1
|
Natarajan RB, Pathania P, Singh H, Agrawal A, Subramani R. A Flow Cytometry-Based Assessment of the Genomic Size and Ploidy Level of Wild Musa Species in India. PLANTS (BASEL, SWITZERLAND) 2023; 12:3605. [PMID: 37896068 PMCID: PMC10609997 DOI: 10.3390/plants12203605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/12/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023]
Abstract
The genome size variation is an important attribute in evolutionary and species characterization. Musa L. is regarded as one of the taxonomically complicated genera within the order Zingiberales, with more than 75 species from wild seeded to seedless cultivars that may be diploid, triploid or tetraploid. The knowledge of total nuclear DNA content in terms of genome size and ploidy level in wild species of Musa is absolutely important in evolutionary and genomic studies. METHODS In this paper, chromosome spreading was performed via protoplast isolation and a fast air-dry dropping method and flow cytometry were used with Raphanus sativus L. (Brassicaceae) as a standard for ploidy and genome size estimation. RESULTS The results showed that genome size (2C) varied amongst Musa species, based on the ratio of G1 peak positions. The lowest genome size (2C) was found in M. balbisiana var. andamanica (1.051 ± 0.060 pg) and the highest genome size (2C) was recorded for Musa ABB.cv. Meitei-hei (1.812 ± 0.108 pg) for the section Eumusa. Among the species belonging to the section Rhodochlamys, M. rosae had the lowest 2C content of 1.194 ± 0.033 pg whereas the highest nuclear DNA content (2C) was observed in M. velutina (1.488 ± 0.203 pg). Cytogenetic analysis revealed that the chromosome number of 14 wild Musa species was 2n = 22, while 1 species-Ensete glaucum-showed a chromosome number of 2n = 18 (diploid), and for 3 species, the chromosome number was 2n = 33 (triploids). An association study based on the Pearson correlation coefficient showed 2C nuclear DNA content was significant and positively correlated with ploidy level (R = 0.9) and chromosome number (R = 0.84). CONCLUSIONS The present study provides reliable information on the genome size and ploidy level of wild Musa species from the Indian region through flow cytometric analysis, which could be further utilized in taxonomic and crop improvement programs. For the first time, the nuclear DNA content of eight wild diploid and three triploid Indian species were estimated and reported. Genome size could be an effective indicator in identification of species and evolutionary studies in Musa with varying ploidy levels and morphological similarities.
Collapse
Affiliation(s)
- Rithesh B Natarajan
- Division of Plant Genetic Resources, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi 110012, India
| | - Pooja Pathania
- ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi 110012, India
| | - Hardeep Singh
- ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi 110012, India
| | - Anuradha Agrawal
- Division of Plant Genetic Resources, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi 110012, India
- ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi 110012, India
- Indian Council of Agricultural Research, Pusa Campus, New Delhi 110012, India
| | - Rajkumar Subramani
- Division of Plant Genetic Resources, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi 110012, India
- ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi 110012, India
| |
Collapse
|
2
|
Biswas MK, Bagchi M, Biswas D, Harikrishna JA, Liu Y, Li C, Sheng O, Mayer C, Yi G, Deng G. Genome-Wide Novel Genic Microsatellite Marker Resource Development and Validation for Genetic Diversity and Population Structure Analysis of Banana. Genes (Basel) 2020; 11:genes11121479. [PMID: 33317074 PMCID: PMC7763637 DOI: 10.3390/genes11121479] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/20/2020] [Accepted: 11/20/2020] [Indexed: 11/17/2022] Open
Abstract
Trait tagging through molecular markers is an important molecular breeding tool for crop improvement. SSR markers encoded by functionally relevant parts of a genome are well suited for this task because they may be directly related to traits. However, a limited number of these markers are known for Musa spp. Here, we report 35136 novel functionally relevant SSR markers (FRSMs). Among these, 17,561, 15,373 and 16,286 FRSMs were mapped in-silico to the genomes of Musa acuminata, M. balbisiana and M. schizocarpa, respectively. A set of 273 markers was validated using eight accessions of Musa spp., from which 259 markers (95%) produced a PCR product of the expected size and 203 (74%) were polymorphic. In-silico comparative mapping of FRSMs onto Musa and related species indicated sequence-based orthology and synteny relationships among the chromosomes of Musa and other plant species. Fifteen FRSMs were used to estimate the phylogenetic relationships among 50 banana accessions, and the results revealed that all banana accessions group into two major clusters according to their genomic background. Here, we report the first large-scale development and characterization of functionally relevant Musa SSR markers. We demonstrate their utility for germplasm characterization, genetic diversity studies, and comparative mapping in Musa spp. and other monocot species. The sequences for these novel markers are freely available via a searchable web interface called Musa Marker Database.
Collapse
Affiliation(s)
- Manosh Kumar Biswas
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Tianhe District, Guangzhou 510640, China; (Y.L.); (C.L.); (O.S.); (G.Y.)
- Department of Genetics, University of Leicester, Leicester LE1 7RH, UK; (M.B.); (J.A.H.)
- Correspondence: (M.K.B.); (G.D.)
| | - Mita Bagchi
- Department of Genetics, University of Leicester, Leicester LE1 7RH, UK; (M.B.); (J.A.H.)
- The College of Economics and Managements, South China Agricultural University, Guangzhou 510640, China
| | - Dhiman Biswas
- Department of Computer Science and Engineering, Maulana Abul Kalam Azad University of Technology, West Bengal 700064, India;
| | - Jennifer Ann Harikrishna
- Department of Genetics, University of Leicester, Leicester LE1 7RH, UK; (M.B.); (J.A.H.)
- University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Yuxuan Liu
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Tianhe District, Guangzhou 510640, China; (Y.L.); (C.L.); (O.S.); (G.Y.)
| | - Chunyu Li
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Tianhe District, Guangzhou 510640, China; (Y.L.); (C.L.); (O.S.); (G.Y.)
| | - Ou Sheng
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Tianhe District, Guangzhou 510640, China; (Y.L.); (C.L.); (O.S.); (G.Y.)
| | - Christoph Mayer
- Forschungsmuseum Alexander Koenig, Bonn, Adenauerallee 160, 53113 Bonn, Germany;
| | - Ganjun Yi
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Tianhe District, Guangzhou 510640, China; (Y.L.); (C.L.); (O.S.); (G.Y.)
| | - Guiming Deng
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Tianhe District, Guangzhou 510640, China; (Y.L.); (C.L.); (O.S.); (G.Y.)
- Correspondence: (M.K.B.); (G.D.)
| |
Collapse
|
3
|
The landscape and structural diversity of LTR retrotransposons in Musa genome. Mol Genet Genomics 2017; 292:1051-1067. [PMID: 28601922 DOI: 10.1007/s00438-017-1333-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 06/07/2017] [Indexed: 10/19/2022]
Abstract
Long terminal repeat retrotransposons represent a major component of plant genomes and act as drivers of genome evolution and diversity. Musa is an important fruit crop and also used as a starchy vegetable in many countries. BAC sequence analysis by dot plot was employed to investigate the LTR retrotransposons from Musa genomes. Fifty intact LTR retrotransposons from selected Musa BACs were identified by dot plot analysis and further BLASTN searches retrieved 153 intact copies, 61 truncated, and a great number of partial copies/remnants from GenBank database. LARD-like elements were also identified with several copies dispersed among the Musa genotypes. The predominant elements were the LTR retrotransposons Copia and Gypsy, while Caulimoviridae (pararetrovirus) were rare in the Musa genome. PCR amplification of reverse transcriptase (RT) sequences revealed their abundance in almost all tested Musa accessions and their ancient nature before the divergence of Musa species. The phylogenetic analysis based on RT sequences of Musa and other retrotransposons clustered them into Gypsy, Caulimoviridae, and Copia lineages. Most of the Musa-related elements clustered in their respective groups, while some grouped with other elements indicating homologous sequences. The present work will be helpful to understand the LTR retrotransposons landscape, giving a complete picture of the nature of the elements, their structural features, annotation, and evolutionary dynamics in the Musa genome.
Collapse
|
4
|
Menzel G, Heitkam T, Seibt KM, Nouroz F, Müller-Stoermer M, Heslop-Harrison JS, Schmidt T. The diversification and activity of hAT transposons in Musa genomes. Chromosome Res 2014; 22:559-71. [DOI: 10.1007/s10577-014-9445-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 10/10/2014] [Accepted: 10/20/2014] [Indexed: 11/29/2022]
|
5
|
Santos AA, Penha HA, Bellec A, Munhoz CDF, Pedrosa-Harand A, Bergès H, Vieira MLC. Begin at the beginning: A BAC-end view of the passion fruit (Passiflora) genome. BMC Genomics 2014; 15:816. [PMID: 25260959 PMCID: PMC4189760 DOI: 10.1186/1471-2164-15-816] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 09/22/2014] [Indexed: 12/16/2022] Open
Abstract
Background The passion fruit (Passiflora edulis) is a tropical crop of economic importance both for juice production and consumption as fresh fruit. The juice is also used in concentrate blends that are consumed worldwide. However, very little is known about the genome of the species. Therefore, improving our understanding of passion fruit genomics is essential and to some degree a pre-requisite if its genetic resources are to be used more efficiently. In this study, we have constructed a large-insert BAC library and provided the first view on the structure and content of the passion fruit genome, using BAC-end sequence (BES) data as a major resource. Results The library consisted of 82,944 clones and its levels of organellar DNA were very low. The library represents six haploid genome equivalents, and the average insert size was 108 kb. To check its utility for gene isolation, successful macroarray screening experiments were carried out with probes complementary to eight Passiflora gene sequences available in public databases. BACs harbouring those genes were used in fluorescent in situ hybridizations and unique signals were detected for four BACs in three chromosomes (n = 9). Then, we explored 10,000 BES and we identified reads likely to contain repetitive mobile elements (19.6% of all BES), simple sequence repeats and putative proteins, and to estimate the GC content (~42%) of the reads. Around 9.6% of all BES were found to have high levels of similarity to plant genes and ontological terms were assigned to more than half of the sequences analysed (940). The vast majority of the top-hits made by our sequences were to Populus trichocarpa (24.8% of the total occurrences), Theobroma cacao (21.6%), Ricinus communis (14.3%), Vitis vinifera (6.5%) and Prunus persica (3.8%). Conclusions We generated the first large-insert library for a member of Passifloraceae. This BAC library provides a new resource for genetic and genomic studies, as well as it represents a valuable tool for future whole genome study. Remarkably, a number of BAC-end pair sequences could be mapped to intervals of the sequenced Arabidopsis thaliana, V. vinifera and P. trichocarpa chromosomes, and putative collinear microsyntenic regions were identified. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-816) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Maria Lucia Carneiro Vieira
- Departamento de Genética, Universidade de São Paulo, Escola Superior de Agricultura "Luiz de Queiroz", P,O, Box 83, 13400-970 Piracicaba, Brazil.
| |
Collapse
|
6
|
Ferreira de Carvalho J, Chelaifa H, Boutte J, Poulain J, Couloux A, Wincker P, Bellec A, Fourment J, Bergès H, Salmon A, Ainouche M. Exploring the genome of the salt-marsh Spartina maritima (Poaceae, Chloridoideae) through BAC end sequence analysis. PLANT MOLECULAR BIOLOGY 2013; 83:591-606. [PMID: 23877482 DOI: 10.1007/s11103-013-0111-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 07/13/2013] [Indexed: 06/02/2023]
Abstract
Spartina species play an important ecological role on salt marshes. Spartina maritima is an Old-World species distributed along the European and North-African Atlantic coasts. This hexaploid species (2n = 6x = 60, 2C = 3,700 Mb) hybridized with different Spartina species introduced from the American coasts, which resulted in the formation of new invasive hybrids and allopolyploids. Thus, S. maritima raises evolutionary and ecological interests. However, genomic information is dramatically lacking in this genus. In an effort to develop genomic resources, we analysed 40,641 high-quality bacterial artificial chromosome-end sequences (BESs), representing 26.7 Mb of the S. maritima genome. BESs were searched for sequence homology against known databases. A fraction of 16.91% of the BESs represents known repeats including a majority of long terminal repeat (LTR) retrotransposons (13.67%). Non-LTR retrotransposons represent 0.75%, DNA transposons 0.99%, whereas small RNA, simple repeats and low-complexity sequences account for 1.38% of the analysed BESs. In addition, 4,285 simple sequence repeats were detected. Using the coding sequence database of Sorghum bicolor, 6,809 BESs found homology accounting for 17.1% of all BESs. Comparative genomics with related genera reveals that the microsynteny is better conserved with S. bicolor compared to other sequenced Poaceae, where 37.6% of the paired matching BESs are correctly orientated on the chromosomes. We did not observe large macrosyntenic rearrangements using the mapping strategy employed. However, some regions appeared to have experienced rearrangements when comparing Spartina to Sorghum and to Oryza. This work represents the first overview of S. maritima genome regarding the respective coding and repetitive components. The syntenic relationships with other grass genomes examined here help clarifying evolution in Poaceae, S. maritima being a part of the poorly-known Chloridoideae sub-family.
Collapse
Affiliation(s)
- J Ferreira de Carvalho
- UMR CNRS 6553 ECOBIO, OSUR, University of Rennes 1, Bât 14A Campus Scientifique de Beaulieu, 35042, Rennes Cedex, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Davey MW, Gudimella R, Harikrishna JA, Sin LW, Khalid N, Keulemans J. "A draft Musa balbisiana genome sequence for molecular genetics in polyploid, inter- and intra-specific Musa hybrids". BMC Genomics 2013; 14:683. [PMID: 24094114 PMCID: PMC3852598 DOI: 10.1186/1471-2164-14-683] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Accepted: 09/24/2013] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Modern banana cultivars are primarily interspecific triploid hybrids of two species, Musa acuminata and Musa balbisiana, which respectively contribute the A- and B-genomes. The M. balbisiana genome has been associated with improved vigour and tolerance to biotic and abiotic stresses and is thus a target for Musa breeding programs. However, while a reference M. acuminata genome has recently been released (Nature 488:213-217, 2012), little sequence data is available for the corresponding B-genome.To address these problems we carried out Next Generation gDNA sequencing of the wild diploid M. balbisiana variety 'Pisang Klutuk Wulung' (PKW). Our strategy was to align PKW gDNA reads against the published A-genome and to extract the mapped consensus sequences for subsequent rounds of evaluation and gene annotation. RESULTS The resulting B-genome is 79% the size of the A-genome, and contains 36,638 predicted functional gene sequences which is nearly identical to the 36,542 of the A-genome. There is substantial sequence divergence from the A-genome at a frequency of 1 homozygous SNP per 23.1 bp, and a high degree of heterozygosity corresponding to one heterozygous SNP per 55.9 bp. Using expressed small RNA data, a similar number of microRNA sequences were predicted in both A- and B-genomes, but additional novel miRNAs were detected, including some that are unique to each genome. The usefulness of this B-genome sequence was evaluated by mapping RNA-seq data from a set of triploid AAA and AAB hybrids simultaneously to both genomes. Results for the plantains demonstrated the expected 2:1 distribution of reads across the A- and B-genomes, but for the AAA genomes, results show they contain regions of significant homology to the B-genome supporting proposals that there has been a history of interspecific recombination between homeologous A and B chromosomes in Musa hybrids. CONCLUSIONS We have generated and annotated a draft reference Musa B-genome and demonstrate that this can be used for molecular genetic mapping of gene transcripts and small RNA expression data from several allopolyploid banana cultivars. This draft therefore represents a valuable resource to support the study of metabolism in inter- and intraspecific triploid Musa hybrids and to help direct breeding programs.
Collapse
Affiliation(s)
- Mark W Davey
- Laboratory of Fruit Breeding and Biotechnology, Division of Crop Biotechnics, Department of Biosystems, Katholieke Universiteit Leuven, Willem de Croylaan 42, box 2427B-3001, Heverlee, Leuven, Belgium
| | - Ranganath Gudimella
- Centre for Research in Biotechnology for Agriculture and Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Jennifer Ann Harikrishna
- Centre for Research in Biotechnology for Agriculture and Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Lee Wan Sin
- Centre for Research in Biotechnology for Agriculture and Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Norzulaani Khalid
- Centre for Research in Biotechnology for Agriculture and Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Johan Keulemans
- Laboratory of Fruit Breeding and Biotechnology, Division of Crop Biotechnics, Department of Biosystems, Katholieke Universiteit Leuven, Willem de Croylaan 42, box 2427B-3001, Heverlee, Leuven, Belgium
| |
Collapse
|
8
|
Dereeper A, Guyot R, Tranchant-Dubreuil C, Anthony F, Argout X, de Bellis F, Combes MC, Gavory F, de Kochko A, Kudrna D, Leroy T, Poulain J, Rondeau M, Song X, Wing R, Lashermes P. BAC-end sequences analysis provides first insights into coffee (Coffea canephora P.) genome composition and evolution. PLANT MOLECULAR BIOLOGY 2013; 83:177-189. [PMID: 23708951 DOI: 10.1007/s11103-013-0077-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 05/14/2013] [Indexed: 06/02/2023]
Abstract
Coffee is one of the world's most important agricultural commodities. Coffee belongs to the Rubiaceae family in the euasterid I clade of dicotyledonous plants, to which the Solanaceae family also belongs. Two bacterial artificial chromosome (BAC) libraries of a homozygous doubled haploid plant of Coffea canephora were constructed using two enzymes, HindIII and BstYI. A total of 134,827 high quality BAC-end sequences (BESs) were generated from the 73,728 clones of the two libraries, and 131,412 BESs were conserved for further analysis after elimination of chloroplast and mitochondrial sequences. This corresponded to almost 13 % of the estimated size of the C. canephora genome. 6.7 % of BESs contained simple sequence repeats, the most abundant (47.8 %) being mononucleotide motifs. These sequences allow the development of numerous useful marker sites. Potential transposable elements (TEs) represented 11.9 % of the full length BESs. A difference was observed between the BstYI and HindIII libraries (14.9 vs. 8.8 %). Analysis of BESs against known coding sequences of TEs indicated that 11.9 % of the genome corresponded to known repeat sequences, like for other flowering plants. The number of genes in the coffee genome was estimated at 41,973 which is probably overestimated. Comparative genome mapping revealed that microsynteny was higher between coffee and grapevine than between coffee and tomato or Arabidopsis. BESs constitute valuable resources for the first genome wide survey of coffee and provide new insights into the composition and evolution of the coffee genome.
Collapse
Affiliation(s)
- Alexis Dereeper
- Institut de Recherche pour le Développement (IRD), UMR RPB (CIRAD, IRD, UM2), BP 64501, 34394, Montpellier Cedex 5, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Passos MAN, de Cruz VO, Emediato FL, de Teixeira CC, Azevedo VCR, Brasileiro ACM, Amorim EP, Ferreira CF, Martins NF, Togawa RC, Pappas GJ, da Silva OB, Miller RNG. Analysis of the leaf transcriptome of Musa acuminata during interaction with Mycosphaerella musicola: gene assembly, annotation and marker development. BMC Genomics 2013; 14:78. [PMID: 23379821 PMCID: PMC3635893 DOI: 10.1186/1471-2164-14-78] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 02/01/2013] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Although banana (Musa sp.) is an important edible crop, contributing towards poverty alleviation and food security, limited transcriptome datasets are available for use in accelerated molecular-based breeding in this genus. 454 GS-FLX Titanium technology was employed to determine the sequence of gene transcripts in genotypes of Musa acuminata ssp. burmannicoides Calcutta 4 and M. acuminata subgroup Cavendish cv. Grande Naine, contrasting in resistance to the fungal pathogen Mycosphaerella musicola, causal organism of Sigatoka leaf spot disease. To enrich for transcripts under biotic stress responses, full length-enriched cDNA libraries were prepared from whole plant leaf materials, both uninfected and artificially challenged with pathogen conidiospores. RESULTS The study generated 846,762 high quality sequence reads, with an average length of 334 bp and totalling 283 Mbp. De novo assembly generated 36,384 and 35,269 unigene sequences for M. acuminata Calcutta 4 and Cavendish Grande Naine, respectively. A total of 64.4% of the unigenes were annotated through Basic Local Alignment Search Tool (BLAST) similarity analyses against public databases.Assembled sequences were functionally mapped to Gene Ontology (GO) terms, with unigene functions covering a diverse range of molecular functions, biological processes and cellular components. Genes from a number of defense-related pathways were observed in transcripts from each cDNA library. Over 99% of contig unigenes mapped to exon regions in the reference M. acuminata DH Pahang whole genome sequence. A total of 4068 genic-SSR loci were identified in Calcutta 4 and 4095 in Cavendish Grande Naine. A subset of 95 potential defense-related gene-derived simple sequence repeat (SSR) loci were validated for specific amplification and polymorphism across M. acuminata accessions. Fourteen loci were polymorphic, with alleles per polymorphic locus ranging from 3 to 8 and polymorphism information content ranging from 0.34 to 0.82. CONCLUSIONS A large set of unigenes were characterized in this study for both M. acuminata Calcutta 4 and Cavendish Grande Naine, increasing the number of public domain Musa ESTs. This transcriptome is an invaluable resource for furthering our understanding of biological processes elicited during biotic stresses in Musa. Gene-based markers will facilitate molecular breeding strategies, forming the basis of genetic linkage mapping and analysis of quantitative trait loci.
Collapse
Affiliation(s)
- Marco A N Passos
- Universidade de Brasília, Campus Universitário Darcy Ribeiro, Instituto de Ciências Biológicas, Departamento de Biologia Celular, CEP 70.910-900, Brasília, D.F, Brazil
| | - Viviane Oliveira de Cruz
- Universidade de Brasília, Campus Universitário Darcy Ribeiro, Instituto de Ciências Biológicas, Departamento de Biologia Celular, CEP 70.910-900, Brasília, D.F, Brazil
| | - Flavia L Emediato
- Universidade de Brasília, Campus Universitário Darcy Ribeiro, Instituto de Ciências Biológicas, Departamento de Biologia Celular, CEP 70.910-900, Brasília, D.F, Brazil
| | | | - Vânia C Rennó Azevedo
- EMBRAPA Recursos Genéticos e Biotecnologia, Parque Estação Biológica, CP 02372, CEP 70.770-900, Brasília, D.F, Brazil
| | - Ana C M Brasileiro
- EMBRAPA Recursos Genéticos e Biotecnologia, Parque Estação Biológica, CP 02372, CEP 70.770-900, Brasília, D.F, Brazil
| | - Edson P Amorim
- EMBRAPA Mandioca e Fruticultura Tropical, Rua Embrapa, CEP 44.380-000, Cruz das Almas, BA, Brazil
| | - Claudia F Ferreira
- EMBRAPA Mandioca e Fruticultura Tropical, Rua Embrapa, CEP 44.380-000, Cruz das Almas, BA, Brazil
| | - Natalia F Martins
- EMBRAPA Recursos Genéticos e Biotecnologia, Parque Estação Biológica, CP 02372, CEP 70.770-900, Brasília, D.F, Brazil
| | - Roberto C Togawa
- EMBRAPA Recursos Genéticos e Biotecnologia, Parque Estação Biológica, CP 02372, CEP 70.770-900, Brasília, D.F, Brazil
| | - Georgios J Pappas
- Universidade de Brasília, Campus Universitário Darcy Ribeiro, Instituto de Ciências Biológicas, Departamento de Biologia Celular, CEP 70.910-900, Brasília, D.F, Brazil
| | - Orzenil Bonfim da Silva
- EMBRAPA Recursos Genéticos e Biotecnologia, Parque Estação Biológica, CP 02372, CEP 70.770-900, Brasília, D.F, Brazil
| | - Robert NG Miller
- Universidade de Brasília, Campus Universitário Darcy Ribeiro, Instituto de Ciências Biológicas, Departamento de Biologia Celular, CEP 70.910-900, Brasília, D.F, Brazil
| |
Collapse
|
10
|
Kim C, Lee TH, Compton RO, Robertson JS, Pierce GJ, Paterson AH. A genome-wide BAC end-sequence survey of sugarcane elucidates genome composition, and identifies BACs covering much of the euchromatin. PLANT MOLECULAR BIOLOGY 2013; 81:139-47. [PMID: 23161199 DOI: 10.1007/s11103-012-9987-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 11/07/2012] [Indexed: 05/09/2023]
Abstract
BAC-end sequences (BESs) of hybrid sugarcane cultivar R570 are presented. A total of 66,990 informative BESs were obtained from 43,874 BAC clones. Similarity search using a variety of public databases revealed that 13.5 and 42.8 % of BESs match known gene-coding and repeat regions, respectively. That 11.7 % of BESs are still unmatched to any nucleotide sequences in the current public databases despite the fact that a close relative, sorghum, is fully sequenced, indicates that there may be many sugarcane-specific or lineage-specific sequences. We found 1,742 simple sequence repeat motifs in 1,585 BESs, spanning 27,383 bp in length. As simple sequence repeat markers derived from BESs have some advantages over randomly generated markers, these may be particularly useful for comparing BAC-based physical maps with genetic maps. BES and overgo hybridization information was used for anchoring sugarcane BAC clones to the sorghum genome sequence. While sorghum and sugarcane have extensive similarity in terms of genomic structure, only 2,789 BACs (6.4 %) could be confidently anchored to the sorghum genome at the stringent threshold of having both-end information (BESs or overgos) within 300 Kb. This relatively low rate of anchoring may have been caused in part by small- or large-scale genomic rearrangements in the Saccharum genus after two rounds of whole genome duplication since its divergence from the sorghum lineage about 7.8 million years ago. Limiting consideration to only low-copy matches, 1,245 BACs were placed to 1,503 locations, covering ~198 Mb of the sorghum genome or about 78 % of the estimated 252 Mb of euchromatin. BESs and their analyses presented here may provide an early profile of the sugarcane genome as well as a basis for BAC-by-BAC sequencing of much of the basic gene set of sugarcane.
Collapse
Affiliation(s)
- Changsoo Kim
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA 30602, USA
| | | | | | | | | | | |
Collapse
|
11
|
Backiyarani S, Uma S, Varatharj P, Saraswathi MS. Mining of EST-SSR markers of Musa and their transferability studies among the members of order the Zingiberales. Appl Biochem Biotechnol 2012. [PMID: 23179283 DOI: 10.1007/s12010-012-9975-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Expressed sequence tags (ESTs) databases of 11 Musa complementary DNA libraries were retrieved from National Center of Biotechnology Information and used for mining simple sequence repeats (SSRs). Out of 21,056 unique ESTs, SSR regions were found only in 5,158 ESTs. Among these SSR containing ESTs, the occurrence of trinucleotide repeats are the most abundant followed by mono-, di-, tetra-, hexa-, and pentanucleotides. Moreover, this study showed that the rate of class II SSRs (<20 nucleotides) was higher than the class I SSRs (<20 nucleotides), and proportion of class I and II SSRs as abundant for tri-repeats. As a representative sample, primers were synthesized for 24 ESTs, carrying >12 nucleotides of SSR region, and tested among the various genomic group of Musa accessions. The result showed that 88 % of primers were functional primers, and 43 % are showing polymorphism among the Musa accessions. Transferability studies of Musa EST-SSRs among the genera of the order Zingiberales exhibited 100 and 58 % transferability in Musaceae and Zingiberaceae, respectively. The sequence comparison of SSR regions among the different Musa accessions confirmed that polymorphism is mainly due to the variation in repeat length. High percentage of cross-species, cross-genera, and cross-family transferability also suggested that these Musa EST-SSR markers will be a valuable resource for the comparative mapping by developing COS markers, in evolutionary studies and in improvement of the members of Zingiberaceae and Musaceae.
Collapse
Affiliation(s)
- S Backiyarani
- National Research Centre for Banana (ICAR), Thogamalai Road, Thayanur Post, Trichy 620 102, Tamil Nadu, India.
| | | | | | | |
Collapse
|
12
|
Sharma MK, Sharma R, Cao P, Jenkins J, Bartley LE, Qualls M, Grimwood J, Schmutz J, Rokhsar D, Ronald PC. A genome-wide survey of switchgrass genome structure and organization. PLoS One 2012; 7:e33892. [PMID: 22511929 PMCID: PMC3325252 DOI: 10.1371/journal.pone.0033892] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 02/19/2012] [Indexed: 11/18/2022] Open
Abstract
The perennial grass, switchgrass (Panicum virgatum L.), is a promising bioenergy crop and the target of whole genome sequencing. We constructed two bacterial artificial chromosome (BAC) libraries from the AP13 clone of switchgrass to gain insight into the genome structure and organization, initiate functional and comparative genomic studies, and assist with genome assembly. Together representing 16 haploid genome equivalents of switchgrass, each library comprises 101,376 clones with average insert sizes of 144 (HindIII-generated) and 110 kb (BstYI-generated). A total of 330,297 high quality BAC-end sequences (BES) were generated, accounting for 263.2 Mbp (16.4%) of the switchgrass genome. Analysis of the BES identified 279,099 known repetitive elements, >50,000 SSRs, and 2,528 novel repeat elements, named switchgrass repetitive elements (SREs). Comparative mapping of 47 full-length BAC sequences and 330K BES revealed high levels of synteny with the grass genomes sorghum, rice, maize, and Brachypodium. Our data indicate that the sorghum genome has retained larger microsyntenous regions with switchgrass besides high gene order conservation with rice. The resources generated in this effort will be useful for a broad range of applications.
Collapse
Affiliation(s)
- Manoj K. Sharma
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
- Joint BioEnergy Institute, Emeryville, California, United States of America
| | - Rita Sharma
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
- Joint BioEnergy Institute, Emeryville, California, United States of America
| | - Peijian Cao
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute, Zhengzhou, China
| | - Jerry Jenkins
- HudsonAlpha Institute of Biotechnology, Huntsville, Alabama, United States of America
- United States Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
| | - Laura E. Bartley
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
- Joint BioEnergy Institute, Emeryville, California, United States of America
| | - Morgan Qualls
- HudsonAlpha Institute of Biotechnology, Huntsville, Alabama, United States of America
- United States Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
| | - Jane Grimwood
- HudsonAlpha Institute of Biotechnology, Huntsville, Alabama, United States of America
- United States Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
| | - Jeremy Schmutz
- HudsonAlpha Institute of Biotechnology, Huntsville, Alabama, United States of America
- United States Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
| | - Daniel Rokhsar
- United States Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
- University of California, Berkeley, California, United States of America
| | - Pamela C. Ronald
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
- Joint BioEnergy Institute, Emeryville, California, United States of America
| |
Collapse
|
13
|
Advances in BAC-based physical mapping and map integration strategies in plants. J Biomed Biotechnol 2012; 2012:184854. [PMID: 22500080 PMCID: PMC3303678 DOI: 10.1155/2012/184854] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2011] [Revised: 10/26/2011] [Accepted: 11/11/2011] [Indexed: 12/29/2022] Open
Abstract
In the advent of next-generation sequencing (NGS) platforms, map-based sequencing strategy has been recently suppressed being too expensive and laborious. The detailed studies on NGS drafts alone indicated these assemblies remain far from gold standard reference quality, especially when applied on complex genomes. In this context the conventional BAC-based physical mapping has been identified as an important intermediate layer in current hybrid sequencing strategy. BAC-based physical map construction and its integration with high-density genetic maps have benefited from NGS and high-throughput array platforms. This paper addresses the current advancements of BAC-based physical mapping and high-throughput map integration strategies to obtain densely anchored well-ordered physical maps. The resulted maps are of immediate utility while providing a template to harness the maximum benefits of the current NGS platforms.
Collapse
|
14
|
Passos MAN, de Oliveira Cruz V, Emediato FL, de Camargo Teixeira C, Souza MT, Matsumoto T, Rennó Azevedo VC, Ferreira CF, Amorim EP, de Alencar Figueiredo LF, Martins NF, de Jesus Barbosa Cavalcante M, Baurens FC, da Silva OB, Pappas GJ, Pignolet L, Abadie C, Ciampi AY, Piffanelli P, Miller RNG. Development of expressed sequence tag and expressed sequence tag-simple sequence repeat marker resources for Musa acuminata. AOB PLANTS 2012; 2012:pls030. [PMID: 23240072 PMCID: PMC3521319 DOI: 10.1093/aobpla/pls030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2012] [Accepted: 09/14/2012] [Indexed: 05/14/2023]
Abstract
BACKGROUND AND AIMS Banana (Musa acuminata) is a crop contributing to global food security. Many varieties lack resistance to biotic stresses, due to sterility and narrow genetic background. The objective of this study was to develop an expressed sequence tag (EST) database of transcripts expressed during compatible and incompatible banana-Mycosphaerella fijiensis (Mf) interactions. Black leaf streak disease (BLSD), caused by Mf, is a destructive disease of banana. Microsatellite markers were developed as a resource for crop improvement. METHODOLOGY cDNA libraries were constructed from in vitro-infected leaves from BLSD-resistant M. acuminata ssp. burmaniccoides Calcutta 4 (MAC4) and susceptible M. acuminata cv. Cavendish Grande Naine (MACV). Clones were 5'-end Sanger sequenced, ESTs assembled with TGICL and unigenes annotated using BLAST, Blast2GO and InterProScan. Mreps was used to screen for simple sequence repeats (SSRs), with markers evaluated for polymorphism using 20 diploid (AA) M. acuminata accessions contrasting in resistance to Mycosphaerella leaf spot diseases. PRINCIPAL RESULTS A total of 9333 high-quality ESTs were obtained for MAC4 and 3964 for MACV, which assembled into 3995 unigenes. Of these, 2592 displayed homology to genes encoding proteins with known or putative function, and 266 to genes encoding proteins with unknown function. Gene ontology (GO) classification identified 543 GO terms, 2300 unigenes were assigned to EuKaryotic orthologous group categories and 312 mapped to Kyoto Encyclopedia of Genes and Genomes pathways. A total of 624 SSR loci were identified, with trinucleotide repeat motifs the most abundant in MAC4 (54.1 %) and MACV (57.6 %). Polymorphism across M. acuminata accessions was observed with 75 markers. Alleles per polymorphic locus ranged from 2 to 8, totalling 289. The polymorphism information content ranged from 0.08 to 0.81. CONCLUSIONS This EST collection offers a resource for studying functional genes, including transcripts expressed in banana-Mf interactions. Markers are applicable for genetic mapping, diversity characterization and marker-assisted breeding.
Collapse
Affiliation(s)
- Marco A. N. Passos
- Universidade de Brasília,
Campus Universitário Darcy Ribeiro,
Instituto de Ciências Biológicas, Asa
Norte, CEP 70910-900, Brasília, DF, Brazil
| | - Viviane de Oliveira Cruz
- Universidade de Brasília,
Campus Universitário Darcy Ribeiro,
Instituto de Ciências Biológicas, Asa
Norte, CEP 70910-900, Brasília, DF, Brazil
| | - Flavia L. Emediato
- Universidade de Brasília,
Campus Universitário Darcy Ribeiro,
Instituto de Ciências Biológicas, Asa
Norte, CEP 70910-900, Brasília, DF, Brazil
| | - Cristiane de Camargo Teixeira
- Postgraduate Program in Genomic Science and
Biotechnology, Universidade Católica de
Brasília, SGAN 916, Módulo B, CEP 70.790-160,
Brasília, DF, Brazil
| | - Manoel T. Souza
- EMBRAPA Recursos Genéticos e Biotecnologia,
Parque Estação Biológica, CP 02372, CEP 70.770-900, Brasília,
DF, Brazil
| | - Takashi Matsumoto
- National Institute of Agrobiological Resources,
Tsukuba 305-8602, Japan
| | - Vânia C. Rennó Azevedo
- EMBRAPA Recursos Genéticos e Biotecnologia,
Parque Estação Biológica, CP 02372, CEP 70.770-900, Brasília,
DF, Brazil
| | - Claudia F. Ferreira
- EMBRAPA Mandioca e Fruticultura Tropical, Rua
Embrapa, CEP 44380-000, Cruz das Almas, BA, Brazil
| | - Edson P. Amorim
- EMBRAPA Mandioca e Fruticultura Tropical, Rua
Embrapa, CEP 44380-000, Cruz das Almas, BA, Brazil
| | - Lucio Flavio de Alencar Figueiredo
- Universidade de Brasília,
Campus Universitário Darcy Ribeiro,
Instituto de Ciências Biológicas, Asa
Norte, CEP 70910-900, Brasília, DF, Brazil
| | - Natalia F. Martins
- EMBRAPA Recursos Genéticos e Biotecnologia,
Parque Estação Biológica, CP 02372, CEP 70.770-900, Brasília,
DF, Brazil
| | | | | | - Orzenil Bonfim da Silva
- EMBRAPA Recursos Genéticos e Biotecnologia,
Parque Estação Biológica, CP 02372, CEP 70.770-900, Brasília,
DF, Brazil
| | - Georgios J. Pappas
- Universidade de Brasília,
Campus Universitário Darcy Ribeiro,
Instituto de Ciências Biológicas, Asa
Norte, CEP 70910-900, Brasília, DF, Brazil
- EMBRAPA Recursos Genéticos e Biotecnologia,
Parque Estação Biológica, CP 02372, CEP 70.770-900, Brasília,
DF, Brazil
| | - Luc Pignolet
- CIRAD/UMR BGPI, TA A 54/K Campus International de
Baillarguet, 34398 Montpellier Cedex 5, France
| | - Catherine Abadie
- CIRAD/UMR BGPI, TA A 54/K Campus International de
Baillarguet, 34398 Montpellier Cedex 5, France
| | - Ana Y. Ciampi
- EMBRAPA Recursos Genéticos e Biotecnologia,
Parque Estação Biológica, CP 02372, CEP 70.770-900, Brasília,
DF, Brazil
| | - Pietro Piffanelli
- CIRAD/UMR DAP 1098, TA A 96/03 Avenue Agropolis,
34098 Montpellier Cedex 5, France
- Present address: Genomics
Platform at Parco Tecnologico Padano, Via Einstein, Località Cascina Codazza, 26900
Lodi, Italy
| | - Robert N. G. Miller
- Universidade de Brasília,
Campus Universitário Darcy Ribeiro,
Instituto de Ciências Biológicas, Asa
Norte, CEP 70910-900, Brasília, DF, Brazil
- Corresponding author's e-mail address:
| |
Collapse
|
15
|
Wu J, Gu YQ, Hu Y, You FM, Dandekar AM, Leslie CA, Aradhya M, Dvorak J, Luo MC. Characterizing the walnut genome through analyses of BAC end sequences. PLANT MOLECULAR BIOLOGY 2012; 78:95-107. [PMID: 22101470 DOI: 10.1007/s11103-011-9849-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 10/29/2011] [Indexed: 05/31/2023]
Abstract
Persian walnut (Juglans regia L.) is an economically important tree for its nut crop and timber. To gain insight into the structure and evolution of the walnut genome, we constructed two bacterial artificial chromosome (BAC) libraries, containing a total of 129,024 clones, from in vitro-grown shoots of J. regia cv. Chandler using the HindIII and MboI cloning sites. A total of 48,218 high-quality BAC end sequences (BESs) were generated, with an accumulated sequence length of 31.2 Mb, representing approximately 5.1% of the walnut genome. Analysis of repeat DNA content in BESs revealed that approximately 15.42% of the genome consists of known repetitive DNA, while walnut-unique repetitive DNA identified in this study constitutes 13.5% of the genome. Among the walnut-unique repetitive DNA, Julia SINE and JrTRIM elements represent the first identified walnut short interspersed element (SINE) and terminal-repeat retrotransposon in miniature (TRIM) element, respectively; both types of elements are abundant in the genome. As in other species, these SINEs and TRIM elements could be exploited for developing repeat DNA-based molecular markers in walnut. Simple sequence repeats (SSR) from BESs were analyzed and found to be more abundant in BESs than in expressed sequence tags. The density of SSR in the walnut genome analyzed was also slightly higher than that in poplar and papaya. Sequence analysis of BESs indicated that approximately 11.5% of the walnut genome represents a coding sequence. This study is an initial characterization of the walnut genome and provides the largest genomic resource currently available; as such, it will be a valuable tool in studies aimed at genetically improving walnut.
Collapse
Affiliation(s)
- Jiajie Wu
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Henry IM, Carpentier SC, Pampurova S, Van Hoylandt A, Panis B, Swennen R, Remy S. Structure and regulation of the Asr gene family in banana. PLANTA 2011; 234:785-98. [PMID: 21630042 PMCID: PMC3180632 DOI: 10.1007/s00425-011-1421-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 04/17/2011] [Indexed: 05/17/2023]
Abstract
Abscisic acid, stress, ripening proteins (ASR) are a family of plant-specific small hydrophilic proteins. Studies in various plant species have highlighted their role in increased resistance to abiotic stress, including drought, but their specific function remains unknown. As a first step toward their potential use in crop improvement, we investigated the structure and regulation of the Asr gene family in Musa species (bananas and plantains). We determined that the Musa Asr gene family contained at least four members, all of which exhibited the typical two exons, one intron structure of Asr genes and the "ABA/WDS" (abscisic acid/water deficit stress) domain characteristic of Asr genes. Phylogenetic analyses determined that the Musa Asr genes were closely related to each other, probably as the product of recent duplication events. For two of the four members, two versions corresponding to the two sub-genomes of Musa, acuminata and balbisiana were identified. Gene expression and protein analyses were performed and Asr expression could be detected in meristem cultures, root, pseudostem, leaf and cormus. In meristem cultures, mAsr1 and mAsr3 were induced by osmotic stress and wounding, while mAsr3 and mAsr4 were induced by exposure to ABA. mASR3 exhibited the most variation both in terms of amino acid sequence and expression pattern, making it the most promising candidate for further functional study and use in crop improvement.
Collapse
Affiliation(s)
- Isabelle M. Henry
- Division of Crop Biotechnics, Laboratory of Tropical Crop Improvement, K.U.Leuven, Kasteelpark Arenberg 13, Bus 2455, 3001 Leuven, Belgium
- Present Address: Department of Plant Biology and Genome Center, University of California Davis, 451 E. Health Sciences Drive, Davis, CA 95616 USA
| | - Sebastien C. Carpentier
- Division of Crop Biotechnics, Laboratory of Tropical Crop Improvement, K.U.Leuven, Kasteelpark Arenberg 13, Bus 2455, 3001 Leuven, Belgium
| | - Suzana Pampurova
- Division of Crop Biotechnics, Laboratory of Tropical Crop Improvement, K.U.Leuven, Kasteelpark Arenberg 13, Bus 2455, 3001 Leuven, Belgium
- VIB Department of Molecular Microbiology, Institute of Botany and Microbiology, K.U.Leuven Laboratory of Molecular Cell Biology, Kasteelpark Arenberg 31, Bus 2438, 3001 Leuven, Belgium
| | - Anais Van Hoylandt
- Division of Crop Biotechnics, Laboratory of Tropical Crop Improvement, K.U.Leuven, Kasteelpark Arenberg 13, Bus 2455, 3001 Leuven, Belgium
| | - Bart Panis
- Division of Crop Biotechnics, Laboratory of Tropical Crop Improvement, K.U.Leuven, Kasteelpark Arenberg 13, Bus 2455, 3001 Leuven, Belgium
| | - Rony Swennen
- Division of Crop Biotechnics, Laboratory of Tropical Crop Improvement, K.U.Leuven, Kasteelpark Arenberg 13, Bus 2455, 3001 Leuven, Belgium
- Bioversity International, Kasteelpark Arenberg 13, Bus 2455, 3001 Leuven, Belgium
| | - Serge Remy
- Division of Crop Biotechnics, Laboratory of Tropical Crop Improvement, K.U.Leuven, Kasteelpark Arenberg 13, Bus 2455, 3001 Leuven, Belgium
| |
Collapse
|
17
|
Ragupathy R, Rathinavelu R, Cloutier S. Physical mapping and BAC-end sequence analysis provide initial insights into the flax (Linum usitatissimum L.) genome. BMC Genomics 2011; 12:217. [PMID: 21554714 PMCID: PMC3113786 DOI: 10.1186/1471-2164-12-217] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 05/09/2011] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Flax (Linum usitatissimum L.) is an important source of oil rich in omega-3 fatty acids, which have proven health benefits and utility as an industrial raw material. Flax seeds also contain lignans which are associated with reducing the risk of certain types of cancer. Its bast fibres have broad industrial applications. However, genomic tools needed for molecular breeding were non existent. Hence a project, Total Utilization Flax GENomics (TUFGEN) was initiated. We report here the first genome-wide physical map of flax and the generation and analysis of BAC-end sequences (BES) from 43,776 clones, providing initial insights into the genome. RESULTS The physical map consists of 416 contigs spanning ~368 Mb, assembled from 32,025 fingerprints, representing roughly 54.5% to 99.4% of the estimated haploid genome (370-675 Mb). The N50 size of the contigs was estimated to be ~1,494 kb. The longest contig was ~5,562 kb comprising 437 clones. There were 96 contigs containing more than 100 clones. Approximately 54.6 Mb representing 8-14.8% of the genome was obtained from 80,337 BES. Annotation revealed that a large part of the genome consists of ribosomal DNA (~13.8%), followed by known transposable elements at 6.1%. Furthermore, ~7.4% of sequence was identified to harbour novel repeat elements. Homology searches against flax-ESTs and NCBI-ESTs suggested that ~5.6% of the transcriptome is unique to flax. A total of 4064 putative genomic SSRs were identified and are being developed as novel markers for their use in molecular breeding. CONCLUSION The first genome-wide physical map of flax constructed with BAC clones provides a framework for accessing target loci with economic importance for marker development and positional cloning. Analysis of the BES has provided insights into the uniqueness of the flax genome. Compared to other plant genomes, the proportion of rDNA was found to be very high whereas the proportion of known transposable elements was low. The SSRs identified from BES will be valuable in saturating existing linkage maps and for anchoring physical and genetic maps. The physical map and paired-end reads from BAC clones will also serve as scaffolds to build and validate the whole genome shotgun assembly.
Collapse
Affiliation(s)
- Raja Ragupathy
- Cereal Research Centre, Agriculture and Agri-Food Canada, 195 Dafoe Rd, Winnipeg, MB, R3T 2M9, Canada
| | - Rajkumar Rathinavelu
- Genomics & Bioinformatics Division, ITC Research & Development Centre, Bangalore, India
| | - Sylvie Cloutier
- Cereal Research Centre, Agriculture and Agri-Food Canada, 195 Dafoe Rd, Winnipeg, MB, R3T 2M9, Canada
- Department of Plant Science, University of Manitoba, 66 Dafoe Rd, Winnipeg, MB, R3T 2N2, Canada
| |
Collapse
|
18
|
Christelová P, Valárik M, Hřibová E, De Langhe E, Doležel J. A multi gene sequence-based phylogeny of the Musaceae (banana) family. BMC Evol Biol 2011; 11:103. [PMID: 21496296 PMCID: PMC3102628 DOI: 10.1186/1471-2148-11-103] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Accepted: 04/16/2011] [Indexed: 11/12/2022] Open
Abstract
Background The classification of the Musaceae (banana) family species and their phylogenetic inter-relationships remain controversial, in part due to limited nucleotide information to complement the morphological and physiological characters. In this work the evolutionary relationships within the Musaceae family were studied using 13 species and DNA sequences obtained from a set of 19 unlinked nuclear genes. Results The 19 gene sequences represented a sample of ~16 kb of genome sequence (~73% intronic). The sequence data were also used to obtain estimates for the divergence times of the Musaceae genera and Musa sections. Nucleotide variation within the sample confirmed the close relationship of Australimusa and Callimusa sections and showed that Eumusa and Rhodochlamys sections are not reciprocally monophyletic, which supports the previous claims for the merger between the two latter sections. Divergence time analysis supported the previous dating of the Musaceae crown age to the Cretaceous/Tertiary boundary (~ 69 Mya), and the evolution of Musa to ~50 Mya. The first estimates for the divergence times of the four Musa sections were also obtained. Conclusions The gene sequence-based phylogeny presented here provides a substantial insight into the course of speciation within the Musaceae. An understanding of the main phylogenetic relationships between banana species will help to fine-tune the taxonomy of Musaceae.
Collapse
Affiliation(s)
- Pavla Christelová
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Sokolovská 6, 772 00 Olomouc, Czech Republic
| | | | | | | | | |
Collapse
|
19
|
Bohra A, Dubey A, Saxena RK, Penmetsa RV, Poornima KN, Kumar N, Farmer AD, Srivani G, Upadhyaya HD, Gothalwal R, Ramesh S, Singh D, Saxena K, Kishor PBK, Singh NK, Town CD, May GD, Cook DR, Varshney RK. Analysis of BAC-end sequences (BESs) and development of BES-SSR markers for genetic mapping and hybrid purity assessment in pigeonpea (Cajanus spp.). BMC PLANT BIOLOGY 2011; 11:56. [PMID: 21447154 PMCID: PMC3079640 DOI: 10.1186/1471-2229-11-56] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2010] [Accepted: 03/29/2011] [Indexed: 05/20/2023]
Abstract
BACKGROUND Pigeonpea [Cajanus cajan (L.) Millsp.] is an important legume crop of rainfed agriculture. Despite of concerted research efforts directed to pigeonpea improvement, stagnated productivity of pigeonpea during last several decades may be accounted to prevalence of various biotic and abiotic constraints and the situation is exacerbated by availability of inadequate genomic resources to undertake any molecular breeding programme for accelerated crop improvement. With the objective of enhancing genomic resources for pigeonpea, this study reports for the first time, large scale development of SSR markers from BAC-end sequences and their subsequent use for genetic mapping and hybridity testing in pigeonpea. RESULTS A set of 88,860 BAC (bacterial artificial chromosome)-end sequences (BESs) were generated after constructing two BAC libraries by using HindIII (34,560 clones) and BamHI (34,560 clones) restriction enzymes. Clustering based on sequence identity of BESs yielded a set of >52K non-redundant sequences, comprising 35 Mbp or >4% of the pigeonpea genome. These sequences were analyzed to develop annotation lists and subdivide the BESs into genome fractions (e.g., genes, retroelements, transpons and non-annotated sequences). Parallel analysis of BESs for microsatellites or simple sequence repeats (SSRs) identified 18,149 SSRs, from which a set of 6,212 SSRs were selected for further analysis. A total of 3,072 novel SSR primer pairs were synthesized and tested for length polymorphism on a set of 22 parental genotypes of 13 mapping populations segregating for traits of interest. In total, we identified 842 polymorphic SSR markers that will have utility in pigeonpea improvement. Based on these markers, the first SSR-based genetic map comprising of 239 loci was developed for this previously uncharacterized genome. Utility of developed SSR markers was also demonstrated by identifying a set of 42 markers each for two hybrids (ICPH 2671 and ICPH 2438) for genetic purity assessment in commercial hybrid breeding programme. CONCLUSION In summary, while BAC libraries and BESs should be useful for genomics studies, BES-SSR markers, and the genetic map should be very useful for linking the genetic map with a future physical map as well as for molecular breeding in pigeonpea.
Collapse
Affiliation(s)
- Abhishek Bohra
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, 502324, India
- Department of Genetics, Osmania University, Hyderabad 500007, India
| | - Anuja Dubey
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, 502324, India
- Department of Biotechnology and Bioinformatics Centre, Barkatullah University, Bhopal 462026, India
| | - Rachit K Saxena
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, 502324, India
- Department of Genetics, Osmania University, Hyderabad 500007, India
| | - R Varma Penmetsa
- Department of Plant Pathology, University of California, Davis, CA 95616, USA
| | - KN Poornima
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, 502324, India
- Department of Biotechnology, University of Agricultural Sciences (UAS), Bangalore 560065, India
| | - Naresh Kumar
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, 502324, India
- Department of Plant Breeding and Genetics, CCS Haryana Agricultural University (CCSHAU), Hisar 125004, India
| | - Andrew D Farmer
- National Center for Genome Resources (NCGR), Santa Fe, N M 87505, USA
| | - Gudipati Srivani
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, 502324, India
| | - Hari D Upadhyaya
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, 502324, India
| | - Ragini Gothalwal
- Department of Biotechnology and Bioinformatics Centre, Barkatullah University, Bhopal 462026, India
| | - S Ramesh
- Department of Biotechnology, University of Agricultural Sciences (UAS), Bangalore 560065, India
| | - Dhiraj Singh
- Department of Plant Breeding and Genetics, CCS Haryana Agricultural University (CCSHAU), Hisar 125004, India
| | - Kulbhushan Saxena
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, 502324, India
| | - PB Kavi Kishor
- Department of Genetics, Osmania University, Hyderabad 500007, India
| | - Nagendra K Singh
- National Research Center on Plant Biotechnology (NRCPB), New Delhi 110012, India
| | | | - Gregory D May
- National Center for Genome Resources (NCGR), Santa Fe, N M 87505, USA
| | - Douglas R Cook
- Department of Plant Pathology, University of California, Davis, CA 95616, USA
| | - Rajeev K Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, 502324, India
- Generation Challenge Programme (GCP), c/o CIMMYT, 06600 Mexico DF, Mexico
| |
Collapse
|
20
|
Genomic resources in horticultural crops: Status, utility and challenges. Biotechnol Adv 2011; 29:199-209. [DOI: 10.1016/j.biotechadv.2010.11.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2010] [Revised: 09/04/2010] [Accepted: 09/26/2010] [Indexed: 01/02/2023]
|
21
|
Hsu CC, Chung YL, Chen TC, Lee YL, Kuo YT, Tsai WC, Hsiao YY, Chen YW, Wu WL, Chen HH. An overview of the Phalaenopsis orchid genome through BAC end sequence analysis. BMC PLANT BIOLOGY 2011; 11:3. [PMID: 21208460 PMCID: PMC3027094 DOI: 10.1186/1471-2229-11-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Accepted: 01/06/2011] [Indexed: 05/03/2023]
Abstract
BACKGROUND Phalaenopsis orchids are popular floral crops, and development of new cultivars is economically important to floricultural industries worldwide. Analysis of orchid genes could facilitate orchid improvement. Bacterial artificial chromosome (BAC) end sequences (BESs) can provide the first glimpses into the sequence composition of a novel genome and can yield molecular markers for use in genetic mapping and breeding. RESULTS We used two BAC libraries (constructed using the BamHI and HindIII restriction enzymes) of Phalaenopsis equestris to generate pair-end sequences from 2,920 BAC clones (71.4% and 28.6% from the BamHI and HindIII libraries, respectively), at a success rate of 95.7%. A total of 5,535 BESs were generated, representing 4.5 Mb, or about 0.3% of the Phalaenopsis genome. The trimmed sequences ranged from 123 to 1,397 base pairs (bp) in size, with an average edited read length of 821 bp. When these BESs were subjected to sequence homology searches, it was found that 641 (11.6%) were predicted to represent protein-encoding regions, whereas 1,272 (23.0%) contained repetitive DNA. Most of the repetitive DNA sequences were gypsy- and copia-like retrotransposons (41.9% and 12.8%, respectively), whereas only 10.8% were DNA transposons. Further, 950 potential simple sequence repeats (SSRs) were discovered. Dinucleotides were the most abundant repeat motifs; AT/TA dimer repeats were the most frequent SSRs, representing 253 (26.6%) of all identified SSRs. Microsynteny analysis revealed that more BESs mapped to the whole-genome sequences of poplar than to those of grape or Arabidopsis, and even fewer mapped to the rice genome. This work will facilitate analysis of the Phalaenopsis genome, and will help clarify similarities and differences in genome composition between orchids and other plant species. CONCLUSION Using BES analysis, we obtained an overview of the Phalaenopsis genome in terms of gene abundance, the presence of repetitive DNA and SSR markers, and the extent of microsynteny with other plant species. This work provides a basis for future physical mapping of the Phalaenopsis genome and advances our knowledge thereof.
Collapse
Affiliation(s)
- Chia-Chi Hsu
- Department of Life Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Yu-Lin Chung
- Department of Life Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Tien-Chih Chen
- Department of Life Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Yu-Ling Lee
- Department of Life Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Yi-Tzu Kuo
- Department of Life Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Wen-Chieh Tsai
- Institute of Tropical Plant Sciences, National Cheng Kung University, Tainan 701, Taiwan
- Orchid Research Center, National Cheng Kung University, Tainan 701, Taiwan
| | - Yu-Yun Hsiao
- Department of Life Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Yun-Wen Chen
- Department of Life Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Wen-Luan Wu
- Department of Life Sciences, National Cheng Kung University, Tainan 701, Taiwan
- Institute of Tropical Plant Sciences, National Cheng Kung University, Tainan 701, Taiwan
- Orchid Research Center, National Cheng Kung University, Tainan 701, Taiwan
| | - Hong-Hwa Chen
- Department of Life Sciences, National Cheng Kung University, Tainan 701, Taiwan
- Institute of Tropical Plant Sciences, National Cheng Kung University, Tainan 701, Taiwan
- Orchid Research Center, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
22
|
González VM, Rodríguez-Moreno L, Centeno E, Benjak A, Garcia-Mas J, Puigdomènech P, Aranda MA. Genome-wide BAC-end sequencing of Cucumis melo using two BAC libraries. BMC Genomics 2010; 11:618. [PMID: 21054843 PMCID: PMC3091759 DOI: 10.1186/1471-2164-11-618] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 11/05/2010] [Indexed: 11/10/2022] Open
Abstract
Background Although melon (Cucumis melo L.) is an economically important fruit crop, no genome-wide sequence information is openly available at the current time. We therefore sequenced BAC-ends representing a total of 33,024 clones, half of them from a previously described melon BAC library generated with restriction endonucleases and the remainder from a new random-shear BAC library. Results We generated a total of 47,140 high-quality BAC-end sequences (BES), 91.7% of which were paired-BES. Both libraries were assembled independently and then cross-assembled to obtain a final set of 33,372 non-redundant, high-quality sequences. These were grouped into 6,411 contigs (4.5 Mb) and 26,961 non-assembled BES (14.4 Mb), representing ~4.2% of the melon genome. The sequences were used to screen genomic databases, identifying 7,198 simple sequence repeats (corresponding to one microsatellite every 2.6 kb) and 2,484 additional repeats of which 95.9% represented transposable elements. The sequences were also used to screen expressed sequence tag (EST) databases, revealing 11,372 BES that were homologous to ESTs. This suggests that ~30% of the melon genome consists of coding DNA. We observed regions of microsynteny between melon paired-BES and six other dicotyledonous plant genomes. Conclusion The analysis of nearly 50,000 BES from two complementary genomic libraries covered ~4.2% of the melon genome, providing insight into properties such as microsatellite and transposable element distribution, and the percentage of coding DNA. The observed synteny between melon paired-BES and six other plant genomes showed that useful comparative genomic data can be derived through large scale BAC-end sequencing by anchoring a small proportion of the melon genome to other sequenced genomes.
Collapse
Affiliation(s)
- Víctor M González
- Molecular Genetics Department, Center for Research in Agricultural Genomics CRAG (CSIC-IRTA-UAB), Jordi Girona, 18-26, 08034 Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
23
|
Hřibová E, Neumann P, Matsumoto T, Roux N, Macas J, Doležel J. Repetitive part of the banana (Musa acuminata) genome investigated by low-depth 454 sequencing. BMC PLANT BIOLOGY 2010; 10:204. [PMID: 20846365 PMCID: PMC2956553 DOI: 10.1186/1471-2229-10-204] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Accepted: 09/16/2010] [Indexed: 05/18/2023]
Abstract
BACKGROUND Bananas and plantains (Musa spp.) are grown in more than a hundred tropical and subtropical countries and provide staple food for hundreds of millions of people. They are seed-sterile crops propagated clonally and this makes them vulnerable to a rapid spread of devastating diseases and at the same time hampers breeding improved cultivars. Although the socio-economic importance of bananas and plantains cannot be overestimated, they remain outside the focus of major research programs. This slows down the study of nuclear genome and the development of molecular tools to facilitate banana improvement. RESULTS In this work, we report on the first thorough characterization of the repeat component of the banana (M. acuminata cv. 'Calcutta 4') genome. Analysis of almost 100 Mb of sequence data (0.15× genome coverage) permitted partial sequence reconstruction and characterization of repetitive DNA, making up about 30% of the genome. The results showed that the banana repeats are predominantly made of various types of Ty1/copia and Ty3/gypsy retroelements representing 16 and 7% of the genome respectively. On the other hand, DNA transposons were found to be rare. In addition to new families of transposable elements, two new satellite repeats were discovered and found useful as cytogenetic markers. To help in banana sequence annotation, a specific Musa repeat database was created, and its utility was demonstrated by analyzing the repeat composition of 62 genomic BAC clones. CONCLUSION A low-depth 454 sequencing of banana nuclear genome provided the largest amount of DNA sequence data available until now for Musa and permitted reconstruction of most of the major types of DNA repeats. The information obtained in this study improves the knowledge of the long-range organization of banana chromosomes, and provides sequence resources needed for repeat masking and annotation during the Musa genome sequencing project. It also provides sequence data for isolation of DNA markers to be used in genetic diversity studies and in marker-assisted selection.
Collapse
Affiliation(s)
- Eva Hřibová
- Laboratory of Molecular Cytogenetics and Cytometry, Institute of Experimental Botany, Sokolovská 6, Olomouc, CZ-77200, Czech Republic
| | - Pavel Neumann
- Biology Centre ASCR, Institute of Plant Molecular Biology, Branišovská 31, České Budĕjovice, CZ-37005, Czech Republic
| | - Takashi Matsumoto
- National Institute of Agrobiological Sciences, Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Nicolas Roux
- Commodities for Livelihoods Programme, Bioversity International, Parc Scientifique Agropolis II, 34397 Montpellier Cedex 5, France
| | - Jiří Macas
- Biology Centre ASCR, Institute of Plant Molecular Biology, Branišovská 31, České Budĕjovice, CZ-37005, Czech Republic
| | - Jaroslav Doležel
- Laboratory of Molecular Cytogenetics and Cytometry, Institute of Experimental Botany, Sokolovská 6, Olomouc, CZ-77200, Czech Republic
| |
Collapse
|
24
|
Baurens FC, Bocs S, Rouard M, Matsumoto T, Miller RNG, Rodier-Goud M, MBéguié-A-MBéguié D, Yahiaoui N. Mechanisms of haplotype divergence at the RGA08 nucleotide-binding leucine-rich repeat gene locus in wild banana (Musa balbisiana). BMC PLANT BIOLOGY 2010; 10:149. [PMID: 20637079 PMCID: PMC3017797 DOI: 10.1186/1471-2229-10-149] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Accepted: 07/16/2010] [Indexed: 05/09/2023]
Abstract
BACKGROUND Comparative sequence analysis of complex loci such as resistance gene analog clusters allows estimating the degree of sequence conservation and mechanisms of divergence at the intraspecies level. In banana (Musa sp.), two diploid wild species Musa acuminata (A genome) and Musa balbisiana (B genome) contribute to the polyploid genome of many cultivars. The M. balbisiana species is associated with vigour and tolerance to pests and disease and little is known on the genome structure and haplotype diversity within this species. Here, we compare two genomic sequences of 253 and 223 kb corresponding to two haplotypes of the RGA08 resistance gene analog locus in M. balbisiana "Pisang Klutuk Wulung" (PKW). RESULTS Sequence comparison revealed two regions of contrasting features. The first is a highly colinear gene-rich region where the two haplotypes diverge only by single nucleotide polymorphisms and two repetitive element insertions. The second corresponds to a large cluster of RGA08 genes, with 13 and 18 predicted RGA genes and pseudogenes spread over 131 and 152 kb respectively on each haplotype. The RGA08 cluster is enriched in repetitive element insertions, in duplicated non-coding intergenic sequences including low complexity regions and shows structural variations between haplotypes. Although some allelic relationships are retained, a large diversity of RGA08 genes occurs in this single M. balbisiana genotype, with several RGA08 paralogs specific to each haplotype. The RGA08 gene family has evolved by mechanisms of unequal recombination, intragenic sequence exchange and diversifying selection. An unequal recombination event taking place between duplicated non-coding intergenic sequences resulted in a different RGA08 gene content between haplotypes pointing out the role of such duplicated regions in the evolution of RGA clusters. Based on the synonymous substitution rate in coding sequences, we estimated a 1 million year divergence time for these M. balbisiana haplotypes. CONCLUSIONS A large RGA08 gene cluster identified in wild banana corresponds to a highly variable genomic region between haplotypes surrounded by conserved flanking regions. High level of sequence identity (70 to 99%) of the genic and intergenic regions suggests a recent and rapid evolution of this cluster in M. balbisiana.
Collapse
Affiliation(s)
| | - Stéphanie Bocs
- CIRAD, UMR DAP, TA A-96/03, Avenue Agropolis, F-34398 Montpellier Cedex 5, France
| | - Mathieu Rouard
- Bioversity International, Parc Scientifique Agropolis II, F-34397 Montpellier Cedex 5, France
| | - Takashi Matsumoto
- Rice Genome Research Program (RGP), National Institute of Agrobiological Sciences (NIAS)/Institute of the Society for Techno-innovation of Agriculture, Forestry and Fisheries, Tsukuba, Ibaraki 305-8602, Japan
| | - Robert NG Miller
- Postgraduate program in Genomic Science and Biotechnology, Universidade Católica de Brasília, SGAN 916, Módulo B, CEP 70.790-160, Brasília, DF, Brazil
- Universidade de Brasília, Campus Universitário Darcy Ribeiro, Instituto de Ciências Biológicas, Departamento de Biologia Celular, Asa Norte, Brasília, Brazil
| | | | | | - Nabila Yahiaoui
- CIRAD, UMR DAP, TA A-96/03, Avenue Agropolis, F-34398 Montpellier Cedex 5, France
| |
Collapse
|
25
|
Miller RN, Passos MA, Menezes NN, Souza MT, do Carmo Costa MM, Rennó Azevedo VC, Amorim EP, Pappas GJ, Ciampi AY. Characterization of novel microsatellite markers in Musa acuminata subsp. burmannicoides, var. Calcutta 4. BMC Res Notes 2010; 3:148. [PMID: 20507605 PMCID: PMC2893197 DOI: 10.1186/1756-0500-3-148] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 05/27/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Banana is a nutritionally important crop across tropical and sub-tropical countries in sub-Saharan Africa, Central and South America and Asia. Although cultivars have evolved from diploid, triploid and tetraploid wild Asian species of Musa acuminata (A genome) and Musa balbisiana (B genome), many of today's commercial cultivars are sterile triploids or diploids, with fruit developing via parthenocarpy. As a result of restricted genetic variation, improvement has been limited, resulting in a crop frequently lacking resistance to pests and disease. Considering the importance of molecular tools to facilitate development of disease resistant genotypes, the objectives of this study were to develop polymorphic microsatellite markers from BAC clone sequences for M. acuminata subsp. burmannicoides, var. Calcutta 4. This wild diploid species is used as a donor cultivar in breeding programs as a source of resistance to diverse biotic stresses. FINDINGS Microsatellite sequences were identified from five Calcutta 4 BAC consensi datasets. Specific primers were designed for 41 loci. Isolated di-nucleotide repeat motifs were the most abundant, followed by tri-nucleotides. From 33 tested loci, 20 displayed polymorphism when screened across 21 diploid M. acuminata accessions, contrasting in resistance to Sigatoka diseases. The number of alleles per SSR locus ranged from two to four, with a total of 56. Six repeat classes were identified, with di-nucleotides the most abundant. Expected heterozygosity values for polymorphic markers ranged from 0.31 to 0.75. CONCLUSIONS This is the first report identifying polymorphic microsatellite markers from M. acuminata subsp. burmannicoides, var. Calcutta 4 across accessions contrasting in resistance to Sigatoka diseases. These BAC-derived polymorphic microsatellite markers are a useful resource for banana, applicable for genetic map development, germplasm characterization, evolutionary studies and marker assisted selection for traits.
Collapse
Affiliation(s)
- Robert Ng Miller
- Universidade de Brasília, Campus Universitário Darcy Ribeiro, Instituto de Ciências Biológicas, Departamento de Biologia Celular, Asa Norte, Brasília, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Davey MW, Graham NS, Vanholme B, Swennen R, May ST, Keulemans J. Heterologous oligonucleotide microarrays for transcriptomics in a non-model species; a proof-of-concept study of drought stress in Musa. BMC Genomics 2009; 10:436. [PMID: 19758430 PMCID: PMC2761422 DOI: 10.1186/1471-2164-10-436] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Accepted: 09/16/2009] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND 'Systems-wide' approaches such as microarray RNA-profiling are ideally suited to the study of the complex overlapping responses of plants to biotic and abiotic stresses. However, commercial microarrays are only available for a limited number of plant species and development costs are so substantial as to be prohibitive for most research groups. Here we evaluate the use of cross-hybridisation to Affymetrix oligonucleotide GeneChip(R) microarrays to profile the response of the banana (Musa spp.) leaf transcriptome to drought stress using a genomic DNA (gDNA)-based probe-selection strategy to improve the efficiency of detection of differentially expressed Musa transcripts. RESULTS Following cross-hybridisation of Musa gDNA to the Rice GeneChip(R) Genome Array, ~33,700 gene-specific probe-sets had a sufficiently high degree of homology to be retained for transcriptomic analyses. In a proof-of-concept approach, pooled RNA representing a single biological replicate of control and drought stressed leaves of the Musa cultivar 'Cachaco' were hybridised to the Affymetrix Rice Genome Array. A total of 2,910 Musa gene homologues with a >2-fold difference in expression levels were subsequently identified. These drought-responsive transcripts included many functional classes associated with plant biotic and abiotic stress responses, as well as a range of regulatory genes known to be involved in coordinating abiotic stress responses. This latter group included members of the ERF, DREB, MYB, bZIP and bHLH transcription factor families. Fifty-two of these drought-sensitive Musa transcripts were homologous to genes underlying QTLs for drought and cold tolerance in rice, including in 2 instances QTLs associated with a single underlying gene. The list of drought-responsive transcripts also included genes identified in publicly-available comparative transcriptomics experiments. CONCLUSION Our results demonstrate that despite the general paucity of nucleotide sequence data in Musa and only distant phylogenetic relations to rice, gDNA probe-based cross-hybridisation to the Rice GeneChip(R) is a highly promising strategy to study complex biological responses and illustrates the potential of such strategies for gene discovery in non-model species.
Collapse
Affiliation(s)
- Mark W Davey
- Laboratory for Fruit Breeding and Biotechnology, Department of Biosystems, Katholieke Universiteit Leuven, Box 2747, Willem De Croylaan 42, B-3001, Heverlee, Leuven, Belgium
| | - Neil S Graham
- Nottingham Arabidopsis Stock Centre, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Bartel Vanholme
- Department of Plant Systems Biology, VIB, and Department of Molecular Genetics, Universiteit Gent, Technologiepark 927, B-9052 Gent, Belgium
| | - Rony Swennen
- Department of Biosystems, Katholieke Universiteit Leuven, Kasteelpark Arenberg 13 Box 2455, B - 3001 Leuven, Belgium
| | - Sean T May
- Nottingham Arabidopsis Stock Centre, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Johan Keulemans
- Laboratory for Fruit Breeding and Biotechnology, Department of Biosystems, Katholieke Universiteit Leuven, Box 2747, Willem De Croylaan 42, B-3001, Heverlee, Leuven, Belgium
| |
Collapse
|
27
|
BAC end sequences corresponding to the B4 resistance gene cluster in common bean: a resource for markers and synteny analyses. Mol Genet Genomics 2008; 280:521-33. [PMID: 18813956 DOI: 10.1007/s00438-008-0384-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Accepted: 09/06/2008] [Indexed: 10/21/2022]
Abstract
In common bean, a complex disease resistance (R) gene cluster, harboring many specific R genes against various pathogens, is located at the end of the linkage group B4. A BAC library of the Meso-american bean genotype BAT93 was screened with PRLJ1, a probe previously shown to be specific to the B4 R gene cluster, leading to the identification of 73 positive BAC clones. BAC-end sequencing (BES) of the 73 positive BACs generated 75 kb of sequence. These BACs were organized into 6 contigs, all mapped at the B4 R gene cluster. To evaluate the potential of BES for marker development, BES-derived specific primers were used to check for linkage with two allelic anthracnose R specificities Co-3 and Co-3 ( 2 ), through the analysis of pairs of Near Isogenic Lines (NILs). Out of 32 primer pairs tested, two revealed polymorphisms between the NILs, confirming the suspected location of Co-3 and Co-3 ( 2 ) at the B4 cluster. In order to identify the orthologous region of the B4 R gene cluster in the two model legume genomes, bean BESs were used as queries in TBLASTX searches of Medicago truncatula and Lotus japonicus BAC clones. Putative orthologous regions were identified on chromosome Mt6 and Lj2, in agreement with the colinearity observed between Mt and Lj for these regions.
Collapse
|
28
|
Terol J, Naranjo MA, Ollitrault P, Talon M. Development of genomic resources for Citrus clementina: characterization of three deep-coverage BAC libraries and analysis of 46,000 BAC end sequences. BMC Genomics 2008; 9:423. [PMID: 18801166 PMCID: PMC2561056 DOI: 10.1186/1471-2164-9-423] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Accepted: 09/18/2008] [Indexed: 11/24/2022] Open
Abstract
Background Citrus species constitute one of the major tree fruit crops of the subtropical regions with great economic importance. However, their peculiar reproductive characteristics, low genetic diversity and the long-term nature of tree breeding mostly impair citrus variety improvement. In woody plants, genomic science holds promise of improvements and in the Citrus genera the development of genomic tools may be crucial for further crop improvements. In this work we report the characterization of three BAC libraries from Clementine (Citrus clementina), one of the most relevant citrus fresh fruit market cultivars, and the analyses of 46.000 BAC end sequences. Clementine is a diploid plant with an estimated haploid genome size of 367 Mb and 2n = 18 chromosomes, which makes feasible the use of genomics tools to boost genetic improvement. Results Three genomic BAC libraries of Citrus clementina were constructed through EcoRI, MboI and HindIII digestions and 56,000 clones, representing an estimated genomic coverage of 19.5 haploid genome-equivalents, were picked. BAC end sequencing (BES) of 28,000 clones produced 28.1 Mb of genomic sequence that allowed the identification of the repetitive fraction (12.5% of the genome) and estimation of gene content (31,000 genes) of this species. BES analyses identified 3,800 SSRs and 6,617 putative SNPs. Comparative genomic studies showed that citrus gene homology and microsyntheny with Populus trichocarpa was rather higher than with Arabidopsis thaliana, a species phylogenetically closer to citrus. Conclusion In this work, we report the characterization of three BAC libraries from C. clementina, and a new set of genomic resources that may be useful for isolation of genes underlying economically important traits, physical mapping and eventually crop improvement in Citrus species. In addition, BAC end sequencing has provided a first insight on the basic structure and organization of the citrus genome and has yielded valuable molecular markers for genetic mapping and cloning of genes of agricultural interest. Paired end sequences also may be very helpful for whole-genome sequencing programs.
Collapse
Affiliation(s)
- Javier Terol
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias, Carretera Moncada, Náquera, Km. 4,5 Moncada, Valencia, E46113, Spain.
| | | | | | | |
Collapse
|
29
|
Han Y, Korban SS. An overview of the apple genome through BAC end sequence analysis. PLANT MOLECULAR BIOLOGY 2008; 67:581-8. [PMID: 18521706 DOI: 10.1007/s11103-008-9321-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Accepted: 03/14/2008] [Indexed: 05/10/2023]
Abstract
The apple, Malus x domestica Borkh., is one of the most important fruit trees grown worldwide. A bacterial artificial chromosome (BAC)-based physical map of the apple genome has been recently constructed. Based on this physical map, a total of approximately 2,100 clones from different contigs (overlapping BAC clones) have been selected and sequenced at both ends, generating 3,744 high-quality BAC end sequences (BESs) including 1,717 BAC end pairs. Approximately 8.5% of BESs contain simple sequence repeats (SSRs), most of which are AT/TA dimer repeats. Potential transposable elements are identified in approximately 21% of BESs, and most of these elements are retrotransposons. About 11% of BESs have homology to the Arabidopsis protein database. The matched proteins cover a broad range of categories. The average GC content of the predicted coding regions of BESs is 42.4%; while, that of the whole BESs is 39%. A small number of BES pairs were mapped to neighboring chromosome regions of A. thaliana and Populus trichocarpa; whereas, no pairs are mapped to the Oryza sativa genome. The apple has a higher degree of synteny with the closely related Populus than with the distantly related Arabidopsis. BAC end sequencing can be used to anchor a small proportion of the apple genome to the Populus and possibly to the Arabidopsis genomes.
Collapse
Affiliation(s)
- Yuepeng Han
- Department of Natural Resources and Environmental Sciences, University of Illinois, Urbana, IL 61801, USA
| | | |
Collapse
|
30
|
Datema E, Mueller LA, Buels R, Giovannoni JJ, Visser RGF, Stiekema WJ, van Ham RCHJ. Comparative BAC end sequence analysis of tomato and potato reveals overrepresentation of specific gene families in potato. BMC PLANT BIOLOGY 2008; 8:34. [PMID: 18405374 PMCID: PMC2324086 DOI: 10.1186/1471-2229-8-34] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2007] [Accepted: 04/11/2008] [Indexed: 05/18/2023]
Abstract
BACKGROUND Tomato (Solanum lycopersicon) and potato (S. tuberosum) are two economically important crop species, the genomes of which are currently being sequenced. This study presents a first genome-wide analysis of these two species, based on two large collections of BAC end sequences representing approximately 19% of the tomato genome and 10% of the potato genome. RESULTS The tomato genome has a higher repeat content than the potato genome, primarily due to a higher number of retrotransposon insertions in the tomato genome. On the other hand, simple sequence repeats are more abundant in potato than in tomato. The two genomes also differ in the frequency distribution of SSR motifs. Based on EST and protein alignments, potato appears to contain up to 6,400 more putative coding regions than tomato. Major gene families such as cytochrome P450 mono-oxygenases and serine-threonine protein kinases are significantly overrepresented in potato, compared to tomato. Moreover, the P450 superfamily appears to have expanded spectacularly in both species compared to Arabidopsis thaliana, suggesting an expanded network of secondary metabolic pathways in the Solanaceae. Both tomato and potato appear to have a low level of microsynteny with A. thaliana. A higher degree of synteny was observed with Populus trichocarpa, specifically in the region between 15.2 and 19.4 Mb on P. trichocarpa chromosome 10. CONCLUSION The findings in this paper present a first glimpse into the evolution of Solanaceous genomes, both within the family and relative to other plant species. When the complete genome sequences of these species become available, whole-genome comparisons and protein- or repeat-family specific studies may shed more light on the observations made here.
Collapse
Affiliation(s)
- Erwin Datema
- Applied Bioinformatics, Plant Research International, PO Box 16, 6700 AA, Wageningen, The Netherlands
- Laboratory of Bioinformatics, Wageningen University, Transitorium, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands
| | - Lukas A Mueller
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, New York 14853, USA
| | - Robert Buels
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, New York 14853, USA
| | - James J Giovannoni
- United States Department of Agriculture and Boyce Thompson Institute for Plant, Research, Cornell University, Ithaca, New York 14853, USA
| | - Richard GF Visser
- Laboratory of Plant Breeding, Wageningen University, P.O. Box 386, 6700 AJ Wageningen, The Netherlands
| | - Willem J Stiekema
- Laboratory of Bioinformatics, Wageningen University, Transitorium, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands
- Centre for BioSystems Genomics (CBSG), PO Box 98, 6700 AB Wageningen, The Netherlands
| | - Roeland CHJ van Ham
- Applied Bioinformatics, Plant Research International, PO Box 16, 6700 AA, Wageningen, The Netherlands
- Laboratory of Bioinformatics, Wageningen University, Transitorium, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands
| |
Collapse
|
31
|
Hribová E, Dolezelová M, Town CD, Macas J, Dolezel J. Isolation and characterization of the highly repeated fraction of the banana genome. Cytogenet Genome Res 2008; 119:268-74. [PMID: 18253041 DOI: 10.1159/000112073] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2007] [Indexed: 01/04/2023] Open
Abstract
Although the nuclear genome of banana (Musa spp.) is relatively small (1C approximately 610 Mbp for M. acuminata), the results obtained from other sequenced genomes suggest that more than half of the banana genome may be composed of repetitive and non-coding DNA sequences. Knowledge of repetitive DNA can facilitate mapping of important traits, phylogenetic studies, BAC-based physical mapping, and genome sequencing/annotation. However, only a few repetitive DNA sequences have been characterized in banana. In this work, we used DNA reassociation kinetics to isolate the highly repeated fraction of the banana genome (M. acuminata 'Calcutta 4'). Two libraries, one prepared from Cot </=0.05 DNA (2,688 clones) and one from Cot </=0.1 sequences (4,608 clones), were constructed, and 614 DNA clones were chosen randomly for sequencing and further characterization. Dot-plot analysis revealed that 14% of the sequenced clones contained various semi-tandem and palindromic repeated sequences. 'BLAST' homology searches showed that, in addition to tandem repeats, the Cot libraries were composed mainly of different types of retrotransposons, the most frequent being the Ty3/gypsy type monkey retrotransposon. Selected sequences displaying tandem organization properties were mapped by PRimed IN Situ DNA labeling (PRINS) to the secondary constriction on metaphase chromosomes of M. acuminata 'Calcutta 4'. Southern hybridization with selected BAC clones carrying 45S rDNA confirmed the presence of the tandem repeats in the 45S rDNA unit. This work significantly expands the knowledge of the repetitive fraction of the Musa genome and organization of its chromosomes.
Collapse
Affiliation(s)
- E Hribová
- Laboratory of Molecular Cytogenetics and Cytometry, Institute of Experimental Botany, Olomouc, Czech Republic
| | | | | | | | | |
Collapse
|
32
|
Lescot M, Piffanelli P, Ciampi AY, Ruiz M, Blanc G, Leebens-Mack J, da Silva FR, Santos CMR, D'Hont A, Garsmeur O, Vilarinhos AD, Kanamori H, Matsumoto T, Ronning CM, Cheung F, Haas BJ, Althoff R, Arbogast T, Hine E, Pappas GJ, Sasaki T, Souza MT, Miller RNG, Glaszmann JC, Town CD. Insights into the Musa genome: syntenic relationships to rice and between Musa species. BMC Genomics 2008; 9:58. [PMID: 18234080 PMCID: PMC2270835 DOI: 10.1186/1471-2164-9-58] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Accepted: 01/30/2008] [Indexed: 01/10/2023] Open
Abstract
Background Musa species (Zingiberaceae, Zingiberales) including bananas and plantains are collectively the fourth most important crop in developing countries. Knowledge concerning Musa genome structure and the origin of distinct cultivars has greatly increased over the last few years. Until now, however, no large-scale analyses of Musa genomic sequence have been conducted. This study compares genomic sequence in two Musa species with orthologous regions in the rice genome. Results We produced 1.4 Mb of Musa sequence from 13 BAC clones, annotated and analyzed them along with 4 previously sequenced BACs. The 443 predicted genes revealed that Zingiberales genes share GC content and distribution characteristics with eudicot and Poaceae genomes. Comparison with rice revealed microsynteny regions that have persisted since the divergence of the Commelinid orders Poales and Zingiberales at least 117 Mya. The previously hypothesized large-scale duplication event in the common ancestor of major cereal lineages within the Poaceae was verified. The divergence time distributions for Musa-Zingiber (Zingiberaceae, Zingiberales) orthologs and paralogs provide strong evidence for a large-scale duplication event in the Musa lineage after its divergence from the Zingiberaceae approximately 61 Mya. Comparisons of genomic regions from M. acuminata and M. balbisiana revealed highly conserved genome structure, and indicated that these genomes diverged circa 4.6 Mya. Conclusion These results point to the utility of comparative analyses between distantly-related monocot species such as rice and Musa for improving our understanding of monocot genome evolution. Sequencing the genome of M. acuminata would provide a strong foundation for comparative genomics in the monocots. In addition a genome sequence would aid genomic and genetic analyses of cultivated Musa polyploid genotypes in research aimed at localizing and cloning genes controlling important agronomic traits for breeding purposes.
Collapse
Affiliation(s)
- Magali Lescot
- French Agricultural Research Center for International Development, UMR 1096, Avenue Agropolis, TA40/03, FR-34398, Montpellier, Cedex 5, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Heslop-Harrison JS, Schwarzacher T. Domestication, genomics and the future for banana. ANNALS OF BOTANY 2007; 100:1073-84. [PMID: 17766312 PMCID: PMC2759213 DOI: 10.1093/aob/mcm191] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Revised: 07/22/2007] [Accepted: 07/25/2007] [Indexed: 05/17/2023]
Abstract
BACKGROUND Cultivated bananas and plantains are giant herbaceous plants within the genus Musa. They are both sterile and parthenocarpic so the fruit develops without seed. The cultivated hybrids and species are mostly triploid (2n = 3x = 33; a few are diploid or tetraploid), and most have been propagated from mutants found in the wild. With a production of 100 million tons annually, banana is a staple food across the Asian, African and American tropics, with the 15 % that is exported being important to many economies. SCOPE There are well over a thousand domesticated Musa cultivars and their genetic diversity is high, indicating multiple origins from different wild hybrids between two principle ancestral species. However, the difficulty of genetics and sterility of the crop has meant that the development of new varieties through hybridization, mutation or transformation was not very successful in the 20th century. Knowledge of structural and functional genomics and genes, reproductive physiology, cytogenetics, and comparative genomics with rice, Arabidopsis and other model species has increased our understanding of Musa and its diversity enormously. CONCLUSIONS There are major challenges to banana production from virulent diseases, abiotic stresses and new demands for sustainability, quality, transport and yield. Within the genepool of cultivars and wild species there are genetic resistances to many stresses. Genomic approaches are now rapidly advancing in Musa and have the prospect of helping enable banana to maintain and increase its importance as a staple food and cash crop through integration of genetical, evolutionary and structural data, allowing targeted breeding, transformation and efficient use of Musa biodiversity in the future.
Collapse
|