurological Institute, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, 154 Anshan Road, Heping District, Tianjin 300052, PR China.
| |
Collapse
|
9
|
Merino JJ, Bellver-Landete V, Oset-Gasque MJ, Cubelos B. CXCR4/CXCR7 Molecular Involvement in Neuronal and Neural Progenitor Migration: Focus in CNS Repair. J Cell Physiol 2014; 230:27-42. [DOI: 10.1002/jcp.24695] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 06/03/2014] [Indexed: 12/13/2022]
Affiliation(s)
- José Joaquín Merino
- Biochemistry and Molecular Biology Dept II; Universidad Complutense de Madrid (UCM); Madrid Spain
- Instituto de Investigación; Neuroquímica (IUIN), UCM; Madrid Spain
| | - Victor Bellver-Landete
- Biochemistry and Molecular Biology Dept II; Universidad Complutense de Madrid (UCM); Madrid Spain
| | - María Jesús Oset-Gasque
- Biochemistry and Molecular Biology Dept II; Universidad Complutense de Madrid (UCM); Madrid Spain
- Instituto de Investigación; Neuroquímica (IUIN), UCM; Madrid Spain
| | - Beatriz Cubelos
- Departamento de Biología Molecular; Centro de Biología Molecular Severo Ochoa (CBMSO); Universidad Autónoma de Madrid; Madrid Spain
| |
Collapse
|
10
|
Survivin Is a transcriptional target of STAT3 critical to estradiol neuroprotection in global ischemia. J Neurosci 2013; 33:12364-74. [PMID: 23884942 DOI: 10.1523/jneurosci.1852-13.2013] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Transient global ischemia causes selective, delayed death of hippocampal CA1 pyramidal neurons in humans and animals. It is well established that estrogens ameliorate neuronal death in animal models of focal and global ischemia. However, the role of signal transducer and activator of transcription-3 (STAT3) and its target genes in estradiol neuroprotection in global ischemia remains unclear. Here we show that a single intracerebral injection of 17β-estradiol to ovariectomized female rats immediately after ischemia rescues CA1 neurons destined to die. Ischemia promotes activation of STAT3 signaling, association of STAT3 with the promoters of target genes, and STAT3-dependent mRNA and protein expression of prosurvival proteins in the selectively vulnerable CA1. In animals subjected to ischemia, acute postischemic estradiol further enhances activation and nuclear translocation of STAT3 and STAT3-dependent transcription of target genes. Importantly, we show that STAT3 is critical to estradiol neuroprotection, as evidenced by the ability of STAT3 inhibitor peptide and STAT3 shRNA delivered directly into the CA1 of living animals to abolish neuroprotection. In addition, we identify survivin, a member of the inhibitor-of-apoptosis family of proteins and known gene target of STAT3, as essential to estradiol neuroprotection, as evidenced by the ability of shRNA to survivin to reverse neuroprotection. These findings indicate that ischemia and estradiol act synergistically to promote activation of STAT3 and STAT3-dependent transcription of survivin in insulted CA1 neurons and identify STAT3 and survivin as potentially important therapeutic targets in an in vivo model of global ischemia.
Collapse
|
11
|
Warrington JP, Ashpole N, Csiszar A, Lee YW, Ungvari Z, Sonntag WE. Whole brain radiation-induced vascular cognitive impairment: mechanisms and implications. J Vasc Res 2013; 50:445-57. [PMID: 24107797 PMCID: PMC4309372 DOI: 10.1159/000354227] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 07/05/2013] [Indexed: 01/31/2023] Open
Abstract
Mild cognitive impairment is a well-documented consequence of whole brain radiation therapy (WBRT) that affects 40-50% of long-term brain tumor survivors. The exact mechanisms for the decline in cognitive function after WBRT remain elusive and no treatment or preventative measures are available for use in the clinic. Here, we review recent findings indicating how changes in the neurovascular unit may contribute to the impairments in learning and memory. In addition to affecting neuronal development, WBRT induces profound capillary rarefaction within the hippocampus - a region of the brain important for learning and memory. Therapeutic strategies such as hypoxia, which restore the capillary density, result in the rescue of cognitive function. In addition to decreasing vascular density, WBRT impairs vasculogenesis and/or angiogenesis, which may also contribute to radiation-induced cognitive decline. Further studies aimed at uncovering the specific mechanisms underlying these WBRT-induced changes in the cerebrovasculature are essential for developing therapies to mitigate the deleterious effects of WBRT on cognitive function.
Collapse
Affiliation(s)
- Junie P. Warrington
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216
| | - Nicole Ashpole
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Anna Csiszar
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Yong Woo Lee
- School of Biomedical Engineering and Sciences Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - Zoltan Ungvari
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - William E. Sonntag
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| |
Collapse
|
12
|
Zhang L, Yan R, Zhang Q, Wang H, Kang X, Li J, Yang S, Zhang J, Liu Z, Yang X. Survivin, a key component of the Wnt/β-catenin signaling pathway, contributes to traumatic brain injury-induced adult neurogenesis in the mouse dentate gyrus. Int J Mol Med 2013; 32:867-75. [PMID: 23900556 DOI: 10.3892/ijmm.2013.1456] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Accepted: 07/08/2013] [Indexed: 01/19/2023] Open
Abstract
The enhancement of endogenous neurogenesis has been suggested in the treatment of traumatic brain injury (TBI); however, the factors that trigger the process of adult neurogenesis following TBI remain elusive. In the adult mammalian central nervous system, there are 2 neurogenic regions: the subgranular zone (SGZ) of the hippocampus and the subventricular zone (SVZ) of the lateral ventricles, both of which maintain relatively quiescent states in a stable microenvironment. However, once stimulated by intrinsic and extrinsic events, relevant signals are activated in these 2 regions. In this study, in order to explore the mechanisms behind endogenous neurogenesis following TBI, we investigated potential factors regulating this process. We observed that the expression of survivin, an anti-apoptotic protein, increased in a time-dependent manner in the hippocampus in a mouse model of TBI. In addition, the number of survivin (+) cells, as well as that of BrdU (+) cells increased in the SGZ of the dentate gyrus (DG) in the hippocampus following TBI, as shown by immunofluorescence double staining; the co-localization of survivin and BrdU was shown in the merged images. The expression of survivin was also significantly increased in the doublecortin (DCX) (+) immature neurons in the DG of the hippocampus soon after the induction of TBI. Taken together, these data confirm the connection between the expression of survivin and adult neurogenesis following TBI; our data also suggest the therapeutic potential of upregulating survivin expression as a novel strategy for the effective treatment of TBI.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin Neurological Institute, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin 300052, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Sox2 protects neural stem cells from apoptosis via up-regulating survivin expression. Biochem J 2013; 450:459-68. [PMID: 23301561 DOI: 10.1042/bj20120924] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The transcription factor Sox2 [SRY (sex-determining region Y)-box 2] is essential for the regulation of self-renewal and homoeostasis of NSCs (neural stem cells) during brain development. However, the downstream targets of Sox2 and its underlying molecular mechanism are largely unknown. In the present study, we found that Sox2 directly up-regulates the expression of survivin, which inhibits the mitochondria-dependent apoptotic pathway in NSCs. Although overexpression of Sox2 elevates survivin expression, knockdown of Sox2 results in a decrease in survivin expression, thereby initiating the mitochondria-dependent apoptosis related to caspase 9 activation. Furthermore, cell apoptosis owing to knockdown of Sox2 can be rescued by ectopically expressing survivin in NSCs as well as in the mouse brain, as demonstrated by an in utero-injection approach. In short, we have found a novel Sox2/survivin pathway that regulates NSC survival and homoeostasis, thus revealing a new mechanism of brain development, neurological degeneration and such aging-related disorders.
Collapse
|
14
|
Iscru E, Ahmed T, Coremans V, Bozzi Y, Caleo M, Conway EM, D'Hooge R, Balschun D. Loss of survivin in neural precursor cells results in impaired long-term potentiation in the dentate gyrus and CA1-region. Neuroscience 2012; 231:413-9. [PMID: 23123921 DOI: 10.1016/j.neuroscience.2012.10.049] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 10/22/2012] [Accepted: 10/24/2012] [Indexed: 11/17/2022]
Abstract
In adult mammals, newborn neural precursor cells (NPCs) derived from either the subventricular zone (SVZ) or the subgranular zone (SGZ) migrate into the olfactory bulb and the dentate gyrus (DG), respectively, where some of them mature into excitatory and inhibitory neurons. There is increasing evidence that this neurogenesis process is important for some types of learning and synaptic plasticity and vice versa. Survivin, a member of the inhibitor-of-apoptosis protein (IAP) family, has been suggested to have a central role in the regulation of neurogenesis. The protein is abundantly expressed in nervous tissue during embryonic development while being restricted postnatally to proliferating and migrating NPCs in SVZ and SGZ. Here we examined adult Survivin(Camcre) mice with a conditional deletion of the survivin gene in embryonic neurogenic regions. Although the deletion of survivin had no effect on basic excitability in DG and CA1-region, there was a marked impairment of long-term potentiation (LTP) in these areas. Our data support a function of survivin in hippocampal synaptic plasticity and learning and underline the importance of adult brain neurogenesis for proper operation of the hippocampal tri-synaptic circuit and the physiological functions that depend on it.
Collapse
Affiliation(s)
- E Iscru
- KU Leuven, Laboratory of Biological Psychology, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Butti E, Bacigaluppi M, Rossi S, Cambiaghi M, Bari M, Cebrian Silla A, Brambilla E, Musella A, De Ceglia R, Teneud L, De Chiara V, D'Adamo P, Garcia-Verdugo JM, Comi G, Muzio L, Quattrini A, Leocani L, Maccarrone M, Centonze D, Martino G. Subventricular zone neural progenitors protect striatal neurons from glutamatergic excitotoxicity. ACTA ACUST UNITED AC 2012; 135:3320-35. [PMID: 23008234 DOI: 10.1093/brain/aws194] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The functional significance of adult neural stem and progenitor cells in hippocampal-dependent learning and memory has been well documented. Although adult neural stem and progenitor cells in the subventricular zone are known to migrate to, maintain and reorganize the olfactory bulb, it is less clear whether they are functionally required for other processes. Using a conditional transgenic mouse model, selective ablation of adult neural stem and progenitor cells in the subventricular zone induced a dramatic increase in morbidity and mortality of central nervous system disorders characterized by excitotoxicity-induced cell death accompanied by reactive inflammation, such as 4-aminopyridine-induced epilepsy and ischaemic stroke. To test the role of subventricular zone adult neural stem and progenitor cells in protecting central nervous system tissue from glutamatergic excitotoxicity, neurophysiological recordings of spontaneous excitatory postsynaptic currents from single medium spiny striatal neurons were measured on acute brain slices. Indeed, lipopolysaccharide-stimulated, but not unstimulated, subventricular zone adult neural stem and progenitor cells reverted the increased frequency and duration of spontaneous excitatory postsynaptic currents by secreting the endocannabinod arachidonoyl ethanolamide, a molecule that regulates glutamatergic tone through type 1 cannabinoid receptor (CB(1)) binding. In vivo restoration of cannabinoid levels, either by administration of the type 1 cannabinoid receptor agonist HU210 or the inhibitor of the principal catabolic enzyme fatty acid amide hydrolase, URB597, completely reverted the increased morbidity and mortality of adult neural stem and progenitor cell-ablated mice suffering from epilepsy and ischaemic stroke. Our results provide the first evidence that adult neural stem and progenitor cells located within the subventricular zone exert an 'innate' homeostatic regulatory role by protecting striatal neurons from glutamate-mediated excitotoxicity.
Collapse
Affiliation(s)
- Erica Butti
- Neuroimmunology Unit, INSPE, Division of Neuroscience, San Raffaele Scientific Institute Via Olgettina 58, 20132 Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Warrington JP, Csiszar A, Mitschelen M, Lee YW, Sonntag WE. Whole brain radiation-induced impairments in learning and memory are time-sensitive and reversible by systemic hypoxia. PLoS One 2012; 7:e30444. [PMID: 22279591 PMCID: PMC3261195 DOI: 10.1371/journal.pone.0030444] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 12/21/2011] [Indexed: 01/22/2023] Open
Abstract
Whole brain radiation therapy (WBRT) is commonly used for treatment of primary and metastatic brain tumors; however, cognitive impairment occurs in 40–50% of brain tumor survivors. The etiology of the cognitive impairment following WBRT remains elusive. We recently reported that radiation-induced cerebrovascular rarefaction within hippocampal subregions could be completely reversed by systemic hypoxia. However, the effects of this intervention on learning and memory have not been reported. In this study, we assessed the time-course for WBRT-induced impairments in contextual and spatial learning and the capacity of systemic hypoxia to reverse WBRT-induced deficits in spatial memory. A clinical fractionated series of 4.5Gy WBRT was administered to mice twice weekly for 4 weeks, and after various periods of recovery, behavioral analyses were performed. To study the effects of systemic hypoxia, mice were subjected to 11% (hypoxia) or 21% oxygen (normoxia) for 28 days, initiated 1 month after the completion of WBRT. Our results indicate that WBRT induces a transient deficit in contextual learning, disruption of working memory, and progressive impairment of spatial learning. Additionally, systemic hypoxia completely reversed WBRT-induced impairments in learning and these behavioral effects as well as increased vessel density persisted for at least 2 months following hypoxia treatment. Our results provide critical support for the hypothesis that cerebrovascular rarefaction is a key component of cognitive impairment post-WBRT and indicate that processes of learning and memory, once thought to be permanently impaired after WBRT, can be restored.
Collapse
Affiliation(s)
- Junie P. Warrington
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Anna Csiszar
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Matthew Mitschelen
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Yong Woo Lee
- Department of Biomedical Sciences and Pathobiology, School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - William E. Sonntag
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- * E-mail:
| |
Collapse
|