1
|
Singh K, Asghar MA, Jobbágy K, Kulman K, Szalai G, Hamow KÁ, Soltész A, Polgári D, Gulyás Z, Kocsy G. Different modulation of the redox homeostasis and hormone levels by ascorbate, hydrogen peroxide and hydrogen sulfide in maize. PHYSIOLOGIA PLANTARUM 2025; 177:e70215. [PMID: 40269448 DOI: 10.1111/ppl.70215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/26/2025] [Accepted: 02/27/2025] [Indexed: 04/25/2025]
Abstract
Ascorbate, hydrogen peroxide and hydrogen sulfide affect the cellular redox homeostasis by distinct mechanisms. This work aimed to compare their relative effect (set against the control) on the redox and hormonal state of maize seedlings by the application of an oxidant (5 mM H2O2) and two reductants (5 mM ascorbate and 1 mM NaHS). Interestingly, NaHS significantly increased the reduced-to-oxidized glutathione ratio in shoots, resulting in a more reduced cellular environment. In contrast, Asc decreased this ratio, leading to oxidative stress, while H2O2 had no significant effect. Accordingly, the greatest increase in electrolyte leakage and lipid peroxidation was observed in Asc-treated seedlings. Among the enzymes participating in the removal of H2O2, the activity of dehydroascorbate reductase, monodehydroascorbate reductase, and catalase exhibited a great increase after 7 days of Asc treatment, while ascorbate peroxidase exhibited the highest activity after H2O2 application. Besides Asc, H2O2 also resulted in a great increase in the level of the stress hormones jasmonic acid, salicylic acid and abscisic acid compared to H2S. These changes were accompanied by a great reduction of shoot fresh weight by Asc and H2O2 but not by NaHS. This inhibition of growth is an indicator of oxidative stress induced by Asc and H2O2 treatments. Interestingly, phenolic and flavonoid compounds varied significantly across treatments, suggesting redox regulation of their synthesis. The simultaneous changes in the studied parameters signify the crosstalk of hormones and antioxidants to regulate specific modifications in plant growth and metabolism via cellular redox regulation. The present results about the pivotal role of redox balance in maintaining physiological and biochemical processes offer insights into strategies for enhancing plant resilience and productivity.
Collapse
Affiliation(s)
- Kalpita Singh
- Agricultural Institute, HUN-REN Centre for Agricultural Research, Martonvásár, Hungary
- Doctoral School of Plant Sciences, Hungarian University of Agriculture and Life Sciences, MATE, Gödöllő, Hungary
| | - Muhammad Ahsan Asghar
- Agricultural Institute, HUN-REN Centre for Agricultural Research, Martonvásár, Hungary
- Department of Food Science, Aarhus University, Aarhus N, Denmark
| | - Kristóf Jobbágy
- Agricultural Institute, HUN-REN Centre for Agricultural Research, Martonvásár, Hungary
- Doctoral School of Biology and Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Kitti Kulman
- Agricultural Institute, HUN-REN Centre for Agricultural Research, Martonvásár, Hungary
- Doctoral School of Plant Sciences, Hungarian University of Agriculture and Life Sciences, MATE, Gödöllő, Hungary
| | - Gabriella Szalai
- Agricultural Institute, HUN-REN Centre for Agricultural Research, Martonvásár, Hungary
| | - Kamirán Áron Hamow
- Agricultural Institute, HUN-REN Centre for Agricultural Research, Martonvásár, Hungary
| | - Alexandra Soltész
- Agricultural Institute, HUN-REN Centre for Agricultural Research, Martonvásár, Hungary
| | - Dávid Polgári
- Agricultural Institute, HUN-REN Centre for Agricultural Research, Martonvásár, Hungary
- Department of Genetics and Genomics, Hungarian University of Agriculture and Life Sciences, MATE, Gödöllő, Hungary
| | - Zsolt Gulyás
- Agricultural Institute, HUN-REN Centre for Agricultural Research, Martonvásár, Hungary
| | - Gábor Kocsy
- Agricultural Institute, HUN-REN Centre for Agricultural Research, Martonvásár, Hungary
| |
Collapse
|
2
|
Asghar MA, Kulman K, Szalai G, Gondor OK, Mednyánszky Z, Simon-Sarkadi L, Gaudinova A, Dobrev PI, Vanková R, Kocsy G. Effect of ascorbate and hydrogen peroxide on hormone and metabolite levels during post-germination growth in wheat. PHYSIOLOGIA PLANTARUM 2023; 175:e13887. [PMID: 36894826 DOI: 10.1111/ppl.13887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
The modulation of hormone and metabolite levels by ascorbate (ASA) and hydrogen peroxide (H2 O2 ) was compared during post-germination growth in shoots of wheat. Treatment with ASA resulted in a greater reduction of growth than the addition of H2 O2 . ASA also had a larger effect on the redox state of the shoot tissues as shown by the higher ASA and glutathione (GSH) levels, lower glutathione disulfide (GSSG) content and GSSG/GSH ratio compared to the H2 O2 treatment. Apart from common responses (i.e., increase of cis-zeatin and its O-glucosides), the contents of several compounds related to cytokinin (CK) and abscisic acid (ABA) metabolism were greater after ASA application. These differences in the redox state and hormone metabolism following the two treatments may be responsible for their distinct influence on various metabolic pathways. Namely, the glycolysis and citrate cycle were inhibited by ASA and they were not affected by H2 O2 , while the amino acid metabolism was induced by ASA and repressed by H2 O2 based on the changes in the level of the related carbohydrates, organic and amino acids. The first two pathways produce reducing power, while the last one needs it; therefore ASA, as a reductant may suppress and induce them, respectively. H2 O2 as an oxidant had different effect, namely it did not alter glycolysis and citrate cycle, and inhibited the formation of amino acids.
Collapse
Affiliation(s)
- Muhammad Ahsan Asghar
- Agricultural Institute, Centre for Agricultural Research, ELKH, 2 Brunszvik St., Martonvásár, 2462, Hungary
| | - Kitti Kulman
- Agricultural Institute, Centre for Agricultural Research, ELKH, 2 Brunszvik St., Martonvásár, 2462, Hungary
| | - Gabriella Szalai
- Agricultural Institute, Centre for Agricultural Research, ELKH, 2 Brunszvik St., Martonvásár, 2462, Hungary
| | - Orsolya Kinga Gondor
- Agricultural Institute, Centre for Agricultural Research, ELKH, 2 Brunszvik St., Martonvásár, 2462, Hungary
| | - Zsuzsa Mednyánszky
- Department of Nutrition, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | - Livia Simon-Sarkadi
- Department of Nutrition, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | - Alena Gaudinova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague 6, 165 02, Czech Republic
| | - Petre I Dobrev
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague 6, 165 02, Czech Republic
| | - Radomíra Vanková
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague 6, 165 02, Czech Republic
| | - Gábor Kocsy
- Agricultural Institute, Centre for Agricultural Research, ELKH, 2 Brunszvik St., Martonvásár, 2462, Hungary
| |
Collapse
|
3
|
Balogh E, Kalapos B, Ahres M, Boldizsár Á, Gierczik K, Gulyás Z, Gyugos M, Szalai G, Novák A, Kocsy G. Far-Red Light Coordinates the Diurnal Changes in the Transcripts Related to Nitrate Reduction, Glutathione Metabolism and Antioxidant Enzymes in Barley. Int J Mol Sci 2022; 23:ijms23137479. [PMID: 35806480 PMCID: PMC9267158 DOI: 10.3390/ijms23137479] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 11/16/2022] Open
Abstract
Spectral quality, intensity and period of light modify many regulatory and stress signaling pathways in plants. Both nitrate and sulfate assimilations must be synchronized with photosynthesis, which ensures energy and reductants for these pathways. However, photosynthesis is also a source of reactive oxygen species, whose levels are controlled by glutathione and other antioxidants. In this study, we investigated the effect of supplemental far-red (735 nm) and blue (450 nm) lights on the diurnal expression of the genes related to photoreceptors, the circadian clock, nitrate reduction, glutathione metabolism and various antioxidants in barley. The maximum expression of the investigated four photoreceptor and three clock-associated genes during the light period was followed by the peaking of the transcripts of the three redox-responsive transcription factors during the dark phase, while most of the nitrate and sulfate reduction, glutathione metabolism and antioxidant-enzyme-related genes exhibited high expression during light exposure in plants grown in light/dark cycles for two days. These oscillations changed or disappeared in constant white light during the subsequent two days. Supplemental far-red light induced the activation of most of the studied genes, while supplemental blue light did not affect or inhibited them during light/dark cycles. However, in constant light, several genes exhibited greater expression in blue light than in white and far-red lights. Based on a correlation analysis of the gene expression data, we propose a major role of far-red light in the coordinated transcriptional adjustment of nitrate reduction, glutathione metabolism and antioxidant enzymes to changes of the light spectrum.
Collapse
|
4
|
Otulak-Kozieł K, Kozieł E, Przewodowski W, Ciacka K, Przewodowska A. Glutathione Modulation in PVY NTN Susceptible and Resistant Potato Plant Interactions. Int J Mol Sci 2022; 23:ijms23073797. [PMID: 35409157 PMCID: PMC8998174 DOI: 10.3390/ijms23073797] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 12/14/2022] Open
Abstract
Glutathione is a metabolite that plays an important role in plant response to biotic stress through its ability to remove reactive oxygen species, thereby limiting the degree of potential oxidative damage. It can couple changes in the intracellular redox state to the development, especially the defense responses, of plants. Several studies have focused on measuring glutathione levels in virus infected plants, but have not provided complete information. Therefore, we analyzed, for the first time, the content of glutathione as well as its ultrastructural distribution related to susceptible and hypersensitive potato–Potato virus Y NTN (PVYNTN) interaction, with an aim of providing new insight into interactive responses to PVYNTN stress. Our findings reported that the inoculation of PVYNTN caused a dynamic increase in the content of glutathione, not only in resistance but also in susceptible reaction, especially at the first steps of plant–virus interaction. Moreover, the increase in hypersensitive response was much more dynamic, and accompanied by a significant reduction in the content of PVYNTN. By contrast, in susceptible potato Irys, the content of glutathione decreased between 7 and 21 days after virus inoculation, which led to a significant increase in PVYNTN concentration. Additionally, our findings clearly indicated the steady induction of two selected potato glutathione S-transferase StGSTF1 and StGSTF2 genes after PVYNTN inoculation, regardless of the interaction type. However, the relative expression level of StGSTF1 did not significantly differ between resistant and susceptible plants, whereas the relative expression levels of StGSTF2 differed between susceptible and resistant reactions. Therefore, we proposed that StGSTF2 can act as a marker of the type of response to PVYNTN. Our observations indicated that glutathione is an important component of signaling as well as the regulatory network in the PVYNTN–potato pathosystem. In resistance responses to PVYNTN, this metabolite activates plant defenses by reducing potential damage to the host plant cell, causing a reduction in virus concentration, while it can also be involved in the development of PVYNTN elicited symptoms, as well as limiting oxidative stress, leading to systemic infection in susceptible potato plants.
Collapse
Affiliation(s)
- Katarzyna Otulak-Kozieł
- Department of Botany, Institute of Biology, Faculty of Biology and Biotechnology, Warsaw University of Life Sciences—SGGW, Nowoursynowska Street 159, 02-776 Warsaw, Poland
- Correspondence: (K.O.-K.); (E.K.)
| | - Edmund Kozieł
- Department of Botany, Institute of Biology, Faculty of Biology and Biotechnology, Warsaw University of Life Sciences—SGGW, Nowoursynowska Street 159, 02-776 Warsaw, Poland
- Correspondence: (K.O.-K.); (E.K.)
| | - Włodzimierz Przewodowski
- Laboratory of Potato Gene Resources and Tissue Culture, Bonin Research Center, Plant Breeding and Acclimatization Institute—National Research Institute, 76-009 Bonin, Poland; (W.P.); (A.P.)
| | - Katarzyna Ciacka
- Department of Plant Physiology, Institute of Biology, Faculty of Biology and Biotechnology, Warsaw University of Life Sciences—SGGW, Nowoursynowska Street 159, 02-776 Warsaw, Poland;
| | - Agnieszka Przewodowska
- Laboratory of Potato Gene Resources and Tissue Culture, Bonin Research Center, Plant Breeding and Acclimatization Institute—National Research Institute, 76-009 Bonin, Poland; (W.P.); (A.P.)
| |
Collapse
|
5
|
Molisso D, Coppola M, Buonanno M, Di Lelio I, Monti SM, Melchiorre C, Amoresano A, Corrado G, Delano-Frier JP, Becchimanzi A, Pennacchio F, Rao R. Tomato Prosystemin Is Much More than a Simple Systemin Precursor. BIOLOGY 2022; 11:biology11010124. [PMID: 35053122 PMCID: PMC8772835 DOI: 10.3390/biology11010124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/23/2021] [Accepted: 12/25/2021] [Indexed: 02/04/2023]
Abstract
Simple Summary Prosystemin is a 200 amino acid precursor that releases, upon wounding and biotic attacks, an 18 amino acid peptide called Systemin. This peptide was traditionally considered as the principal actor of the resistance of tomato plants induced by triggering multiple defense pathways in response to a wide range of biotic/abiotic stress agents. Recent findings from our group discovered the disordered structure of Prosystemin that promotes the binding of different molecular partners and the possible activation of multiple stress-related pathways. All of our recent findings suggest that Prosystemin could be more than a simple precursor of Systemin peptide. Indeed, we hypothesized that it contains other sequences able to activate multiple stress-related responses. To verify this hypothesis, we produced a truncated Prosystemin protein deprived of the Systemin peptide and the relative deleted gene. Experiments with transgenic tomato plants overexpressing the truncated Prosystemin and with plants exogenously treated with the recombinant truncated protein demonstrated that both transgenic and treated plants modulated the expression of defense-related genes and were protected against a noctuid moth and a fungal pathogen. Taken together, our results demonstrated that Prosystemin is not a mere scaffold of Systemin, but itself contains other biologically active regions. Abstract Systemin (Sys) is an octadecapeptide, which upon wounding, is released from the carboxy terminus of its precursor, Prosystemin (ProSys), to promote plant defenses. Recent findings on the disordered structure of ProSys prompted us to investigate a putative biological role of the whole precursor deprived of the Sys peptide. We produced transgenic tomato plants expressing a truncated ProSys gene in which the exon coding for Sys was removed and compared their defense response with that induced by the exogenous application of the recombinant truncated ProSys (ProSys(1-178), the Prosystemin sequence devoid of Sys region). By combining protein structure analyses, transcriptomic analysis, gene expression profiling and bioassays with different pests, we demonstrate that truncated ProSys promotes defense barriers in tomato plants through a hormone-independent defense pathway, likely associated with the production of oligogalacturonides (OGs). Both transgenic and plants treated with the recombinant protein showed the modulation of the expression of genes linked with defense responses and resulted in protection against the lepidopteran pest Spodoptera littoralis and the fungus Botrytis cinerea. Our results suggest that the overall function of the wild-type ProSys is more complex than previously shown, as it might activate at least two tomato defense pathways: the well-known Sys-dependent pathway connected with the induction of jasmonic acid biosynthesis and the successive activation of a set of defense-related genes, and the ProSys(1-178)-dependent pathway associated with OGs production leading to the OGs mediate plant immunity.
Collapse
Affiliation(s)
- Donata Molisso
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Naples, Italy; (D.M.); (M.C.); (I.D.L.); (G.C.); (A.B.); (F.P.)
- Materias s.r.l., Corso N. Protopisani 50, 80146 Naples, Italy
| | - Mariangela Coppola
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Naples, Italy; (D.M.); (M.C.); (I.D.L.); (G.C.); (A.B.); (F.P.)
| | - Martina Buonanno
- Istituto di Biostrutture e Bioimmagini-CNR, Via Mezzocannone 16, 80134 Naples, Italy;
| | - Ilaria Di Lelio
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Naples, Italy; (D.M.); (M.C.); (I.D.L.); (G.C.); (A.B.); (F.P.)
| | - Simona Maria Monti
- Istituto di Biostrutture e Bioimmagini-CNR, Via Mezzocannone 16, 80134 Naples, Italy;
- Correspondence: (S.M.M.); (R.R.)
| | - Chiara Melchiorre
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant’Angelo, Via Cinthia 4, 80126 Naples, Italy; (C.M.); (A.A.)
| | - Angela Amoresano
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant’Angelo, Via Cinthia 4, 80126 Naples, Italy; (C.M.); (A.A.)
| | - Giandomenico Corrado
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Naples, Italy; (D.M.); (M.C.); (I.D.L.); (G.C.); (A.B.); (F.P.)
| | - John Paul Delano-Frier
- Center for Research and Advanced Studies (CINVESTAV) Irapuato, Department of Biochemistry and Biotechnology, Km. 9.6 Libramiento Norte Carretera Irapuato-León, Irapuato 36500, Mexico;
| | - Andrea Becchimanzi
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Naples, Italy; (D.M.); (M.C.); (I.D.L.); (G.C.); (A.B.); (F.P.)
| | - Francesco Pennacchio
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Naples, Italy; (D.M.); (M.C.); (I.D.L.); (G.C.); (A.B.); (F.P.)
- Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), University of Naples Federico II, Via Università 100, 80055 Naples, Italy
| | - Rosa Rao
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Naples, Italy; (D.M.); (M.C.); (I.D.L.); (G.C.); (A.B.); (F.P.)
- Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), University of Naples Federico II, Via Università 100, 80055 Naples, Italy
- Correspondence: (S.M.M.); (R.R.)
| |
Collapse
|
6
|
Pál M, Janda T, Majláth I, Szalai G. Involvement of Salicylic Acid and Other Phenolic Compounds in Light-Dependent Cold Acclimation in Maize. Int J Mol Sci 2020; 21:ijms21061942. [PMID: 32178416 PMCID: PMC7139356 DOI: 10.3390/ijms21061942] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 11/16/2022] Open
Abstract
The exposure of plants to non-lethal low temperatures may increase their tolerance to a subsequent severe chilling stress. To some extent, this is also true for cold-sensitive species, including maize. In the present work, based on our previous microarray experiment, the differentially expressed genes with phenylpropanoid pathways in the focus were further investigated in relation to changes in certain phenolic compounds and other plant growth regulators. Phenylalanine ammonia lyase (PAL) was mainly activated under limited light conditions. However, light-induced anthocyanin accumulation occurred both in the leaves and roots. Chilling stress induced the accumulation of salicylic acid (SA), but this accumulation was moderated in the cold-acclimated plants. Acclimation also reduced the accumulation of jasmonic acid (JA) in the leaves, which was rather induced in the roots. The level of abscisic acid (ABA) is mainly related to the level of the stress, and less indicated the level of the acclimation. The highest glutathione (GSH) amount was observed during the recovery period in the leaves of plants that were cold acclimated at growth light, while their precursors started to accumulate GSH even during the chilling. In conclusion, different light conditions during the cold acclimation period differentially affected certain stress-related mechanisms in young maize plants and changes were also light-dependent in the root, not only in the leaves.
Collapse
|
7
|
Janda T, Lejmel MA, Molnár AB, Majláth I, Pál M, Nguyen QT, Nguyen NT, Le VN, Szalai G. Interaction between elevated temperature and different types of Na-salicylate treatment in Brachypodium dystachion. PLoS One 2020; 15:e0227608. [PMID: 31931519 PMCID: PMC6957344 DOI: 10.1371/journal.pone.0227608] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/22/2019] [Indexed: 12/05/2022] Open
Abstract
Salicylic acid (SA) plays a role in several physiological processes in plants. Exogenously applied SA is a promising tool to reduce stress sensitivity. However, the mode of action may depend on how the treatment was performed and environmental conditions may alter the effects of SA. In the present study the physiological and biochemical effects of different modes of application (soaking seeds prior sowing; spraying leaves with 0.5 mM NaSA) were compared at normal and moderately elevated temperatures (4 h; 35°C) in Brachypodium distachyon (L.) P. Beauv. plants. While soaking the seeds stimulated plant growth, spraying caused mild stress, as indicated by the chlorophyll-a fluorescence induction parameters and changes in certain protective compounds, such as glutathione, flavonoids or antioxidant enzymes. Elevated temperature also caused an increase in the glutathione-S-transferase activity, and this increase was more pronounced in plants pre-treated with NaSA. Both seed soaking or spraying with NaSA and exposure to heat treatment at 35°C reduced the abscisic acid levels in the leaves. In contrast to abscisic acid, the jasmonic acid level in the leaves were increased by both spraying and heat treatment. The present results suggest that different modes of application may induce different physiological processes, after which plants respond differently to heat treatment. Since these results were obtained with a model plants, further experiments are required to clarify how these changes occur in crop plants, especially in cereals.
Collapse
Affiliation(s)
- Tibor Janda
- Centre for Agricultural Research, Agricultural Institute, Hungarian Academy of Sciences, Martonvásár, Hungary
| | - Magdalena Anna Lejmel
- Centre for Agricultural Research, Agricultural Institute, Hungarian Academy of Sciences, Martonvásár, Hungary
| | - Anna Borbála Molnár
- Centre for Agricultural Research, Agricultural Institute, Hungarian Academy of Sciences, Martonvásár, Hungary
| | - Imre Majláth
- Centre for Agricultural Research, Agricultural Institute, Hungarian Academy of Sciences, Martonvásár, Hungary
| | - Magda Pál
- Centre for Agricultural Research, Agricultural Institute, Hungarian Academy of Sciences, Martonvásár, Hungary
| | - Quang Trung Nguyen
- Center for Research and Technology Transfer, Vietnam Academy of Science and Technology, Hanoi City, Vietnam
| | - Ngoc Tung Nguyen
- Center for Research and Technology Transfer, Vietnam Academy of Science and Technology, Hanoi City, Vietnam
| | - Van Nhan Le
- Center for Research and Technology Transfer, Vietnam Academy of Science and Technology, Hanoi City, Vietnam
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
| | - Gabriella Szalai
- Centre for Agricultural Research, Agricultural Institute, Hungarian Academy of Sciences, Martonvásár, Hungary
- * E-mail:
| |
Collapse
|
8
|
Chin DC, Senthil Kumar R, Suen CS, Chien CY, Hwang MJ, Hsu CH, Xuhan X, Lai ZX, Yeh KW. Plant Cytosolic Ascorbate Peroxidase with Dual Catalytic Activity Modulates Abiotic Stress Tolerances. iScience 2019; 16:31-49. [PMID: 31146130 PMCID: PMC6542772 DOI: 10.1016/j.isci.2019.05.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 01/10/2019] [Accepted: 05/09/2019] [Indexed: 12/13/2022] Open
Abstract
Ascorbic acid-glutathione (AsA-GSH) cycle represents important antioxidant defense system in planta. Here we utilized Oncidium cytosolic ascorbate peroxidase (OgCytAPX) as a model to demonstrate that CytAPX of several plants possess dual catalytic activity of both AsA and GSH, compared with the monocatalytic activity of Arabidopsis APX (AtCytAPX). Structural modeling and site-directed mutagenesis identified that three amino acid residues, Pro63, Asp75, and Tyr97, are required for oxidization of GSH in dual substrate catalytic type. Enzyme kinetic study suggested that AsA and GSH active sites are distinctly located in cytosolic APX structure. Isothermal titration calorimetric and UV-visible analysis confirmed that cytosolic APX is a heme-containing protein, which catalyzes glutathione in addition to ascorbate. Biochemical and physiological evidences of transgenic Arabidopsis overexpressing OgCytAPX1 exhibits efficient reactive oxygen species-scavenging activity, salt and heat tolerances, and early flowering, compared with Arabidopsis overexpressing AtCytAPX. Thus results on dual activity CytAPX impose significant advantage on evolutionary adaptive mechanism in planta.
Collapse
Affiliation(s)
- Dan-Chu Chin
- Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan
| | | | - Ching-Shu Suen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Chia-Yu Chien
- Department of Agricultural Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Ming-Jing Hwang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Chun-Hua Hsu
- Department of Agricultural Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Xu Xuhan
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhong Xiong Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Kai-Wun Yeh
- Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan; Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China.
| |
Collapse
|
9
|
Gallé Á, Czékus Z, Bela K, Horváth E, Ördög A, Csiszár J, Poór P. Plant Glutathione Transferases and Light. FRONTIERS IN PLANT SCIENCE 2019; 9:1944. [PMID: 30687349 PMCID: PMC6333738 DOI: 10.3389/fpls.2018.01944] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/13/2018] [Indexed: 05/09/2023]
Abstract
The activity and expression of glutathione transferases (GSTs) depend on several less-known endogenous and well-described exogenous factors, such as the developmental stage, presence, and intensity of different stressors, as well as on the absence or presence and quality of light, which to date have received less attention. In this review, we focus on discussing the role of circadian rhythm, light quality, and intensity in the regulation of plant GSTs. Recent studies demonstrate that diurnal regulation can be recognized in GST activity and gene expression in several plant species. In addition, the content of one of their co-substrates, reduced glutathione (GSH), also shows diurnal changes. Darkness, low light or shade mostly reduces GST activity, while high or excess light significantly elevates both the activity and expression of GSTs and GSH levels. Besides the light-regulated induction and dark inactivation of GSTs, these enzymes can also participate in the signal transduction of visible and UV light. For example, red light may alleviate the harmful effects of pathogens and abiotic stressors by increasing GST activity and expression, as well as GSH content in leaves of different plant species. Based on this knowledge, further research on plants (crops and weeds) or organs and temporal regulation of GST activity and gene expression is necessary for understanding the complex regulation of plant GSTs under various light conditions in order to increase the yield and stress tolerance of plants in the changing environment.
Collapse
Affiliation(s)
- Ágnes Gallé
- Department of Plant Biology, Faculty of Science and InformaticsUniversity of Szeged, Szeged, Hungary
| | - Zalán Czékus
- Department of Plant Biology, Faculty of Science and InformaticsUniversity of Szeged, Szeged, Hungary
| | - Krisztina Bela
- Department of Plant Biology, Faculty of Science and InformaticsUniversity of Szeged, Szeged, Hungary
| | - Edit Horváth
- Biological Research CentreInstitute of Plant Biology, Szeged, Hungary
| | - Attila Ördög
- Department of Plant Biology, Faculty of Science and InformaticsUniversity of Szeged, Szeged, Hungary
| | - Jolán Csiszár
- Department of Plant Biology, Faculty of Science and InformaticsUniversity of Szeged, Szeged, Hungary
| | - Péter Poór
- Department of Plant Biology, Faculty of Science and InformaticsUniversity of Szeged, Szeged, Hungary
| |
Collapse
|
10
|
Cao J, Gulyás Z, Kalapos B, Boldizsár Á, Liu X, Pál M, Yao Y, Galiba G, Kocsy G. Identification of a redox-dependent regulatory network of miRNAs and their targets in wheat. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:85-99. [PMID: 30260414 DOI: 10.1093/jxb/ery339] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 09/19/2018] [Indexed: 06/08/2023]
Abstract
Reactive oxygen species and antioxidants have an important role in the regulation of plant growth and development under both optimal and stress conditions. In this study, we investigate a possible redox control of miRNAs in wheat (Triticum aestivum ssp. aestivum). Treatment of seedlings with 10 mM H2O2 via the roots for 24 h resulted in decreased glutathione content, increased half-cell reduction potential of the glutathione disulphide/glutathione redox pair, and greater ascorbate peroxidase activity compared to the control plants. These changes were accompanied by alterations in the miRNA transcript profile, with 70 miRNAs being identified with at least 1.5-fold difference in their expression between control and treated (0, 3, 6 h) seedlings. Degradome sequencing identified 86 target genes of these miRNAs, and 6722 possible additional target genes were identified using bioinformatics tools. The H2O2-responsiveness of 1647 target genes over 24 h of treatment was also confirmed by transcriptome analysis, and they were mainly found to be related to the control of redox processes, transcription, and protein phosphorylation and degradation. In a time-course experiment (0-24 h of treatment) a correlation was found between the levels of glutathione, other antioxidants, and the transcript levels of the H2O2-responsive miRNAs and their target mRNAs. This relationship together with bioinformatics modelling of the regulatory network indicated glutathione-related redox control of miRNAs and their targets, which allows the adjustment of the metabolism to changing environmental conditions.
Collapse
Affiliation(s)
- Jie Cao
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization, China Agricultural University, Beijing, China
| | - Zsolt Gulyás
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
| | - Balázs Kalapos
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
- Festetics Doctoral School, Georgikon Faculty, University of Pannonia, Keszthely, Deák Ferenc str. 16., Hungary
| | - Ákos Boldizsár
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
| | - Xinye Liu
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization, China Agricultural University, Beijing, China
| | - Magda Pál
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
| | - Yingyin Yao
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization, China Agricultural University, Beijing, China
| | - Gábor Galiba
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
- Festetics Doctoral School, Georgikon Faculty, University of Pannonia, Keszthely, Deák Ferenc str. 16., Hungary
| | - Gábor Kocsy
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
| |
Collapse
|
11
|
Kalapos B, Novák A, Dobrev P, Vítámvás P, Marincs F, Galiba G, Vanková R. Effect of the Winter Wheat Cheyenne 5A Substituted Chromosome on Dynamics of Abscisic Acid and Cytokinins in Freezing-Sensitive Chinese Spring Genetic Background. FRONTIERS IN PLANT SCIENCE 2017; 8:2033. [PMID: 29238355 PMCID: PMC5712565 DOI: 10.3389/fpls.2017.02033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 11/14/2017] [Indexed: 06/07/2023]
Abstract
The effect of short- and long-term cold treatment on the abscisic acid (ABA) and cytokinin (CK) metabolism, and their main biosynthesis- and signaling-related genes were investigated in freezing-sensitive and freezing-tolerant wheat genotypes. Varieties Cheyenne and Chinese Spring substituted with the 5A Cheyenne chromosome, which represented freezing-tolerant genotypes, were compared with the freezing-sensitive Chinese Spring. Hormone levels and gene expression data indicated that the short- and long-term cold treatments are associated with specific regulation of the accumulation of cold-protective proteins and phytohormone levels, as well as the expression profiles of the hormone-related genes. The significant differences were observed between the genotypes, and between their leaf and crown tissues, too. The level of dehydrins, including WCS120 protein, and expression of WCS120 gene were considerably higher in the freezing-tolerant genotypes after 21 days of cold treatment. Expression of Cor14b and CBF14, cold-responsive regulator genes, was increased by cold treatment in all genotypes, to higher extent in freezing-tolerant genotypes. Cluster analysis revealed that the tolerant genotypes had a similar response to cold treatment, regarding expression of the ABA and CK metabolic genes, as well as hormone levels in leaves. As far as hormone levels in crowns are concerned, however, the strongly freezing-tolerant Cheyenne variety clustered separately from the Chinese Spring and the substitution line, which were more similar to each other after both 1 and 21 days of cold treatment than to Cheyenne. Based on these results we concluded that the 5A chromosome of wheat might have both a direct and an indirect impact on the phytohormone-dependent cold-induced freezing tolerance. Based on the gene expression data, novel genetic markers could be developed, which may be used to determine the freezing tolerance level in a wide range of wheat varieties.
Collapse
Affiliation(s)
- Balázs Kalapos
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
- Festetics Doctoral School, Georgikon Faculty, University of Pannonia, Keszthely, Hungary
| | - Aliz Novák
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
- Festetics Doctoral School, Georgikon Faculty, University of Pannonia, Keszthely, Hungary
| | - Petre Dobrev
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague, Czechia
| | - Pavel Vítámvás
- Department of Genetics and Plant Breeding, Crop Research Institute, Prague, Czechia
| | - Ferenc Marincs
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
- Agricultural Biotechnology Institute, National Agricultural Research and Innovation Centre, Gödöllő, Hungary
| | - Gábor Galiba
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
- Festetics Doctoral School, Georgikon Faculty, University of Pannonia, Keszthely, Hungary
| | - Radomira Vanková
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague, Czechia
| |
Collapse
|
12
|
A photoperiod-responsive protein compendium and conceptual proteome roadmap outline in maize grown in growth chambers with controlled conditions. PLoS One 2017; 12:e0174003. [PMID: 28399169 PMCID: PMC5388471 DOI: 10.1371/journal.pone.0174003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 03/01/2017] [Indexed: 12/14/2022] Open
Abstract
Maize (Zea mays L.) is one of the major staple food crops of the world. However, high photoperiod sensitivity, especially for tropical germplasms, impedes attempts to improve maize agronomical traits by integration of tropical and temperate maize germplasms. Physiological and phenotypic responses of maize to photoperiod have widely been investigated based on multi-site field observations; however, proteome-based responsive mechanisms under controlled photoperiod regimes, nutrient and moisture soils are not yet well understood. In the present study, we sequenced and analyzed six proteomes of tropically-adapted and photoperiod-sensitive M9 inbred line at the vegetative 3 stage and proteomes from tropically-adapted and photoperiod-sensitive Shuang M9 (SM9) inbred line at the vegetative-tasseling stage. All plants were grown in growth chambers with controlled soil and temperature and three photoperiod regimes, a short photoperiod (SP) of 10 h light/14 h dark, a control neutral photoperiod (NP) of 12 h light/12 h dark, and a long photoperiod (LP) of 16 h light/8 h dark for a daily cycle. We identified 4,395 proteins of which 401 and 425 differentially-expressed proteins (DPs) were found in abundance in M9 leaves and in SM9 leaves as per SP/LP vs. NP, respectively. Some DPs showed responses to both SP and LP while some only responded to either SP or LP, depending on M9 or SM9. Our study showed that the photoperiodic response pathway, circadian clock rhythm, and high light density/intensity crosstalk with each other, but apparently differ from dark signaling routes. Photoperiod response involves light-responsive or dark-responsive proteins or both. The DPs positioned on the signaling routes from photoperiod changes to RNA/DNA responses involve the mago nashi homolog and glycine-rich RNA-binding proteins. Moreover, the cell-to-cell movement of ZCN14 through plasmodesmata is likely blocked under a 16-h-light LP. Here, we propose a photoperiodic model based on our findings and those from previous studies.
Collapse
|
13
|
Gulyás Z, Simon-Sarkadi L, Badics E, Novák A, Mednyánszky Z, Szalai G, Galiba G, Kocsy G. Redox regulation of free amino acid levels in Arabidopsis thaliana. PHYSIOLOGIA PLANTARUM 2017; 159:264-276. [PMID: 27605256 DOI: 10.1111/ppl.12510] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 07/18/2016] [Accepted: 08/20/2016] [Indexed: 06/06/2023]
Abstract
Abiotic stresses induce oxidative stress, which modifies the level of several metabolites including amino acids. The redox control of free amino acid profile was monitored in wild-type and ascorbate or glutathione deficient mutant Arabidopsis thaliana plants before and after hydroponic treatment with various redox agents. Both mutations and treatments modified the size and redox state of the ascorbate (AsA) and/or glutathione (GSH) pools. The total free amino acid content was increased by AsA, GSH and H2 O2 in all three genotypes and a very large (threefold) increase was observed in the GSH-deficient pad2-1 mutant after GSH treatment compared with the untreated wild-type plants. Addition of GSH reduced the ratio of amino acids belonging to the glutamate family on a large scale and increased the relative amount of non-proteinogenic amino acids. The latter change was because of the large increase in the content of alpha-aminoadipate, an inhibitor of glutamatic acid (Glu) transport. Most of the treatments increased the proline (Pro) content, which effect was due to the activation of genes involved in Pro synthesis. Although all studied redox compounds influenced the amount of free amino acids and a mostly positive, very close (r > 0.9) correlation exists between these parameters, a special regulatory role of GSH could be presumed due to its more powerful effect. This may originate from the thiol/disulphide conversion or (de)glutathionylation of enzymes participating in the amino acid metabolism.
Collapse
Affiliation(s)
- Zsolt Gulyás
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, H-2462, Hungary
| | - Livia Simon-Sarkadi
- Department of Food Chemistry and Nutrition, Szent István University, Budapest, H-1118, Hungary
| | - Eszter Badics
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, H-2462, Hungary
| | - Aliz Novák
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, H-2462, Hungary
| | - Zsuzsanna Mednyánszky
- Department of Food Chemistry and Nutrition, Szent István University, Budapest, H-1118, Hungary
| | - Gabriella Szalai
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, H-2462, Hungary
| | - Gábor Galiba
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, H-2462, Hungary
- Festetics Doctoral School, Georgikon Faculty, University of Pannonia, Keszthely, H-8360, Hungary
| | - Gábor Kocsy
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, H-2462, Hungary
| |
Collapse
|
14
|
Boldizsár Á, Vanková R, Novák A, Kalapos B, Gulyás Z, Pál M, Floková K, Janda T, Galiba G, Kocsy G. The mvp2 mutation affects the generative transition through the modification of transcriptome pattern, salicylic acid and cytokinin metabolism in Triticum monococcum. JOURNAL OF PLANT PHYSIOLOGY 2016; 202:21-33. [PMID: 27450491 DOI: 10.1016/j.jplph.2016.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/04/2016] [Accepted: 07/04/2016] [Indexed: 05/03/2023]
Abstract
Wild type and mvp2 (maintained vegetative phase) deletion mutant T. monococcum plants incapable of flowering were compared in order to determine the effect of the deleted region of chromosome 5A on transcript profile and hormone metabolism. This region contains the vernalization1 (VRN1) gene, a major regulator of the vegetative/generative transition. Transcript profiling in the crowns of T. monococcum during the transition and the subsequent formation of flower primordia showed that 306 genes were affected by the mutation, 198 by the developmental phase and 14 by the interaction of these parameters. In addition, 546 genes were affected by two or three factors. The genes controlled by the deleted region encode transcription factors, antioxidants and enzymes of hormone, carbohydrate and amino acid metabolism. The observed changes in the expression of the gene encoding phenylalanine ammonia lyase (PAL) might indicate the effect of mvp2 mutation on the metabolism of salicylic acid, which was corroborated by the differences in 2-hydroxycinnamic acid and cinnamic acid contents in both of the leaves and crowns, and in the concentrations of salicylic acid and benzoic acid in crowns during the vegetative/generative transition. The amount and ratio of active cytokinins and their derivatives (ribosides, glucosides and phosphates) were affected by developmental changes as well as by mvp2 mutation, too.
Collapse
Affiliation(s)
- Ákos Boldizsár
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, 2462, Hungary.
| | - Radomíra Vanková
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Academy of Sciences of the Czech Republic, 165 02 Prague 6, Czech Republic.
| | - Aliz Novák
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, 2462, Hungary; Festetics Doctoral School, Georgikon Faculty, University of Pannonia, Keszthely, 8360, Hungary.
| | - Balázs Kalapos
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, 2462, Hungary; Festetics Doctoral School, Georgikon Faculty, University of Pannonia, Keszthely, 8360, Hungary.
| | - Zsolt Gulyás
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, 2462, Hungary; Festetics Doctoral School, Georgikon Faculty, University of Pannonia, Keszthely, 8360, Hungary.
| | - Magda Pál
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, 2462, Hungary.
| | - Kristyna Floková
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany AS CR & Faculty of Science, Palacký University, 78 371 Olomouc, Czech Republic.
| | - Tibor Janda
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, 2462, Hungary.
| | - Gábor Galiba
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, 2462, Hungary; Festetics Doctoral School, Georgikon Faculty, University of Pannonia, Keszthely, 8360, Hungary.
| | - Gábor Kocsy
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, 2462, Hungary; Festetics Doctoral School, Georgikon Faculty, University of Pannonia, Keszthely, 8360, Hungary.
| |
Collapse
|
15
|
Gondor OK, Pál M, Darkó É, Janda T, Szalai G. Salicylic Acid and Sodium Salicylate Alleviate Cadmium Toxicity to Different Extents in Maize (Zea mays L.). PLoS One 2016; 11:e0160157. [PMID: 27490102 PMCID: PMC4973972 DOI: 10.1371/journal.pone.0160157] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 07/14/2016] [Indexed: 11/22/2022] Open
Abstract
The role of salicylic acid in Cd tolerance has attracted more attention recently but no information is available on the efficiency of different forms of salicylic acid. The aim was thus to investigate whether both the acid and salt forms of salicylic acid provide protection against Cd stress and to compare their mode of action. Young maize plants were grown under controlled environmental conditions. One group of 10-day-old seedlings were treated with 0.5 mM SA or NaSA for 1 day then half of the pants were treated with 0.5 mM Cd for 1 day. Another group of seedlings was treated with 0.5 mM CdSO4 for 1 day without pre-treatment with SA or NaSA, while a third group was treated simultaneously with Cd and either SA or NaSA. Both salicylic acid forms reduced the Cd accumulation in the roots. Treatment with the acidic form meliorated the Cd accumulation in the leaves, while Na-salicylate increased the phytochelatin level in the roots and the amount of salicylic acid in the leaves. Furthermore, increased antioxidant enzyme activity was mainly induced by the acid form, while glutathione-related redox changes were influenced mostly by the salt form. The acidic and salt forms of salicylic acid affected the two antioxidant systems in different ways, and the influence of these two forms on the distribution and detoxification of Cd also differed. The present results also draw attention to the fact that generalisations about the stress protective mechanisms induced by salicylic acid are misleading since different forms of SA may exert different effects on the plants via separate mechanisms.
Collapse
Affiliation(s)
- Orsolya Kinga Gondor
- Department of Plant Physiology, Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
| | - Magda Pál
- Department of Plant Physiology, Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
| | - Éva Darkó
- Department of Plant Physiology, Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
| | - Tibor Janda
- Department of Plant Physiology, Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
| | - Gabriella Szalai
- Department of Plant Physiology, Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
- * E-mail:
| |
Collapse
|
16
|
Chin DC, Hsieh CC, Lin HY, Yeh KW. A Low Glutathione Redox State Couples with a Decreased Ascorbate Redox Ratio to Accelerate Flowering in Oncidium Orchid. PLANT & CELL PHYSIOLOGY 2016; 57:423-436. [PMID: 26738548 DOI: 10.1093/pcp/pcv206] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 12/18/2015] [Indexed: 06/05/2023]
Abstract
Glutathione (GSH) plays multiple roles in plants, including stress defense and regulation of growth/development. Previous studies have demonstrated that the ascorbate (AsA) redox state is involved in flowering initiation in Oncidium orchid. In this study, we discovered that a significantly decreased GSH content and GSH redox ratio are correlated with a decline in the AsA redox state during flowering initiation and high ambient temperature-induced flowering. At the same time, the expression level and enzymatic activity of GSH redox-regulated genes, glutathione reductase (GR1), and the GSH biosynthesis genes γ-glutamylcysteine synthetase (GSH1) and glutathione synthase (GSH2), are down-regulated. Elevating dehydroascorbate (DHA) content in Oncidium by artificial addition of DHA resulted in a decreased AsA and GSH redox ratio, and enhanced dehydroascorbate reductase (DHAR) activity. This demonstrated that the lower GSH redox state could be influenced by the lower AsA redox ratio. Moreover, exogenous application of buthionine sulfoximine (BSO), to inhibit GSH biosynthesis, and glutathione disulfide (GSSG), to decrease the GSH redox ratio, also caused early flowering. However, spraying plants with GSH increased the GSH redox ratio and delayed flowering. Furthermore, transgenic Arabidopsis overexpressing Oncidium GSH1, GSH2 and GR1 displayed a high GSH redox ratio as well as delayed flowering under high ambient temperature treatment, while pad2, cad2 and gr1 mutants exhibited early flowering and a low GSH redox ratio. In conclusion, our results provide evidence that the decreased GSH redox state is linked to the decline in the AsA redox ratio and mediated by down-regulated expression of GSH metabolism-related genes to affect flowering time in Oncidium orchid.
Collapse
Affiliation(s)
- Dan-Chu Chin
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan. No. 1, Sec. 4, Roosevelt Road, Taipei, 10617 Taiwan
| | - Chia-Chi Hsieh
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan. No. 1, Sec. 4, Roosevelt Road, Taipei, 10617 Taiwan
| | - Hsin-Yi Lin
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan. No. 1, Sec. 4, Roosevelt Road, Taipei, 10617 Taiwan
| | - Kai-Wun Yeh
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan. No. 1, Sec. 4, Roosevelt Road, Taipei, 10617 Taiwan
| |
Collapse
|
17
|
Boldizsár Á, Carrera DÁ, Gulyás Z, Vashegyi I, Novák A, Kalapos B, Pál M, Galiba G, Kocsy G. Comparison of redox and gene expression changes during vegetative/generative transition in the crowns and leaves of chromosome 5A substitution lines of wheat under low-temperature condition. J Appl Genet 2015; 57:1-13. [PMID: 26100264 DOI: 10.1007/s13353-015-0297-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 05/28/2015] [Accepted: 06/04/2015] [Indexed: 01/01/2023]
Abstract
The aim of our experiments was to investigate the effect of chromosome 5A on the thiol-dependent redox environment and on the transcription of cold- and vernalization-related genes during the vegetative/generative transition in crowns and leaves of wheat. Chinese Spring, a moderately freezing-tolerant variety, and its more and less tolerant substitution lines - [CS(Ch5A)] and [CS(Tsp5A)], respectively - with different combinations of vernalization alleles were compared. At low temperature, the amount of cystine and glutathione disulphide and the related redox potentials increased in the crowns but not in the leaves. In the crowns of the substitution lines, the concentration and redox state of thiols were different only at the vegetative and double ridge (start of the generative transition) stages. The expression of the vernalization-related VRN1 gene increased significantly during the transition both in the crowns and leaves. The transcription of the freezing tolerance-related CBF14, COR14b and COR39 genes markedly increased in both organs after 2 weeks at 4 °C when the seedlings were still in the vegetative stage. This increment was greater in CS(Ch5A) than in CS(Tsp5A). The Ch5A chromosome in CS genetic background enhanced the expression of CBF regulon even in the generative phase in crown that is the key organ for overwintering and freezing tolerance. At certain developmental stages, both the thiol and the transcript levels differed significantly in the two substitution lines.
Collapse
Affiliation(s)
- Ákos Boldizsár
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, 2462, Hungary
| | - Dániel Á Carrera
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, 2462, Hungary
| | - Zsolt Gulyás
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, 2462, Hungary.,Doctoral School of Molecular- and Nanotechnologies, Research Institute of Chemical and Process Engineering, Faculty of Information Technology, University of Pannonia, Veszprém, 8200, Hungary
| | - Ildikó Vashegyi
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, 2462, Hungary
| | - Aliz Novák
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, 2462, Hungary.,Doctoral School of Molecular- and Nanotechnologies, Research Institute of Chemical and Process Engineering, Faculty of Information Technology, University of Pannonia, Veszprém, 8200, Hungary
| | - Balázs Kalapos
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, 2462, Hungary.,Doctoral School of Molecular- and Nanotechnologies, Research Institute of Chemical and Process Engineering, Faculty of Information Technology, University of Pannonia, Veszprém, 8200, Hungary
| | - Magda Pál
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, 2462, Hungary
| | - Gábor Galiba
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, 2462, Hungary.,Doctoral School of Animal- and Agricultural Environmental Sciences, Department of Meteorology and Water Management, Georgikon Faculty, University of Pannonia, Keszthely, 8360, Hungary
| | - Gábor Kocsy
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, 2462, Hungary. .,Doctoral School of Molecular- and Nanotechnologies, Research Institute of Chemical and Process Engineering, Faculty of Information Technology, University of Pannonia, Veszprém, 8200, Hungary.
| |
Collapse
|