1
|
Liu C, Fu S, Yi C, Liu Y, Huang Y, Guo X, Zhang K, Liu Q, Birchler JA, Han F. Unveiling the distinctive traits of functional rye centromeres: minisatellites, retrotransposons, and R-loop formation. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1989-2002. [PMID: 38805064 DOI: 10.1007/s11427-023-2524-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 11/14/2023] [Indexed: 05/29/2024]
Abstract
Centromeres play a vital role in cellular division by facilitating kinetochore assembly and spindle attachments. Despite their conserved functionality, centromeric DNA sequences exhibit rapid evolution, presenting diverse sizes and compositions across species. The functional significance of rye centromeric DNA sequences, particularly in centromere identity, remains unclear. In this study, we comprehensively characterized the sequence composition and organization of rye centromeres. Our findings revealed that these centromeres are primarily composed of long terminal repeat retrotransposons (LTR-RTs) and interspersed minisatellites. We systematically classified LTR-RTs into five categories, highlighting the prevalence of younger CRS1, CRS2, and CRS3 of CRSs (centromeric retrotransposons of Secale cereale) were primarily located in the core centromeres and exhibited a higher association with CENH3 nucleosomes. The minisatellites, mainly derived from retrotransposons, along with CRSs, played a pivotal role in establishing functional centromeres in rye. Additionally, we observed the formation of R-loops at specific regions of CRS1, CRS2, and CRS3, with both rye pericentromeres and centromeres exhibiting enrichment in R-loops. Notably, these R-loops selectively formed at binding regions of the CENH3 nucleosome in rye centromeres, suggesting a potential role in mediating the precise loading of CENH3 to centromeres and contributing to centromere specification. Our work provides insights into the DNA sequence composition, distribution, and potential function of R-loops in rye centromeres. This knowledge contributes valuable information to understanding the genetics and epigenetics of rye centromeres, offering implications for the development of synthetic centromeres in future plant modifications and beyond.
Collapse
Affiliation(s)
- Chang Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shulan Fu
- Key Laboratory for Plant Genetics and Breeding, Sichuan Agricultural University, Chengdu, 611130, China
| | - Congyang Yi
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yuhong Huang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xianrui Guo
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Kaibiao Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qian Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - James A Birchler
- Division of Biological Science, University of Missouri, Columbia, 65211-7400, USA
| | - Fangpu Han
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
Caccialupi G, Milc J, Caradonia F, Nasar MF, Francia E. The Triticeae CBF Gene Cluster-To Frost Resistance and Beyond. Cells 2023; 12:2606. [PMID: 37998341 PMCID: PMC10670769 DOI: 10.3390/cells12222606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
The pivotal role of CBF/DREB1 transcriptional factors in Triticeae crops involved in the abiotic stress response has been highlighted. The CBFs represent an important hub in the ICE-CBF-COR pathway, which is one of the most relevant mechanisms capable of activating the adaptive response to cold and drought in wheat, barley, and rye. Understanding the intricate mechanisms and regulation of the cluster of CBF genes harbored by the homoeologous chromosome group 5 entails significant potential for the genetic improvement of small grain cereals. Triticeae crops seem to share common mechanisms characterized, however, by some peculiar aspects of the response to stress, highlighting a combined landscape of single-nucleotide variants and copy number variation involving CBF members of subgroup IV. Moreover, while chromosome 5 ploidy appears to confer species-specific levels of resistance, an important involvement of the ICE factor might explain the greater tolerance of rye. By unraveling the genetic basis of abiotic stress tolerance, researchers can develop resilient varieties better equipped to withstand extreme environmental conditions. Hence, advancing our knowledge of CBFs and their interactions represents a promising avenue for improving crop resilience and food security.
Collapse
Affiliation(s)
- Giovanni Caccialupi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy; (J.M.); (F.C.); (M.F.N.); (E.F.)
| | | | | | | | | |
Collapse
|
3
|
Rajpal VR, Sharma S, Sehgal D, Sharma P, Wadhwa N, Dhakate P, Chandra A, Thakur RK, Deb S, Rama Rao S, Mir BA, Raina SN. Comprehending the dynamism of B chromosomes in their journey towards becoming unselfish. Front Cell Dev Biol 2023; 10:1072716. [PMID: 36684438 PMCID: PMC9846793 DOI: 10.3389/fcell.2022.1072716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/13/2022] [Indexed: 01/06/2023] Open
Abstract
Investigated for more than a century now, B chromosomes (Bs) research has come a long way from Bs being considered parasitic or neutral to becoming unselfish and bringing benefits to their hosts. B chromosomes exist as accessory chromosomes along with the standard A chromosomes (As) across eukaryotic taxa. Represented singly or in multiple copies, B chromosomes are largely heterochromatic but also contain euchromatic and organellar segments. Although B chromosomes are derived entities, they follow their species-specific evolutionary pattern. B chromosomes fail to pair with the standard chromosomes during meiosis and vary in their number, size, composition and structure across taxa and ensure their successful transmission through non-mendelian mechanisms like mitotic, pre-meiotic, meiotic or post-meiotic drives, unique non-disjunction, self-pairing or even imparting benefits to the host when they lack drive. B chromosomes have been associated with cellular processes like sex determination, pathogenicity, resistance to pathogens, phenotypic effects, and differential gene expression. With the advancements in B-omics research, novel insights have been gleaned on their functions, some of which have been associated with the regulation of gene expression of A chromosomes through increased expression of miRNAs or differential expression of transposable elements located on them. The next-generation sequencing and emerging technologies will further likely unravel the cellular, molecular and functional behaviour of these enigmatic entities. Amidst the extensive fluidity shown by B chromosomes in their structural and functional attributes, we perceive that the existence and survival of B chromosomes in the populations most likely seem to be a trade-off between the drive efficiency and adaptive significance versus their adverse effects on reproduction.
Collapse
Affiliation(s)
- Vijay Rani Rajpal
- Department of Botany, Hansraj College, University of Delhi, Delhi, India,*Correspondence: Vijay Rani Rajpal, , ; Soom Nath Raina,
| | - Suman Sharma
- Department of Botany, Ramjas College, University of Delhi, Delhi, India
| | - Deepmala Sehgal
- Syngenta, International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Prashansa Sharma
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
| | - Nikita Wadhwa
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
| | | | - Atika Chandra
- Department of Botany, Maitreyi College, University of Delhi, New Delhi, India
| | - Rakesh Kr. Thakur
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Sohini Deb
- Department of Biotechnology and Bioinformatics, North Eastern Hill University, Shillong, Meghalaya, India
| | - Satyawada Rama Rao
- Department of Biotechnology and Bioinformatics, North Eastern Hill University, Shillong, Meghalaya, India
| | - Bilal Ahmad Mir
- Department of Botany, University of Kashmir, Srinagar, India
| | - Soom Nath Raina
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India,*Correspondence: Vijay Rani Rajpal, , ; Soom Nath Raina,
| |
Collapse
|
4
|
Isolation and Sequencing of Chromosome Arm 7RS of Rye, Secale cereale. Int J Mol Sci 2022; 23:ijms231911106. [PMID: 36232406 PMCID: PMC9569962 DOI: 10.3390/ijms231911106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/12/2022] [Accepted: 09/19/2022] [Indexed: 11/24/2022] Open
Abstract
Rye (Secale cereale) is a climate-resilient cereal grown extensively as grain or forage crop in Northern and Eastern Europe. In addition to being an important crop, it has been used to improve wheat through introgression of genomic regions for improved yield and disease resistance. Understanding the genomic diversity of rye will assist both the improvement of this crop and facilitate the introgression of more valuable traits into wheat. Here, we isolated and sequenced the short arm of rye chromosome 7 (7RS) from Triticale 380SD using flow cytometry and compared it to the public Lo7 rye whole genome reference assembly. We identify 2747 Lo7 genes present on the isolated chromosome arm and two clusters containing seven and sixty-five genes that are present on Triticale 380SD 7RS, but absent from Lo7 7RS. We identified 29 genes that are not assigned to chromosomal locations in the Lo7 assembly but are present on Triticale 380SD 7RS, suggesting a chromosome arm location for these genes. Our study supports the Lo7 reference assembly and provides a repertoire of genes on Triticale 7RS.
Collapse
|
5
|
Triticale doubled haploid plant regeneration factors linked by structural equation modeling. J Appl Genet 2022; 63:677-690. [PMID: 36018540 PMCID: PMC9637073 DOI: 10.1007/s13353-022-00719-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/26/2022]
Abstract
Triticale regeneration via anther culture faces many difficulties, e.g., a low percentage of regenerated plants and the presence of albinos. Plant regeneration may be affected by abiotic stresses and by ingredients added to the induction medium. The latter influences biochemical pathways and plant regeneration efficiency. Among such ingredients, copper and silver ions acting as cofactors for enzymatic reactions are of interest. However, their role in plant tissue cultures and relationships with biochemical pathways has not been studied yet. The study evaluated relationships between DNA methylation, changes in DNA sequence variation, and green plant regeneration efficiency influenced by copper and silver ions during triticale plant regeneration. For this purpose, a biological model based on donor plants and their regenerants, a methylation-sensitive amplified fragment length polymorphism, and structural equation modeling were employed. The green plant regeneration efficiency varied from 0.71 to 6.06 green plants per 100 plated anthers. The values for the components of tissue culture-induced variation related to cytosine methylation in a CHH sequence context (where H is A, C, or T) were 8.65% for sequence variation, 0.76% for DNA demethylation, and 0.58% for de novo methylation. The proposed model states that copper ions affect the regeneration efficiency through cytosine methylation and may induce mutations through, e.g., oxidative processes, which may interfere with the green plant regeneration efficiency. The linear regression confirms that the plant regeneration efficiency rises with increasing copper ion concentration in the absence of Ag ions in the induction medium. The least absolute shrinkage and selection operator regression shows that de novo methylation, demethylation, and copper ions may be involved in the green plant regeneration efficiency. According to structural equation modeling, copper ions play a central role in the model determining the regeneration efficiency.
Collapse
|
6
|
Hyeon Jeong J, Joo Jung W, Weon Seo Y. Genome-wide identification and expression analysis of the annexin gene family in rye (Secale cereale L.). Gene 2022; 838:146704. [PMID: 35772654 DOI: 10.1016/j.gene.2022.146704] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 06/14/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022]
Abstract
Rye (Secale cereale L.) is one of the major cereal crops belonging to the family Triticeae and is known to be most tolerant to diverse abiotic stresses, such as cold, heat, osmotic, and salt stress. With the advancements in sequencing and bioinformatics technologies, the sequence information for the large and repetitive rye genome has become available. Plant annexins are components of the calcium signaling network that regulate signaling in abiotic stress tolerance via Ca2+ transport. In this study, we identified 12 novel rye annexin gene families by investigating the recently published rye genome. The annexin gene families were classified into five groups according to phylogenetic conserved motif analyses. Cis-element analysis revealed that these genes may be regulated by light, ABA, MeJA, and MYB transcription factors. Chromosome localization of the genes revealed that the gene family was conserved in many species, and high synteny was observed between the rye and wheat annexin genes. Plant tissue-specific gene expression revealed that rye annexin genes are mostly expressed in the roots, and gene expression analysis under cold, heat, PEG, and NaCl treatments showed that the genes were differentially expressed in response to different types of stresses, suggesting that each gene has a distinct role in stress signaling. The findings of this study provide a basis for further research on the role of rye annexin genes in abiotic stress signaling.
Collapse
Affiliation(s)
- Ji Hyeon Jeong
- Department of Plant Biotechnology, Korea University, Seoul 02841, South Korea
| | - Woo Joo Jung
- Institute of Life Science and Natural Resources, Korea University, Seoul 02841, South Korea
| | - Yong Weon Seo
- Department of Plant Biotechnology, Korea University, Seoul 02841, South Korea.
| |
Collapse
|
7
|
Zwyrtková J, Blavet N, Doležalová A, Cápal P, Said M, Molnár I, Vrána J, Doležel J, Hřibová E. Draft Sequencing Crested Wheatgrass Chromosomes Identified Evolutionary Structural Changes and Genes and Facilitated the Development of SSR Markers. Int J Mol Sci 2022; 23:ijms23063191. [PMID: 35328613 PMCID: PMC8948999 DOI: 10.3390/ijms23063191] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/13/2022] [Accepted: 03/14/2022] [Indexed: 02/01/2023] Open
Abstract
Crested wheatgrass (Agropyron cristatum), a wild relative of wheat, is an attractive source of genes and alleles for their improvement. Its wider use is hampered by limited knowledge of its complex genome. In this work, individual chromosomes were purified by flow sorting, and DNA shotgun sequencing was performed. The annotation of chromosome-specific sequences characterized the DNA-repeat content and led to the identification of genic sequences. Among them, genic sequences homologous to genes conferring plant disease resistance and involved in plant tolerance to biotic and abiotic stress were identified. Genes belonging to the important groups for breeders involved in different functional categories were found. The analysis of the DNA-repeat content identified a new LTR element, Agrocen, which is enriched in centromeric regions. The colocalization of the element with the centromeric histone H3 variant CENH3 suggested its functional role in the grass centromere. Finally, 159 polymorphic simple-sequence-repeat (SSR) markers were identified, with 72 of them being chromosome- or chromosome-arm-specific, 16 mapping to more than one chromosome, and 71 mapping to all the Agropyron chromosomes. The markers were used to characterize orthologous relationships between A. cristatum and common wheat that will facilitate the introgression breeding of wheat using A. cristatum.
Collapse
|
8
|
The Dynamism of Transposon Methylation for Plant Development and Stress Adaptation. Int J Mol Sci 2021; 22:ijms222111387. [PMID: 34768817 PMCID: PMC8583499 DOI: 10.3390/ijms222111387] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 02/06/2023] Open
Abstract
Plant development processes are regulated by epigenetic alterations that shape nuclear structure, gene expression, and phenotypic plasticity; these alterations can provide the plant with protection from environmental stresses. During plant growth and development, these processes play a significant role in regulating gene expression to remodel chromatin structure. These epigenetic alterations are mainly regulated by transposable elements (TEs) whose abundance in plant genomes results in their interaction with genomes. Thus, TEs are the main source of epigenetic changes and form a substantial part of the plant genome. Furthermore, TEs can be activated under stress conditions, and activated elements cause mutagenic effects and substantial genetic variability. This introduces novel gene functions and structural variation in the insertion sites and primarily contributes to epigenetic modifications. Altogether, these modifications indirectly or directly provide the ability to withstand environmental stresses. In recent years, many studies have shown that TE methylation plays a major role in the evolution of the plant genome through epigenetic process that regulate gene imprinting, thereby upholding genome stability. The induced genetic rearrangements and insertions of mobile genetic elements in regions of active euchromatin contribute to genome alteration, leading to genomic stress. These TE-mediated epigenetic modifications lead to phenotypic diversity, genetic variation, and environmental stress tolerance. Thus, TE methylation is essential for plant evolution and stress adaptation, and TEs hold a relevant military position in the plant genome. High-throughput techniques have greatly advanced the understanding of TE-mediated gene expression and its associations with genome methylation and suggest that controlled mobilization of TEs could be used for crop breeding. However, development application in this area has been limited, and an integrated view of TE function and subsequent processes is lacking. In this review, we explore the enormous diversity and likely functions of the TE repertoire in adaptive evolution and discuss some recent examples of how TEs impact gene expression in plant development and stress adaptation.
Collapse
|
9
|
Karafiátová M, Bednářová M, Said M, Čížková J, Holušová K, Blavet N, Bartoš J. The B chromosome of Sorghum purpureosericeum reveals the first pieces of its sequence. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1606-1616. [PMID: 33216934 DOI: 10.5061/dryad.rxwdbrv5j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 11/13/2020] [Indexed: 05/23/2023]
Abstract
More than a century has passed since the B chromosomes were first discovered. Today we know much of their variability, morphology, and transmission to plant progeny. With the advent of modern technologies, B chromosome research has accelerated, and some of their persistent mysteries have since been uncovered. Building on this momentum, here we extend current knowledge of B chromosomes in Sorghum purpureosericeum to the sequence level. To do this, we estimated the B chromosome size at 421 Mb, sequenced DNA from flow-sorted haploid pollen nuclei of both B-positive (B+) and B-negative (B0) plants, and performed a repeat analysis on the Illumina raw sequence data. This analysis revealed nine putative B-specific clusters, which were then used to develop B chromosome-specific markers. Additionally, cluster SpuCL4 was identified and verified to be a centromeric repeat. We also uncovered two repetitive clusters (SpuCL168 and SpuCL115), which hybridized exclusively on the B chromosome under fluorescence in situ hybridization and can be considered as robust cytogenetic markers. Given that B chromosomes in Sorghum are rather unstable across all tissues, our findings could facilitate expedient identification of B+ plants and enable a wide range of studies to track this chromosome type in situ.
Collapse
Affiliation(s)
- Miroslava Karafiátová
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, Šlechtitelů, Olomouc, Czech Republic
| | - Martina Bednářová
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, Šlechtitelů, Olomouc, Czech Republic
| | - Mahmoud Said
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, Šlechtitelů, Olomouc, Czech Republic
| | - Jana Čížková
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, Šlechtitelů, Olomouc, Czech Republic
| | - Kateřina Holušová
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, Šlechtitelů, Olomouc, Czech Republic
| | - Nicolas Blavet
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, Šlechtitelů, Olomouc, Czech Republic
| | - Jan Bartoš
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, Šlechtitelů, Olomouc, Czech Republic
| |
Collapse
|
10
|
Karafiátová M, Bednářová M, Said M, Čížková J, Holušová K, Blavet N, Bartoš J. The B chromosome of Sorghum purpureosericeum reveals the first pieces of its sequence. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1606-1616. [PMID: 33216934 PMCID: PMC7921303 DOI: 10.1093/jxb/eraa548] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 11/13/2020] [Indexed: 05/07/2023]
Abstract
More than a century has passed since the B chromosomes were first discovered. Today we know much of their variability, morphology, and transmission to plant progeny. With the advent of modern technologies, B chromosome research has accelerated, and some of their persistent mysteries have since been uncovered. Building on this momentum, here we extend current knowledge of B chromosomes in Sorghum purpureosericeum to the sequence level. To do this, we estimated the B chromosome size at 421 Mb, sequenced DNA from flow-sorted haploid pollen nuclei of both B-positive (B+) and B-negative (B0) plants, and performed a repeat analysis on the Illumina raw sequence data. This analysis revealed nine putative B-specific clusters, which were then used to develop B chromosome-specific markers. Additionally, cluster SpuCL4 was identified and verified to be a centromeric repeat. We also uncovered two repetitive clusters (SpuCL168 and SpuCL115), which hybridized exclusively on the B chromosome under fluorescence in situ hybridization and can be considered as robust cytogenetic markers. Given that B chromosomes in Sorghum are rather unstable across all tissues, our findings could facilitate expedient identification of B+ plants and enable a wide range of studies to track this chromosome type in situ.
Collapse
Affiliation(s)
- Miroslava Karafiátová
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, Šlechtitelů, Olomouc, Czech Republic
| | - Martina Bednářová
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, Šlechtitelů, Olomouc, Czech Republic
| | - Mahmoud Said
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, Šlechtitelů, Olomouc, Czech Republic
| | - Jana Čížková
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, Šlechtitelů, Olomouc, Czech Republic
| | - Kateřina Holušová
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, Šlechtitelů, Olomouc, Czech Republic
| | - Nicolas Blavet
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, Šlechtitelů, Olomouc, Czech Republic
| | - Jan Bartoš
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, Šlechtitelů, Olomouc, Czech Republic
- Correspondence:
| |
Collapse
|
11
|
Li G, Wang L, Yang J, He H, Jin H, Li X, Ren T, Ren Z, Li F, Han X, Zhao X, Dong L, Li Y, Song Z, Yan Z, Zheng N, Shi C, Wang Z, Yang S, Xiong Z, Zhang M, Sun G, Zheng X, Gou M, Ji C, Du J, Zheng H, Doležel J, Deng XW, Stein N, Yang Q, Zhang K, Wang D. A high-quality genome assembly highlights rye genomic characteristics and agronomically important genes. Nat Genet 2021; 53:574-584. [PMID: 33737755 PMCID: PMC8035075 DOI: 10.1038/s41588-021-00808-z] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 01/29/2021] [Indexed: 01/31/2023]
Abstract
Rye is a valuable food and forage crop, an important genetic resource for wheat and triticale improvement and an indispensable material for efficient comparative genomic studies in grasses. Here, we sequenced the genome of Weining rye, an elite Chinese rye variety. The assembled contigs (7.74 Gb) accounted for 98.47% of the estimated genome size (7.86 Gb), with 93.67% of the contigs (7.25 Gb) assigned to seven chromosomes. Repetitive elements constituted 90.31% of the assembled genome. Compared to previously sequenced Triticeae genomes, Daniela, Sumaya and Sumana retrotransposons showed strong expansion in rye. Further analyses of the Weining assembly shed new light on genome-wide gene duplications and their impact on starch biosynthesis genes, physical organization of complex prolamin loci, gene expression features underlying early heading trait and putative domestication-associated chromosomal regions and loci in rye. This genome sequence promises to accelerate genomic and breeding studies in rye and related cereal crops.
Collapse
Affiliation(s)
- Guangwei Li
- grid.108266.b0000 0004 1803 0494College of Agronomy, Longzi Lake Campus, Henan Agricultural University, Zhengzhou, China ,grid.108266.b0000 0004 1803 0494The State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou, China
| | - Lijian Wang
- grid.108266.b0000 0004 1803 0494College of Agronomy, Longzi Lake Campus, Henan Agricultural University, Zhengzhou, China ,grid.108266.b0000 0004 1803 0494The State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou, China
| | - Jianping Yang
- grid.108266.b0000 0004 1803 0494College of Agronomy, Longzi Lake Campus, Henan Agricultural University, Zhengzhou, China ,grid.108266.b0000 0004 1803 0494The State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou, China
| | - Hang He
- grid.11135.370000 0001 2256 9319Peking University Institute of Advanced Agricultural Sciences, Weifang, China ,grid.11135.370000 0001 2256 9319School of Advanced Agriculture Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing, China
| | - Huaibing Jin
- grid.108266.b0000 0004 1803 0494College of Agronomy, Longzi Lake Campus, Henan Agricultural University, Zhengzhou, China ,grid.108266.b0000 0004 1803 0494The State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou, China
| | - Xuming Li
- grid.410751.6Biomarker Technologies Corporation, Beijing, China
| | - Tianheng Ren
- grid.80510.3c0000 0001 0185 3134Agronomy College, Sichuan Agricultural University, Chengdu, China
| | - Zhenglong Ren
- grid.80510.3c0000 0001 0185 3134Agronomy College, Sichuan Agricultural University, Chengdu, China
| | - Feng Li
- grid.9227.e0000000119573309The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xue Han
- grid.11135.370000 0001 2256 9319Peking University Institute of Advanced Agricultural Sciences, Weifang, China ,grid.11135.370000 0001 2256 9319School of Advanced Agriculture Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing, China
| | - Xiaoge Zhao
- grid.9227.e0000000119573309The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Lingli Dong
- grid.9227.e0000000119573309The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yiwen Li
- grid.9227.e0000000119573309The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Zhongping Song
- grid.80510.3c0000 0001 0185 3134Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Zehong Yan
- grid.80510.3c0000 0001 0185 3134Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Nannan Zheng
- grid.108266.b0000 0004 1803 0494College of Agronomy, Longzi Lake Campus, Henan Agricultural University, Zhengzhou, China ,grid.108266.b0000 0004 1803 0494The State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou, China
| | - Cuilan Shi
- grid.108266.b0000 0004 1803 0494College of Agronomy, Longzi Lake Campus, Henan Agricultural University, Zhengzhou, China ,grid.108266.b0000 0004 1803 0494The State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou, China
| | - Zhaohui Wang
- grid.108266.b0000 0004 1803 0494College of Agronomy, Longzi Lake Campus, Henan Agricultural University, Zhengzhou, China ,grid.108266.b0000 0004 1803 0494The State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou, China
| | - Shuling Yang
- grid.108266.b0000 0004 1803 0494College of Agronomy, Longzi Lake Campus, Henan Agricultural University, Zhengzhou, China ,grid.108266.b0000 0004 1803 0494The State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou, China
| | - Zijun Xiong
- grid.108266.b0000 0004 1803 0494College of Agronomy, Longzi Lake Campus, Henan Agricultural University, Zhengzhou, China ,grid.108266.b0000 0004 1803 0494The State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou, China
| | - Menglan Zhang
- grid.108266.b0000 0004 1803 0494College of Agronomy, Longzi Lake Campus, Henan Agricultural University, Zhengzhou, China ,grid.108266.b0000 0004 1803 0494The State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou, China
| | - Guanghua Sun
- grid.108266.b0000 0004 1803 0494College of Agronomy, Longzi Lake Campus, Henan Agricultural University, Zhengzhou, China ,grid.108266.b0000 0004 1803 0494The State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou, China
| | - Xu Zheng
- grid.108266.b0000 0004 1803 0494College of Agronomy, Longzi Lake Campus, Henan Agricultural University, Zhengzhou, China ,grid.108266.b0000 0004 1803 0494The State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou, China
| | - Mingyue Gou
- grid.108266.b0000 0004 1803 0494College of Agronomy, Longzi Lake Campus, Henan Agricultural University, Zhengzhou, China ,grid.108266.b0000 0004 1803 0494The State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou, China
| | - Changmian Ji
- grid.410751.6Biomarker Technologies Corporation, Beijing, China
| | - Junkai Du
- grid.410751.6Biomarker Technologies Corporation, Beijing, China
| | - Hongkun Zheng
- grid.410751.6Biomarker Technologies Corporation, Beijing, China
| | - Jaroslav Doležel
- grid.454748.eInstitute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Xing Wang Deng
- grid.11135.370000 0001 2256 9319Peking University Institute of Advanced Agricultural Sciences, Weifang, China ,grid.11135.370000 0001 2256 9319School of Advanced Agriculture Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing, China
| | - Nils Stein
- grid.418934.30000 0001 0943 9907Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany ,grid.7450.60000 0001 2364 4210Center for Integrated Breeding Research (CiBreed), Department of Crop Sciences, Georg-August-University, Göttingen, Germany
| | - Qinghua Yang
- grid.108266.b0000 0004 1803 0494College of Agronomy, Longzi Lake Campus, Henan Agricultural University, Zhengzhou, China ,grid.108266.b0000 0004 1803 0494The State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou, China
| | - Kunpu Zhang
- grid.108266.b0000 0004 1803 0494College of Agronomy, Longzi Lake Campus, Henan Agricultural University, Zhengzhou, China ,grid.9227.e0000000119573309The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China ,grid.108266.b0000 0004 1803 0494The State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou, China
| | - Daowen Wang
- grid.108266.b0000 0004 1803 0494College of Agronomy, Longzi Lake Campus, Henan Agricultural University, Zhengzhou, China ,grid.9227.e0000000119573309The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China ,grid.108266.b0000 0004 1803 0494The State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
12
|
Skuza L, Filip E, Szućko I, Bocianowski J. SPInDel Analysis of the Non-Coding Regions of cpDNA as a More Useful Tool for the Identification of Rye (Poaceae: Secale) Species. Int J Mol Sci 2020; 21:ijms21249421. [PMID: 33321948 PMCID: PMC7762986 DOI: 10.3390/ijms21249421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 01/09/2023] Open
Abstract
Secale is a small but very diverse genus from the tribe Triticeae (family Poaceae), which includes annual, perennial, self-pollinating and open-pollinating, cultivated, weedy and wild species of various phenotypes. Despite its high economic importance, classification of this genus, comprising 3–8 species, is inconsistent. This has resulted in significantly reduced progress in the breeding of rye which could be enriched with functional traits derived from wild rye species. Our previous research has suggested the utility of non-coding sequences of chloroplast and mitochondrial DNA in studies on closely related species of the genus Secale. Here we applied the SPInDel (Species Identification by Insertions/Deletions) approach, which targets hypervariable genomic regions containing multiple insertions/deletions (indels) and exhibiting extensive length variability. We analysed a total of 140 and 210 non-coding sequences from cpDNA and mtDNA, respectively. The resulting data highlight regions which may represent useful molecular markers with respect to closely related species of the genus Secale, however, we found the chloroplast genome to be more informative. These molecular markers include non-coding regions of chloroplast DNA: atpB-rbcL and trnT-trnL and non-coding regions of mitochondrial DNA: nad1B-nad1C and rrn5/rrn18. Our results demonstrate the utility of the SPInDel concept for the characterisation of Secale species.
Collapse
Affiliation(s)
- Lidia Skuza
- Institute of Biology, University of Szczecin, 13 Wąska, 71-415 Szczecin, Poland; (E.F.); (I.S.)
- The Centre for Molecular Biology and Biotechnology, University of Szczecin, 13 Wąska, 71-415 Szczecin, Poland
- Correspondence:
| | - Ewa Filip
- Institute of Biology, University of Szczecin, 13 Wąska, 71-415 Szczecin, Poland; (E.F.); (I.S.)
- The Centre for Molecular Biology and Biotechnology, University of Szczecin, 13 Wąska, 71-415 Szczecin, Poland
| | - Izabela Szućko
- Institute of Biology, University of Szczecin, 13 Wąska, 71-415 Szczecin, Poland; (E.F.); (I.S.)
- The Centre for Molecular Biology and Biotechnology, University of Szczecin, 13 Wąska, 71-415 Szczecin, Poland
| | - Jan Bocianowski
- Department of Mathematical and Statistical Methods, Faculty of Agronomy and Bioengineering, Poznań University of Life Sciences, 28 Wojska Polskiego, 60-637 Poznań, Poland;
| |
Collapse
|
13
|
Hawliczek A, Bolibok L, Tofil K, Borzęcka E, Jankowicz-Cieślak J, Gawroński P, Kral A, Till BJ, Bolibok-Brągoszewska H. Deep sampling and pooled amplicon sequencing reveals hidden genic variation in heterogeneous rye accessions. BMC Genomics 2020; 21:845. [PMID: 33256606 PMCID: PMC7706248 DOI: 10.1186/s12864-020-07240-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/18/2020] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Loss of genetic variation negatively impacts breeding efforts and food security. Genebanks house over 7 million accessions representing vast allelic diversity that is a resource for sustainable breeding. Discovery of DNA variations is an important step in the efficient use of these resources. While technologies have improved and costs dropped, it remains impractical to consider resequencing millions of accessions. Candidate genes are known for most agronomic traits, providing a list of high priority targets. Heterogeneity in seed stocks means that multiple samples from an accession need to be evaluated to recover available alleles. To address this we developed a pooled amplicon sequencing approach and applied it to the out-crossing cereal rye (Secale cereale L.). RESULTS Using the amplicon sequencing approach 95 rye accessions of different improvement status and worldwide origin, each represented by a pooled sample comprising DNA of 96 individual plants, were evaluated for sequence variation in six candidate genes with significant functions on biotic and abiotic stress resistance, and seed quality. Seventy-four predicted deleterious variants were identified using multiple algorithms. Rare variants were recovered including those found only in a low percentage of seed. CONCLUSIONS We conclude that this approach provides a rapid and flexible method for evaluating stock heterogeneity, probing allele diversity, and recovering previously hidden variation. A large extent of within-population heterogeneity revealed in the study provides an important point for consideration during rye germplasm conservation and utilization efforts.
Collapse
Affiliation(s)
- Anna Hawliczek
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Leszek Bolibok
- Department of Silviculture, Institute of Forest Sciences, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Katarzyna Tofil
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Ewa Borzęcka
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Joanna Jankowicz-Cieślak
- Plant Breeding and Genetics Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, IAEA Laboratories Seibersdorf, International Atomic Energy Agency, Vienna International Centre, Vienna, Austria
| | - Piotr Gawroński
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Adam Kral
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Bradley J Till
- Plant Breeding and Genetics Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, IAEA Laboratories Seibersdorf, International Atomic Energy Agency, Vienna International Centre, Vienna, Austria.
- Veterinary Genetics Laboratory, University of California, Davis, Davis, California, USA.
| | - Hanna Bolibok-Brągoszewska
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences - SGGW, Warsaw, Poland.
| |
Collapse
|
14
|
Zwyrtková J, Šimková H, Doležel J. Chromosome genomics uncovers plant genome organization and function. Biotechnol Adv 2020; 46:107659. [PMID: 33259907 DOI: 10.1016/j.biotechadv.2020.107659] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 10/10/2020] [Accepted: 11/13/2020] [Indexed: 02/07/2023]
Abstract
The identification of causal genomic loci and their interactions underlying various traits in plants has been greatly aided by progress in understanding the organization of the nuclear genome. This provides clues to the responses of plants to environmental stimuli at the molecular level. Apart from other uses, these insights are needed to fully explore the potential of new breeding techniques that rely on genome editing. However, genome analysis and sequencing is not straightforward in the many agricultural crops and their wild relatives that possess large and complex genomes. Chromosome genomics streamlines this task by dissecting the genome to single chromosomes whose DNA is then used instead of nuclear DNA. This results in a massive and lossless reduction in DNA sample complexity, reduces the time and cost of the experiment, and simplifies data interpretation. Flow cytometric sorting of condensed mitotic chromosomes makes it possible to purify single chromosomes in large quantities, and as the DNA remains intact this process can be coupled successfully with many techniques in molecular biology and genomics. Since the first experiments with flow cytometric sorting in the late 1980s, numerous applications have been developed, and chromosome genomics has been having a significant impact in many areas of research, including the sequencing of complex genomes of important crops and gene cloning. This review discusses these applications, describes their contribution to advancements in plant genome analysis and gene cloning, and outlines future directions.
Collapse
Affiliation(s)
- Jana Zwyrtková
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-77900 Olomouc, Czech Republic.
| | - Hana Šimková
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-77900 Olomouc, Czech Republic.
| | - Jaroslav Doležel
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-77900 Olomouc, Czech Republic.
| |
Collapse
|
15
|
Kalinka A, Achrem M. The distribution pattern of 5-methylcytosine in rye (Secale L.) chromosomes. PLoS One 2020; 15:e0240869. [PMID: 33057421 PMCID: PMC7561101 DOI: 10.1371/journal.pone.0240869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/04/2020] [Indexed: 12/02/2022] Open
Abstract
The rye (Secale L.) genome is large, and it contains many classes of repetitive sequences. Secale species differ in terms of genome size, heterochromatin content, and global methylation level; however, the organization of individual types of sequences in chromosomes is relatively similar. The content of the abundant subtelomeric heterochromatin fraction in rye do not correlate with the global level of cytosine methylation, hence immunofluorescence detection of 5-methylcytosine (5-mC) distribution in metaphase chromosomes was performed. The distribution patterns of 5-methylcytosine in the chromosomes of Secale species/subspecies were generally similar. 5-methylcytosine signals were dispersed along the entire length of the chromosome arms of all chromosomes, indicating high levels of methylation, especially at retrotransposon sequences. 5-mC signals were absent in the centromeric and telomeric regions, as well as in subtelomeric blocks of constitutive heterochromatin, in each of the taxa studied. Pericentromeric domains were methylated, however, there was a certain level of polymorphism in these areas, as was the case with the nucleolus organizer region. Sequence methylation within the region of the heterochromatin intercalary bands were also demonstrated to be heterogenous. Unexpectedly, there was a lack of methylation in rye subtelomeres, indicating that heterochromatin is a very diverse fraction of chromatin, and its epigenetic regulation or potential influence on adjacent regions can be more complex than has conventionally been thought. Like telomeres and centromeres, subtelomeric heterochromatin can has a specific role, and the absence of 5-mC is required to maintain the heterochromatin state.
Collapse
Affiliation(s)
- Anna Kalinka
- Institute of Biology, University of Szczecin, Szczecin, Poland
- Molecular Biology and Biotechnology Center, University of Szczecin, Szczecin, Poland
- * E-mail:
| | - Magdalena Achrem
- Institute of Biology, University of Szczecin, Szczecin, Poland
- Molecular Biology and Biotechnology Center, University of Szczecin, Szczecin, Poland
| |
Collapse
|
16
|
Yepuri V, Jalali S, Kancharla N, Reddy VB, Arockiasamy S. Development of genome wide transposable elements based repeat junction markers in Jatropha (Jatropha curcas L.). Mol Biol Rep 2020; 47:5091-5099. [PMID: 32562173 DOI: 10.1007/s11033-020-05579-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 06/10/2020] [Indexed: 11/29/2022]
Abstract
Jatropha curcas is a potential biodiesel crop and a highly adaptable species to various agro-climatic conditions. In this study, we have utilized transposable elements' (TE) repeat junctions (RJs) which are an important constituent of the genome, used to form a genome-wide molecular marker platform owing to its use in genomic studies of plants. We screened our previously generated Jatropha hybrid genome assembly of size 265 Mbp using RJPrimers pipeline software and identified a total of 1274 TE junctions. For the predicted RJs, we designed 2868 polymerase chain reaction (PCR) based RJ markers (RJMs) flanking the junction regions. In addition to marker design, the identified RJs were utilized to detect 225,517 TEs across the genome. The different types of transposable repeat elements mainly were scattered into Retro, LTR, Copia and Gypsy categories. The efficacy of the designed markers was tested by utilizing a subset of RJMs selected randomly. We have validated 96 randomly selected RJ primers in a group of 32 J. curcas genotypes and more than 90% of the markers effectively intensified as amplicons. Of these, 10 primers were shown to be polymorphic in estimating genetic diversity among the 32 Jatropha lines. UPGMA cluster analysis revealed the formation of two clusters such as A and B exhibiting 85.5% and 87% similarity coefficient respectively. The various RJMs identified in this study could be utilized as a significant asset in Jatropha functional genomics including genome determination, mapping and marker-assisted selection.
Collapse
Affiliation(s)
- Vijay Yepuri
- Agronomy Division, Reliance Technology Group, Reliance Industries Limited, Navi Mumbai, Maharashtra, 400701, India
| | - Saakshi Jalali
- Agronomy Division, Reliance Technology Group, Reliance Industries Limited, Navi Mumbai, Maharashtra, 400701, India
| | - Nagesh Kancharla
- Agronomy Division, Reliance Technology Group, Reliance Industries Limited, Navi Mumbai, Maharashtra, 400701, India
| | - V B Reddy
- AgriGenome Labs Private Limited, Hyderabad, 500078, India
| | - S Arockiasamy
- Agronomy Division, Reliance Technology Group, Reliance Industries Limited, Navi Mumbai, Maharashtra, 400701, India.
| |
Collapse
|
17
|
Assessing the genetic diversity and characterizing genomic regions conferring Tan Spot resistance in cultivated rye. PLoS One 2019; 14:e0214519. [PMID: 30921415 PMCID: PMC6438500 DOI: 10.1371/journal.pone.0214519] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 03/14/2019] [Indexed: 11/19/2022] Open
Abstract
Rye (Secale cereale L.) is known for its wide adaptation due to its ability to tolerate harsh environments in semiarid areas. To assess the diversity in rye we genotyped a panel of 178 geographically diverse accessions of four Secale sp. from U.S. National Small Grains Collection using 4,037 high-quality SNPs (single nucleotide polymorphisms) developed by genotyping-by-sequencing (GBS). PCA and STRUCTURE analysis revealed three major clusters that separate S. cereale L. from S. strictum and S. sylvestre, however, genetic clusters did not correlate with geographic origins and growth habit (spring/winter). The panel was evaluated for response to Pyrenophora tritici-repentis race 5 (PTR race 5) and nearly 59% accessions showed resistance or moderate resistance. Genome-wide association study (GWAS) was performed on S. cereale subsp. cereale using the 4,037 high-quality SNPs. Two QTLs (QTs.sdsu-5R and QTs.sdsu-2R) on chromosomes 5R and 2R were identified conferring resistance to PTR race 5 (p < 0.001) that explained 13.1% and 11.6% of the phenotypic variation, respectively. Comparative analysis showed a high degree of synteny between rye and wheat with known rearrangements as expected. QTs.sdsu-2R was mapped in the genomic region corresponding to wheat chromosome group 2 and QTs.sdsu-5R was mapped to a small terminal region on chromosome 4BL. Based on the genetic diversity, a set of 32 accessions was identified to represents more than 99% of the allelic diversity with polymorphic information content (PIC) of 0.25. This set can be utilized for genetic characterization of useful traits and genetic improvement of rye, triticale, and wheat.
Collapse
|
18
|
Skuza L, Szućko I, Filip E, Strzała T. Genetic diversity and relationship between cultivated, weedy and wild rye species as revealed by chloroplast and mitochondrial DNA non-coding regions analysis. PLoS One 2019; 14:e0213023. [PMID: 30811487 PMCID: PMC6392296 DOI: 10.1371/journal.pone.0213023] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 02/13/2019] [Indexed: 11/18/2022] Open
Abstract
The genus Secale is small but very diverse. Despite the high economic importance, phylogenetic relationships of rye species have not been fully determined, and they are extremely important for the process of breeding of new cultivars that can be enriched with functional traits derived from wild rye species. The study analyzed the degree of relationship of 35 accessions of the genus Secale, representing 13 most often distinguished species and subspecies, originating from various seed collections in the world, based on the analysis of non-coding regions of the chloroplast (cpDNA) and mitochondrial genome (mtDNA), widely used in phylogenetic and population plant studies, because of a higher rate of evolution than the coding regions. There was no clear genetic structure between different species and subspecies, which may indicated the introgression between these taxa. The obtained data confirmed that S. vavilovii was very similar to S. cereale, which confirmed the assumption that they might share a common ancestor. The results also confirmed the divergence of S. sylvestre from other species and subspecies of rye. Areas that may be useful molecular markers in studies on closely related species of the genus Secale were also indicated.
Collapse
Affiliation(s)
- Lidia Skuza
- Department of Molecular Biology and Cytology, The Institute for Research on Biodiversity, Faculty of Biology, University of Szczecin, Szczecin, Poland
- The Centre for Molecular Biology and Biotechnology, Faculty of Biology, University of Szczecin, Szczecin, Poland
- * E-mail:
| | - Izabela Szućko
- Department of Molecular Biology and Cytology, The Institute for Research on Biodiversity, Faculty of Biology, University of Szczecin, Szczecin, Poland
- The Centre for Molecular Biology and Biotechnology, Faculty of Biology, University of Szczecin, Szczecin, Poland
| | - Ewa Filip
- Department of Molecular Biology and Cytology, The Institute for Research on Biodiversity, Faculty of Biology, University of Szczecin, Szczecin, Poland
- The Centre for Molecular Biology and Biotechnology, Faculty of Biology, University of Szczecin, Szczecin, Poland
| | - Tomasz Strzała
- Department of Genetics, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|
19
|
Keilwagen J, Lehnert H, Berner T, Beier S, Scholz U, Himmelbach A, Stein N, Badaeva ED, Lang D, Kilian B, Hackauf B, Perovic D. Detecting Large Chromosomal Modifications Using Short Read Data From Genotyping-by-Sequencing. FRONTIERS IN PLANT SCIENCE 2019; 10:1133. [PMID: 31608087 PMCID: PMC6771380 DOI: 10.3389/fpls.2019.01133] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 08/16/2019] [Indexed: 05/02/2023]
Abstract
Markers linked to agronomic traits are of the prerequisite for molecular breeding. Genotyping-by-sequencing (GBS) data enables to detect small polymorphisms including single nucleotide polymorphisms (SNPs) and short insertions or deletions (InDels) that can be used, for instance, for marker-assisted selection, population genetics, and genome-wide association studies (GWAS). Here, we aim at detecting large chromosomal modifications in barley and wheat based on GBS data. These modifications could be duplications, deletions, substitutions including introgressions as well as alterations of DNA methylation. We demonstrate that GBS coverage analysis is capable to detect Hordeum vulgare/Hordeum bulbosum introgression lines. Furthermore, we identify large chromosomal modifications in barley and wheat collections. Hence, large chromosomal modifications, including introgressions and copy number variations (CNV), can be detected easily and can be used as markers in research and breeding without additional wet-lab experiments.
Collapse
Affiliation(s)
- Jens Keilwagen
- Institute for Biosafety in Plant Biotechnology, Julius Kuehn Institute, Quedlinburg, Germany
- *Correspondence: Jens Keilwagen,
| | - Heike Lehnert
- Institute for Biosafety in Plant Biotechnology, Julius Kuehn Institute, Quedlinburg, Germany
| | - Thomas Berner
- Institute for Biosafety in Plant Biotechnology, Julius Kuehn Institute, Quedlinburg, Germany
| | - Sebastian Beier
- Research Group Bioinformatics and Information Technology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Uwe Scholz
- Research Group Bioinformatics and Information Technology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Axel Himmelbach
- Research Group Genomics of Genetic Resources, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Nils Stein
- Research Group Genomics of Genetic Resources, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Ekaterina D. Badaeva
- Laboratory of Genetic Basis of Plant Identification, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Daniel Lang
- PGSB, Helmholtz Center Munich, Neuherberg, Germany
| | | | - Bernd Hackauf
- Institute for Breeding Research on Agricultural Crops, Julius Kuehn Institute, Quedlinburg, Germany
| | - Dragan Perovic
- Institute for Resistance Research and Stress Tolerance, Julius Kuehn Institute, Quedlinburg, Germany
| |
Collapse
|
20
|
Jung WJ, Seo YW. Identification of novel C-repeat binding factor (CBF) genes in rye (Secale cereale L.) and expression studies. Gene 2018; 684:82-94. [PMID: 30359739 DOI: 10.1016/j.gene.2018.10.055] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 03/05/2018] [Accepted: 10/19/2018] [Indexed: 11/26/2022]
Abstract
Although rye is one of the most cold-tolerant species among temperate cereals, its huge and complex genome has prevented us from identifying agronomically useful genes. However, advances in high-throughput sequencing technology are making it increasingly possible to investigate its genome. The C-repeat binding factor (CBF) gene family controls cold tolerance in plants and its members are well conserved among eudicots and monocots, among which there are diverse homologs. Despite its large genome, only a small number of CBF genes have been identified in rye. In this study, we explored high-throughput sequencing data of the rye genome and identified 12 novel CBF genes. Sequence analyses revealed that these genes contain signature sequences of the CBF family. Chromosomal localization of the genes by PCR using wheat-rye addition lines showed that most of these are located on the long arm of chromosome 5, but also on the long arm of chromosomes 2 and 6. On the basis of comparative analyses of CBF family members in the Triticeae, CBF proteins were divided into several groups according to phylogenetic relationship and conserved motifs. Light is essential to fully induce CBF gene expression and there is specificity in the response to different types of abiotic stresses in ScCBF genes. The results of our study will assist investigations of CBF genes in the Triticeae and the mechanism of cold tolerance through the CBF-dependent pathway in plants.
Collapse
Affiliation(s)
- Woo Joo Jung
- Department of Biosystems and Biotechnology, Korea University, Seoul 136-713, Republic of Korea
| | - Yong Weon Seo
- Department of Biosystems and Biotechnology, Korea University, Seoul 136-713, Republic of Korea.
| |
Collapse
|
21
|
Borzęcka E, Hawliczek-Strulak A, Bolibok L, Gawroński P, Tofil K, Milczarski P, Stojałowski S, Myśków B, Targońska-Karasek M, Grądzielewska A, Smolik M, Kilian A, Bolibok-Brągoszewska H. Effective BAC clone anchoring with genotyping-by-sequencing and Diversity Arrays Technology in a large genome cereal rye. Sci Rep 2018; 8:8428. [PMID: 29849048 PMCID: PMC5976670 DOI: 10.1038/s41598-018-26541-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 05/16/2018] [Indexed: 11/09/2022] Open
Abstract
Identification of bacterial artificial chromosome (BAC) clones containing specific sequences is a prerequisite for many applications, such as physical map anchoring or gene cloning. Existing BAC library screening strategies are either low-throughput or require a considerable initial input of resources for platform establishment. We describe a high-throughput, reliable, and cost-effective BAC library screening approach deploying genotyping platforms which are independent from the availability of sequence information: a genotyping-by-sequencing (GBS) method DArTSeq and the microarray-based Diversity Arrays Technology (DArT). The performance of these methods was tested in a very large and complex rye genome. The DArTseq approach delivered superior results: a several fold higher efficiency of addressing genetic markers to BAC clones and anchoring of BAC clones to genetic map and also a higher reliability. Considering the sequence independence of the platform, the DArTseq-based library screening can be proposed as an attractive method to speed up genomics research in resource poor species.
Collapse
Affiliation(s)
- Ewa Borzęcka
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Anna Hawliczek-Strulak
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Leszek Bolibok
- Department of Silviculture, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Piotr Gawroński
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Katarzyna Tofil
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Paweł Milczarski
- Department of Plant Genetics, Breeding and Biotechnology, West-Pomeranian University of Technology, Slowackiego 17, 71-434, Szczecin, Poland
| | - Stefan Stojałowski
- Department of Plant Genetics, Breeding and Biotechnology, West-Pomeranian University of Technology, Slowackiego 17, 71-434, Szczecin, Poland
| | - Beata Myśków
- Department of Plant Genetics, Breeding and Biotechnology, West-Pomeranian University of Technology, Slowackiego 17, 71-434, Szczecin, Poland
| | - Małgorzata Targońska-Karasek
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Agnieszka Grądzielewska
- Institute of Genetics, Breeding and Biotechnology, University of Life Sciences in Lublin, Akademicka 15, 20-950, Lublin, Poland
| | - Miłosz Smolik
- Department of Plant Genetics, Breeding and Biotechnology, West-Pomeranian University of Technology, Slowackiego 17, 71-434, Szczecin, Poland
| | - Andrzej Kilian
- Diversity Arrays Technology Pty Ltd, University of Canberra, Kirinari st, ACT 2617, Bruce, Australia
| | - Hanna Bolibok-Brągoszewska
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland.
| |
Collapse
|
22
|
Hackauf B, Haffke S, Fromme FJ, Roux SR, Kusterer B, Musmann D, Kilian A, Miedaner T. QTL mapping and comparative genome analysis of agronomic traits including grain yield in winter rye. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:1801-1817. [PMID: 28567664 DOI: 10.1007/s00122-017-2926-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/15/2017] [Indexed: 06/07/2023]
Abstract
Genetic diversity in elite rye germplasm as well as F 2:3 testcross design enables fast QTL mapping to approach genes controlling grain yield, grain weight, tiller number and heading date in rye hybrids. Winter rye (Secale cereale L.) is a multipurpose cereal crop closely related to wheat, which offers the opportunity for a sustainable production of food and feed and which continues to emerge as a renewable energy source for the production of bioethanol and biomethane. Rye contributes to increase agricultural crop species diversity particularly in Central and Eastern Europe. In contrast to other small grain cereals, knowledge on the genetic architecture of complex inherited, agronomic important traits is yet limited for the outbreeding rye. We have performed a QTL analysis based on a F2:3 design and testcross performance of 258 experimental hybrids in multi-environmental field trials. A genetic linkage map covering 964.9 cM based on SSR, conserved-orthologous set (COS), and mixed-phase dominant DArT markers allowed to describe 22 QTL with significant effects for grain yield, heading date, tiller number, and thousand grain weight across seven environments. Using rye COS markers, orthologous segments for these traits have been identified in the rice genome, which carry cloned and functionally characterized rice genes. The initial genome scan described here together with the existing knowledge on candidate genes provides the basis for subsequent analyses of the genetic and molecular mechanisms underlying agronomic important traits in rye.
Collapse
Affiliation(s)
- Bernd Hackauf
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Agricultural Crops, Groß Lüsewitz, 18190, Sanitz, Germany.
| | - Stefan Haffke
- State Plant Breeding Institute, University of Hohenheim, 70593, Stuttgart, Germany
- Bundessortenamt, Osterfelddamm 80, 30627, Hannover, Germany
| | | | - Steffen R Roux
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Agricultural Crops, Groß Lüsewitz, 18190, Sanitz, Germany
| | | | - Dörthe Musmann
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Agricultural Crops, Groß Lüsewitz, 18190, Sanitz, Germany
- HYBRO Saatzucht GmbH and Co. KG, 17291, Schenkenberg, Germany
| | - Andrzej Kilian
- Diversity Arrays Technology, Bruce, ACT, 2617, Australia
| | - Thomas Miedaner
- State Plant Breeding Institute, University of Hohenheim, 70593, Stuttgart, Germany
| |
Collapse
|
23
|
Petrovičová L, Balážová Ž, Vivodík M, Gálová Z. Detection genetic variability of secale cereale L. by scot markers. POTRAVINARSTVO 2017. [DOI: 10.5219/726] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rye (Secale cereale L.) is our traditional cereal used for baking. The genetic variability of grown rye has been reduced by modern agronomic practices, which subsequently prompted the importance of search for species that could be useful as a gene pool for the improving of flour quality for human consumption or for other industrial uses. Therefore, the aim of this study was to detect genetic variability among the set of 45 rye genotypes using 8 SCoT markers. Amplification of genomic DNA of 45 genotypes, using SCoT analysis, yielded 114 fragments, with an average of 14.25 polymorphic fragments per primer. The most polymorphic primer was SCoT 36, where 21 polymorphic amplification products were detected. In contract the lowest polymorphic primer was SCoT 45 with 5 polymorphic products. Genetic polymorphism was characterized based on diversity index (DI), probability of identity (PI) and polymorphic information content (PIC). The hierarchical cluster analysis showed that the rye genotypes were divided into 2 main clusters. One rye genotype Motto, origin from Poland formed a separate subcluster (1b). Subscluster 2a included only genotype Valtické (CSK). In this experiment, SCoT proved to be a rapid, reliable and practicable method for revealing of polymorphism in the rye cultivars.
Collapse
|
24
|
Bauer E, Schmutzer T, Barilar I, Mascher M, Gundlach H, Martis MM, Twardziok SO, Hackauf B, Gordillo A, Wilde P, Schmidt M, Korzun V, Mayer KFX, Schmid K, Schön CC, Scholz U. Towards a whole-genome sequence for rye (Secale cereale L.). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:853-869. [PMID: 27888547 DOI: 10.1111/tpj.13436] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 11/08/2016] [Accepted: 11/21/2016] [Indexed: 05/18/2023]
Abstract
We report on a whole-genome draft sequence of rye (Secale cereale L.). Rye is a diploid Triticeae species closely related to wheat and barley, and an important crop for food and feed in Central and Eastern Europe. Through whole-genome shotgun sequencing of the 7.9-Gbp genome of the winter rye inbred line Lo7 we obtained a de novo assembly represented by 1.29 million scaffolds covering a total length of 2.8 Gbp. Our reference sequence represents nearly the entire low-copy portion of the rye genome. This genome assembly was used to predict 27 784 rye gene models based on homology to sequenced grass genomes. Through resequencing of 10 rye inbred lines and one accession of the wild relative S. vavilovii, we discovered more than 90 million single nucleotide variants and short insertions/deletions in the rye genome. From these variants, we developed the high-density Rye600k genotyping array with 600 843 markers, which enabled anchoring the sequence contigs along a high-density genetic map and establishing a synteny-based virtual gene order. Genotyping data were used to characterize the diversity of rye breeding pools and genetic resources, and to obtain a genome-wide map of selection signals differentiating the divergent gene pools. This rye whole-genome sequence closes a gap in Triticeae genome research, and will be highly valuable for comparative genomics, functional studies and genome-based breeding in rye.
Collapse
Affiliation(s)
- Eva Bauer
- Technical University of Munich, Plant Breeding, Liesel-Beckmann-Str. 2, 85354, Freising, Germany
| | - Thomas Schmutzer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstr. 3, 06466, Stadt Seeland, Germany
| | - Ivan Barilar
- Universität Hohenheim, Crop Biodiversity and Breeding Informatics, Fruwirthstr. 21, 70599, Stuttgart, Germany
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstr. 3, 06466, Stadt Seeland, Germany
| | - Heidrun Gundlach
- Helmholtz Zentrum München, Plant Genome and Systems Biology, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Mihaela M Martis
- Helmholtz Zentrum München, Plant Genome and Systems Biology, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Sven O Twardziok
- Helmholtz Zentrum München, Plant Genome and Systems Biology, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Bernd Hackauf
- Julius Kühn-Institute, Institute for Breeding Research on Agricultural Crops, Rudolf-Schick-Platz 3a, 18190, Sanitz, Germany
| | - Andres Gordillo
- KWS LOCHOW GMBH, Ferdinand-von-Lochow-Str. 5, 29303, Bergen, Germany
| | - Peer Wilde
- KWS LOCHOW GMBH, Ferdinand-von-Lochow-Str. 5, 29303, Bergen, Germany
| | - Malthe Schmidt
- KWS LOCHOW GMBH, Ferdinand-von-Lochow-Str. 5, 29303, Bergen, Germany
| | - Viktor Korzun
- KWS LOCHOW GMBH, Ferdinand-von-Lochow-Str. 5, 29303, Bergen, Germany
| | - Klaus F X Mayer
- Helmholtz Zentrum München, Plant Genome and Systems Biology, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Karl Schmid
- Universität Hohenheim, Crop Biodiversity and Breeding Informatics, Fruwirthstr. 21, 70599, Stuttgart, Germany
| | - Chris-Carolin Schön
- Technical University of Munich, Plant Breeding, Liesel-Beckmann-Str. 2, 85354, Freising, Germany
| | - Uwe Scholz
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstr. 3, 06466, Stadt Seeland, Germany
| |
Collapse
|
25
|
|
26
|
Zhang Y, Fan C, Li S, Chen Y, Wang RRC, Zhang X, Han F, Hu Z. The Diversity of Sequence and Chromosomal Distribution of New Transposable Element-Related Segments in the Rye Genome Revealed by FISH and Lineage Annotation. FRONTIERS IN PLANT SCIENCE 2017; 8:1706. [PMID: 29046683 PMCID: PMC5632726 DOI: 10.3389/fpls.2017.01706] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 09/19/2017] [Indexed: 05/18/2023]
Abstract
Transposable elements (TEs) in plant genomes exhibit a great variety of structure, sequence content and copy number, making them important drivers for species diversity and genome evolution. Even though a genome-wide statistic summary of TEs in rye has been obtained using high-throughput DNA sequencing technology, the accurate diversity of TEs in rye, as well as their chromosomal distribution and evolution, remains elusive due to the repetitive sequence assembling problems and the high dynamic and nested nature of TEs. In this study, using genomic plasmid library construction combined with dot-blot hybridization and fluorescence in situ hybridization (FISH) analysis, we successfully isolated 70 unique FISH-positive TE-related sequences including 47 rye genome specific ones: 30 showed homology or partial homology with previously FISH characterized sequences and 40 have not been characterized. Among the 70 sequences, 48 sequences carried Ty3/gypsy-derived segments, 7 sequences carried Ty1/copia-derived segments and 15 sequences carried segments homologous with multiple TE families. 26 TE lineages were found in the 70 sequences, and among these lineages, Wilma was found in sequences dispersed in all chromosome regions except telomeric positions; Abiba was found in sequences predominantly located at pericentromeric and centromeric positions; Wis, Carmilla, and Inga were found in sequences displaying signals dispersed from distal regions toward pericentromeric positions; except DNA transposon lineages, all the other lineages were found in sequences displaying signals dispersed from proximal regions toward distal regions. A high percentage (21.4%) of chimeric sequences were identified in this study and their high abundance in rye genome suggested that new TEs might form through recombination and nested transposition. Our results also gave proofs that diverse TE lineages were arranged at centromeric and pericentromeric positions in rye, and lineages like Abiba might play a role in their structural organization and function. All these results might help in understanding the diversity and evolution of TEs in rye, as well as their driving forces in rye genome organization and evolution.
Collapse
Affiliation(s)
- Yingxin Zhang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Center for Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Chengming Fan
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- *Correspondence: Chengming Fan, Zanmin Hu,
| | - Shuangshuang Li
- Department of Life Science, Henan Normal University, Xinxiang, China
| | - Yuhong Chen
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Richard R.-C. Wang
- Forage and Range Research Laboratory, United States Department of Agriculture, Agricultural Research Service, Utah State University, Logan, UT, United States
| | - Xiangqi Zhang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Fangpu Han
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Zanmin Hu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Center for Life Science, University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Chengming Fan, Zanmin Hu,
| |
Collapse
|
27
|
Molnár I, Vrána J, Burešová V, Cápal P, Farkas A, Darkó É, Cseh A, Kubaláková M, Molnár-Láng M, Doležel J. Dissecting the U, M, S and C genomes of wild relatives of bread wheat (Aegilops spp.) into chromosomes and exploring their synteny with wheat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 88:452-467. [PMID: 27402341 DOI: 10.1111/tpj.13266] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 07/01/2016] [Accepted: 07/06/2016] [Indexed: 05/09/2023]
Abstract
Goat grasses (Aegilops spp.) contributed to the evolution of bread wheat and are important sources of genes and alleles for modern wheat improvement. However, their use in alien introgression breeding is hindered by poor knowledge of their genome structure and a lack of molecular tools. The analysis of large and complex genomes may be simplified by dissecting them into single chromosomes via flow cytometric sorting. In some species this is not possible due to similarities in relative DNA content among chromosomes within a karyotype. This work describes the distribution of GAA and ACG microsatellite repeats on chromosomes of the U, M, S and C genomes of Aegilops, and the use of microsatellite probes to label the chromosomes in suspension by fluorescence in situ hybridization (FISHIS). Bivariate flow cytometric analysis of chromosome DAPI fluorescence and fluorescence of FITC-labelled microsatellites made it possible to discriminate all chromosomes and sort them with negligible contamination by other chromosomes. DNA of purified chromosomes was used as a template for polymerase chain reation (PCR) using Conserved Orthologous Set (COS) markers with known positions on wheat A, B and D genomes. Wheat-Aegilops macrosyntenic comparisons using COS markers revealed significant rearrangements in the U and C genomes, while the M and S genomes exhibited structure similar to wheat. Purified chromosome fractions provided an attractive resource to investigate the structure and evolution of the Aegilops genomes, and the COS markers assigned to Aegilops chromosomes will facilitate alien gene introgression into wheat.
Collapse
Affiliation(s)
- István Molnár
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Brunszvik u. 2, H-2462, Martonvásár, Hungary
| | - Jan Vrána
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-78371, Olomouc, Czech Republic
| | - Veronika Burešová
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-78371, Olomouc, Czech Republic
| | - Petr Cápal
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-78371, Olomouc, Czech Republic
| | - András Farkas
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Brunszvik u. 2, H-2462, Martonvásár, Hungary
| | - Éva Darkó
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Brunszvik u. 2, H-2462, Martonvásár, Hungary
| | - András Cseh
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Brunszvik u. 2, H-2462, Martonvásár, Hungary
| | - Marie Kubaláková
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-78371, Olomouc, Czech Republic
| | - Márta Molnár-Láng
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Brunszvik u. 2, H-2462, Martonvásár, Hungary
| | - Jaroslav Doležel
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-78371, Olomouc, Czech Republic
| |
Collapse
|
28
|
Türkösi E, Cseh A, Darkó É, Molnár-Láng M. Addition of Manas barley chromosome arms to the hexaploid wheat genome. BMC Genet 2016; 17:87. [PMID: 27328706 PMCID: PMC4915093 DOI: 10.1186/s12863-016-0393-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 06/07/2016] [Indexed: 01/04/2023] Open
Abstract
Background Cultivated barley belongs to the tertiary genepool of hexaploid wheat. Genes of interest can be transferred from barley into wheat through wide hybridization. The application of wheat-barley introgression lines could provide an excellent tool for the transfer of earliness, favourable amino acid composition, biotic stress resistance, abiotic stress tolerance, or good tillering ability into wheat. Results A set of 10 wheat-barley ditelosomic addition lines (2HS, 2HL, 3HS, 3HL, 4HS, 4HL, 6HS, 6HL, 7HS and 7HL) was developed from the progenies of an Asakaze/Manas wheat-barley hybrid produced in Martonvásár, Hungary. The addition lines were selected from self-fertilized plants of the BC2F2-BC2F4 generations using genomic in situ hybridization (GISH) and were identified by fluorescence in situ hybridization (FISH) with repetitive DNA probes [HvT01, (GAA)7 and centromere-specific (AGGGAG)4 probes]. The cytogenetic identification was confirmed using barley arm-specific SSR and STS markers. The ditelosomic additions were propagated in the phytotron and in the field, and morphological parameters (plant height, tillering, length of the main spike, number of seeds/spike and seeds/plant, and spike characteristics) were described. In addition, the salt stress response of the ditelosomic additions was determined. Conclusions The six-rowed winter barley cultivar Manas is much better adapted to Central European environmental conditions than the two-rowed spring barley Betzes previously used in wheat-barley crosses. The production of wheat-barley ditelosomic addition lines has a wide range of applications both for breeding (transfer of useful genes to the recipient species) and for basic research (mapping of barley genes, genetic and evolutionary studies and heterologous expression of barley genes in the wheat background). Electronic supplementary material The online version of this article (doi:10.1186/s12863-016-0393-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Edina Türkösi
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, H-2462, Martonvásár, P.O. Box 19, Hungary
| | - András Cseh
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, H-2462, Martonvásár, P.O. Box 19, Hungary
| | - Éva Darkó
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, H-2462, Martonvásár, P.O. Box 19, Hungary
| | - Márta Molnár-Láng
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, H-2462, Martonvásár, P.O. Box 19, Hungary.
| |
Collapse
|
29
|
Evtushenko EV, Levitsky VG, Elisafenko EA, Gunbin KV, Belousov AI, Šafář J, Doležel J, Vershinin AV. The expansion of heterochromatin blocks in rye reflects the co-amplification of tandem repeats and adjacent transposable elements. BMC Genomics 2016; 17:337. [PMID: 27146967 PMCID: PMC4857426 DOI: 10.1186/s12864-016-2667-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 04/25/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A prominent and distinctive feature of the rye (Secale cereale) chromosomes is the presence of massive blocks of subtelomeric heterochromatin, the size of which is correlated with the copy number of tandem arrays. The rapidity with which these regions have formed over the period of speciation remains unexplained. RESULTS Using a BAC library created from the short arm telosome of rye chromosome 1R we uncovered numerous arrays of the pSc200 and pSc250 tandem repeat families which are concentrated in subtelomeric heterochromatin and identified the adjacent DNA sequences. The arrays show significant heterogeneity in monomer organization. 454 reads were used to gain a representation of the expansion of these tandem repeats across the whole rye genome. The presence of multiple, relatively short monomer arrays, coupled with the mainly star-like topology of the monomer phylogenetic trees, was taken as indicative of a rapid expansion of the pSc200 and pSc250 arrays. The evolution of subtelomeric heterochromatin appears to have included a significant contribution of illegitimate recombination. The composition of transposable elements (TEs) within the regions flanking the pSc200 and pSc250 arrays differed markedly from that in the genome a whole. Solo-LTRs were strongly enriched, suggestive of a history of active ectopic exchange. Several DNA motifs were over-represented within the LTR sequences. CONCLUSION The large blocks of subtelomeric heterochromatin have arisen from the combined activity of TEs and the expansion of the tandem repeats. The expansion was likely based on a highly complex network of recombination mechanisms.
Collapse
Affiliation(s)
- E V Evtushenko
- Institute of Molecular and Cellular Biology, Siberian Branch of the RAS, Novosibirsk, Russia
| | - V G Levitsky
- Institute of Cytology and Genetics, Siberian Branch of the RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - E A Elisafenko
- Institute of Cytology and Genetics, Siberian Branch of the RAS, Novosibirsk, Russia
| | - K V Gunbin
- Institute of Cytology and Genetics, Siberian Branch of the RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - A I Belousov
- Institute of Molecular and Cellular Biology, Siberian Branch of the RAS, Novosibirsk, Russia
| | - J Šafář
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - J Doležel
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - A V Vershinin
- Institute of Molecular and Cellular Biology, Siberian Branch of the RAS, Novosibirsk, Russia.
| |
Collapse
|
30
|
Yang E, Li G, Li L, Zhang Z, Yang W, Peng Y, Zhu Y, Yang Z, Rosewarne GM. Characterization of Stripe Rust Resistance Genes in the Wheat Cultivar Chuanmai45. Int J Mol Sci 2016; 17:E601. [PMID: 27110767 PMCID: PMC4849054 DOI: 10.3390/ijms17040601] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 04/14/2016] [Accepted: 04/15/2016] [Indexed: 11/16/2022] Open
Abstract
The objective of this research was to characterize the high level of resistance to stripe that has been observed in the released wheat cultivar, Chuanmai45. A combination of classic genetic analysis, molecular and cytogenetic methods were used to characterize resistance in an F₂ population derived from Chuanmai45 and the susceptible Chuanmai42. Inheritance of resistance was shown to be conferred by two genes in Chuanmai45. Fluorescence in situ hybridization (FISH) was used along with segregation studies to show that one gene was located on a 1RS.1BL translocation. Molecular markers were employed to show that the other locus was located on chromosome 4B. The defeated gene, Yr24/26, on chromosome 1BL was present in the susceptible parent and lines that recombined this gene with the 1RS.1BL translocation were identified. The germplasm, loci, and associated markers identified in this study will be useful for application in breeding programs utilizing marker-assisted selection.
Collapse
Affiliation(s)
- Ennian Yang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China.
| | - Guangrong Li
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China.
| | - Liping Li
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China.
| | - Zhenyu Zhang
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China.
| | - Wuyun Yang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China.
| | - Yunliang Peng
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China.
| | - Yongqing Zhu
- Institute of Agro Products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China.
| | - Zujun Yang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China.
| | - Garry M Rosewarne
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China.
- International Maize and Wheat Improvement Centre (CIMMYT), Apdo. Postal 6-6-41, Mexico 06600, D.F., Mexico.
- Department of Environment and Primary Industries, 110 Natimuk Rd, Horsham, Victoria 3401, Australia.
| |
Collapse
|
31
|
Tyrka M, Tyrka D, Wędzony M. Genetic Map of Triticale Integrating Microsatellite, DArT and SNP Markers. PLoS One 2015; 10:e0145714. [PMID: 26717308 PMCID: PMC4696847 DOI: 10.1371/journal.pone.0145714] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 11/05/2015] [Indexed: 01/09/2023] Open
Abstract
Triticale (×Triticosecale Wittm) is an economically important crop for fodder and biomass production. To facilitate the identification of markers for agronomically important traits and for genetic and genomic characteristics of this species, a new high-density genetic linkage map of triticale was constructed using doubled haploid (DH) population derived from a cross between cultivars 'Hewo' and 'Magnat'. The map consists of 1615 bin markers, that represent 50 simple sequence repeat (SSR), 842 diversity array technology (DArT), and 16888 DArTseq markers mapped onto 20 linkage groups assigned to the A, B, and R genomes of triticale. No markers specific to chromosome 7R were found, instead mosaic linkage group composed of 1880 highly distorted markers (116 bins) from 10 wheat chromosomes was identified. The genetic map covers 4907 cM with a mean distance between two bins of 3.0 cM. Comparative analysis in respect to published maps of wheat, rye and triticale revealed possible deletions in chromosomes 4B, 5A, and 6A, as well as inversion in chromosome 7B. The number of bin markers in each chromosome varied from 24 in chromosome 3R to 147 in chromosome 6R. The length of individual chromosomes ranged between 50.7 cM for chromosome 2R and 386.2 cM for chromosome 7B. A total of 512 (31.7%) bin markers showed significant (P < 0.05) segregation distortion across all chromosomes. The number of 8 the segregation distorted regions (SDRs) were identified on 1A, 7A, 1B, 2B, 7B (2 SDRs), 5R and 6R chromosomes. The high-density genetic map of triticale will facilitate fine mapping of quantitative trait loci, the identification of candidate genes and map-based cloning.
Collapse
Affiliation(s)
- Mirosław Tyrka
- Department of Biochemistry and Biotechnology, Faculty of Chemistry, Rzeszow University of Technology, Rzeszow, Poland
| | - Dorota Tyrka
- Department of Biochemistry and Biotechnology, Faculty of Chemistry, Rzeszow University of Technology, Rzeszow, Poland
| | - Maria Wędzony
- Institute of Biology, Faculty of Geography and Biology, Pedagogical University of Krakow, Krakow, Poland
- Institute of Plant Physiology Polish Academy of Sciences, Krakow, Poland
| |
Collapse
|
32
|
Spannagl M, Nussbaumer T, Bader KC, Martis MM, Seidel M, Kugler KG, Gundlach H, Mayer KFX. PGSB PlantsDB: updates to the database framework for comparative plant genome research. Nucleic Acids Res 2015; 44:D1141-7. [PMID: 26527721 PMCID: PMC4702821 DOI: 10.1093/nar/gkv1130] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 10/15/2015] [Indexed: 01/29/2023] Open
Abstract
PGSB (Plant Genome and Systems Biology: formerly MIPS) PlantsDB (http://pgsb.helmholtz-muenchen.de/plant/index.jsp) is a database framework for the comparative analysis and visualization of plant genome data. The resource has been updated with new data sets and types as well as specialized tools and interfaces to address user demands for intuitive access to complex plant genome data. In its latest incarnation, we have re-worked both the layout and navigation structure and implemented new keyword search options and a new BLAST sequence search functionality. Actively involved in corresponding sequencing consortia, PlantsDB has dedicated special efforts to the integration and visualization of complex triticeae genome data, especially for barley, wheat and rye. We enhanced CrowsNest, a tool to visualize syntenic relationships between genomes, with data from the wheat sub-genome progenitor Aegilops tauschii and added functionality to the PGSB RNASeqExpressionBrowser. GenomeZipper results were integrated for the genomes of barley, rye, wheat and perennial ryegrass and interactive access is granted through PlantsDB interfaces. Data exchange and cross-linking between PlantsDB and other plant genome databases is stimulated by the transPLANT project (http://transplantdb.eu/).
Collapse
Affiliation(s)
- Manuel Spannagl
- Plant Genome and Systems Biology, Helmholtz Center Munich - German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Thomas Nussbaumer
- Plant Genome and Systems Biology, Helmholtz Center Munich - German Research Center for Environmental Health, 85764 Neuherberg, Germany Division of Computational Systems Biology, Department of Microbiology and Ecosystem Science, University of Vienna, 1090 Vienna, Austria
| | - Kai C Bader
- Plant Genome and Systems Biology, Helmholtz Center Munich - German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Mihaela M Martis
- Plant Genome and Systems Biology, Helmholtz Center Munich - German Research Center for Environmental Health, 85764 Neuherberg, Germany BILS (Bioinformatics Infrastructure for Life Sciences), Division of Cell Biology, Department of Clinical and Experimental Medicine, Linköping University, SE-558185 Linköping, Sweden
| | - Michael Seidel
- Plant Genome and Systems Biology, Helmholtz Center Munich - German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Karl G Kugler
- Plant Genome and Systems Biology, Helmholtz Center Munich - German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Heidrun Gundlach
- Plant Genome and Systems Biology, Helmholtz Center Munich - German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Klaus F X Mayer
- Plant Genome and Systems Biology, Helmholtz Center Munich - German Research Center for Environmental Health, 85764 Neuherberg, Germany
| |
Collapse
|
33
|
Muñoz-Amatriaín M, Lonardi S, Luo M, Madishetty K, Svensson JT, Moscou MJ, Wanamaker S, Jiang T, Kleinhofs A, Muehlbauer GJ, Wise RP, Stein N, Ma Y, Rodriguez E, Kudrna D, Bhat PR, Chao S, Condamine P, Heinen S, Resnik J, Wing R, Witt HN, Alpert M, Beccuti M, Bozdag S, Cordero F, Mirebrahim H, Ounit R, Wu Y, You F, Zheng J, Simková H, Dolezel J, Grimwood J, Schmutz J, Duma D, Altschmied L, Blake T, Bregitzer P, Cooper L, Dilbirligi M, Falk A, Feiz L, Graner A, Gustafson P, Hayes PM, Lemaux P, Mammadov J, Close TJ. Sequencing of 15 622 gene-bearing BACs clarifies the gene-dense regions of the barley genome. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 84:216-27. [PMID: 26252423 PMCID: PMC5014227 DOI: 10.1111/tpj.12959] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/15/2015] [Accepted: 07/24/2015] [Indexed: 05/18/2023]
Abstract
Barley (Hordeum vulgare L.) possesses a large and highly repetitive genome of 5.1 Gb that has hindered the development of a complete sequence. In 2012, the International Barley Sequencing Consortium released a resource integrating whole-genome shotgun sequences with a physical and genetic framework. However, because only 6278 bacterial artificial chromosome (BACs) in the physical map were sequenced, fine structure was limited. To gain access to the gene-containing portion of the barley genome at high resolution, we identified and sequenced 15 622 BACs representing the minimal tiling path of 72 052 physical-mapped gene-bearing BACs. This generated ~1.7 Gb of genomic sequence containing an estimated 2/3 of all Morex barley genes. Exploration of these sequenced BACs revealed that although distal ends of chromosomes contain most of the gene-enriched BACs and are characterized by high recombination rates, there are also gene-dense regions with suppressed recombination. We made use of published map-anchored sequence data from Aegilops tauschii to develop a synteny viewer between barley and the ancestor of the wheat D-genome. Except for some notable inversions, there is a high level of collinearity between the two species. The software HarvEST:Barley provides facile access to BAC sequences and their annotations, along with the barley-Ae. tauschii synteny viewer. These BAC sequences constitute a resource to improve the efficiency of marker development, map-based cloning, and comparative genomics in barley and related crops. Additional knowledge about regions of the barley genome that are gene-dense but low recombination is particularly relevant.
Collapse
Affiliation(s)
- María Muñoz-Amatriaín
- Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
| | - Stefano Lonardi
- Department of Computer Science, University of California, Riverside, CA, 92521, USA
| | - MingCheng Luo
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Kavitha Madishetty
- Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
| | - Jan T Svensson
- Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
- Nordic Genetic Resource Center, SE-23053, Alnarp, Sweden
| | - Matthew J Moscou
- Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Steve Wanamaker
- Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
| | - Tao Jiang
- Department of Computer Science, University of California, Riverside, CA, 92521, USA
| | - Andris Kleinhofs
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Gary J Muehlbauer
- Department of Plant Biology, Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, 55108, USA
| | - Roger P Wise
- Corn Insects and Crop Genetics Research, USDA-Agricultural Research Service & Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, 50011-1020, USA
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), D-06466, Gatersleben, Germany
| | - Yaqin Ma
- Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
- Molefarming Laboratory USA, Davis, CA, 95616, USA
| | - Edmundo Rodriguez
- Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
- Departamento de Ciencias Basicas, Universidad Autonoma Agraria Antonio Narro, Narro 1923, Saltillo, Coah, 25315, México
| | - Dave Kudrna
- Arizona Genomics Institute, University of Arizona, Tucson, AZ, 85721, USA
| | - Prasanna R Bhat
- Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
- Monsanto Research Center, Bangalore, 560092, India
| | - Shiaoman Chao
- USDA-ARS Biosciences Research Lab, Fargo, ND, 58105, USA
| | - Pascal Condamine
- Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
| | - Shane Heinen
- Department of Plant Biology, Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, 55108, USA
| | - Josh Resnik
- Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
- Ronald Reagan UCLA Medical Center, Los Angeles, CA, 90095, USA
| | - Rod Wing
- Arizona Genomics Institute, University of Arizona, Tucson, AZ, 85721, USA
| | - Heather N Witt
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Matthew Alpert
- Department of Computer Science, University of California, Riverside, CA, 92521, USA
- Turtle Rock Studios, Lake Forest, CA, 92630, USA
| | - Marco Beccuti
- Department of Computer Science, University of California, Riverside, CA, 92521, USA
- Department of Computer Science, University of Turin, Corso Svizzera 185, 10149, Turin, Italy
| | - Serdar Bozdag
- Department of Computer Science, University of California, Riverside, CA, 92521, USA
- Deptartment of Mathematics, Statistics and Computer Science, Marquette University, Milwaukee, WI, 53233, USA
| | - Francesca Cordero
- Department of Computer Science, University of California, Riverside, CA, 92521, USA
- Department of Computer Science, University of Turin, Corso Svizzera 185, 10149, Turin, Italy
| | - Hamid Mirebrahim
- Department of Computer Science, University of California, Riverside, CA, 92521, USA
| | - Rachid Ounit
- Department of Computer Science, University of California, Riverside, CA, 92521, USA
| | - Yonghui Wu
- Department of Computer Science, University of California, Riverside, CA, 92521, USA
- Google Inc., Mountain View, CA, 94043, USA
| | - Frank You
- USDA-ARS, Albany, CA, 94710, USA
- Agriculture and Agri-Food Canada, Morden, MB, R6M 1Y5, Canada
| | - Jie Zheng
- Department of Computer Science, University of California, Riverside, CA, 92521, USA
- School of Computer Engineering, Nanyang Technological University, Nanyang Avenue, Singapore, 639798, Singapore
| | - Hana Simková
- Centre of the Region Hana for Biotechnological and Agricultural Research, Institute of Experimental Botany, Sokolovskį 6, CZ-77200, Olomouc, Czech Republic
| | - Jaroslav Dolezel
- Centre of the Region Hana for Biotechnological and Agricultural Research, Institute of Experimental Botany, Sokolovskį 6, CZ-77200, Olomouc, Czech Republic
| | - Jane Grimwood
- Hudson Alpha Genome Sequencing Center, DOE Joint Genome Institute, Huntsville, AL, 35806, USA
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Jeremy Schmutz
- Hudson Alpha Genome Sequencing Center, DOE Joint Genome Institute, Huntsville, AL, 35806, USA
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Denisa Duma
- Department of Computer Science, University of California, Riverside, CA, 92521, USA
- Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Houston, TX, 77030, USA
| | - Lothar Altschmied
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), D-06466, Gatersleben, Germany
| | - Tom Blake
- Department of Plant Sciences & Plant Pathology, Montana State University, Bozeman, MT, 59717-3150, USA
| | | | - Laurel Cooper
- Department of Crop and Soil Science, Oregon State University, Corvallis, OR, 97331, USA
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA
| | - Muharrem Dilbirligi
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA
- International Cooperation Department, The Scientific and Technological Research Council of Turkey, Tunus cad. No: 80, 06100, Kavaklidere, Ankara, Turkey
| | - Anders Falk
- Swedish University of Agricultural Sciences, SE-750 07, Uppsala, Sweden
| | - Leila Feiz
- Department of Plant Sciences & Plant Pathology, Montana State University, Bozeman, MT, 59717-3150, USA
- Boyce Thompson Institute for Plant Research, Cornell University, 533 Tower Road, Ithaca, NY, 14853-1801, USA
| | - Andreas Graner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), D-06466, Gatersleben, Germany
| | | | - Patrick M Hayes
- Department of Crop and Soil Science, Oregon State University, Corvallis, OR, 97331, USA
| | - Peggy Lemaux
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Jafar Mammadov
- Department of Crop & Soil Environmental Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
- Dow AgroSciences LLC, Indianapolis, IN, 46268-1054, USA
| | - Timothy J Close
- Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
| |
Collapse
|
34
|
Pingault L, Choulet F, Alberti A, Glover N, Wincker P, Feuillet C, Paux E. Deep transcriptome sequencing provides new insights into the structural and functional organization of the wheat genome. Genome Biol 2015; 16:29. [PMID: 25853487 PMCID: PMC4355351 DOI: 10.1186/s13059-015-0601-9] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 01/28/2015] [Indexed: 12/19/2022] Open
Abstract
Background Because of its size, allohexaploid nature, and high repeat content, the bread wheat genome is a good model to study the impact of the genome structure on gene organization, function, and regulation. However, because of the lack of a reference genome sequence, such studies have long been hampered and our knowledge of the wheat gene space is still limited. The access to the reference sequence of the wheat chromosome 3B provided us with an opportunity to study the wheat transcriptome and its relationships to genome and gene structure at a level that has never been reached before. Results By combining this sequence with RNA-seq data, we construct a fine transcriptome map of the chromosome 3B. More than 8,800 transcription sites are identified, that are distributed throughout the entire chromosome. Expression level, expression breadth, alternative splicing as well as several structural features of genes, including transcript length, number of exons, and cumulative intron length are investigated. Our analysis reveals a non-monotonic relationship between gene expression and structure and leads to the hypothesis that gene structure is determined by its function, whereas gene expression is subject to energetic cost. Moreover, we observe a recombination-based partitioning at the gene structure and function level. Conclusions Our analysis provides new insights into the relationships between gene and genome structure and function. It reveals mechanisms conserved with other plant species as well as superimposed evolutionary forces that shaped the wheat gene space, likely participating in wheat adaptation. Electronic supplementary material The online version of this article (doi:10.1186/s13059-015-0601-9) contains supplementary material, which is available to authorized users.
Collapse
|
35
|
Genome-wide association studies of agronomic and quality traits in a set of German winter barley (Hordeum vulgare L.) cultivars using Diversity Arrays Technology (DArT). J Appl Genet 2014; 55:295-305. [PMID: 24789682 DOI: 10.1007/s13353-014-0214-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 04/03/2014] [Accepted: 04/04/2014] [Indexed: 10/25/2022]
Abstract
A set of about 100 winter barley (Hordeum vulgare L.) cultivars, comprising diverse and economically important German barley elite germplasm released during the last six decades, was previously genotypically characterized by single nucleotide polymorphism (SNP) markers using the Illumina GoldenGate BeadArray Technology to detect associations with phenotypic data estimated in three-year field trials at 12 locations. In order to identify further associations and to obtain information on whether the marker type influences the outcome of association genetics studies, the set of winter barley cultivars was re-analyzed using Diversity Arrays Technology (DArT) markers. As with the analysis of the SNPs, only polymorphic markers present at an allele frequency >5% were included to detect associations in a mixed linear model (MLM) approach using the TASSEL software (P ≤ 0.001). The population structure and kinship matrix were estimated on 72 simple sequence repeats (SSRs) covering the whole barley genome. The respective average linkage disequilibrium (LD) analyzed with DArT markers was estimated at 5.73 cM. A total of 52 markers gave significant associations with at least one of the traits estimated which, therefore, may be suitable for marker-assisted breeding. In addition, by comparing the results to those generated using the Illumina GoldenGate BeadArray Technology, it turned out that a different number of associations for respective traits is detected, depending on the marker system. However, as only a few of the respective DArT and Illumina markers are present in a common map, no comprehensive comparison of the detected associations was feasible, but some were probably detected in the same chromosomal regions. Because of the identification of additional marker-trait associations, it may be recommended to use both marker techniques in genome-wide association studies.
Collapse
|
36
|
Wegrzyn JL, Liechty JD, Stevens KA, Wu LS, Loopstra CA, Vasquez-Gross HA, Dougherty WM, Lin BY, Zieve JJ, Martínez-García PJ, Holt C, Yandell M, Zimin AV, Yorke JA, Crepeau MW, Puiu D, Salzberg SL, de Jong PJ, Mockaitis K, Main D, Langley CH, Neale DB. Unique features of the loblolly pine (Pinus taeda L.) megagenome revealed through sequence annotation. Genetics 2014; 196:891-909. [PMID: 24653211 PMCID: PMC3948814 DOI: 10.1534/genetics.113.159996] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 12/13/2013] [Indexed: 01/08/2023] Open
Abstract
The largest genus in the conifer family Pinaceae is Pinus, with over 100 species. The size and complexity of their genomes (∼20-40 Gb, 2n = 24) have delayed the arrival of a well-annotated reference sequence. In this study, we present the annotation of the first whole-genome shotgun assembly of loblolly pine (Pinus taeda L.), which comprises 20.1 Gb of sequence. The MAKER-P annotation pipeline combined evidence-based alignments and ab initio predictions to generate 50,172 gene models, of which 15,653 are classified as high confidence. Clustering these gene models with 13 other plant species resulted in 20,646 gene families, of which 1554 are predicted to be unique to conifers. Among the conifer gene families, 159 are composed exclusively of loblolly pine members. The gene models for loblolly pine have the highest median and mean intron lengths of 24 fully sequenced plant genomes. Conifer genomes are full of repetitive DNA, with the most significant contributions from long-terminal-repeat retrotransposons. In depth analysis of the tandem and interspersed repetitive content yielded a combined estimate of 82%.
Collapse
Affiliation(s)
- Jill L. Wegrzyn
- Department of Plant Sciences, University of California, Davis, California 95616
| | - John D. Liechty
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Kristian A. Stevens
- Department of Evolution and Ecology, University of California, Davis, California 95616
| | - Le-Shin Wu
- National Center for Genome Analysis Support, Indiana University, Bloomington, Indiana 47405
| | - Carol A. Loopstra
- Department of Ecosystem Science and Management, Texas A&M University, College Station, Texas 77843
| | | | - William M. Dougherty
- Department of Evolution and Ecology, University of California, Davis, California 95616
| | - Brian Y. Lin
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Jacob J. Zieve
- Department of Plant Sciences, University of California, Davis, California 95616
| | | | - Carson Holt
- Department of Human Genetics, University of Utah, Salt Lake City, Utah 84112
| | - Mark Yandell
- Department of Human Genetics, University of Utah, Salt Lake City, Utah 84112
| | - Aleksey V. Zimin
- Institute for Physical Sciences and Technology, University of Maryland, College Park, Maryland 20742
| | - James A. Yorke
- Institute for Physical Sciences and Technology, University of Maryland, College Park, Maryland 20742
- Departments of Mathematics and Physics, University of Maryland, College Park, Maryland 20742
| | - Marc W. Crepeau
- Department of Evolution and Ecology, University of California, Davis, California 95616
| | - Daniela Puiu
- Center for Computational Biology, McKusick-Nathans Institute of Genetic Medicine, The Johns Hopkins University, Baltimore, Maryland 21205
| | - Steven L. Salzberg
- Center for Computational Biology, McKusick-Nathans Institute of Genetic Medicine, The Johns Hopkins University, Baltimore, Maryland 21205
| | - Pieter J. de Jong
- Children’s Hospital Oakland Research Institute, Oakland, California 94609
| | | | - Doreen Main
- Department of Horticulture, Washington State University, Pullman, Washington 99163
| | - Charles H. Langley
- Department of Evolution and Ecology, University of California, Davis, California 95616
| | - David B. Neale
- Department of Plant Sciences, University of California, Davis, California 95616
| |
Collapse
|
37
|
Doležel J, Vrána J, Cápal P, Kubaláková M, Burešová V, Šimková H. Advances in plant chromosome genomics. Biotechnol Adv 2014; 32:122-36. [DOI: 10.1016/j.biotechadv.2013.12.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 12/20/2013] [Accepted: 12/21/2013] [Indexed: 01/09/2023]
|
38
|
Kopecký D, Studer B. Emerging technologies advancing forage and turf grass genomics. Biotechnol Adv 2013; 32:190-9. [PMID: 24309540 DOI: 10.1016/j.biotechadv.2013.11.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 11/18/2013] [Accepted: 11/20/2013] [Indexed: 11/20/2022]
Abstract
Grassland is of major importance for agricultural production and provides valuable ecosystem services. Its impact is likely to rise in changing socio-economic and climatic environments. High yielding forage grass species are major components of sustainable grassland production. Understanding the genome structure and function of grassland species provides opportunities to accelerate crop improvement and thus to mitigate the future challenges of increased feed and food demand, scarcity of natural resources such as water and nutrients, and high product qualities. In this review, we will discuss a selection of technological developments that served as main drivers to generate new insights into the structure and function of nuclear genomes. Many of these technologies were originally developed in human or animal science and are now increasingly applied in plant genomics. Our main goal is to highlight the benefits of using these technologies for forage and turf grass genome research, to discuss their potentials and limitations as well as their relevance for future applications.
Collapse
Affiliation(s)
- David Kopecký
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Šlechtitelů 31, CZ-78371, Olomouc-Holice, Czech Republic
| | - Bruno Studer
- Forage Crop Genetics, Institute of Agricultural Sciences, ETH Zurich, Universitaetsstrasse 2, 8092 Zurich, Switzerland.
| |
Collapse
|
39
|
Li J, Endo TR, Saito M, Ishikawa G, Nakamura T, Nasuda S. Homoeologous relationship of rye chromosome arms as detected with wheat PLUG markers. Chromosoma 2013; 122:555-64. [PMID: 23873186 DOI: 10.1007/s00412-013-0428-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Revised: 07/01/2013] [Accepted: 07/02/2013] [Indexed: 01/28/2023]
Abstract
Based on the similarity in gene structure between rice and wheat, the polymerase chain reaction (PCR)-based landmark unique gene (PLUG) system enabled us to design primer sets that amplify wheat genic sequences including introns. From the previously reported wheat PLUG markers, we chose 144 markers that are distributed on different chromosomes and in known chromosomal regions (bins) to obtain rye-specific PCR-based markers. We conducted PCR with the 144 primer sets and the template of the Imperial rye genomic DNA and found that 131 (91.0%) primer sets successfully amplified PCR products. Of the 131 PLUG markers, 110 (76.4%) markers showed rye-specific PCR amplification with or without restriction enzyme digestion. We assigned 79 of the 110 markers to seven rye chromosomes (1R to 7R) using seven wheat-rye (cv. Imperial) chromosome addition and substitution lines: 12 to 1R, 8 to 2R, 11 to 3R, 8 to 4R, 16 to 5R, 12 to 6R, and 12 to 7R. Furthermore, we located their positions on the short or long (L) chromosome arm, using 13 Imperial rye telosomic lines of common wheat (except for 3RL). Referring to the chromosome bin locations of the 79 PLUG markers in wheat, we deduced the syntenic relationships between rye and wheat chromosomes. We also discussed chromosomal rearrangements in the rye genome with reference to the cytologically visible chromosomal gaps.
Collapse
Affiliation(s)
- Jianjian Li
- Laboratory of Plant Genetics, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | | | | | | | | | | |
Collapse
|
40
|
Liu D, Zeng SH, Chen JJ, Zhang YJ, Xiao G, Zhu LY, Wang Y. First insights into the large genome of Epimedium sagittatum (Sieb. et Zucc) Maxim, a Chinese Ttaditional medicinal plant. Int J Mol Sci 2013; 14:13559-76. [PMID: 23807511 PMCID: PMC3742203 DOI: 10.3390/ijms140713559] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 05/16/2013] [Accepted: 06/06/2013] [Indexed: 11/30/2022] Open
Abstract
Epimedium sagittatum (Sieb. et Zucc) Maxim is a member of the Berberidaceae family of basal eudicot plants, widely distributed and used as a traditional medicinal plant in China for therapeutic effects on many diseases with a long history. Recent data shows that E. sagittatum has a relatively large genome, with a haploid genome size of ~4496 Mbp, divided into a small number of only 12 diploid chromosomes (2n = 2x = 12). However, little is known about Epimedium genome structure and composition. Here we present the analysis of 691 kb of high-quality genomic sequence derived from 672 randomly selected plasmid clones of E. sagittatum genomic DNA, representing ~0.0154% of the genome. The sampled sequences comprised at least 78.41% repetitive DNA elements and 2.51% confirmed annotated gene sequences, with a total GC% content of 39%. Retrotransposons represented the major class of transposable element (TE) repeats identified (65.37% of all TE repeats), particularly LTR (Long Terminal Repeat) retrotransposons (52.27% of all TE repeats). Chromosome analysis and Fluorescence in situ Hybridization of Gypsy-Ty3 retrotransposons were performed to survey the E. sagittatum genome at the cytological level. Our data provide the first insights into the composition and structure of the E. sagittatum genome, and will facilitate the functional genomic analysis of this valuable medicinal plant.
Collapse
Affiliation(s)
- Di Liu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; E-Mails: (D.L.); (J.-J.C.); (Y.-J.Z.); (G.X.)
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Shao-Hua Zeng
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; E-Mail:
| | - Jian-Jun Chen
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; E-Mails: (D.L.); (J.-J.C.); (Y.-J.Z.); (G.X.)
| | - Yan-Jun Zhang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; E-Mails: (D.L.); (J.-J.C.); (Y.-J.Z.); (G.X.)
| | - Gong Xiao
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; E-Mails: (D.L.); (J.-J.C.); (Y.-J.Z.); (G.X.)
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Lin-Yao Zhu
- Wuhan Vegetable Research Station, Wuhan 430065, China; E-Mail:
| | - Ying Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; E-Mails: (D.L.); (J.-J.C.); (Y.-J.Z.); (G.X.)
| |
Collapse
|
41
|
Lei MP, Li GR, Liu C, Yang ZJ. Characterization of wheat – Secale africanum introgression lines reveals evolutionary aspects of chromosome 1R in rye. Genome 2012. [DOI: 10.1139/g2012-062] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Wild Secale species, Secale africanum Stapf., serve as a valuable source for increasing the diversity of cultivated rye (Secale cereale L.) and provide novel genes for wheat improvement. New wheat – S. africanum chromosome 1Rafr addition, 1Rafr(1D) substitution, 1BL.1RafrS and 1DS.1RafrL translocation, and 1RafrL monotelocentric addition lines were identified by chromosome banding and in situ hybridization. Disease resistance screening revealed that chromosome 1RafrS carries resistance gene(s) to new stripe rust races. Twenty-nine molecular markers were localized on S. africanum chromosome 1Rafr by the wheat – S. africanum introgression lines. Twenty markers can also identically amplify other reported wheat – S. cereale chromosome 1R derivative lines, indicating that there is high conservation between the wild and cultivated Secale chromosome 1R. Nine markers displayed polymorphic amplification between S. africanum and S. cereale chromosome 1Rafr derivatives. The comparison of the nucleotide sequences of these polymorphic markers suggested that gene duplication and sequence divergence may have occurred among Secale species during its evolution and domestication.
Collapse
Affiliation(s)
- Meng-Ping Lei
- School of Life Science and Technology, University of Electronic and Technology of China, Chengdu 610054 China
| | - Guang-Rong Li
- School of Life Science and Technology, University of Electronic and Technology of China, Chengdu 610054 China
| | - Cheng Liu
- School of Life Science and Technology, University of Electronic and Technology of China, Chengdu 610054 China
| | - Zu-Jun Yang
- School of Life Science and Technology, University of Electronic and Technology of China, Chengdu 610054 China
| |
Collapse
|
42
|
Moe KT, Kwon SW, Park YJ. Trends in genomics and molecular marker systems for the development of some underutilized crops. Genes Genomics 2012. [DOI: 10.1007/s13258-012-0049-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
43
|
Doležel J, Vrána J, Safář J, Bartoš J, Kubaláková M, Simková H. Chromosomes in the flow to simplify genome analysis. Funct Integr Genomics 2012; 12:397-416. [PMID: 22895700 PMCID: PMC3431466 DOI: 10.1007/s10142-012-0293-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2012] [Accepted: 07/30/2012] [Indexed: 11/25/2022]
Abstract
Nuclear genomes of human, animals, and plants are organized into subunits called chromosomes. When isolated into aqueous suspension, mitotic chromosomes can be classified using flow cytometry according to light scatter and fluorescence parameters. Chromosomes of interest can be purified by flow sorting if they can be resolved from other chromosomes in a karyotype. The analysis and sorting are carried out at rates of 10(2)-10(4) chromosomes per second, and for complex genomes such as wheat the flow sorting technology has been ground-breaking in reducing genome complexity for genome sequencing. The high sample rate provides an attractive approach for karyotype analysis (flow karyotyping) and the purification of chromosomes in large numbers. In characterizing the chromosome complement of an organism, the high number that can be studied using flow cytometry allows for a statistically accurate analysis. Chromosome sorting plays a particularly important role in the analysis of nuclear genome structure and the analysis of particular and aberrant chromosomes. Other attractive but not well-explored features include the analysis of chromosomal proteins, chromosome ultrastructure, and high-resolution mapping using FISH. Recent results demonstrate that chromosome flow sorting can be coupled seamlessly with DNA array and next-generation sequencing technologies for high-throughput analyses. The main advantages are targeting the analysis to a genome region of interest and a significant reduction in sample complexity. As flow sorters can also sort single copies of chromosomes, shotgun sequencing DNA amplified from them enables the production of haplotype-resolved genome sequences. This review explains the principles of flow cytometric chromosome analysis and sorting (flow cytogenetics), discusses the major uses of this technology in genome analysis, and outlines future directions.
Collapse
Affiliation(s)
- Jaroslav Doležel
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Sokolovská 6, Olomouc, Czech Republic.
| | | | | | | | | | | |
Collapse
|
44
|
Sehgal SK, Li W, Rabinowicz PD, Chan A, Šimková H, Doležel J, Gill BS. Chromosome arm-specific BAC end sequences permit comparative analysis of homoeologous chromosomes and genomes of polyploid wheat. BMC PLANT BIOLOGY 2012; 12:64. [PMID: 22559868 PMCID: PMC3438119 DOI: 10.1186/1471-2229-12-64] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 04/09/2012] [Indexed: 05/24/2023]
Abstract
BACKGROUND Bread wheat, one of the world's staple food crops, has the largest, highly repetitive and polyploid genome among the cereal crops. The wheat genome holds the key to crop genetic improvement against challenges such as climate change, environmental degradation, and water scarcity. To unravel the complex wheat genome, the International Wheat Genome Sequencing Consortium (IWGSC) is pursuing a chromosome- and chromosome arm-based approach to physical mapping and sequencing. Here we report on the use of a BAC library made from flow-sorted telosomic chromosome 3A short arm (t3AS) for marker development and analysis of sequence composition and comparative evolution of homoeologous genomes of hexaploid wheat. RESULTS The end-sequencing of 9,984 random BACs from a chromosome arm 3AS-specific library (TaaCsp3AShA) generated 11,014,359 bp of high quality sequence from 17,591 BAC-ends with an average length of 626 bp. The sequence represents 3.2% of t3AS with an average DNA sequence read every 19 kb. Overall, 79% of the sequence consisted of repetitive elements, 1.38% as coding regions (estimated 2,850 genes) and another 19% of unknown origin. Comparative sequence analysis suggested that 70-77% of the genes present in both 3A and 3B were syntenic with model species. Among the transposable elements, gypsy/sabrina (12.4%) was the most abundant repeat and was significantly more frequent in 3A compared to homoeologous chromosome 3B. Twenty novel repetitive sequences were also identified using de novo repeat identification. BESs were screened to identify simple sequence repeats (SSR) and transposable element junctions. A total of 1,057 SSRs were identified with a density of one per 10.4 kb, and 7,928 junctions between transposable elements (TE) and other sequences were identified with a density of one per 1.39 kb. With the objective of enhancing the marker density of chromosome 3AS, oligonucleotide primers were successfully designed from 758 SSRs and 695 Insertion Site Based Polymorphisms (ISBPs). Of the 96 ISBP primer pairs tested, 28 (29%) were 3A-specific and compared to 17 (18%) for 96 SSRs. CONCLUSION This work reports on the use of wheat chromosome arm 3AS-specific BAC library for the targeted generation of sequence data from a particular region of the huge genome of wheat. A large quantity of sequences were generated from the A genome of hexaploid wheat for comparative genome analysis with homoeologous B and D genomes and other model grass genomes. Hundreds of molecular markers were developed from the 3AS arm-specific sequences; these and other sequences will be useful in gene discovery and physical mapping.
Collapse
Affiliation(s)
- Sunish K Sehgal
- Wheat Genetic and Genomic Resources Center, Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | - Wanlong Li
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA
| | - Pablo D Rabinowicz
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Agnes Chan
- The J. Craig Venter Institute, Rockville, MD 20850, USA
| | - Hana Šimková
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Sokolovska 6, Olomouc CZ-77200, Czech Republic
| | - Jaroslav Doležel
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Sokolovska 6, Olomouc CZ-77200, Czech Republic
| | - Bikram S Gill
- Wheat Genetic and Genomic Resources Center, Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
- Faculty of Science, Genomics and Biotechnology Section, Department of Biological Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
45
|
Total centromere size and genome size are strongly correlated in ten grass species. Chromosome Res 2012; 20:403-12. [PMID: 22552915 PMCID: PMC3391362 DOI: 10.1007/s10577-012-9284-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 04/11/2012] [Accepted: 04/12/2012] [Indexed: 01/05/2023]
Abstract
It has been known for decades that centromere size varies across species, but the factors involved in setting centromere boundaries are unknown. As a means to address this question, we estimated centromere sizes in ten species of the grass family including rice, maize, and wheat, which diverged 60~80 million years ago and vary by 40-fold in genome size. Measurements were made using a broadly reactive antibody to rice centromeric histone H3 (CENH3). In species-wide comparisons, we found a clear linear relationship between total centromere size and genome size. Species with large genomes and few chromosomes tend to have the largest centromeres (e.g., rye) while species with small genomes and many chromosomes have the smallest centromeres (e.g., rice). However, within a species, centromere size is surprisingly uniform. We present evidence from three oat–maize addition lines that support this claim, indicating that each of three maize centromeres propagated in oat are not measurably different from each other. In the context of previously published data, our results suggest that the apparent correlation between chromosome and centromere size is incidental to a larger trend that reflects genome size. Centromere size may be determined by a limiting component mechanism similar to that described for Caenorhabditis elegans centrosomes.
Collapse
|
46
|
Fluch S, Kopecky D, Burg K, Šimková H, Taudien S, Petzold A, Kubaláková M, Platzer M, Berenyi M, Krainer S, Doležel J, Lelley T. Sequence composition and gene content of the short arm of rye (Secale cereale) chromosome 1. PLoS One 2012; 7:e30784. [PMID: 22328922 PMCID: PMC3273464 DOI: 10.1371/journal.pone.0030784] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 12/26/2011] [Indexed: 01/21/2023] Open
Abstract
Background The purpose of the study is to elucidate the sequence composition of the short arm of rye chromosome 1 (Secale cereale) with special focus on its gene content, because this portion of the rye genome is an integrated part of several hundreds of bread wheat varieties worldwide. Methodology/Principal Findings Multiple Displacement Amplification of 1RS DNA, obtained from flow sorted 1RS chromosomes, using 1RS ditelosomic wheat-rye addition line, and subsequent Roche 454FLX sequencing of this DNA yielded 195,313,589 bp sequence information. This quantity of sequence information resulted in 0.43× sequence coverage of the 1RS chromosome arm, permitting the identification of genes with estimated probability of 95%. A detailed analysis revealed that more than 5% of the 1RS sequence consisted of gene space, identifying at least 3,121 gene loci representing 1,882 different gene functions. Repetitive elements comprised about 72% of the 1RS sequence, Gypsy/Sabrina (13.3%) being the most abundant. More than four thousand simple sequence repeat (SSR) sites mostly located in gene related sequence reads were identified for possible marker development. The existence of chloroplast insertions in 1RS has been verified by identifying chimeric chloroplast-genomic sequence reads. Synteny analysis of 1RS to the full genomes of Oryza sativa and Brachypodium distachyon revealed that about half of the genes of 1RS correspond to the distal end of the short arm of rice chromosome 5 and the proximal region of the long arm of Brachypodium distachyon chromosome 2. Comparison of the gene content of 1RS to 1HS barley chromosome arm revealed high conservation of genes related to chromosome 5 of rice. Conclusions The present study revealed the gene content and potential gene functions on this chromosome arm and demonstrated numerous sequence elements like SSRs and gene-related sequences, which can be utilised for future research as well as in breeding of wheat and rye.
Collapse
Affiliation(s)
- Silvia Fluch
- Health and Environment Department, Bioresources, Austrian Institute of Technology (AIT), Tulln, Austria
| | - Dieter Kopecky
- Health and Environment Department, Bioresources, Austrian Institute of Technology (AIT), Tulln, Austria
| | - Kornel Burg
- Health and Environment Department, Bioresources, Austrian Institute of Technology (AIT), Tulln, Austria
- * E-mail:
| | - Hana Šimková
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Olomouc, Czech Republic
| | - Stefan Taudien
- Leibniz Institute for Age Research (Fritz Lipmann Institute), Jena, Germany
| | - Andreas Petzold
- Leibniz Institute for Age Research (Fritz Lipmann Institute), Jena, Germany
| | - Marie Kubaláková
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Olomouc, Czech Republic
| | - Matthias Platzer
- Leibniz Institute for Age Research (Fritz Lipmann Institute), Jena, Germany
| | - Maria Berenyi
- Health and Environment Department, Bioresources, Austrian Institute of Technology (AIT), Tulln, Austria
| | - Siegfried Krainer
- Health and Environment Department, Bioresources, Austrian Institute of Technology (AIT), Tulln, Austria
| | - Jaroslav Doležel
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Olomouc, Czech Republic
| | - Tamas Lelley
- Department of Agrobiotechnology, Institute for Biotechnology in Plant Production (IFA-Tulln), University of Natural Resources and Applied Life Sciences (BOKU), Vienna, Austria
| |
Collapse
|
47
|
Schulman AH, Flavell AJ, Paux E, Ellis THN. The application of LTR retrotransposons as molecular markers in plants. Methods Mol Biol 2012; 859:115-153. [PMID: 22367869 DOI: 10.1007/978-1-61779-603-6_7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Retrotransposons are a major agent of genome evolution. Various molecular marker systems have been developed that exploit the ubiquitous nature of these genetic elements and their property of stable integration into dispersed chromosomal loci that are polymorphic within species. The key methods, SSAP, IRAP, REMAP, RBIP, and ISBP, all detect the sites at which the retrotransposon DNA, which is conserved between families of elements, is integrated into the genome. Marker systems exploiting these methods can be easily developed and inexpensively deployed in the absence of extensive genome sequence data. They offer access to the dynamic and polymorphic, nongenic portion of the genome and thereby complement methods, such as gene-derived SNPs, that target primarily the genic fraction.
Collapse
Affiliation(s)
- Alan H Schulman
- Plant Genomics, MTT Agrifood Research Finland, Jokioinen, Finland.
| | | | | | | |
Collapse
|
48
|
Wu J, Gu YQ, Hu Y, You FM, Dandekar AM, Leslie CA, Aradhya M, Dvorak J, Luo MC. Characterizing the walnut genome through analyses of BAC end sequences. PLANT MOLECULAR BIOLOGY 2012; 78:95-107. [PMID: 22101470 DOI: 10.1007/s11103-011-9849-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 10/29/2011] [Indexed: 05/31/2023]
Abstract
Persian walnut (Juglans regia L.) is an economically important tree for its nut crop and timber. To gain insight into the structure and evolution of the walnut genome, we constructed two bacterial artificial chromosome (BAC) libraries, containing a total of 129,024 clones, from in vitro-grown shoots of J. regia cv. Chandler using the HindIII and MboI cloning sites. A total of 48,218 high-quality BAC end sequences (BESs) were generated, with an accumulated sequence length of 31.2 Mb, representing approximately 5.1% of the walnut genome. Analysis of repeat DNA content in BESs revealed that approximately 15.42% of the genome consists of known repetitive DNA, while walnut-unique repetitive DNA identified in this study constitutes 13.5% of the genome. Among the walnut-unique repetitive DNA, Julia SINE and JrTRIM elements represent the first identified walnut short interspersed element (SINE) and terminal-repeat retrotransposon in miniature (TRIM) element, respectively; both types of elements are abundant in the genome. As in other species, these SINEs and TRIM elements could be exploited for developing repeat DNA-based molecular markers in walnut. Simple sequence repeats (SSR) from BESs were analyzed and found to be more abundant in BESs than in expressed sequence tags. The density of SSR in the walnut genome analyzed was also slightly higher than that in poplar and papaya. Sequence analysis of BESs indicated that approximately 11.5% of the walnut genome represents a coding sequence. This study is an initial characterization of the walnut genome and provides the largest genomic resource currently available; as such, it will be a valuable tool in studies aimed at genetically improving walnut.
Collapse
Affiliation(s)
- Jiajie Wu
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
A high density consensus map of rye (Secale cereale L.) based on DArT markers. PLoS One 2011; 6:e28495. [PMID: 22163026 PMCID: PMC3232230 DOI: 10.1371/journal.pone.0028495] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 11/09/2011] [Indexed: 12/02/2022] Open
Abstract
Background Rye (Secale cereale L.) is an economically important crop, exhibiting unique features such as outstanding resistance to biotic and abiotic stresses and high nutrient use efficiency. This species presents a challenge to geneticists and breeders due to its large genome containing a high proportion of repetitive sequences, self incompatibility, severe inbreeding depression and tissue culture recalcitrance. The genomic resources currently available for rye are underdeveloped in comparison with other crops of similar economic importance. The aim of this study was to create a highly saturated, multilocus linkage map of rye via consensus mapping, based on Diversity Arrays Technology (DArT) markers. Methodology/Principal Findings Recombinant inbred lines (RILs) from 5 populations (564 in total) were genotyped using DArT markers and subjected to linkage analysis using Join Map 4.0 and Multipoint Consensus 2.2 software. A consensus map was constructed using a total of 9703 segregating markers. The average chromosome map length ranged from 199.9 cM (2R) to 251.4 cM (4R) and the average map density was 1.1 cM. The integrated map comprised 4048 loci with the number of markers per chromosome ranging from 454 for 7R to 805 for 4R. In comparison with previously published studies on rye, this represents an eight-fold increase in the number of loci placed on a consensus map and a more than two-fold increase in the number of genetically mapped DArT markers. Conclusions/Significance Through the careful choice of marker type, mapping populations and the use of software packages implementing powerful algorithms for map order optimization, we produced a valuable resource for rye and triticale genomics and breeding, which provides an excellent starting point for more in-depth studies on rye genome organization.
Collapse
|
50
|
Abstract
Plant genomes are unique in an intriguing feature: the range of their size variation is unprecedented among living organisms. Although polyploidization contributes to this variability, transposable elements (TEs) seem to play the pivotal role. TEs, often considered intragenomic parasites, not only affect the genome size of the host, but also interact with other genes, disrupting and creating new functions and regulatory networks. Coevolution of plant genomes and TEs has led to tight regulation of TE activity, and growing evidence suggests their relationship became mutualistic. Although the expansions of TEs represent certain costs for the host genomes, they may also bring profits for populations, helping to overcome challenging environmental (biotic/abiotic stress) or genomic (hybridization and allopolyploidization) conditions. In this paper, we discuss the possibility that the possession of inducible TEs may provide a selective advantage for various plant populations.
Collapse
|