1
|
Nguyen TLL, Jin Y, Kim L, Heo KS. Inhibitory effects of 6'-sialyllactose on angiotensin II-induced proliferation, migration, and osteogenic switching in vascular smooth muscle cells. Arch Pharm Res 2022; 45:658-670. [PMID: 36070173 DOI: 10.1007/s12272-022-01404-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 08/25/2022] [Indexed: 12/14/2022]
Abstract
Excessive production and migration of vascular smooth muscle cells (VSMCs) are associated with vascular remodeling that causes vascular diseases, such as restenosis and hypertension. Angiotensin II (Ang II) stimulation is a key factor in inducing abnormal VSMC function. This study aimed to investigate the effects of 6'-sialyllactose (6'SL), a human milk oligosaccharide, on Ang II-stimulated cell proliferation, migration and osteogenic switching in rat aortic smooth muscle cells (RASMCs) and human aortic smooth muscle cells (HASMCs). Compared with the control group, Ang II increased cell proliferation by activating MAPKs, including ERK1/2/p90RSK/Akt/mTOR and JNK pathways. However, 6'SL reversed Ang II-stimulated cell proliferation and the ERK1/2/p90RSK/Akt/mTOR pathways in RASMCs and HASMCs. Moreover, 6'SL suppressed Ang II-stimulated cell cycle progression from G0/G1 to S and G2/M phases in RASMCs. Furthermore, 6'SL effectively inhibited cell migration by downregulating NF-κB-mediated MMP2/9 and VCAM-1 expression levels. Interestingly, in RASMCs, 6'SL attenuated Ang II-induced osteogenic switching by reducing the production of p90RSK-mediated c-fos and JNK-mediated c-jun, leading to the downregulation of AP-1-mediated osteopontin production. Taken together, our data suggest that 6'SL inhibits Ang II-induced VSMC proliferation and migration by abolishing the ERK1/2/p90RSK-mediated Akt and NF-κB signaling pathways, respectively, and osteogenic switching by suppressing p90RSK- and JNK-mediated AP-1 activity.
Collapse
Affiliation(s)
- Thuy Le Lam Nguyen
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon, South Korea
| | - Yujin Jin
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon, South Korea
| | - Lila Kim
- GeneChem Inc., Daejeon, South Korea
| | - Kyung-Sun Heo
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon, South Korea.
| |
Collapse
|
2
|
Ardanaz N, Pagano PJ. Hydrogen Peroxide as a Paracrine Vascular Mediator: Regulation and Signaling Leading to Dysfunction. Exp Biol Med (Maywood) 2016; 231:237-51. [PMID: 16514169 DOI: 10.1177/153537020623100302] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Numerous studies have demonstrated the ability of a variety of vascular cells, including endothelial cells, smooth muscle cells, and fibroblasts, to produce reactive oxygen species (ROS). Until recently, major emphasis was placed on the production of superoxide anion (O2–) in the vasculature as a result of its ability to directly attenuate the biological activity of endothelium-derived nitric oxide (NO). The short half-life and radius of diffusion of O2– drastically limit the role of this ROS as an important paracrine hormone in vascular biology. On the contrary, in recent years, the O2– metabolite hydrogen peroxide (H2O2) has increasingly been viewed as an important cellular signaling agent in its own right, capable of modulating both contractile and growth-promoting pathways with more far-reaching effects. In this review, we will assess the vascular production of H2O2, its regulation by endogenous scavenger systems, and its ability to activate a variety of vascular signaling pathways, thereby leading to vascular contraction and growth. This discussion will include the ability of H2O2 to (i) Initiate calcium flux as well as (ii) stimulate pathways leading to sensitization of contractile elements to calcium. The latter involves a variety of protein kinases that have also been strongly implicated in vascular hypertrophy. Previous Intensive study has emphasized the ability of NADPH oxidase-derived O2– and H2O2 to activate these pathways in cultured smooth muscle cells. However, growing evidence indicates a considerably more complex array of unique oxidase systems in the endothelium, media, and adventitia that appear to participate in these deleterious effects in a sequential and temporal manner. Taken together, these findings seem consistent with a paracrine effect of H2O2 across the vascular wall.
Collapse
Affiliation(s)
- Noelia Ardanaz
- Hypertension and Vascular Research Division, RM 7044, E&R Building, Henry Ford Hospital, 2799 West Grand Boulevard, Detroit, MI 48202-2689, USA
| | | |
Collapse
|
3
|
Watanabe S, Matsumoto T, Ando M, Adachi T, Kobayashi S, Iguchi M, Takeuchi M, Taguchi K, Kobayashi T. Multiple activation mechanisms of serotonin-mediated contraction in the carotid arteries obtained from spontaneously hypertensive rats. Pflugers Arch 2016; 468:1271-1282. [PMID: 27170312 DOI: 10.1007/s00424-016-1834-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 04/29/2016] [Accepted: 05/02/2016] [Indexed: 12/21/2022]
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) is an important endogenous substance that regulates the vascular tone, and the abnormal signaling of 5-HT has been observed in the arteries under several pathophysiological conditions such as diabetes and hypertension. However, signaling pathways of 5-HT-mediated vasocontraction in hypertension remain unclear. Therefore, we tested the hypothesis that 5-HT-mediated contraction and contributions of various kinases such as mitogen-activated protein kinases (MAPKs), phosphoinositide 3-kinase (PI3K), Rho kinase (ROCK), and 3-phosphoinositide-dependent kinase 1 (PDK1) to the contraction would be altered in the carotid arteries obtained from spontaneously hypertensive rats (SHR) compared to control Wistar Kyoto (WKY) rats. In the carotid arteries from SHR (vs. those from WKY), (1) the 5-HT-mediated contraction was increased, whereas the norepinephrine-mediated contraction was not; (2) 5-HT-mediated contractions were partly inhibited by each kinase (extracellular signal-regulated kinase 1/2 (ERK1/2), p38 MAPK, c-Jun N-terminal kinase (JNK), PI3K, ROCK, and PDK1) inhibitor; and (3) 5-HT-stimulated phosphorylation of ERK1/2, p38 MAPK, JNK, myosin phosphatase target subunit 1 (MYPT1), and PDK1 was increased. The expression of ROCK2 but not ROCK1 was increased in the carotid arteries from SHR compared to WKY. The expression of 5-HT2A receptor, a major receptor of 5-HT-mediated contraction in rat carotid artery, was similar in carotid arteries between the two groups. These results suggest that 5-HT-mediated contraction was utilized multiple signaling pathways such as ERK1/2, p38 MAPK, JNK, PI3K, ROCK, and PDK1. Although 5-HT-mediated contraction was increased in the carotid arteries obtained from SHR, further studies are necessary to clarify how each kinase may integrate in the vascular smooth muscles under hypertension.
Collapse
Affiliation(s)
- Shun Watanabe
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Takayuki Matsumoto
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Makoto Ando
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Tsuyuki Adachi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Shota Kobayashi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Maika Iguchi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Miki Takeuchi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Kumiko Taguchi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Tsuneo Kobayashi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan.
| |
Collapse
|
4
|
The rebirth of culture in microbiology through the example of culturomics to study human gut microbiota. Clin Microbiol Rev 2015; 28:237-64. [PMID: 25567229 DOI: 10.1128/cmr.00014-14] [Citation(s) in RCA: 544] [Impact Index Per Article: 54.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Bacterial culture was the first method used to describe the human microbiota, but this method is considered outdated by many researchers. Metagenomics studies have since been applied to clinical microbiology; however, a "dark matter" of prokaryotes, which corresponds to a hole in our knowledge and includes minority bacterial populations, is not elucidated by these studies. By replicating the natural environment, environmental microbiologists were the first to reduce the "great plate count anomaly," which corresponds to the difference between microscopic and culture counts. The revolution in bacterial identification also allowed rapid progress. 16S rRNA bacterial identification allowed the accurate identification of new species. Mass spectrometry allowed the high-throughput identification of rare species and the detection of new species. By using these methods and by increasing the number of culture conditions, culturomics allowed the extension of the known human gut repertoire to levels equivalent to those of pyrosequencing. Finally, taxonogenomics strategies became an emerging method for describing new species, associating the genome sequence of the bacteria systematically. We provide a comprehensive review on these topics, demonstrating that both empirical and hypothesis-driven approaches will enable a rapid increase in the identification of the human prokaryote repertoire.
Collapse
|
5
|
Bhaskaran S, Zaluski J, Banes-Berceli A. Molecular interactions of serotonin (5-HT) and endothelin-1 in vascular smooth muscle cells: in vitro and ex vivo analyses. Am J Physiol Cell Physiol 2014; 306:C143-51. [PMID: 24196534 PMCID: PMC3919985 DOI: 10.1152/ajpcell.00247.2013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 10/29/2013] [Indexed: 11/22/2022]
Abstract
Elevated levels of serotonin (5-HT) and endothelin-1 (ET-1) may be involved in cardiovascular complications of diabetes mellitus. Data suggest supraphysiological concentrations of 5-HT (10(-6) M) potentiate the ability of ET-1 to stimulate DNA synthesis and vascular smooth muscle cell (VSMC) proliferation in vitro via activation of mitogen-activated protein kinase (p42/44 MAPK) and Janus kinase 2 (JAK2) pathways. Additionally, 5-HT enhances agonist-induced contractions via p42/44 MAPK and an unknown tyrosine kinase. However, the exact mechanisms of the 5-HT/ET-1 interactions and whether these effects occur at physiological levels (10(-9) M) are unknown. Therefore, we hypothesized that interactions between 5-HT and ET-1 at physiological concentrations in VSMC enhanced activation of both p42/44 MAPK and JAK2 pathways contributing to vascular growth and contractile responses. With the use of rat VSMC and Western blot analysis, our data suggest no effect of acute (30 min) preincubation with 5-HT (10(-9) M) and/or ET-1 (10(-9) M) on the activation of either pathway in normal or high glucose conditions. To determine if there was altered vascular reactivity in intact vessels we tested the effects of 5-HT and ET-1 interaction using myographs to measure isometric contractions of rat thoracic aortic rings. 5-HT (10(-9) M) and ET-1 (10(-12) M) stimulate enhanced contractile responses to each other that were inhibited by JAK2 and p42/44 MAPK antagonists. Our findings demonstrate that both 5-HT and ET-1 at physiological concentrations could interact with each other and activate p42/44 MAPK and JAK2 signaling pathways to cause an increase in smooth muscle contraction that could lead to altered vascular function.
Collapse
Affiliation(s)
- Subha Bhaskaran
- Department of Biological Sciences, Oakland University, Rochester, Michigan
| | | | | |
Collapse
|
6
|
Wei L, Liu Y, Kaneto H, Fanburg BL. JNK regulates serotonin-mediated proliferation and migration of pulmonary artery smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2010; 298:L863-9. [PMID: 20228179 DOI: 10.1152/ajplung.00281.2009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
JNK is a member of the MAPK family and has essential roles in inflammation and cell differentiation and apoptosis. In recent years, there have been accumulating data indicating a novel role for JNK in cell growth and migration. In this report, we demonstrate that JNK activity is necessary for serotonin (5-HT)-induced proliferation and migration of bovine pulmonary artery smooth muscle cells (PASMCs). Stimulation with 5-HT was found to lead to activation of JNK with a maximal activation at 10 min. Inhibition of JNK with its specific inhibitor, SP-600125, or its dominant-negative form, DN-JNK, significantly reduced 5-HT-stimulated [(3)H]thymidine incorporation and cyclin D1 expression. A similar inhibitory effect on SMC migration produced by 5-HT, as detected by a wound healing assay, was observed with inhibition of JNK. Furthermore, inhibition of 5-HT receptors (1B) and (2A), but not inhibition of the 5-HT transporter, blocked 5-HT-induced JNK activation. Inhibition of phosphatidylinositol 3-kinase (PI3K) with LY-294002 and wortmannin had little or no effect on 5-HT-induced JNK phosphorylation, but JNK inhibitor SP-600125 and DN-JNK blocked 5-HT-stimulated phosphorylation of Akt and its downstream effectors, p70S6K1 and S6, indicating that Akt is a downstream effector of JNK. Activation of Akt by 5-HT was blocked only minimally, if at all, by inhibitors of ERK and p38 MAPK, indicating a uniqueness of JNK MAPK in this activation of Akt. Coimmunoprecipitation showed binding of Akt to JNK, further supporting the interaction of JNK and Akt. Thus JNK is a critical molecule in 5-HT-induced PASMC proliferation and migration and may act at an important point for cross talk of the MAPK and PI3K pathways. Its activation by 5-HT is initiated through 5-HT (1B) and (2A) receptors, and its stimulation of SMC proliferation and migration occurs through the Akt pathway.
Collapse
Affiliation(s)
- Lin Wei
- Tufts Medical Center and Tupper Research Institute, Boston, Massachusetts 02111, USA
| | | | | | | |
Collapse
|
7
|
Callera G, Tostes R, Savoia C, Muscara MN, Touyz RM. Vasoactive peptides in cardiovascular (patho)physiology. Expert Rev Cardiovasc Ther 2007; 5:531-52. [PMID: 17489676 DOI: 10.1586/14779072.5.3.531] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Numerous vasoactive agents play an important physiological role in regulating vascular tone, reactivity and structure. In pathological conditions, alterations in the regulation of vasoactive peptides result in endothelial dysfunction, vascular remodeling and vascular inflammation, which are important processes underlying vascular damage in cardiovascular disease. Among the many vasoactive agents implicated in vascular (patho)biology, angiotensin II (Ang II), endothelin (ET), serotonin and natriuretic peptides appear to be particularly important because of their many pleiotropic actions and because they have been identified as potential therapeutic targets in cardiovascular disease. Ang II, ET-1, serotonin and natriuretic peptides mediate effects via specific receptors, which belong to the group of G-protein-coupled receptors. ET, serotonin and Ang II are primarily vasoconstrictors with growth-promoting actions, whereas natriuretic peptides, specifically atrial, brain and C-type natriuretic peptides, are vasodilators with natriuretic effects. Inhibition of vasoconstrictor actions with drugs that block peptide receptors, compounds that inhibit enzymes that generate vasoactive peptides or agents that increase levels of natriuretic peptides are potentially valuable therapeutic tools in the management of cardiovascular diseases. This review focuses on ET, natriuretic peptides and serotonin. The properties and distribution of these vasoactive agents and their receptors, mechanisms of action and implications in cardiovascular (patho)physiology will be discussed.
Collapse
Affiliation(s)
- Glaucia Callera
- University of Ottawa/Ottawa Health Research Institute, Kidney Research Centre, Ottawa, ON, Canada
| | | | | | | | | |
Collapse
|
8
|
Tasaki K, Hori M, Ozaki H, Karaki H, Wakabayashi I. Difference in Signal Transduction Mechanisms Involved in 5-Hydroxytryptamine- and U46619-Induced Vasoconstrictions. J Smooth Muscle Res 2003; 39:107-17. [PMID: 14695024 DOI: 10.1540/jsmr.39.107] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In order to elucidate the signal transduction pathways of vascular smooth muscle contractions induced by stimulation of receptors for 5-hydroxytryptamine (5-HT) and thromboxane A2 (TXA2), both of which are released from activated platelets, we examined whether protein kinases, such as tyrosine kinase, p38 mitogen-activated protein kinase (MAPK) and protein kinase C (PKC), are involved in the contraction produced by either 5-HT or U46619 (an analog of TXA2) in the rat aorta. Both 5-HT and U46619 induced sustained contractions, which were markedly reduced in the absence of extracellular Ca2+. Verapamil (a L-type Ca2+ channel blocker) markedly inhibited the contractile response to 5-HT, while the U46619-induced contraction was only slightly inhibited by verapamil. Both contractile responses to 5-HT and U46619 were significantly inhibited by calphostin C (a PKC inhibitor). On the other hand, both genistein (5 microM, a tyrosine kinase inhibitor) and SB203580 (a p38 MAPK inhibitor) significantly inhibited 5-HT-induced contractions but had little effects on the contractions induced by U46619. These results suggest that the signal transduction mechanisms involved in the contractions mediated via 5-HT and TXA2 receptors are different as follows. Both the tyrosine kinase and p38 MAPK pathways are involved in 5-HT contraction but not in TXA2 contraction, while both contractions are strongly dependent on transplasmalemmal Ca2+ entry. The contractile responses to both 5-HT and TXA2 involve voltage-dependent Ca2+ channels and PKC.
Collapse
Affiliation(s)
- Katsunari Tasaki
- Department of Hygiene & Preventive Medicine, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | | | | | | | | |
Collapse
|
9
|
Watanabe T, Pakala R, Katagiri T, Benedict CR. Antioxidant N-acetylcysteine inhibits vasoactive agents-potentiated mitogenic effect of mildly oxidized LDL on vascular smooth muscle cells. Hypertens Res 2002; 25:311-5. [PMID: 12047048 DOI: 10.1291/hypres.25.311] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Mildly oxidized LDL (mox-LDL) has been shown to induce monocyte-endothelial interactions and vascular smooth muscle cell (VSMC) proliferation, key events in the formation of the atherosclerotic lesion. Growth factors and vasoactive peptides are also thought to play a major role in atherogenesis. We examined the interaction between mox-LDL and well-known vasoactive agents such as serotonin (5-HT), angiotensin II (Ang-II), endothelin-1 (ET-1), or urotensin II (U-II) in inducing DNA synthesis in VSMCs. Growth-arrested VSMCs were incubated with different concentrations of native LDL, mox-LDL, or highly oxidized LDL (ox-LDL) with 5-HT, Ang-II, ET-1, or U-II in the absence or presence of N-acetylcysteine (NAC), an intracellular free radical scavenger. DNA synthesis in VSMCs was examined by [3H]thymidine incorporation into cellular DNA. Mox-LDL and ox-LDL stimulated [3H]thymidine incorporation with a maximal effect at 5 microg/ml (211%, 154%), which values were significantly greater than that for native LDL (128%). 5-HT, Ang-II, ET-1, or U-II also stimulated [3H]thymidine incorporation in a dose-dependent manner. 5-HT had a maximal stimulatory effect at a concentration of 50 micromol/l (205%), Ang-II at 1.75 micromol/l (202%), ET-1 at 0.1 micromol/l (205%), and U-II at 0.05 micromol/l (161%). When added together, mox-LDL (100 ng/ml)-induced [3H]thymidine incorporation was potentiated by low concentrations of 5-HT (1 micromol/l), Ang-II (0.5 micromol/l), ET-1 (1 nmol/l), or U-II (10 nmol/l) (114% to 330%, 325%, 338%, or 345%, respectively). Synergistic interactions of mox-LDL with 5-HT, Ang-II, ET-1, or U-II were significantly inhibited by NAC (400 micromol/l). Our results suggest that mild oxidation of LDL may enhance its atherogenic potential and exert a synergistic interaction with vasoactive agents in inducing DNA synthesis via the generation of reactive oxygen species in VSMCs.
Collapse
Affiliation(s)
- Takuya Watanabe
- Third Department of Internal Medicine, Showa University School of Medicine, Tokyo, Japan
| | | | | | | |
Collapse
|