1
|
Zhang XJ, Wu C, Liu BY, Liang HL, Wang ML, Li H. Transcriptomic and metabolomic profiling reveals the drought tolerance mechanism of Illicium difengpi (Schisandraceae). FRONTIERS IN PLANT SCIENCE 2024; 14:1284135. [PMID: 38259923 PMCID: PMC10800416 DOI: 10.3389/fpls.2023.1284135] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024]
Abstract
Illicium difengpi (Schisandraceae), an endangered medicinal plant endemic to karst areas, is highly tolerant to drought and thus can be used as an ideal material for investigating adaptive mechanism to drought stress. The understanding of the drought tolerance of I. difengpi, especially at the molecular level, is lacking. In the present study, we aimed to clarify the molecular mechanism underlying drought tolerance in endemic I. difengpi plant in karst regions. The response characteristics of transcripts and changes in metabolite abundance of I. difengpi subjected to drought and rehydration were analyzed, the genes and key metabolites responsive to drought and rehydration were screened, and some important biosynthetic and secondary metabolic pathways were identified. A total of 231,784 genes and 632 metabolites were obtained from transcriptome and metabolome analyses, and most of the physiological metabolism in drought-treated I. difengpi plants recovered after rehydration. There were more upregulated genes than downregulated genes under drought and rehydration treatments, and rehydration treatment induced stable expression of 65.25% of genes, indicating that rehydration alleviated drought stress to some extent. Drought and rehydration treatment generated flavonoids, phenolic acids, flavonols, amino acids and their derivatives, as well as metabolites such as saccharides and alcohols in the leaves of I. difengpi plants, which alleviated the injury caused by excessive reactive oxygen species. The integration of transcriptome and metabolome analyses showed that, under drought stress, I. difengpi increased glutathione, flavonoids, polyamines, soluble sugars and amino acids, contributing to cell osmotic potential and antioxidant activity. The results show that the high drought tolerance and recovery after rehydration are the reasons for the normal growth of I. difengpi in karst mountain areas.
Collapse
Affiliation(s)
| | - Chao Wu
- *Correspondence: Chao Wu, ; Hui-Ling Liang,
| | | | - Hui-Ling Liang
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, China
| | | | | |
Collapse
|
2
|
Adero M, Tripathi JN, Tripathi L. Advances in Somatic Embryogenesis of Banana. Int J Mol Sci 2023; 24:10999. [PMID: 37446177 DOI: 10.3390/ijms241310999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/19/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
The cultivation of bananas and plantains (Musa spp.) holds significant global economic importance, but faces numerous challenges, which may include diverse abiotic and biotic factors such as drought and various diseases caused by fungi, viruses, and bacteria. The genetic and asexual nature of cultivated banana cultivars makes them unattractive for improvement via traditional breeding. To overcome these constraints, modern biotechnological approaches like genetic modification and genome editing have become essential for banana improvement. However, these techniques rely on somatic embryogenesis, which has only been successfully achieved in a limited number of banana cultivars. Therefore, developing new strategies for improving somatic embryogenesis in banana is crucial. This review article focuses on advancements in banana somatic embryogenesis, highlighting the progress, the various stages of regeneration, cryopreservation techniques, and the molecular mechanisms underlying the process. Furthermore, this article discusses the factors that could influence somatic embryogenesis and explores the prospects for improving the process, especially in recalcitrant banana cultivars. By addressing these challenges and exploring potential solutions, researchers aim to unlock the full potential of somatic embryogenesis as a tool for banana improvement, ultimately benefiting the global banana industry.
Collapse
Affiliation(s)
- Mark Adero
- International Institute of Tropical Agriculture (IITA), Nairobi 30709-00100, Kenya
| | | | - Leena Tripathi
- International Institute of Tropical Agriculture (IITA), Nairobi 30709-00100, Kenya
| |
Collapse
|
3
|
Wang J, Zhang L, Qi L, Zhang S. Integrated transcriptomic and metabolic analyses provide insights into the maintenance of embryogenic potential and the biosynthesis of phenolic acids and flavonoids involving transcription factors in Larix kaempferi (Lamb.) Carr. FRONTIERS IN PLANT SCIENCE 2022; 13:1056930. [PMID: 36466286 PMCID: PMC9714495 DOI: 10.3389/fpls.2022.1056930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/01/2022] [Indexed: 06/17/2023]
Abstract
Somatic embryogenesis (SE) techniques have been established for micropropagation or basic research related to plant development in many conifer species. The frequent occurrence of non-embryogenic callus (NEC) during SE has impose constraints on the application of somatic embryogenesis SE in Larix kaempferi (Lamb.) Carr, but the potential regulatory mechanisms are poorly understood. In this study, integrated transcriptomic and metabolomic analyses were performed in embryogenic callus (EC) and NEC originating from a single immature zygotic embryo to better decipher the key molecular and metabolic mechanisms required for embryogenic potential maintenance. The results showed that a total of 13,842 differentially expressed genes (DEGs) were found in EC and NEC, among which many were enriched in plant hormone signal transduction, starch and sucrose metabolism, phenylpropanoid biosynthesis, flavonoid biosynthesis, and the biosynthesis of amino acids pathways. Metabolite profiling showed that 441 differentially accumulated metabolites (DAMs) were identified in EC and NEC. Both EC and NEC had vigorous primary metabolic activities, while most secondary metabolites were upregulated in NEC. Many totipotency-related transcription factor (TF) genes such as BBMs, WUSs, and LEC1 showed higher expression levels in EC compared with NEC, which may result in the higher accumulation of indole 3-acetic acid (IAA) in EC. NEC was characterized by upregulation of genes and metabolites associated with stress responses, such as DEGs involved in jasmonic acid (JA) and ethylene (ETH) biosynthesis and signal transduction pathways, and DEGs and DAMs related to phenylpropanoid and flavonoid biosynthesis. We predicted and analyzed TFs that could target several key co-expressed structural DEGs including two C4H genes, two CcoAOMT genes and three HCT genes involved in phenylpropanoid and flavonoid biosynthesis. Based on the targeted relationship and the co-expression network, two ERFs (Lk23436 and Lk458687), one MYB (Lk34626) and one C2C2-dof (Lk37167) may play an important role in regulating phenolic acid and flavonoid biosynthesis by transcriptionally regulating the expression of these structural genes. This study shows an approach involving integrated transcriptomic and metabolic analyses to obtain insights into molecular events underlying embryogenic potential maintenance and the biosynthesis mechanisms of key metabolites involving TF regulation, which provides valuable information for the improvement of SE efficiency in L. kaempferi.
Collapse
Affiliation(s)
- Junchen Wang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Lifeng Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Liwang Qi
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Shougong Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
4
|
Sivanesan I, Nayeem S, Venkidasamy B, Kuppuraj SP, RN C, Samynathan R. Genetic and epigenetic modes of the regulation of somatic embryogenesis: a review. Biol Futur 2022; 73:259-277. [DOI: 10.1007/s42977-022-00126-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 06/16/2022] [Indexed: 01/17/2023]
|
5
|
Wang WB, Ao T, Zhang YY, Wu D, Xu W, Han B, Liu AZ. Genome-wide analysis of the B3 transcription factors reveals that RcABI3/VP1 subfamily plays important roles in seed development and oil storage in castor bean ( Ricinus communis). PLANT DIVERSITY 2022; 44:201-212. [PMID: 35505987 PMCID: PMC9043308 DOI: 10.1016/j.pld.2021.06.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/19/2021] [Accepted: 06/22/2021] [Indexed: 06/14/2023]
Abstract
The B3 transcription factors (TFs) in plants play vital roles in numerous biological processes. Although B3 genes have been broadly identified in many plants, little is known about their potential functions in mediating seed development and material accumulation. Castor bean (Ricinus communis) is a non-edible oilseed crop considered an ideal model system for seed biology research. Here, we identified a total of 61 B3 genes in the castor bean genome, which can be classified into five subfamilies, including ABI3/VP1, HSI, ARF, RAV and REM. The expression profiles revealed that RcABI3/VP1 subfamily genes are significantly up-regulated in the middle and later stages of seed development, indicating that these genes may be associated with the accumulation of storage oils. Furthermore, through yeast one-hybrid and tobacco transient expression assays, we detected that ABI3/VP1 subfamily member RcLEC2 directly regulates the transcription of RcOleosin2, which encodes an oil-body structural protein. This finding suggests that RcLEC2, as a seed-specific TF, may be involved in the regulation of storage materials accumulation. This study provides novel insights into the potential roles and molecular basis of B3 family proteins in seed development and material accumulation.
Collapse
Affiliation(s)
- Wen-Bo Wang
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049, China
- Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650204, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Tao Ao
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Science, Mengla, 666303, China
| | - Yan-Yu Zhang
- Northwest A&F University, Yangling, 712100, China
| | - Di Wu
- Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650204, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Wei Xu
- Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650204, China
| | - Bing Han
- Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650204, China
| | - Ai-Zhong Liu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China (Ministry of Education), Southwest Forestry University, Kunming, 650224, China
| |
Collapse
|
6
|
Elhiti M, Stasolla C. Transduction of Signals during Somatic Embryogenesis. PLANTS (BASEL, SWITZERLAND) 2022; 11:178. [PMID: 35050066 PMCID: PMC8779037 DOI: 10.3390/plants11020178] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/30/2021] [Accepted: 01/07/2022] [Indexed: 05/05/2023]
Abstract
Somatic embryogenesis (SE) is an in vitro biological process in which bipolar structures (somatic embryos) can be induced to form from somatic cells and regenerate into whole plants. Acquisition of the embryogenic potential in culture is initiated when some competent cells within the explants respond to inductive signals (mostly plant growth regulators, PRGs), and de-differentiate into embryogenic cells. Such cells, "canalized" into the embryogenic developmental pathway, are able to generate embryos comparable in structure and physiology to their in vivo counterparts. Genomic and transcriptomic studies have identified several pathways governing the initial stages of the embryogenic process. In this review, the authors emphasize the importance of the developmental signals required for the progression of embryo development, starting with the de-differentiation of somatic cells and culminating with tissue patterning during the formation of the embryo body. The action and interaction of PGRs are highlighted, along with the participation of master regulators, mostly transcription factors (TFs), and proteins involved in stress responses and the signal transduction required for the initiation of the embryogenic process.
Collapse
Affiliation(s)
- Mohamed Elhiti
- Department of Botany, Faculty of Science, Tanta University, Tanta 31527, Egypt;
| | - Claudio Stasolla
- Department of Plant Science, University of Manitoba, Winnipeg, MB R3T2N2, Canada
| |
Collapse
|
7
|
Yang W, Hu J, Behera JR, Kilaru A, Yuan Y, Zhai Y, Xu Y, Xie L, Zhang Y, Zhang Q, Niu L. A Tree Peony Trihelix Transcription Factor PrASIL1 Represses Seed Oil Accumulation. FRONTIERS IN PLANT SCIENCE 2021; 12:796181. [PMID: 34956296 PMCID: PMC8702530 DOI: 10.3389/fpls.2021.796181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 11/22/2021] [Indexed: 05/31/2023]
Abstract
In many higher plants, seed oil accumulation is governed by complex multilevel regulatory networks including transcriptional regulation, which primarily affects fatty acid biosynthesis. Tree peony (Paeonia rockii), a perennial deciduous shrub endemic to China is notable for its seed oil that is abundant in unsaturated fatty acids. We discovered that a tree peony trihelix transcription factor, PrASIL1, localized in the nucleus, is expressed predominantly in developing seeds during maturation. Ectopic overexpression of PrASIL1 in Nicotiana benthamiana leaf tissue and Arabidopsis thaliana seeds significantly reduced total fatty acids and altered the fatty acid composition. These changes were in turn associated with the decreased expression of multitudinous genes involved in plastidial fatty acid synthesis and oil accumulation. Thus, we inferred that PrASIL1 is a critical transcription factor that represses oil accumulation by down-regulating numerous key genes during seed oil biosynthesis. In contrary, up-regulation of oil biosynthesis genes and a significant increase in total lipids and several major fatty acids were observed in PrASIL1-silenced tree peony leaves. Together, these results provide insights into the role of trihelix transcription factor PrASIL1 in controlling seed oil accumulation. PrASIL1 can be targeted potentially for oil enhancement in tree peony and other crops through gene manipulation.
Collapse
Affiliation(s)
- Weizong Yang
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, China
- Oil Peony Engineering Technology Research Center of National Forestry Administration, Yangling, China
| | - Jiayuan Hu
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, China
- Oil Peony Engineering Technology Research Center of National Forestry Administration, Yangling, China
| | - Jyoti R. Behera
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, United States
| | - Aruna Kilaru
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, United States
| | - Yanping Yuan
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, China
- Oil Peony Engineering Technology Research Center of National Forestry Administration, Yangling, China
| | - Yuhui Zhai
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, China
- Oil Peony Engineering Technology Research Center of National Forestry Administration, Yangling, China
| | - Yanfeng Xu
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, China
- Oil Peony Engineering Technology Research Center of National Forestry Administration, Yangling, China
| | - Lihang Xie
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yanlong Zhang
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, China
- Oil Peony Engineering Technology Research Center of National Forestry Administration, Yangling, China
| | - Qingyu Zhang
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, China
- Oil Peony Engineering Technology Research Center of National Forestry Administration, Yangling, China
| | - Lixin Niu
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, China
- Oil Peony Engineering Technology Research Center of National Forestry Administration, Yangling, China
| |
Collapse
|
8
|
Chen B, Fiers M, Dekkers BJW, Maas L, van Esse GW, Angenent GC, Zhao Y, Boutilier K. ABA signalling promotes cell totipotency in the shoot apex of germinating embryos. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6418-6436. [PMID: 34175924 PMCID: PMC8483786 DOI: 10.1093/jxb/erab306] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/25/2021] [Indexed: 05/03/2023]
Abstract
Somatic embryogenesis (SE) is a type of induced cell totipotency where embryos develop from vegetative tissues of the plant instead of from gamete fusion after fertilization. SE can be induced in vitro by exposing explants to growth regulators, such as the auxinic herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). The plant hormone abscisic acid (ABA) has been proposed to be a downstream signalling component at the intersection between 2,4-D- and stress-induced SE, but it is not known how these pathways interact to induce cell totipotency. Here we show that 2,4-D-induced SE from the shoot apex of germinating Arabidopsis thaliana seeds is characterized by transcriptional maintenance of an ABA-dependent seed maturation pathway. Molecular-genetic analysis of Arabidopsis mutants revealed a role for ABA in promoting SE at three different levels: ABA biosynthesis, ABA receptor complex signalling, and ABA-mediated transcription, with essential roles for the ABSCISIC ACID INSENSITIVE 3 (ABI3) and ABI4 transcription factors. Our data suggest that the ability of mature Arabidopsis embryos to maintain the ABA seed maturation environment is an important first step in establishing competence for auxin-induced cell totipotency. This finding provides further support for the role of ABA in directing processes other than abiotic stress response.
Collapse
Affiliation(s)
- Baojian Chen
- Bioscience, Wageningen University and Research, AA Wageningen, Netherlands
- Laboratory for Molecular Biology, Wageningen University and Research, AP, Wageningen, Netherlands
| | - Martijn Fiers
- Bioscience, Wageningen University and Research, AA Wageningen, Netherlands
| | - Bas J W Dekkers
- Wageningen Seed Lab, Laboratory for Plant Physiology, Wageningen University and Research Centre, AA, Netherlands
| | - Lena Maas
- Bioscience, Wageningen University and Research, AA Wageningen, Netherlands
- Laboratory for Molecular Biology, Wageningen University and Research, AP, Wageningen, Netherlands
| | - G Wilma van Esse
- Bioscience, Wageningen University and Research, AA Wageningen, Netherlands
- Laboratory for Molecular Biology, Wageningen University and Research, AP, Wageningen, Netherlands
| | - Gerco C Angenent
- Bioscience, Wageningen University and Research, AA Wageningen, Netherlands
- Laboratory for Molecular Biology, Wageningen University and Research, AP, Wageningen, Netherlands
| | - Yang Zhao
- Shanghai Center for Plant Stress Biology, and CAS Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Kim Boutilier
- Bioscience, Wageningen University and Research, AA Wageningen, Netherlands
- Correspondence:
| |
Collapse
|
9
|
Su YH, Tang LP, Zhao XY, Zhang XS. Plant cell totipotency: Insights into cellular reprogramming. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:228-243. [PMID: 32437079 DOI: 10.1111/jipb.12972] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 05/19/2020] [Indexed: 06/11/2023]
Abstract
Plant cells have a powerful capacity in their propagation to adapt to environmental change, given that a single plant cell can give rise to a whole plant via somatic embryogenesis without the need for fertilization. The reprogramming of somatic cells into totipotent cells is a critical step in somatic embryogenesis. This process can be induced by stimuli such as plant hormones, transcriptional regulators and stress. Here, we review current knowledge on how the identity of totipotent cells is determined and the stimuli required for reprogramming of somatic cells into totipotent cells. We highlight key molecular regulators and associated networks that control cell fate transition from somatic to totipotent cells. Finally, we pose several outstanding questions that should be addressed to enhance our understanding of the mechanisms underlying plant cell totipotency.
Collapse
Affiliation(s)
- Ying Hua Su
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Li Ping Tang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Xiang Yu Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Xian Sheng Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| |
Collapse
|
10
|
Genes, proteins and other networks regulating somatic embryogenesis in plants. J Genet Eng Biotechnol 2020; 18:31. [PMID: 32661633 PMCID: PMC7359197 DOI: 10.1186/s43141-020-00047-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 07/01/2020] [Indexed: 11/21/2022]
Abstract
Background Somatic embryogenesis (SE) is an intricate molecular and biochemical process principally based on cellular totipotency and a model in studying plant development. In this unique embryo-forming process, the vegetative cells acquire embryogenic competence under cellular stress conditions. The stress caused by plant growth regulators (PGRs), nutrient, oxygenic, or other signaling elements makes cellular reprogramming and transforms vegetative cells into embryos through activation/deactivation of a myriad of genes and transcriptional networks. Hundreds of genes have been directly linked to zygotic and somatic embryogeneses; some of them like SOMATIC EMBRYOGENESIS LIKE RECEPTOR KINASE (SERK), LEAFY COTYLEDON (LEC), BABYBOOM (BBM), and AGAMOUS-LIKE 15 (AGL15) are very important and are part of molecular network. Main text (observation) This article reviews various genes/orthologs isolated from different plants; encoded proteins and their possible role in regulating somatic embryogenesis of plants have been discussed. The role of SERK in regulating embryogenesis is also summarized. Different SE-related proteins identified through LC–MS at various stages of embryogenesis are also described; a few proteins like 14-3-3, chitinase, and LEA are used as potential SE markers. These networks are interconnected in a complicated manner, posing challenges for their complete elucidation. Conclusions The various gene networks and factors controlling somatic embryogenesis have been discussed and presented. The roles of stress, PGRs, and other signaling elements have been discussed. In the last two-to-three decades’ progress, the challenges ahead and its future applications in various fields of research have been highlighted. The review also presents the need of high throughput, innovative techniques, and sensitive instruments in unraveling the mystery of SE.
Collapse
|
11
|
Ahmad B, Zhang S, Yao J, Rahman MU, Hanif M, Zhu Y, Wang X. Genomic Organization of the B3-Domain Transcription Factor Family in Grapevine ( Vitis vinifera L.) and Expression during Seed Development in Seedless and Seeded Cultivars. Int J Mol Sci 2019; 20:ijms20184553. [PMID: 31540007 PMCID: PMC6770561 DOI: 10.3390/ijms20184553] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 09/03/2019] [Accepted: 09/11/2019] [Indexed: 12/22/2022] Open
Abstract
Members of the plant-specific B3-domain transcription factor family have important and varied functions, especially with respect to vegetative and reproductive growth. Although B3 genes have been studied in many other plants, there is limited information on the genomic organization and expression of B3 genes in grapevine (Vitis vinifera L.). In this study, we identified 50 B3 genes in the grapevine genome and analyzed these genes in terms of chromosomal location and syntenic relationships, intron–exon organization, and promoter cis-element content. We also analyzed the presumed proteins in terms of domain structure and phylogenetic relationships. Based on the results, we classified these genes into five subfamilies. The syntenic relationships suggest that approximately half of the genes resulted from genome duplication, contributing to the expansion of the B3 family in grapevine. The analysis of cis-element composition suggested that most of these genes may function in response to hormones, light, and stress. We also analyzed expression of members of the B3 family in various structures of grapevine plants, including the seed during seed development. Many B3 genes were expressed preferentially in one or more structures of the developed plant, suggesting specific roles in growth and development. Furthermore, several of the genes were expressed differentially in early developing seeds from representative seeded and seedless cultivars, suggesting a role in seed development or abortion. The results of this study provide a foundation for functional analysis of B3 genes and new resources for future molecular breeding of grapevine.
Collapse
Affiliation(s)
- Bilal Ahmad
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Xianyang 712100, China.
| | - Songlin Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Xianyang 712100, China.
| | - Jin Yao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Xianyang 712100, China.
| | - Mati Ur Rahman
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Xianyang 712100, China.
| | - Muhammad Hanif
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Xianyang 712100, China.
| | - Yanxun Zhu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Xianyang 712100, China.
| | - Xiping Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Xianyang 712100, China.
| |
Collapse
|
12
|
Cocoa Bean Proteins-Characterization, Changes and Modifications due to Ripening and Post-Harvest Processing. Nutrients 2019; 11:nu11020428. [PMID: 30791360 PMCID: PMC6413064 DOI: 10.3390/nu11020428] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/14/2019] [Accepted: 02/15/2019] [Indexed: 01/30/2023] Open
Abstract
The protein fractions of cocoa have been implicated influencing both the bioactive potential and sensory properties of cocoa and cocoa products. The objective of the present review is to show the impact of different stages of cultivation and processing with regard to the changes induced in the protein fractions. Special focus has been laid on the major seed storage proteins throughout the different stages of processing. The study starts with classical introduction of the extraction and the characterization methods used, while addressing classification approaches of cocoa proteins evolved during the timeline. The changes in protein composition during ripening and maturation of cocoa seeds, together with the possible modifications during the post-harvest processing (fermentation, drying, and roasting), have been documented. Finally, the bioactive potential arising directly or indirectly from cocoa proteins has been elucidated. The “state of the art” suggests that exploration of other potentially bioactive components in cocoa needs to be undertaken, while considering the complexity of reaction products occurring during the roasting phase of the post-harvest processing. Finally, the utilization of partially processed cocoa beans (e.g., fermented, conciliatory thermal treatment) can be recommended, providing a large reservoir of bioactive potentials arising from the protein components that could be instrumented in functionalizing foods.
Collapse
|
13
|
Méndez-Hernández HA, Ledezma-Rodríguez M, Avilez-Montalvo RN, Juárez-Gómez YL, Skeete A, Avilez-Montalvo J, De-la-Peña C, Loyola-Vargas VM. Signaling Overview of Plant Somatic Embryogenesis. FRONTIERS IN PLANT SCIENCE 2019; 10:77. [PMID: 30792725 PMCID: PMC6375091 DOI: 10.3389/fpls.2019.00077] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 01/17/2019] [Indexed: 05/17/2023]
Abstract
Somatic embryogenesis (SE) is a means by which plants can regenerate bipolar structures from a somatic cell. During the process of cell differentiation, the explant responds to endogenous stimuli, which trigger the induction of a signaling response and, consequently, modify the gene program of the cell. SE is probably the most studied plant regeneration model, but to date it is the least understood due to the unclear mechanisms that occur at a cellular level. In this review, the authors seek to emphasize the importance of signaling on plant SE, highlighting the interactions between the different plant growth regulators (PGR), mainly auxins, cytokinins (CKs), ethylene and abscisic acid (ABA), during the induction of SE. The role of signaling is examined from the start of cell differentiation through the early steps on the embryogenic pathway, as well as its relation to a plant's tolerance of different types of stress. Furthermore, the role of genes encoded to transcription factors (TFs) during the embryogenic process such as the LEAFY COTYLEDON (LEC), WUSCHEL (WUS), BABY BOOM (BBM) and CLAVATA (CLV) genes, Arabinogalactan-proteins (AGPs), APETALA 2 (AP2) and epigenetic factors is discussed.
Collapse
Affiliation(s)
- Hugo A. Méndez-Hernández
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Mérida, Mexico
| | - Maharshi Ledezma-Rodríguez
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Mérida, Mexico
| | - Randy N. Avilez-Montalvo
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Mérida, Mexico
| | - Yary L. Juárez-Gómez
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Mérida, Mexico
| | - Analesa Skeete
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Mérida, Mexico
| | - Johny Avilez-Montalvo
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Mérida, Mexico
| | - Clelia De-la-Peña
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Mérida, Mexico
| | - Víctor M. Loyola-Vargas
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Mérida, Mexico
| |
Collapse
|
14
|
Brand A, Quimbaya M, Tohme J, Chavarriaga-Aguirre P. Arabidopsis LEC1 and LEC2 Orthologous Genes Are Key Regulators of Somatic Embryogenesis in Cassava. FRONTIERS IN PLANT SCIENCE 2019; 10:673. [PMID: 31191582 PMCID: PMC6541005 DOI: 10.3389/fpls.2019.00673] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 05/03/2019] [Indexed: 05/22/2023]
Abstract
High genotype-dependent variation in friable embryogenic callus (FEC) induction and subsequent somaclonal variation constitute bottlenecks for the application and scaling of genetic transformation (GT) technology to more farmer- and industry-preferred cassava varieties. The understanding and identification of molecular factors underlying embryogenic development in cassava may help to overcome these constraints. Here, we described the Arabidopsis thaliana LEAFY COTYLEDON (LEC) LEC1 and LEC2 orthologous genes in cassava, designated as MeLEC1 and MeLEC2, respectively. Expression analyses showed that both, MeLEC1 and MeLEC2, are expressed at higher levels in somatic embryogenic (SE) tissues in contrast with differentiated mature tissues. The rapid expression increase of MeLEC genes at early SE induction times strongly suggests that they are involved in the transition from a somatic to an embryonic state, and probably, in the competence acquisition for SE development in cassava. The independent overexpression of the MeLEC genes resulted in different regenerated events with embryogenic characteristics such as MeLEC1OE plants with cotyledon-like leaves and MeLEC2OE plants with somatic-like embryos that emerged over the surface of mature leaves. Transcript increases of other embryo-specific regulating factors were also detected in MeLECOE plants, supporting their mutual interaction in the embryo development coordination. The single overexpression of MeLEC2 was enough to reprogram the vegetative cells and induce direct somatic embryogenesis, which converts this gene into a tool that could improve the recovery of transformed plants of recalcitrant genotypes. The identification of MeLEC genes contributes not only to improve our understanding of SE process in cassava, but also provides viable alternatives to optimize GT and advance in gene editing in this crop, through the development of genotype-independent protocols.
Collapse
Affiliation(s)
- Alejandro Brand
- International Center for Tropical Agriculture, Cali, Colombia
| | - Mauricio Quimbaya
- Department of Natural Sciences and Mathematics, Pontificia Universidad Javeriana Cali, Cali, Colombia
| | - Joe Tohme
- International Center for Tropical Agriculture, Cali, Colombia
| | - Paul Chavarriaga-Aguirre
- International Center for Tropical Agriculture, Cali, Colombia
- *Correspondence: Paul Chavarriaga-Aguirre,
| |
Collapse
|
15
|
Yang Y, Cui B, Tan Z, Song B, Cao H, Zong C. RNA sequencing and anthocyanin synthesis-related genes expression analyses in white-fruited Vaccinium uliginosum. BMC Genomics 2018; 19:930. [PMID: 30545307 PMCID: PMC6293651 DOI: 10.1186/s12864-018-5351-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 12/04/2018] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Vaccinium uliginosum (Ericaceae) is an important wild berry having high economic value. The white-fruited V. uliginosum variety found in the wild lacks anthocyanin and bears silvery white fruits. Hence, it is a good resource for investigating the mechanism of fruit color development. This study aimed to verify the differences in the expression levels of some structural genes and transcription factors affecting the anthocyanin biosynthesis pathway by conducting high-throughput transcriptome sequencing and real-time PCR analysis by using the ripening fruits of V. uliginosum and the white-fruited variety. RESULTS We annotated 42,837 unigenes. Of the 325 differentially expressed genes, 41 were up-regulated and 284 were down-regulated. Further, 11 structural genes of the flavonoid pathway were up-regulated, whereas two were down-regulated. Of the seven genes encoding transcription factors, five were up-regulated and two were down-regulated. The structural genes VuCHS, VuF3'H, VuFHT, VuDFR, VuANS, VuANR, and VuUFGT and the transcription factors VubHLH92, VuMYB6, VuMYBPA1, VuMYB11, and VuMYB12 were significantly down-regulated. However, the expression of only VuMYB6 and VuMYBPA1 rapidly increased during the last two stages of V. uliginosum when the fruit was ripening, consistent with anthocyanin accumulation. CONCLUSIONS VuMYB6 was annotated as MYB1 by the BLAST tool. Thus, the white fruit color in the V. uliginosum variant can be attributed to the down-regulation of transcription factors VuMYB1 and VuMYBPA1, which leads to the down-regulation of structural genes associated with the anthocyanin synthesis pathway.
Collapse
Affiliation(s)
- Yang Yang
- Agriculture College of YanBian University, Yanji, Jilin, 133002 China
| | - Baihui Cui
- Agriculture College of YanBian University, Yanji, Jilin, 133002 China
| | - Zhiwen Tan
- Agriculture College of YanBian University, Yanji, Jilin, 133002 China
| | - Bingxue Song
- Agriculture College of YanBian University, Yanji, Jilin, 133002 China
| | - Hounan Cao
- Agriculture College of YanBian University, Yanji, Jilin, 133002 China
| | - Chengwen Zong
- Agriculture College of YanBian University, Yanji, Jilin, 133002 China
| |
Collapse
|
16
|
Fister AS, Landherr L, Perryman M, Zhang Y, Guiltinan MJ, Maximova SN. Glucocorticoid receptor-regulated TcLEC2 expression triggers somatic embryogenesis in Theobroma cacao leaf tissue. PLoS One 2018; 13:e0207666. [PMID: 30475838 PMCID: PMC6261025 DOI: 10.1371/journal.pone.0207666] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 11/05/2018] [Indexed: 11/24/2022] Open
Abstract
Theobroma cacao, the source of cocoa, is a crop of particular importance in many developing countries. Availability of elite planting material is a limiting factor for increasing productivity of Theobroma cacao; therefore, the development of new strategies for clonal propagation is essential to improve farmers’ incomes and to meet increasing global demand for cocoa. To develop a more efficient embryogenesis system for cacao, tissue was transformed with a transgene encoding a fusion of Leafy Cotyledon 2 (TcLEC2) to a glucocorticoid receptor domain (GR) to control nuclear localization of the protein. Upon application of the glucocorticoid dexamethasone (dex), downstream targets of LEC2 involved in seed-development were up-regulated and somatic embryos (SEs) were successfully regenerated from TcLEC2-GR transgenic flower and leaf tissue in large numbers. Immature SEs regenerated from TcLEC2-GR leaves were smaller in size than immature SEs from floral tissue, suggesting a different ontogenetic origin. Additionally, exposure of TcLEC2-GR floral explants to dex increased the number of SEs compared to floral explants from control, non-transgenic trees or from TcLEC2-GR floral explants not treated with dex. Testing different durations of exposure to dex indicated that a three-day treatment produced optimal embryo regeneration. Leaf derived SEs were successfully grown to maturity, converted into plants, and established in the greenhouse, demonstrating that these embryos are fully developmentally competent. In summary, we demonstrate that regulating TcLEC2 activity offers a powerful new strategy for optimizing somatic embryogenesis pipelines for cacao.
Collapse
Affiliation(s)
| | - Lena Landherr
- Department of Plant Science, Pennsylvania State University, University Park, PA, United States of America
| | - Melanie Perryman
- Department of Plant Science, Pennsylvania State University, University Park, PA, United States of America
| | - Yufan Zhang
- Essenlix Corporation, Monmouth Junction, New Jersey
| | - Mark J. Guiltinan
- Department of Plant Science, Pennsylvania State University, University Park, PA, United States of America
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, United States of America
| | - Siela N. Maximova
- Department of Plant Science, Pennsylvania State University, University Park, PA, United States of America
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, United States of America
- * E-mail:
| |
Collapse
|
17
|
Lepiniec L, Devic M, Roscoe TJ, Bouyer D, Zhou DX, Boulard C, Baud S, Dubreucq B. Molecular and epigenetic regulations and functions of the LAFL transcriptional regulators that control seed development. PLANT REPRODUCTION 2018; 31:291-307. [PMID: 29797091 DOI: 10.1007/s00497-018-0337-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 05/10/2018] [Indexed: 05/20/2023]
Abstract
The LAFL (i.e. LEC1, ABI3, FUS3, and LEC2) master transcriptional regulators interact to form different complexes that induce embryo development and maturation, and inhibit seed germination and vegetative growth in Arabidopsis. Orthologous genes involved in similar regulatory processes have been described in various angiosperms including important crop species. Consistent with a prominent role of the LAFL regulators in triggering and maintaining embryonic cell fate, their expression appears finely tuned in different tissues during seed development and tightly repressed in vegetative tissues by a surprisingly high number of genetic and epigenetic factors. Partial functional redundancies and intricate feedback regulations of the LAFL have hampered the elucidation of the underpinning molecular mechanisms. Nevertheless, genetic, genomic, cellular, molecular, and biochemical analyses implemented during the last years have greatly improved our knowledge of the LALF network. Here we summarize and discuss recent progress, together with current issues required to gain a comprehensive insight into the network, including the emerging function of LEC1 and possibly LEC2 as pioneer transcription factors.
Collapse
Affiliation(s)
- L Lepiniec
- IJPB (Institut Jean-Pierre Bourgin), INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026, Versailles, France.
| | - M Devic
- Régulations Epigénétiques et Développement de la Graine, ERL 5300 CNRS-IRD UMR DIADE, IRD centre de Montpellier, 911 Avenue Agropolis, BP 64501, 34394, Montpellier, France
- Laboratoire d'Océanographie Microbienne, Observatoire Océanologique, Sorbonne Universités, Université Pierre et Marie Curie (Paris 06) & Centre National pour la Recherche Scientifique CNRS UMR 7621, 66650, Banyuls-sur-Mer, France
| | - T J Roscoe
- Régulations Epigénétiques et Développement de la Graine, ERL 5300 CNRS-IRD UMR DIADE, IRD centre de Montpellier, 911 Avenue Agropolis, BP 64501, 34394, Montpellier, France
- Laboratoire d'Océanographie Microbienne, Observatoire Océanologique, Sorbonne Universités, Université Pierre et Marie Curie (Paris 06) & Centre National pour la Recherche Scientifique CNRS UMR 7621, 66650, Banyuls-sur-Mer, France
| | - D Bouyer
- Institut de Biologie de l'ENS, CNRS UMR8197, Ecole Normale Supérieure, 46 rue d'Ulm, 75230, Paris Cedex 05, France
| | - D-X Zhou
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris Sud 11, Université Paris-Saclay, 91405, Orsay, France
| | - C Boulard
- IJPB (Institut Jean-Pierre Bourgin), INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026, Versailles, France
| | - S Baud
- IJPB (Institut Jean-Pierre Bourgin), INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026, Versailles, France
| | - B Dubreucq
- IJPB (Institut Jean-Pierre Bourgin), INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026, Versailles, France
| |
Collapse
|
18
|
Wickramasuriya AM, Dunwell JM. Cacao biotechnology: current status and future prospects. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:4-17. [PMID: 28985014 PMCID: PMC5785363 DOI: 10.1111/pbi.12848] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 09/25/2017] [Accepted: 09/28/2017] [Indexed: 05/03/2023]
Abstract
Theobroma cacao-The Food of the Gods, provides the raw material for the multibillion dollar chocolate industry and is also the main source of income for about 6 million smallholders around the world. Additionally, cocoa beans have a number of other nonfood uses in the pharmaceutical and cosmetic industries. Specifically, the potential health benefits of cocoa have received increasing attention as it is rich in polyphenols, particularly flavonoids. At present, the demand for cocoa and cocoa-based products in Asia is growing particularly rapidly and chocolate manufacturers are increasing investment in this region. However, in many Asian countries, cocoa production is hampered due to many reasons including technological, political and socio-economic issues. This review provides an overview of the present status of global cocoa production and recent advances in biotechnological applications for cacao improvement, with special emphasis on genetics/genomics, in vitro embryogenesis and genetic transformation. In addition, in order to obtain an insight into the latest innovations in the commercial sector, a survey was conducted on granted patents relating to T. cacao biotechnology.
Collapse
Affiliation(s)
| | - Jim M. Dunwell
- School of Agriculture, Policy and DevelopmentUniversity of ReadingReadingUK
| |
Collapse
|
19
|
Garcia C, Britto D, Marelli JP. Transcription Factors: Their Role in the Regulation of Somatic Embryogenesis in Theobroma cacao L. and Other Species. Methods Mol Biol 2018; 1815:385-396. [PMID: 29981137 DOI: 10.1007/978-1-4939-8594-4_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Transcription factors are proteins that help with the control and regulation in the transcription of the DNA to mRNA by binding to special DNA sequences. With the aim to understand more about gene transcription regulation in Theobroma cacao L., this review outlines the principal transcription factors that were reported in other plants especially Arabidopsis thaliana and attempts at looking for the homologies with transcription factors in T. cacao. The information cited in this work is about the initiation, development, and maturation of the cacao somatic embryos and other crops. It is important to underline that there are very few publications in T. cacao discussing transcription factors that control the somatic embryogenesis process, but there is some information about transcription factors in other crops that we have used as a guide to try to understand this process.
Collapse
|
20
|
Magnani E, Jiménez-Gómez JM, Soubigou-Taconnat L, Lepiniec L, Fiume E. Profiling the onset of somatic embryogenesis in Arabidopsis. BMC Genomics 2017; 18:998. [PMID: 29284399 PMCID: PMC5747089 DOI: 10.1186/s12864-017-4391-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 12/15/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Totipotency is the ability of a cell to regenerate a whole organism. Plant somatic embryogenesis (SE) is a remarkable example of totipotency because somatic cells reverse differentiation, respond to an appropriate stimulus and initiate embryo development. Although SE is an ideal system to investigate de-differentiation and differentiation, we still lack a deep molecular understanding of the phenomenon due to experimental restraints. RESULTS We applied the INTACT method to specifically isolate the nuclei of those cells undergoing SE among the majority of non-embryogenic cells that make up a callus. We compared the transcriptome of embryogenic cells to the one of proliferating callus cells. Our analyses revealed that embryogenic cells are transcriptionally rather than metabolically active. Embryogenic cells shut off biochemical pathways involved in carbohydrate and lipid metabolism and activate the transcriptional machinery. Furthermore, we show how early in SE, ground tissue and leaf primordia specification are switched on before the specification of a shoot apical meristem. CONCLUSIONS This is the first attempt to specifically profile embryogenic cells among the different cell types that constitute plant in vitro tissue cultures. Our comparative analyses provide insights in the gene networks regulating SE and open new research avenues in the field of plant regeneration.
Collapse
Affiliation(s)
- E Magnani
- Insitut Jean-Pierre Bourgin (IJPB), INRA, AgroParisTech, CNRS, Université Paris-Saclay, INRA, Route de St-Cyr (RD10), 78026, Versailles Cedex, France
| | - J M Jiménez-Gómez
- Insitut Jean-Pierre Bourgin (IJPB), INRA, AgroParisTech, CNRS, Université Paris-Saclay, INRA, Route de St-Cyr (RD10), 78026, Versailles Cedex, France
| | - L Soubigou-Taconnat
- POPS, Plateforme TranscriptOmique, Institute of Plant Sciences, Université Paris-Saclay, rue de Noetzlin, Plateau du Moulon, 91190, Gif-sur-Yvette, France
| | - L Lepiniec
- Insitut Jean-Pierre Bourgin (IJPB), INRA, AgroParisTech, CNRS, Université Paris-Saclay, INRA, Route de St-Cyr (RD10), 78026, Versailles Cedex, France
| | - E Fiume
- Insitut Jean-Pierre Bourgin (IJPB), INRA, AgroParisTech, CNRS, Université Paris-Saclay, INRA, Route de St-Cyr (RD10), 78026, Versailles Cedex, France.
| |
Collapse
|
21
|
Chu Z, Chen J, Sun J, Dong Z, Yang X, Wang Y, Xu H, Zhang X, Chen F, Cui D. De novo assembly and comparative analysis of the transcriptome of embryogenic callus formation in bread wheat (Triticum aestivum L.). BMC PLANT BIOLOGY 2017; 17:244. [PMID: 29258440 PMCID: PMC5735865 DOI: 10.1186/s12870-017-1204-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 12/06/2017] [Indexed: 05/26/2023]
Abstract
BACKGROUND During asexual reproduction the embryogenic callus can differentiate into a new plantlet, offering great potential for fostering in vitro culture efficiency in plants. The immature embryos (IMEs) of wheat (Triticum aestivum L.) are more easily able to generate embryogenic callus than mature embryos (MEs). To understand the molecular process of embryogenic callus formation in wheat, de novo transcriptome sequencing was used to generate transcriptome sequences from calli derived from IMEs and MEs after 3d, 6d, or 15d of culture (DC). RESULTS In total, 155 million high quality paired-end reads were obtained from the 6 cDNA libraries. Our de novo assembly generated 142,221 unigenes, of which 59,976 (42.17%) were annotated with a significant Blastx against nr, Pfam, Swissprot, KOG, KEGG, GO and COG/KOG databases. Comparative transcriptome analysis indicated that a total of 5194 differentially expressed genes (DEGs) were identified in the comparisons of IME vs. ME at the three stages, including 3181, 2085 and 1468 DEGs at 3, 6 and 15 DC, respectively. Of them, 283 overlapped in all the three comparisons. Furthermore, 4731 DEGs were identified in the comparisons between stages in IMEs and MEs. Functional analysis revealed that 271transcription factor (TF) genes (10 overlapped in all 3 comparisons of IME vs. ME) and 346 somatic embryogenesis related genes (SSEGs; 35 overlapped in all 3 comparisons of IME vs. ME) were differentially expressed in at least one comparison of IME vs. ME. In addition, of the 283 overlapped DEGs in the 3 comparisons of IME vs. ME, excluding the SSEGs and TFs, 39 possessed a higher rate of involvement in biological processes relating to response to stimuli, in multi-organism processes, reproductive processes and reproduction. Furthermore, 7 were simultaneously differentially expressed in the 2 comparisons between the stages in IMEs, but not MEs, suggesting that they may be related to embryogenic callus formation. The expression levels of genes, which were validated by qRT-PCR, showed a high correlation with the RNA-seq value. CONCLUSIONS This study provides new insights into the role of the transcriptome in embryogenic callus formation in wheat, and will serve as a valuable resource for further studies addressing embryogenic callus formation in plants.
Collapse
Affiliation(s)
- Zongli Chu
- Agronomy College/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046 People’s Republic of China
- Xinyang Agriculture and Forestry University, Xinyang, 464000 China
| | - Junying Chen
- Agronomy College/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046 People’s Republic of China
| | - Junyan Sun
- Xinyang Agriculture and Forestry University, Xinyang, 464000 China
| | - Zhongdong Dong
- Agronomy College/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046 People’s Republic of China
| | - Xia Yang
- Agronomy College/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046 People’s Republic of China
| | - Ying Wang
- Agronomy College/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046 People’s Republic of China
| | - Haixia Xu
- Agronomy College/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046 People’s Republic of China
| | - Xiaoke Zhang
- Agronomy College, North West Agriculture and Forestry University, Yangling, 712100 China
| | - Feng Chen
- Agronomy College/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046 People’s Republic of China
| | - Dangqun Cui
- Agronomy College/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046 People’s Republic of China
| |
Collapse
|
22
|
Boulard C, Fatihi A, Lepiniec L, Dubreucq B. Regulation and evolution of the interaction of the seed B3 transcription factors with NF-Y subunits. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:1069-1078. [PMID: 28866096 DOI: 10.1016/j.bbagrm.2017.08.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/28/2017] [Accepted: 08/28/2017] [Indexed: 12/14/2022]
Abstract
The LAFL genes (LEC2, ABI3, FUS3, LEC1) encode transcription factors that regulate different aspects of seed development, from early to late embryogenesis and accumulation of storage compounds. These transcription factors form a complex network, with members able to interact with various other players to control the switch between embryo development and seed maturation and, at a later stage in the plant life cycle, between the mature seed and germination. In this review, we first summarize our current understanding of the role of each member in the network in the light of recent advances regarding their regulation and structure/function relationships. In a second part, we discuss new insights concerning the evolution of the LAFL genes to address the more specific question of the conservation of LEAFY COTYLEDONS 2 in both dicots and monocots and the putative origin of the network. Last we examine the current major limitations to current knowledge and future prospects to improve our understanding of this regulatory network.
Collapse
Affiliation(s)
- C Boulard
- Institut Jean-Pierre Bourgin (IJPB), INRA, AgroParisTech, ERL-CNRS, Saclay Plant Sciences (SPS), Université Paris-Saclay, RD10, F-78026 Versailles, France
| | - A Fatihi
- Institut Jean-Pierre Bourgin (IJPB), INRA, AgroParisTech, ERL-CNRS, Saclay Plant Sciences (SPS), Université Paris-Saclay, RD10, F-78026 Versailles, France
| | - L Lepiniec
- Institut Jean-Pierre Bourgin (IJPB), INRA, AgroParisTech, ERL-CNRS, Saclay Plant Sciences (SPS), Université Paris-Saclay, RD10, F-78026 Versailles, France
| | - B Dubreucq
- Institut Jean-Pierre Bourgin (IJPB), INRA, AgroParisTech, ERL-CNRS, Saclay Plant Sciences (SPS), Université Paris-Saclay, RD10, F-78026 Versailles, France.
| |
Collapse
|
23
|
Inducible somatic embryogenesis in Theobroma cacao achieved using the DEX-activatable transcription factor-glucocorticoid receptor fusion. Biotechnol Lett 2017; 39:1747-1755. [PMID: 28762033 PMCID: PMC5636861 DOI: 10.1007/s10529-017-2404-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 07/19/2017] [Indexed: 01/29/2023]
Abstract
Objectives To carry out mass propagation of superior plants to improve agricultural and silvicultural production though advancements in plant cell totipotency, or the ability of differentiated somatic plant cells to regenerate an entire plant. Results The first demonstration of a titratable control over somatic embryo formation in a commercially relevant plant, Theobroma cacao (Chocolate tree), was achieved using a dexamethasone activatable chimeric transcription factor. This four-fold enhancement in embryo production rate utilized a glucocorticoid receptor fused to an embryogenic transcription factor LEAFY COTYLEDON 2. Where previous T. cacao somatic embryogenesis has been restricted to dissected flower parts, this construct confers an unprecedented embryogenic potential to leaves. Conclusions Activatable chimeric transcription factors provide a means for elucidating the regulatory cascade associated with plant somatic embryogenesis towards improving its use for somatic regeneration of transgenics and plant propagation. Electronic supplementary material The online version of this article (doi:10.1007/s10529-017-2404-4) contains supplementary material, which is available to authorized users.
Collapse
|
24
|
Zheng Q, Zheng Y, Ji H, Burnie W, Perry SE. Gene Regulation by the AGL15 Transcription Factor Reveals Hormone Interactions in Somatic Embryogenesis. PLANT PHYSIOLOGY 2016; 172:2374-2387. [PMID: 27794101 PMCID: PMC5129705 DOI: 10.1104/pp.16.00564] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 10/25/2016] [Indexed: 05/02/2023]
Abstract
The MADS box transcription factor Arabidopsis (Arabidopsis thaliana) AGAMOUS-LIKE15 (AGL15) and a putative ortholog from soybean (Glycine max), GmAGL15, are able to promote somatic embryogenesis (SE) in these plants when ectopically expressed. SE is an important means of plant regeneration, but many plants, or even particular cultivars, are recalcitrant for this process. Understanding how (Gm)AGL15 promotes SE by identifying and characterizing direct and indirect downstream regulated genes can provide means to improve regeneration by SE for crop improvement and to perform molecular tests of genes. Conserved transcription factors and the genes they regulate in common between species may provide the most promising avenue to identify targets for SE improvement. We show that (Gm)AGL15 negatively regulates auxin signaling in both Arabidopsis and soybean at many levels of the pathway, including the repression of AUXIN RESPONSE FACTOR6 (ARF6) and ARF8 and TRANSPORT INHIBITOR RESPONSE1 as well as the indirect control of components via direct expression of a microRNA-encoding gene. We demonstrate interaction between auxin and gibberellic acid in the promotion of SE and document an inverse correlation between bioactive gibberellic acid and SE in soybean, a difficult crop to transform. Finally, we relate hormone accumulation to transcript accumulation of important soybean embryo regulatory factors such as ABSCISIC ACID INSENSITIVE3 and FUSCA3 and provide a working model of hormone and transcription factor interaction in the control of SE.
Collapse
Affiliation(s)
- Qiaolin Zheng
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky 40546-0312
| | - Yumei Zheng
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky 40546-0312
| | - Huihua Ji
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky 40546-0312
| | - Whitney Burnie
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky 40546-0312
| | - Sharyn E Perry
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky 40546-0312
| |
Collapse
|
25
|
Guan Y, Li SG, Fan XF, Su ZH. Application of Somatic Embryogenesis in Woody Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:938. [PMID: 27446166 PMCID: PMC4919339 DOI: 10.3389/fpls.2016.00938] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 06/13/2016] [Indexed: 05/23/2023]
Abstract
Somatic embryogenesis is a developmental process where a plant somatic cell can dedifferentiate to a totipotent embryonic stem cell that has the ability to give rise to an embryo under appropriate conditions. This new embryo can further develop into a whole plant. In woody plants, somatic embryogenesis plays a critical role in clonal propagation and is a powerful tool for synthetic seed production, germplasm conservation, and cryopreservation. A key step in somatic embryogenesis is the transition of cell fate from a somatic cell to embryo cell. Although somatic embryogenesis has already been widely used in a number of woody species, propagating adult woody plants remains difficult. In this review, we focus on molecular mechanisms of somatic embryogenesis and its practical applications in economic woody plants. Furthermore, we propose a strategy to improve the process of somatic embryogenesis using molecular means.
Collapse
Affiliation(s)
| | | | | | - Zhen-Hong Su
- Forestry and Fruit Tree Research Institute, Shanghai Academy of Agricultural SciencesShanghai, China
| |
Collapse
|
26
|
Fister AS, Shi Z, Zhang Y, Helliwell EE, Maximova SN, Guiltinan MJ. Protocol: transient expression system for functional genomics in the tropical tree Theobroma cacao L. PLANT METHODS 2016; 12:19. [PMID: 26973706 PMCID: PMC4788949 DOI: 10.1186/s13007-016-0119-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 03/01/2016] [Indexed: 05/06/2023]
Abstract
BACKGROUND Theobroma cacao L., the source of cocoa, is a crop of significant economic value around the world. To facilitate the study of gene function in cacao we have developed a rapid Agrobacterium-mediated transient genetic transformation protocol. Here we present a detailed methodology for our transformation assay, as well as an assay for inoculation of cacao leaves with pathogens. RESULTS Agrobacterium tumefaciens cultures are induced then vacuum-infiltrated into cacao leaves. Transformation success can be gauged 48 h after infiltration by observation of green fluorescent protein and by qRT-PCR. We clarify the characteristics of cacao leaf stages and demonstrate that our strategy efficiently transforms leaves of developmental stage C. The transformation protocol has high efficacy in stage C leaves of four of eight tested genotypes. We also present the functional analysis of cacao chitinase overexpression using the transient transformation system, which resulted in decreased pathogen biomass and lesion size after infection with Phytophthora tropicalis. CONCLUSIONS Leaves expressing transgenes of interest can be used in subsequent functional genetic assays such as pathogen bioassay, metabolic analysis, gene expression analysis etc. This transformation protocol can be carried out in 1 day, and the transgenes expressing leaf tissue can be maintained in petri dishes for 5-7 days, allowing sufficient time for performance of additional downstream gene functional analysis. Application of these methods greatly increases the rapidity with which candidate genes with roles in defense can be tested.
Collapse
Affiliation(s)
- Andrew S. Fister
- />The Huck Institutes of the Life Sciences, The Pennsylvania State University, 422 Life Sciences Building, University Park, PA 16802 USA
| | - Zi Shi
- />Center for Applied Genetic Technologies, University of Georgia, Athens, GA 30602 USA
| | - Yufan Zhang
- />Department of Electrical Engineering, Princeton University, Princeton, NJ 08544 USA
| | - Emily E. Helliwell
- />Department of Botany and Plant Pathology, Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR 97331 USA
| | - Siela N. Maximova
- />The Huck Institutes of the Life Sciences, The Pennsylvania State University, 422 Life Sciences Building, University Park, PA 16802 USA
- />The Department of Plant Science, The Pennsylvania State University, University Park, PA 16802 USA
| | - Mark J. Guiltinan
- />The Huck Institutes of the Life Sciences, The Pennsylvania State University, 422 Life Sciences Building, University Park, PA 16802 USA
- />The Department of Plant Science, The Pennsylvania State University, University Park, PA 16802 USA
| |
Collapse
|
27
|
Liu SC, Jin JQ, Ma JQ, Yao MZ, Ma CL, Li CF, Ding ZT, Chen L. Transcriptomic Analysis of Tea Plant Responding to Drought Stress and Recovery. PLoS One 2016; 11:e0147306. [PMID: 26788738 PMCID: PMC4720391 DOI: 10.1371/journal.pone.0147306] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 01/01/2016] [Indexed: 11/18/2022] Open
Abstract
Tea plant (Camellia sinensis) is an economically important beverage crop. Drought stress (DS) seriously limits the growth and development of tea plant, thus affecting crop yield and quality. To elucidate the molecular mechanisms of tea plant responding to DS, we performed transcriptomic analysis of tea plant during the three stages [control (CK) and during DS, and recovery (RC) after DS] using RNA sequencing (RNA-Seq). Totally 378.08 million high-quality trimmed reads were obtained and assembled into 59,674 unigenes, which were extensively annotated. There were 5,955 differentially expressed genes (DEGs) among the three stages. Among them, 3,948 and 1,673 DEGs were up-regulated under DS and RC, respectively. RNA-Seq data were further confirmed by qRT-PCR analysis. Genes involved in abscisic acid (ABA), ethylene, and jasmonic acid biosynthesis and signaling were generally up-regulated under DS and down-regulated during RC. Tea plant potentially used an exchange pathway for biosynthesis of indole-3-acetic acid (IAA) and salicylic acid under DS. IAA signaling was possibly decreased under DS but increased after RC. Genes encoding enzymes involved in cytokinin synthesis were up-regulated under DS, but down-regulated during RC. It seemed probable that cytokinin signaling was slightly enhanced under DS. In total, 762 and 950 protein kinases belonging to 26 families were differentially expressed during DS and RC, respectively. Overall, 547 and 604 transcription factor (TF) genes belonging to 58 families were induced in the DS vs. CK and RC vs. DS libraries, respectively. Most members of the 12 TF families were up-regulated under DS. Under DS, genes related to starch synthesis were down-regulated, while those related to starch decomposition were up-regulated. Mannitol, trehalose and sucrose synthesis-related genes were up-regulated under DS. Proline was probably mainly biosynthesized from glutamate under DS and RC. The mechanism by which ABA regulated stomatal movement under DS and RC was partly clarified. These results document the global and novel responses of tea plant during DS and RC. These data will serve as a valuable resource for drought-tolerance research and will be useful for breeding drought-resistant tea cultivars.
Collapse
Affiliation(s)
- Sheng-Chuan Liu
- Tea Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, Zhejiang, China
- Guizhou Tea Research Institute, Guiyang, Guizhou, China
| | - Ji-Qiang Jin
- Tea Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, Zhejiang, China
| | - Jian-Qiang Ma
- Tea Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, Zhejiang, China
| | - Ming-Zhe Yao
- Tea Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, Zhejiang, China
| | - Chun-Lei Ma
- Tea Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, Zhejiang, China
| | - Chun-Fang Li
- Tea Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, Zhejiang, China
| | - Zhao-Tang Ding
- Tea Research Institute, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Liang Chen
- Tea Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, Zhejiang, China
| |
Collapse
|
28
|
Florez SL, Erwin RL, Maximova SN, Guiltinan MJ, Curtis WR. Enhanced somatic embryogenesis in Theobroma cacao using the homologous BABY BOOM transcription factor. BMC PLANT BIOLOGY 2015; 15:121. [PMID: 25976599 PMCID: PMC4449528 DOI: 10.1186/s12870-015-0479-4] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 03/23/2015] [Indexed: 05/20/2023]
Abstract
BACKGROUND Theobroma cacao, the chocolate tree, is an important economic crop in East Africa, South East Asia, and South and Central America. Propagation of elite varieties has been achieved through somatic embryogenesis (SE) but low efficiencies and genotype dependence still presents a significant limitation for its propagation at commercial scales. Manipulation of transcription factors has been used to enhance the formation of SEs in several other plant species. This work describes the use of the transcription factor Baby Boom (BBM) to promote the transition of somatic cacao cells from the vegetative to embryonic state. RESULTS An ortholog of the Arabidopsis thaliana BBM gene (AtBBM) was characterized in T. cacao (TcBBM). TcBBM expression was observed throughout embryo development and was expressed at higher levels during SE as compared to zygotic embryogenesis (ZE). TcBBM overexpression in A. thaliana and T. cacao led to phenotypes associated with SE that did not require exogenous hormones. While transient ectopic expression of TcBBM provided only moderate enhancements in embryogenic potential, constitutive overexpression dramatically increased SE proliferation but also appeared to inhibit subsequent development. CONCLUSION Our work provides validation that TcBBM is an ortholog to AtBBM and has a specific role in both somatic and zygotic embryogenesis. Furthermore, our studies revealed that TcBBM transcript levels could serve as a biomarker for embryogenesis in cacao tissue. Results from transient expression of TcBBM provide confirmation that transcription factors can be used to enhance SE without compromising plant development and avoiding GMO plant production. This strategy could compliment a hormone-based method of reprogramming somatic cells and lead to more precise manipulation of SE at the regulatory level of transcription factors. The technology would benefit the propagation of elite varieties with low regeneration potential as well as the production of transgenic plants, which similarly requires somatic cell reprogramming.
Collapse
Affiliation(s)
- Sergio L Florez
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - Rachel L Erwin
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - Siela N Maximova
- Department of Plant Science and Huck Institute of Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - Mark J Guiltinan
- Department of Plant Science and Huck Institute of Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - Wayne R Curtis
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|