1
|
Xie L, Zhang G, Wu Y, Hua Y, Ding W, Han X, Liu B, Zhou C, Li A. Protective effects of Wenqingyin on sepsis-induced acute lung injury through regulation of the receptor for advanced glycation end products pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155654. [PMID: 38723525 DOI: 10.1016/j.phymed.2024.155654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 02/06/2024] [Accepted: 04/17/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND Wenqingyin (WQY), an ancient Chinese medicinal agent, has been extensively used in treating infectious ailments throughout history. However, the anti-sepsis mechanism remains unknown. PURPOSE This study investigated the diverse mechanisms of WQY in mitigating sepsis-induced acute lung injury (ALI). Additionally, the effects of WQY were validated using biological experiments. METHODS This study combined UHPLC-Orbitrap-HRMS analysis and network pharmacology to predict the potential anti-sepsis mechanism of WQY. Sepsis-induced ALI models were established in vivo via intraperitoneal lipopolysaccharide (LPS) administration and in vitro by LPS-stimulated RAW 264.7 macrophages. Various techniques, including hematoxylin-eosin staining, TUNEL, qPCR, and ELISA, were used to assess lung damage and quantify inflammatory cytokines. Inflammatory cell infiltration was visualized through immunohistochemistry. Hub targets and signaling pathways were identified using Western blotting, immunohistochemistry, and immunofluorescence staining. RESULTS Seventy-five active components and 237 associated targets were acquired, with 145 of these targets overlapping with processes related to sepsis. Based on the comprehensive protein-protein interaction network analysis, JUN, AKT1, TP53, IL-6, HSP90AA1, CASP3, VEGFA, IL-1β, RELA, and EGFR may be targets of WQY for sepsis. Analysis of the Kyoto Gene and Genome Encyclopedia revealed that WQY is implicated in the advanced glycation end products/receptor for advanced glycation end products (AGE/RAGE) signaling pathway. In vivo, WQY alleviated sepsis-induced ALI, suppressing proinflammatory cytokines and inhibiting macrophage/neutrophil infiltration. In vitro, WQY reduced TNF-α, IL-6, and IL-1β in LPS-induced RAW 264.7 macrophages. Furthermore, we verified that WQY protected against sepsis-induced ALI by regulating the RAGE pathway for the first time. Baicalin, coptisine, and paeoniflorin may be the effective components of WQY that inhibit RAGE. CONCLUSION The primary mechanism of WQY in combating sepsis-induced ALI involves controlling RAGE levels and the PI3K/AKT pathway, suppressing inflammation, and mitigating lung damage. This study establishes a scientific foundation for understanding the mechanism of WQY and its clinical use in treating sepsis.
Collapse
Affiliation(s)
- Lingpeng Xie
- Department of Hepatology, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou 510315, China
| | - Guoyong Zhang
- Department of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yuting Wu
- Binzhou Medical University Hospital, Binzhou 256603, China
| | - Yue Hua
- Department of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Wenjun Ding
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xin Han
- Department of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Bin Liu
- Department of Traditional Chinese Medicine, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510260, China.
| | - Chuying Zhou
- Department of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Aimin Li
- Department of Hepatology, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou 510315, China.
| |
Collapse
|
2
|
Pulmonary Fibrosis as a Result of Acute Lung Inflammation: Molecular Mechanisms, Relevant In Vivo Models, Prognostic and Therapeutic Approaches. Int J Mol Sci 2022; 23:ijms232314959. [PMID: 36499287 PMCID: PMC9735580 DOI: 10.3390/ijms232314959] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
Pulmonary fibrosis is a chronic progressive lung disease that steadily leads to lung architecture disruption and respiratory failure. The development of pulmonary fibrosis is mostly the result of previous acute lung inflammation, caused by a wide variety of etiological factors, not resolved over time and causing the deposition of fibrotic tissue in the lungs. Despite a long history of study and good coverage of the problem in the scientific literature, the effective therapeutic approaches for pulmonary fibrosis treatment are currently lacking. Thus, the study of the molecular mechanisms underlying the transition from acute lung inflammation to pulmonary fibrosis, and the search for new molecular markers and promising therapeutic targets to prevent pulmonary fibrosis development, remain highly relevant tasks. This review focuses on the etiology, pathogenesis, morphological characteristics and outcomes of acute lung inflammation as a precursor of pulmonary fibrosis; the pathomorphological changes in the lungs during fibrosis development; the known molecular mechanisms and key players of the signaling pathways mediating acute lung inflammation and pulmonary fibrosis, as well as the characteristics of the most common in vivo models of these processes. Moreover, the prognostic markers of acute lung injury severity and pulmonary fibrosis development as well as approved and potential therapeutic approaches suppressing the transition from acute lung inflammation to fibrosis are discussed.
Collapse
|
3
|
Block H, Rossaint J, Zarbock A. The Fatal Circle of NETs and NET-Associated DAMPs Contributing to Organ Dysfunction. Cells 2022; 11:1919. [PMID: 35741047 PMCID: PMC9222025 DOI: 10.3390/cells11121919] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/02/2022] [Accepted: 06/10/2022] [Indexed: 02/07/2023] Open
Abstract
The innate immune system is the first line of defense against invading pathogens or sterile injuries. Pattern recognition receptors (PRR) sense molecules released from inflamed or damaged cells, or foreign molecules resulting from invading pathogens. PRRs can in turn induce inflammatory responses, comprising the generation of cytokines or chemokines, which further induce immune cell recruitment. Neutrophils represent an essential factor in the early immune response and fulfill numerous tasks to fight infection or heal injuries. The release of neutrophil extracellular traps (NETs) is part of it and was originally attributed to the capture and elimination of pathogens. In the last decade studies revealed a detrimental role of NETs during several diseases, often correlated with an exaggerated immune response. Overwhelming inflammation in single organs can induce remote organ damage, thereby further perpetuating release of inflammatory molecules. Here, we review recent findings regarding damage-associated molecular patterns (DAMPs) which are able to induce NET formation, as well as NET components known to act as DAMPs, generating a putative fatal circle of inflammation contributing to organ damage and sequentially occurring remote organ injury.
Collapse
Affiliation(s)
| | | | - Alexander Zarbock
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, 48149 Muenster, Germany; (H.B.); (J.R.)
| |
Collapse
|
4
|
Jin S, Ding X, Yang C, Li W, Deng M, Liao H, Lv X, Pitt BR, Billiar TR, Zhang LM, Li Q. Mechanical Ventilation Exacerbates Poly (I:C) Induced Acute Lung Injury: Central Role for Caspase-11 and Gut-Lung Axis. Front Immunol 2021; 12:693874. [PMID: 34349759 PMCID: PMC8327178 DOI: 10.3389/fimmu.2021.693874] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/02/2021] [Indexed: 11/22/2022] Open
Abstract
Background The mechanisms by which moderate tidal volume ventilation (MTV) exacerbates preexisting lung injury are unclear. We hypothesized that systemic endotoxemia via the gut-lung axis would lead to non-canonical and canonical inflammasome activation and pyroptosis in a two-hit model involving polyinosinic-polycytidylic acid (Poly(I:C)), a synthetic analog of dsRNA and MTV and that this would associate with acute lung injury (ALI). Methods Anesthetized mice were administered Poly(I:C) intratracheally and then 6 h later, they were mechanically ventilated for 4 h with otherwise non-injurious MTV (10ml/kg). Changes in intestinal and alveolar capillary permeability were measured. Further documentation of ALI was assessed by evans blue albumin permeability, protein and IL-1 family concentration in bronchoalveolar lavage fluid (BALF) or plasma, and histopathology in cohorts of wildtype (WT), whole body genetically ablated caspase-11 (caspase-11-/-), caspase-1/caspase-11 double knockout (caspase-1/11-/-), gasdermin D (GSDMD)-/-, nucleotide-binding domain leucine-rich repeat-containing protein 3 (NLRP3)-/- and advanced glycosylation end product-specific receptor (RAGE) -/- mice. Results Non-injurious MTV exacerbated the mild lung injury associated with Poly(I:C) administration. This included the disruption of alveolar-capillary barrier and increased levels of interleukin (IL)-6, high mobility group proteins 1 (HMGB-1), IL-1β in BALF and IL-18 in plasma. Combined (Poly(I:C)-MTV) injury was associated with increase in gastrointestinal permeability and endotoxin in plasma and BALF. Poly(I:C)-MTV injury was sensitive to caspase-11 deletion with no further contribution of caspase-1 except for maturation and release of IL-18 (that itself was sensitive to deletion of NLRP3). Combined injury led to large increases in caspase-1 and caspase-11. Genetic ablation of GSDMD attenuated alveolar-capillary disruption and release of cytokines in combined injury model. Conclusions The previously noted exacerbation of mild Poly(I:C)-induced ALI by otherwise non-injurious MTV is associated with an increase in gut permeability resulting in systemic endotoxemia. The gut-lung axis resulted in activation of pulmonary non-canonical (cytosolic mediated caspase-11 activation) and canonical (caspase-1) inflammasome (NLRP3) mediated ALI in this two-hit model resulting in GSDMD sensitive alveolar capillary barrier disruption, pyroptosis (alveolar macrophages) and cytokine maturation and release (IL-1β; IL-18). Pharmacologic strategies aimed at disrupting communication between gut and lung, inhibition of inflammasomes or GSDMD in pyroptosis may be useful in ALI.
Collapse
MESH Headings
- Acute Lung Injury/chemically induced
- Acute Lung Injury/enzymology
- Acute Lung Injury/microbiology
- Acute Lung Injury/pathology
- Animals
- Bacteria/metabolism
- Caspases, Initiator/genetics
- Caspases, Initiator/metabolism
- Disease Models, Animal
- Gastrointestinal Microbiome
- Intestines/microbiology
- Intracellular Signaling Peptides and Proteins/genetics
- Intracellular Signaling Peptides and Proteins/metabolism
- Lipopolysaccharides/metabolism
- Lung/enzymology
- Lung/pathology
- Macrophages, Alveolar/enzymology
- Macrophages, Alveolar/pathology
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- NLR Family, Pyrin Domain-Containing 3 Protein/genetics
- NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
- Phosphate-Binding Proteins/genetics
- Phosphate-Binding Proteins/metabolism
- Poly I-C
- Pyroptosis
- Receptor for Advanced Glycation End Products/genetics
- Receptor for Advanced Glycation End Products/metabolism
- Respiration, Artificial
- Signal Transduction
- Ventilator-Induced Lung Injury/enzymology
- Ventilator-Induced Lung Injury/etiology
- Ventilator-Induced Lung Injury/microbiology
- Ventilator-Induced Lung Injury/pathology
- Mice
Collapse
Affiliation(s)
- Shuqing Jin
- Department of Anesthesiology, Shanghai Pulmonary Hospital, TongJi University, Shanghai, China
- Department of Surgery, University of Pittsburgh Medical School, Pennsylvania, PA, United States
| | - Xibing Ding
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University Medical School, Shanghai, China
| | - Chenxuan Yang
- Department of Surgery, University of Pittsburgh Medical School, Pennsylvania, PA, United States
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenbo Li
- Department of Surgery, University of Pittsburgh Medical School, Pennsylvania, PA, United States
| | - Meihong Deng
- Department of Surgery, The Ohio State University, Ohio, OH, United States
| | - Hong Liao
- Department of Surgery, University of Pittsburgh Medical School, Pennsylvania, PA, United States
| | - Xin Lv
- Department of Anesthesiology, Shanghai Pulmonary Hospital, TongJi University, Shanghai, China
| | - Bruce R. Pitt
- Department of Environmental Occupational Health, University of Pittsburgh Graduate School Public Health, Pennsylvania, PA, United States
| | - Timothy R. Billiar
- Department of Surgery, University of Pittsburgh Medical School, Pennsylvania, PA, United States
| | - Li-Ming Zhang
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh School of Medicine, Pennsylvania, PA, United States
| | - Quan Li
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| |
Collapse
|
5
|
L-carnitine alleviated acute lung injuries induced by potassium dichromate in rats: involvement of Nrf2/HO-1 signaling pathway. Heliyon 2021; 7:e07207. [PMID: 34169163 PMCID: PMC8207205 DOI: 10.1016/j.heliyon.2021.e07207] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/22/2021] [Accepted: 06/01/2021] [Indexed: 12/25/2022] Open
Abstract
The activation of the Nrf2/HO-1 signaling pathway regulates cellular antioxidant stress and exerts anti-inflammatory and cytoprotective effects against acute lung injury (ALI). The present study aimed to evaluate the therapeutic role of L-carnitine (LC) against potassium dichromate (PD) - induced acute lung injury in adult male albino rats via modulation of Nrf2/HO-1 signaling pathway. For this purpose, forty rats were randomly allocated into 5 groups (8 rats each). The normal group received intranasal (i.n.) saline, while the ALI group received intranasal instillation of PD as a single dose of 2 mg/kg. The 3d - 5th groups received PD then after 24 h administered L-carnitine (25, 50 and 100 mg/kg; orally) for 3 consecutive days. The therapeutic effect of L-carnitine was evaluated by assessment of serum levels of glutathione (GSH) and malondialdehyde (MDA) along with measurement of lung contents of transforming growth factor β1 (TGFβ1), protein kinase B (AKT), Nuclear factor erythroid-2 related factor 2 (Nrf2), Kelch-like ECH-associated protein 1 (Keap1), heme oxygenase-1 (HO-1), NAD(P)H quinone oxidoreductase 1 enzyme (NQO1) and glutathione cysteine ligase modifier subunit (GCLM) expression. Post-treatment with L-carnitine effectively increased the levels of GSH and AKT, elevated Nrf2 and its target genes and decreased the levels of MDA and TGFβ1 in comparison with PD control rats. Additionally, L-carnitine effectively reduced the number of goblet cell, inhibited the mucus formation in bronchioles and interstitial inflammatory infiltrate as well as alleviated the destruction of alveolar walls, and the congestion of blood vessels in lung tissue induced by PD. Our findings showed that L-carnitine may be a promising therapeutic agent against PD-induced acute lung injury.
Collapse
|
6
|
Downregulation of miR-497-5p Improves Sepsis-Induced Acute Lung Injury by Targeting IL2RB. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6624702. [PMID: 33954185 PMCID: PMC8057895 DOI: 10.1155/2021/6624702] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/29/2021] [Accepted: 03/13/2021] [Indexed: 01/04/2023]
Abstract
Introduction Acute lung injury (ALI) induced by sepsis is a process related to inflammatory reactions, which involves lung cell apoptosis and production of inflammatory cytokine. Here, lipopolysaccharide (LPS) was applied to stimulate the mouse or human normal lung epithelial cell line (BEAS-2B) to construct a sepsis model in vivo and in vitro, and we also investigated the effect of miR-497-5p on sepsis-induced ALI. Material and Methods. Before LPS treatment, miR-497-5p antagomir was injected intravenously into mice to inhibit miR-497-5p expression in vivo. Similarly, miR-497-5p was knocked down in BEAS-2B cells. Luciferase reporter assay was applied to predict and confirm the miR-497-5p target gene. Cell viability, apoptosis, the levels of miR-497-5p, IL2RB, SP1, inflammatory cytokine, and lung injury were assessed. Results In BEAS-2B cells, a significant increase of apoptosis and inflammatory cytokine was shown after LPS stimulation. In septic mice, increased inflammatory cytokine production and apoptosis in lung cells and pulmonary morphological abnormalities were shown. The miR-497-5p inhibitor transfection showed antiapoptotic and anti-inflammatory effects on BEAS-2B cells upon LPS stimulation. In septic mice, the miR-497-5p antagomir injection also alleviated ALI, apoptosis, and inflammation caused by sepsis. The downregulation of IL2RB in BEAS-2B cells reversed the protective effects of the miR-497-5p inhibitor against ALI. Conclusion In conclusion, downregulation of miR-497-5p reduced ALI caused by sepsis through targeting IL2RB, indicating the potential effect of miR-497-5p for improving ALI caused by sepsis.
Collapse
|
7
|
Friedlander Y, Zanette B, Lindenmaier AA, Fliss J, Li D, Emami K, Jankov RP, Kassner A, Santyr G. Effect of inhaled oxygen concentration on 129 Xe chemical shift of red blood cells in rat lungs. Magn Reson Med 2021; 86:1187-1193. [PMID: 33837550 DOI: 10.1002/mrm.28801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/22/2021] [Accepted: 03/21/2021] [Indexed: 11/08/2022]
Abstract
PURPOSE To investigate the dependence of dissolved 129 Xe chemical shift on the fraction of inhaled oxygen, Fi O2 , in the lungs of healthy rats. METHODS The chemical shifts of 129 Xe dissolved in red blood cells, δRBC , and blood plasma and/or tissue, δPlasma , were measured using MRS in 12 Sprague Dawley rats mechanically ventilated at Fi O2 values of 0.14, 0.19, and 0.22. Regional effects on the chemical shifts were controlled using a chemical shift saturation recovery sequence with a fixed delay time. MRS was also performed at an Fi CO2 value of 0.085 to investigate the potential effect of the vascular response on δRBC and δPlasma . RESULTS δRBC increased with decreasing Fi O2 (P = .0002), and δPlasma showed no dependence on Fi O2 (P = .23). δRBC at Fi CO2 = 0 (210.7 ppm ± 0.1) and at Fi CO2 = 0.085 (210.6 ppm ± 0.2) were not significantly different (P = .67). δPlasma at Fi CO2 = 0 (196.9 ppm ± 0.3) and at Fi CO2 = 0.085 (197.0 ppm ± 0.1) were also not significantly different (P = .81). CONCLUSION Rat lung δRBC showed an inverse relationship to Fi O2 , opposite to the relationship previously demonstrated for in vitro human blood. Rat lung δRBC did not depend on Fi CO2 .
Collapse
Affiliation(s)
- Yonni Friedlander
- Translational Medicine Program, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Brandon Zanette
- Translational Medicine Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Andras A Lindenmaier
- Translational Medicine Program, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Jordan Fliss
- Translational Medicine Program, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Daniel Li
- Translational Medicine Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | - Robert P Jankov
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Andrea Kassner
- Translational Medicine Program, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Giles Santyr
- Translational Medicine Program, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Mechanical Ventilation with Moderate Tidal Volume Exacerbates Extrapulmonary Sepsis-Induced Lung Injury via IL33-WISP1 Signaling Pathway. Shock 2020; 56:461-472. [PMID: 33394970 DOI: 10.1097/shk.0000000000001714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
ABSTRACT IL-33 and WNT1-inducible secreted protein (WISP1) play central roles in acute lung injury (ALI) induced by mechanical ventilation with moderate tidal volume (MTV) in the setting of sepsis. Here, we sought to determine the inter-relationship between IL-33 and WISP1 and the associated signaling pathways in this process.We used a two-hit model of cecal ligation puncture (CLP) followed by MTV ventilation (4 h 10 mL/kg) in wild-type, IL-33-/- or ST2-/- mice or wild-type mice treated with intratracheal antibodies to WISP1. Macrophages (Raw 264.7 and alveolar macrophages from wild-type or ST2-/- mice) were used to identify specific signaling components.CLP + MTV resulted in ALI that was partially sensitive to genetic ablation of IL-33 or ST2 or antibody neutralization of WISP1. Genetic ablation of IL-33 or ST2 significantly prevented ALI after CLP + MTV and reduced levels of WISP1 in the circulation and bronchoalveolar lung fluid. rIL-33 increased WISP1 in alveolar macrophages in an ST2, PI3K/AKT, and ERK dependent manner. This WISP1 upregulation and WNT β-catenin activation were sensitive to inhibition of the β-catenin/TCF/CBP/P300 nuclear pathway.We show that IL-33 drives WISP1 upregulation and ALI during MTV in CLP sepsis. The identification of this relationship and the associated signaling pathways reveals a number of possible therapeutic targets to prevent ALI in ventilated sepsis patients.
Collapse
|
9
|
Myocardial Function during Low versus Intermediate Tidal Volume Ventilation in Patients without Acute Respiratory Distress Syndrome. Anesthesiology 2020; 132:1102-1113. [PMID: 32053557 DOI: 10.1097/aln.0000000000003175] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Mechanical ventilation with low tidal volumes has the potential to mitigate ventilation-induced lung injury, yet the clinical effect of tidal volume size on myocardial function has not been clarified. This cross-sectional study investigated whether low tidal volume ventilation has beneficial effects on myocardial systolic and diastolic function compared to intermediate tidal volume ventilation. METHODS Forty-two mechanically ventilated patients without acute respiratory distress syndrome (ARDS) underwent transthoracic echocardiography after more than 24 h of mechanical ventilation according to the Protective Ventilation in Patients without ARDS (PReVENT) trial comparing a low versus intermediate tidal volume strategy. The primary outcome was left ventricular and right ventricular myocardial performance index as measure for combined systolic and diastolic function, with lower values indicating better myocardial function and a right ventricular myocardial performance index greater than 0.54 regarded as the abnormality threshold. Secondary outcomes included specific systolic and diastolic parameters. RESULTS One patient was excluded due to insufficient acoustic windows, leaving 21 patients receiving low tidal volumes with a tidal volume size (mean ± SD) of 6.5 ± 1.8 ml/kg predicted body weight, while 20 patients were subjected to intermediate tidal volumes receiving a tidal volume size of 9.5 ± 1.6 ml/kg predicted body weight (mean difference, -3.0 ml/kg; 95% CI, -4.1 to -2.0; P < 0.001). Right ventricular dysfunction was reduced in the low tidal volume group compared to the intermediate tidal volume group (myocardial performance index, 0.41 ± 0.13 vs. 0.64 ± 0.15; mean difference, -0.23; 95% CI, -0.32 to -0.14; P < 0.001) as was left ventricular dysfunction (myocardial performance index, 0.50 ± 0.17 vs. 0.63 ± 0.19; mean difference, -0.13; 95% CI, -0.24 to -0.01; P = 0.030). Similarly, most systolic parameters were superior in the low tidal volume group compared to the intermediate tidal volume group, yet diastolic parameters did not differ between both groups. CONCLUSIONS In patients without ARDS, intermediate tidal volume ventilation decreased left ventricular and right ventricular systolic function compared to low tidal volume ventilation, although without an effect on diastolic function.
Collapse
|
10
|
Correger E, Marcos J, Laguens G, Stringa P, Cardinal-Fernández P, Blanch L. Pretreatment with adalimumab reduces ventilator-induced lung injury in an experimental model. Rev Bras Ter Intensiva 2020; 32:58-65. [PMID: 32401991 PMCID: PMC7206963 DOI: 10.5935/0103-507x.20200010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/29/2019] [Indexed: 02/05/2023] Open
Abstract
Objective To determine whether adalimumab administration before mechanical ventilation reduces ventilator-induced lung injury (VILI). Methods Eighteen rats randomized into 3 groups underwent mechanical ventilation for 3 hours with a fraction of inspired oxygen = 0.40% including a low tidal volume group (n = 6), where tidal volume = 8mL/kg and positive end-expiratory pressure = 5cmH2O; a high tidal volume group (n = 6), where tidal volume = 35mL/kg and positive end-expiratory pressure = 0; and a pretreated + high tidal volume group (n = 6) where adalimumab (100ug/kg) was administered intraperitoneally 24 hours before mechanical ventilation + tidal volume = 35mL/kg and positive end-expiratory pressure = 0. ANOVA was used to compare histological damage (ATS 2010 Lung Injury Scoring System), pulmonary edema, lung compliance, arterial partial pressure of oxygen, and mean arterial pressure among the groups. Results After 3 hours of ventilation, the mean histological lung injury score was higher in the high tidal volume group than in the low tidal volume group (0.030 versus 0.0051, respectively, p = 0.003). The high tidal volume group showed diminished lung compliance at 3 hours (p = 0.04) and hypoxemia (p = 0,018 versus control). Pretreated HVt group had an improved histological score, mainly due to a significant reduction in leukocyte infiltration (p = 0.003). Conclusion Histological examination after 3 hours of injurious ventilation revealed ventilator-induced lung injury in the absence of measurable changes in lung mechanics or oxygenation; administering adalimumab before mechanical ventilation reduced lung edema and histological damage.
Collapse
Affiliation(s)
- Enrique Correger
- Grupo de Trabalho em Fisiopatologia Pulmonar Experimental, Faculdade de Medicina, Universidad Nacional de La Plata, La Plata, Argentina
| | - Josefina Marcos
- Grupo de Trabalho em Fisiopatologia Pulmonar Experimental, Faculdade de Medicina, Universidad Nacional de La Plata, La Plata, Argentina
| | - Graciela Laguens
- Cadeira de Patologia, Faculdade de Medicina, Universidad Nacional de La Plata, La Plata, Argentina
| | - Pablo Stringa
- Grupo de Trabalho em Fisiopatologia Pulmonar Experimental, Faculdade de Medicina, Universidad Nacional de La Plata, La Plata, Argentina
| | | | - Lluis Blanch
- Centro de Cuidados Intensivos, Corporació Sanitària Parc Taulí, Sabadell, Barcelona, Spain
| |
Collapse
|
11
|
Song X, Liu Y, Dong L, Wang Y. Stromal-Interacting Molecule 1 (Stim1)/Orai1 Modulates Endothelial Permeability in Ventilator-Induced Lung Injury. Med Sci Monit 2018; 24:9413-9423. [PMID: 30589833 PMCID: PMC6322368 DOI: 10.12659/msm.911268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background Increased endothelial permeability is involved in ventilator-induced lung injury (VILI). Stim1/Orai1 mediates store-operated Ca2+ activation, which modulates endothelial permeability. However, the underlying mechanisms of the Stim1/Orai1 pathway in VILI are poorly understood. Material/Methods Wistar rats were exposed to low tidal volume (7 mL/kg) or high tidal volume (40 mL/kg) ventilation. Human Lung Microvascular Endothelial Cells (HULEC) were subjected to 8% or 18% cyclic stretching (CS). BTP2 pretreatment was performed. Lung wet/dry weight ratio, histological changes of lung injury, and bronchoalveolar lavage fluid (BALF) protein were measured. Endothelial permeability and intracellular calcium concentration were evaluated in HULECs. Protein expression was determined by Western blotting. Results High tidal volume mechanical ventilation-induced lung injury (such as severe congestion and hemorrhage) and BTP2 pretreatment protected lungs from injury. The expression of Stim1, Orai1, and PKCα, lung wet/dry weight ratio, and BALF protein level significantly increased in the high tidal volume group compared to the control group and low tidal volume group. Importantly, BTP2 pretreatment alleviated the above-mentioned effects. Compared with exposure to 8% CS, the protein levels of Stim1, Orai1, and PKCα in HULECs significantly increased after exposure to 18% CS for 4 h, whereas BTP2 pretreatment significantly inhibited the increase (P<0.05). BTP2 pretreatment also suppressed increase of endothelial permeability and the intracellular calcium induced by 18% CS (P<0.05). Conclusions When exposed to high tidal volume or large-magnitude CS, Stim1 and Orai1 expression are upregulated, which further activates calcium-sensitive PKCα and results in calcium overload, endothelial hyperpermeability, and, finally, lung injury.
Collapse
Affiliation(s)
- Xiumei Song
- Department of Anesthesiology, Qianfoshan Hospital, Shandong University, Jinan, Shandong, China (mainland)
| | - Yang Liu
- Department of Anesthesiology, Qianfoshan Hospital, Shandong University, Jinan, Shandong, China (mainland)
| | - Ling Dong
- Department of Anesthesiology, Qianfoshan Hospital, Shandong University, Jinan, Shandong, China (mainland)
| | - Yuelan Wang
- Department of Anesthesiology, Qianfoshan Hospital, Shandong University, Jinan, Shandong, China (mainland)
| |
Collapse
|
12
|
Ding X, Tong Y, Jin S, Chen Z, Li T, Billiar TR, Pitt BR, Li Q, Zhang LM. Mechanical ventilation enhances extrapulmonary sepsis-induced lung injury: role of WISP1-αvβ5 integrin pathway in TLR4-mediated inflammation and injury. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2018; 22:302. [PMID: 30445996 PMCID: PMC6240278 DOI: 10.1186/s13054-018-2237-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 10/15/2018] [Indexed: 12/19/2022]
Abstract
Background High tidal volume ventilation of healthy lungs or exacerbation of existing acute lung injury (ALI) by more moderate mechanical ventilation (MTV) produces ventilator-induced lung injury. It is less clear whether extrapulmonary sepsis sensitizes the lung to MTV. Methods We used a two-hit model of cecal ligation and puncture (CLP) followed 12 h later by MTV (10 ml/kg; 6 h) to determine whether otherwise noninjurious MTV enhances CLP-induced ALI by contrasting wildtype and TLR4−/− mice with respect to: alveolar-capillary permeability, histopathology and intrapulmonary levels of WNT-inducible secreted protein 1 (WISP1) and integrin β5; plasma levels of cytokines and chemokines (TNF-α, IL-6, MIP-2, MCP-1) and intrapulmonary neutrophil infiltration; and other inflammatory signaling via intrapulmonary activation of JNK, p38 and ERK. A separate cohort of mice was pretreated with intratracheal neutralizing antibodies to WISP1, integrin β5 or IgG as control and the presented phenotyping repeated in a two-hit model; there were 10 mice per group in these first three experiments. Also, isolated peritoneal macrophages (PM) from wildtype and TLR4−/−, MyD88−/− and TRIF−/− mice were used to identify a WISP1–TLR4–integrin β5 pathway; and the requisite role of integrin β5 in WISP1-induced cytokine and chemokine production in LPS-primed PM was examined by siRNA treatment. Results MTV, that in itself did not cause ALI, exacerbated increases in alveolar-capillary permeability, histopathologic scoring and indices of pulmonary inflammation in mice that previously underwent CLP; the effects of this two-hit model were abrogated in TLR4−/− mice. Attendant with these findings was a significant increase in intrapulmonary WISP1 and integrin β5 in the two-hit model. Anti-WISP1 or anti-integrin β5 antibodies partially inhibited the two-hit phenotype. In PM, activation of TLR4 led to an increase in integrin β5 expression that was MyD88 and NF-κB dependent. Recombinant WISP1 increased LPS-induced cytokine release in PM that was inhibited by silencing either TLR4 or integrin β5. Conclusions These data show for the first time that otherwise noninjurious mechanical ventilation can exacerbate ALI due to extrapulmonary sepsis underscoring a potential interactive contribution of common events (sepsis and mechanical ventilation) in critical care, and that a WISP1–TLR4–integrin β5 pathway contributes to this phenomenon. Electronic supplementary material The online version of this article (10.1186/s13054-018-2237-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xibing Ding
- Department of Anesthesiology, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Pudong, Shanghai, China.,Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Anesthesiology, University of Pittsburgh School of Medicine, 200 Lothrop St. UPMC MUH N467, Pittsburgh, 15213, PA, USA.,Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yao Tong
- Department of Anesthesiology, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Pudong, Shanghai, China
| | - Shuqing Jin
- Department of Anesthesiology, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Pudong, Shanghai, China.,Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Zhixia Chen
- Department of Anesthesiology, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Pudong, Shanghai, China
| | - Tunliang Li
- Department of Anesthesiology, Xiangya 3rd Hospital, Central South University, Hunan, China.,Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Bruce R Pitt
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School Public Health, Pittsburgh, PA, USA
| | - Quan Li
- Department of Anesthesiology, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Pudong, Shanghai, China. .,Department of Anesthesiology, Cancer Hospital Chinese Academy of Medical Sciences, Shenzhen, China.
| | - Li-Ming Zhang
- Department of Anesthesiology, University of Pittsburgh School of Medicine, 200 Lothrop St. UPMC MUH N467, Pittsburgh, 15213, PA, USA.
| |
Collapse
|
13
|
Yang J, Mao M, Zhen YY. miRNA-23a has effects to improve lung injury induced by sepsis in vitro and vivo study. Biomed Pharmacother 2018; 107:81-89. [PMID: 30081205 DOI: 10.1016/j.biopha.2018.07.097] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/12/2018] [Accepted: 07/18/2018] [Indexed: 02/05/2023] Open
Abstract
AIM The aim of this study is to explain the effects and mechanism of miRNA-23a in lung injury which were induced by sepsis in vitro and vivo. METHODS In the vitro study, The BEAS-2B cells were divided into 4 groups: NC, MC, miRNA and miRNA + PTEN agonist groups. The cell proliferation and apoptosis of difference groups were measured by MTT and flow cytometry, the relative proteins expression of difference groups were measured by WB assay. In the vivo study, the rats were also divided into 4 groups: NC, MC, miRNA and miRNA + PTEN agonist groups. The miRNA-23a expression of difference groups were evaluated by ISH in lung tissues of rats. The cell apoptosis of difference groups were evaluated by TUNEL assay in lung tissues; the relative proteins expression of difference groups were evaluated by IHC assay. RESULTS Compared with NC group, the cell apoptosis rate of MC groups were significantly increased in vitro and vivo studies (P < 0.05, respectively). The relative proteins (PTEN, PI3K, AKT and P53) expressions of MC group were significantly differences (P < 0.05, respectively) compared with those of NC groups in vitro and vivo studies. However, with miRNA-23a infection, the cell apoptosis of miRNA group were significantly suppressed compared with MC groups, and the relative proteins (PTEN, PI3K, AKT and P53) of miRNA group were also significantly differences compared with MC groups in vitro and vivo studies (P < 0.05, respectively). CONCLUSION The miRNA-23a has improved lung injury induced by sepsis via PTEN/PI3K/AKT/P53 pathway in vitro and vivo studies.
Collapse
Affiliation(s)
- Jing Yang
- Pediatric Department, Qilu Hospital of Shandong University (Qingdao), Qingdao 266035, PR China.
| | - Min Mao
- Pediatric Department, Qilu Hospital of Shandong University (Qingdao), Qingdao 266035, PR China
| | - Yuan-Yuan Zhen
- Pediatric Department, Qilu Hospital of Shandong University (Qingdao), Qingdao 266035, PR China
| |
Collapse
|
14
|
The Effect of Mechanical Ventilation on TASK-1 Expression in the Brain in a Rat Model. Can Respir J 2017; 2017:8530352. [PMID: 29093631 PMCID: PMC5637865 DOI: 10.1155/2017/8530352] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 08/05/2017] [Accepted: 08/13/2017] [Indexed: 12/30/2022] Open
Abstract
Background and Objective TWIK-related acid-sensitive potassium channel 1 (TASK-1) is closely related to respiratory central control and neuronal injury. We investigated the effect of MV on TASK-1's functions and explored the mechanism using a rat model. Methods Male Sprague-Dawley rats were randomized to three groups: (1) high tidal volume (HVt): MV for four hours with Vt at 10 mL/kg; (2) low Vt (LVt): MV for four hours with Vt at 5 mL/kg; (3) basal (BAS): anesthetized and unventilated animals. We measured lung histology and plasma and brain levels of proteins (IL-6, TNF-α, and S-100B) and determined TASK-1 levels in rat brainstems as a marker of respiratory centre activity. Results The LISs (lung injury scores) were significantly higher in the HVt group. Brain inflammatory cytokines levels were different to those in serum. TASK-1 levels were significantly lower in the MV groups (P = 0.002) and the HVt group tended to have a lower level of TASK-1 than the LVt group. Conclusion MV causes not only lung injury, but also brain injury. MV affects the regulation of the respiratory centre, perhaps causing damage to it. Inflammation is probably not the main mechanism of ventilator-related brain injury.
Collapse
|
15
|
Stortz JA, Raymond SL, Mira JC, Moldawer LL, Mohr AM, Efron PA. Murine Models of Sepsis and Trauma: Can We Bridge the Gap? ILAR J 2017; 58:90-105. [PMID: 28444204 PMCID: PMC5886315 DOI: 10.1093/ilar/ilx007] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 02/20/2017] [Accepted: 02/23/2017] [Indexed: 02/06/2023] Open
Abstract
Sepsis and trauma are both leading causes of death in the United States and represent major public health challenges. Murine models have largely been used in sepsis and trauma research to better understand the pathophysiological changes that occur after an insult and to develop potential life-saving therapeutic agents. Mice are favorable subjects for this type of research given the variety of readily available strains including inbred, outbred, and transgenic strains. In addition, they are relatively easy to maintain and have a high fecundity. However, pharmacological therapies demonstrating promise in preclinical mouse models of sepsis and trauma often fail to demonstrate similar efficacy in human clinical trials, prompting considerable criticism surrounding the capacity of murine models to recapitulate complex human diseases like sepsis and traumatic injury. Fundamental differences between the two species include, but are not limited to, the divergence of the transcriptomic response, the mismatch of temporal response patterns, differences in both innate and adaptive immunity, and heterogeneity within the human population in comparison to the homogeneity of highly inbred mouse strains. Given the ongoing controversy, this narrative review aims to not only highlight the historical importance of the mouse as an animal research model but also highlight the current benefits and limitations of the model as it pertains to sepsis and trauma. Lastly, this review will propose future directions that may promote further use of the model.
Collapse
Affiliation(s)
- Julie A. Stortz
- Julie A. Stortz, MD, is a research fellow at the University of Florida Health Shands Hospital in Gainesville, Florida. Steven L. Raymond, MD, is a research fellow at the University of Florida Health Shands Hospital in Gainesville, Florida. Juan C. Mira, MD, is a research fellow at the University of Florida Health Shands Hospital in Gainesville, Florida. Lyle L. Moldawer, PhD, is the Robert H. and Kathleen M. Axline Basic Science Professor of Surgery at the University of Florida College of Medicine in Gainesville, FL. Alicia M. Mohr, MD, is an Associate Professor of Surgery at the University of Florida College of Medicine in Gainesville, FL. Philip A. Efron, MD, is an Associate Professor of Surgery and Anesthesiology at the University of Florida College of Medicine and Medical Director for the surgical intensive care unit at the University of Florida Health Shands Hospital, Department of Surgery, University of Florida College of Medicine, Gainesville, FL.
| | - Steven L. Raymond
- Julie A. Stortz, MD, is a research fellow at the University of Florida Health Shands Hospital in Gainesville, Florida. Steven L. Raymond, MD, is a research fellow at the University of Florida Health Shands Hospital in Gainesville, Florida. Juan C. Mira, MD, is a research fellow at the University of Florida Health Shands Hospital in Gainesville, Florida. Lyle L. Moldawer, PhD, is the Robert H. and Kathleen M. Axline Basic Science Professor of Surgery at the University of Florida College of Medicine in Gainesville, FL. Alicia M. Mohr, MD, is an Associate Professor of Surgery at the University of Florida College of Medicine in Gainesville, FL. Philip A. Efron, MD, is an Associate Professor of Surgery and Anesthesiology at the University of Florida College of Medicine and Medical Director for the surgical intensive care unit at the University of Florida Health Shands Hospital, Department of Surgery, University of Florida College of Medicine, Gainesville, FL.
| | - Juan C. Mira
- Julie A. Stortz, MD, is a research fellow at the University of Florida Health Shands Hospital in Gainesville, Florida. Steven L. Raymond, MD, is a research fellow at the University of Florida Health Shands Hospital in Gainesville, Florida. Juan C. Mira, MD, is a research fellow at the University of Florida Health Shands Hospital in Gainesville, Florida. Lyle L. Moldawer, PhD, is the Robert H. and Kathleen M. Axline Basic Science Professor of Surgery at the University of Florida College of Medicine in Gainesville, FL. Alicia M. Mohr, MD, is an Associate Professor of Surgery at the University of Florida College of Medicine in Gainesville, FL. Philip A. Efron, MD, is an Associate Professor of Surgery and Anesthesiology at the University of Florida College of Medicine and Medical Director for the surgical intensive care unit at the University of Florida Health Shands Hospital, Department of Surgery, University of Florida College of Medicine, Gainesville, FL.
| | - Lyle L. Moldawer
- Julie A. Stortz, MD, is a research fellow at the University of Florida Health Shands Hospital in Gainesville, Florida. Steven L. Raymond, MD, is a research fellow at the University of Florida Health Shands Hospital in Gainesville, Florida. Juan C. Mira, MD, is a research fellow at the University of Florida Health Shands Hospital in Gainesville, Florida. Lyle L. Moldawer, PhD, is the Robert H. and Kathleen M. Axline Basic Science Professor of Surgery at the University of Florida College of Medicine in Gainesville, FL. Alicia M. Mohr, MD, is an Associate Professor of Surgery at the University of Florida College of Medicine in Gainesville, FL. Philip A. Efron, MD, is an Associate Professor of Surgery and Anesthesiology at the University of Florida College of Medicine and Medical Director for the surgical intensive care unit at the University of Florida Health Shands Hospital, Department of Surgery, University of Florida College of Medicine, Gainesville, FL.
| | - Alicia M. Mohr
- Julie A. Stortz, MD, is a research fellow at the University of Florida Health Shands Hospital in Gainesville, Florida. Steven L. Raymond, MD, is a research fellow at the University of Florida Health Shands Hospital in Gainesville, Florida. Juan C. Mira, MD, is a research fellow at the University of Florida Health Shands Hospital in Gainesville, Florida. Lyle L. Moldawer, PhD, is the Robert H. and Kathleen M. Axline Basic Science Professor of Surgery at the University of Florida College of Medicine in Gainesville, FL. Alicia M. Mohr, MD, is an Associate Professor of Surgery at the University of Florida College of Medicine in Gainesville, FL. Philip A. Efron, MD, is an Associate Professor of Surgery and Anesthesiology at the University of Florida College of Medicine and Medical Director for the surgical intensive care unit at the University of Florida Health Shands Hospital, Department of Surgery, University of Florida College of Medicine, Gainesville, FL.
| | - Philip A. Efron
- Julie A. Stortz, MD, is a research fellow at the University of Florida Health Shands Hospital in Gainesville, Florida. Steven L. Raymond, MD, is a research fellow at the University of Florida Health Shands Hospital in Gainesville, Florida. Juan C. Mira, MD, is a research fellow at the University of Florida Health Shands Hospital in Gainesville, Florida. Lyle L. Moldawer, PhD, is the Robert H. and Kathleen M. Axline Basic Science Professor of Surgery at the University of Florida College of Medicine in Gainesville, FL. Alicia M. Mohr, MD, is an Associate Professor of Surgery at the University of Florida College of Medicine in Gainesville, FL. Philip A. Efron, MD, is an Associate Professor of Surgery and Anesthesiology at the University of Florida College of Medicine and Medical Director for the surgical intensive care unit at the University of Florida Health Shands Hospital, Department of Surgery, University of Florida College of Medicine, Gainesville, FL.
| |
Collapse
|
16
|
Bansal SC, Nimbalkar AS, Kungwani AR, Patel DV, Sethi AR, Nimbalkar SM. Clinical Profile and Outcome of Newborns with Acute Kidney Injury in a Level 3 Neonatal Unit in Western India. J Clin Diagn Res 2017; 11:SC01-SC04. [PMID: 28511469 PMCID: PMC5427395 DOI: 10.7860/jcdr/2017/23398.9327] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Accepted: 10/04/2016] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Acute Kidney Injury (AKI) is a serious condition in neonatal care. It complicates the management necessitating the restrictive use of medications. AIM To evaluate clinical profile, identify associated and prog-nostic factors in newborns with AKI. MATERIALS AND METHODS This was a case control study done between January 2008 to January 2010. Total 1745 newborns were admitted, of which 74 babies had AKI. It was defined as serum creatinine >1.5mg/dl. Control group was selected randomly from the hospital numbers of the newborns derived from the electronic registry with serum creatinine below 1.5 mg/dl. Demographic variables like birth weight, gender, gestational age, admission age, growth restriction, Apgar scores, electrolyte levels; and common clinical conditions like asphyxia, sepsis, meningitis, persistent pulmonary hypertension, Necrotizing Enterocolitis (NEC), mechanical ventilation, congenital heart disease; were compared amongst the two groups. Information was obtained from the admission register, admission files, labor register of obstetrics and gynaecology department and electronic registry. Chi square/independent sample t-test as applicable and logistic regression were used to establish an association of various factors and outcome with AKI. RESULTS The incidence of AKI in our study was 4.24%. Demographic variables more common in AKI group were inborn (p=0.011), male gender (p=0.032), term gestation (p=0.001), Appropriate for gestational age (0.001), higher birth weight (p<0.001), full term (p<0.001), sepsis (p<0.001), NEC (p=0.042), low ApGAR scores at one minute (p=0.011) and five minute (p=0.003). However, on multivariate logistic regression only male gender [Odds Radio (OR)=2.84, Confidence Interval (CI)=1.12-7.21] and Sepsis (OR=14.46, CI=4.5-46.46) were associated with AKI. Respiratory distress syndrome was more prevalent in the control group (p<0.003). No need of mechanical ventilation and absence of shock, improved the survival. CONCLUSIONS AKI continues to be of clinical significance in neonatal intensive care. Further studies are needed to evaluate newer associations (like male gender and low APGAR scores).
Collapse
Affiliation(s)
- Satvik Chaitanya Bansal
- Senior Resident, Department of Paediatrics, Pramukhswami Medical College, Karamsad, Gujarat, India
| | | | - Amit R Kungwani
- Senior Resident, Department of Paediatrics, Pramukhswami Medical College, Karamsad, Gujarat, India
| | - Dipen Vasudev Patel
- Associate Professor, Department of Paediatrics, Pramukhswami Medical College, Karamsad, Gujarat, India
| | - Ankur Rajinder Sethi
- Assistant Professor, Department of Paediatrics, Pramukhswami Medical College, Karamsad, Gujarat, India
| | | |
Collapse
|
17
|
Cherpanath TGV, Smeding L, Hirsch A, Lagrand WK, Schultz MJ, Groeneveld ABJ. Low tidal volume ventilation ameliorates left ventricular dysfunction in mechanically ventilated rats following LPS-induced lung injury. BMC Anesthesiol 2015; 15:140. [PMID: 26446079 PMCID: PMC4597388 DOI: 10.1186/s12871-015-0123-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 10/03/2015] [Indexed: 01/06/2023] Open
Abstract
Background High tidal volume ventilation has shown to cause ventilator-induced lung injury (VILI), possibly contributing to concomitant extrapulmonary organ dysfunction. The present study examined whether left ventricular (LV) function is dependent on tidal volume size and whether this effect is augmented during lipopolysaccharide(LPS)-induced lung injury. Methods Twenty male Wistar rats were sedated, paralyzed and then randomized in four groups receiving mechanical ventilation with tidal volumes of 6 ml/kg or 19 ml/kg with or without intrapulmonary administration of LPS. A conductance catheter was placed in the left ventricle to generate pressure-volume loops, which were also obtained within a few seconds of vena cava occlusion to obtain relatively load-independent LV systolic and diastolic function parameters. The end-systolic elastance / effective arterial elastance (Ees/Ea) ratio was used as the primary parameter of LV systolic function with the end-diastolic elastance (Eed) as primary LV diastolic function. Results Ees/Ea decreased over time in rats receiving LPS (p = 0.045) and high tidal volume ventilation (p = 0.007), with a lower Ees/Ea in the rats with high tidal volume ventilation plus LPS compared to the other groups (p < 0.001). Eed increased over time in all groups except for the rats receiving low tidal volume ventilation without LPS (p = 0.223). A significant interaction (p < 0.001) was found between tidal ventilation and LPS for Ees/Ea and Eed, and all rats receiving high tidal volume ventilation plus LPS died before the end of the experiment. Conclusions Low tidal volume ventilation ameliorated LV systolic and diastolic dysfunction while preventing death following LPS-induced lung injury in mechanically ventilated rats. Our data advocates the use of low tidal volumes, not only to avoid VILI, but to avert ventilator-induced myocardial dysfunction as well.
Collapse
Affiliation(s)
- Thomas G V Cherpanath
- Department of Intensive Care Medicine, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - Lonneke Smeding
- Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, de Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
| | - Alexander Hirsch
- Department of Cardiology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - Wim K Lagrand
- Department of Intensive Care Medicine, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - Marcus J Schultz
- Laboratory of Experimental Intensive Care and Anesthesiology (LEICA), Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - A B Johan Groeneveld
- Department of Intensive Care Medicine, Erasmus Medical Center, 's-Gravendijkwal 230, 3015 CE, Rotterdam, The Netherlands.
| |
Collapse
|
18
|
Zambelli V, Bellani G, Borsa R, Pozzi F, Grassi A, Scanziani M, Castiglioni V, Masson S, Decio A, Laffey JG, Latini R, Pesenti A. Angiotensin-(1-7) improves oxygenation, while reducing cellular infiltrate and fibrosis in experimental Acute Respiratory Distress Syndrome. Intensive Care Med Exp 2015. [PMID: 26215809 PMCID: PMC4512981 DOI: 10.1186/s40635-015-0044-3] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background The renin-angiotensin system (RAS) plays a role in the pathogenesis of ARDS, Angiotensin II (Ang-II) contributing to the pathogenesis of inflammation and fibrogenesis. Angiotensin-(1-7) (Ang-(1-7)) may antagonize the effects of Ang-II. This study was aimed at evaluating the potential for Ang-(1-7) to reduce injury, inflammation and fibrosis in an experimental model of ARDS in the acute and late phases. Methods Male Sprague Dawley rats underwent an instillation of 0.1 M hydrochloric acid (HCl, 2.5 ml/kg) into the right bronchus. In an acute ARDS study, acid-injured rats were subjected to high stretch mechanical ventilation (18 ml/kg) for 5 h and randomized to receive an intravenous infusion of either vehicle (saline), Ang-(1-7) at low dose(0.27 μg/kg/h) (ALD), or high dose (60 μg/kg/h) (AHD) starting simultaneously with injury or 2 h afterwards. Arterial blood gas analysis and bronchoalveolar lavage (BAL) were performed to assess the injury. For the late ARDS study, after HCl instillation rats were randomized to either vehicle or high dose Ang-(1-7) (300 μg/kg/day) infused by mini osmotic pumps for two weeks, and lung hydroxyproline content measured. Results In the acute ARDS study, Ang-(1-7) led to a significant improvement in oxygenation (PaO2/FiO2 : vehicle 359 ± 86; ALD 436 ± 72; AHD 44 442 ± 56; ANOVA p = 0.007) and reduced white blood cells counts (vehicle 4,519 ± 2,234; ALD 2,496 ± 621; AHD 2,744 ± 119/mm3; ANOVA p = 0.004). Only treatment with high dose Ang-(1-7) reduced inflammatory cell numbers in BAL (vehicle 127 ± 34; AHD 96 ± 34/ μl; p = 0.033). Interestingly also delayed administration of Ang-(1-7) was effective in reducing injury. In later ARDS, Ang-(1-7) decreased hydroxyproline content (649 ± 202 and 1,117 ± 297 μg/lung; p < 0.05). Conclusions Angiotensin-(1-7), decreased the severity of acute lung injury and inflammation induced by combined acid aspiration and high stretch ventilation. Furthermore, continuous infusion of Ang-(1-7) reduced lung fibrosis 2 weeks following acid aspiration injury. These results call for further research on Ang-(1-7) as possible therapy for ARDS.
Collapse
Affiliation(s)
- Vanessa Zambelli
- Department of Health Sciences, University of Milano-Bicocca, Monza, Italy,
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Yehya N, Xin Y, Oquendo Y, Cereda M, Rizi RR, Margulies SS. Cecal ligation and puncture accelerates development of ventilator-induced lung injury. Am J Physiol Lung Cell Mol Physiol 2014; 308:L443-51. [PMID: 25550313 DOI: 10.1152/ajplung.00312.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Sepsis is a leading cause of respiratory failure requiring mechanical ventilation, but the interaction between sepsis and ventilation is unclear. While prior studies demonstrated a priming role with endotoxin, actual septic animal models have yielded conflicting results regarding the role of preceding sepsis on development of subsequent ventilator-induced lung injury (VILI). Using a rat cecal ligation and puncture (CLP) model of sepsis and subsequent injurious ventilation, we sought to determine if sepsis affects development of VILI. Adult male Sprague-Dawley rats were subject to CLP or sham operation and, after 12 h, underwent injurious mechanical ventilation (tidal volume 30 ml/kg, positive end-expiratory pressure 0 cmH2O) for either 0, 60, or 120 min. Biochemical and physiological measurements, as well as computed tomography, were used to assess injury at 0, 60, and 120 min of ventilation. Before ventilation, CLP rats had higher levels of alveolar neutrophils and interleukin-1β. After 60 min of ventilation, CLP rats had worse injury as evidenced by increased alveolar inflammation, permeability, respiratory static compliance, edema, oxygenation, and computed tomography. By 120 min, CLP and sham rats had comparable levels of lung injury as assessed by many, but not all, of these metrics. CLP rats had an accelerated and worse loss of end-expiratory lung volume relative to sham, and consistently higher levels of alveolar interleukin-1β. Loss of aeration and progression of edema was more pronounced in dependent lung regions. We conclude that CLP initiated pulmonary inflammation in rats, and accelerated the development of subsequent VILI.
Collapse
Affiliation(s)
- Nadir Yehya
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania;
| | - Yi Xin
- Department of Radiology, Hospital of the University of Pennsylvania, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - Yousi Oquendo
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Maurizio Cereda
- Department of Radiology, Hospital of the University of Pennsylvania, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; and Department of Anesthesiology and Critical Care Medicine, Hospital of the University of Pennsylvania, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Rahim R Rizi
- Department of Radiology, Hospital of the University of Pennsylvania, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - Susan S Margulies
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
20
|
Clinical and biological heterogeneity in acute respiratory distress syndrome: direct versus indirect lung injury. Clin Chest Med 2014; 35:639-53. [PMID: 25453415 DOI: 10.1016/j.ccm.2014.08.004] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The acute respiratory distress syndrome (ARDS) is a heterogeneous group of illnesses affecting the pulmonary parenchyma with acute onset bilateral inflammatory pulmonary infiltrates with associated hypoxemia. ARDS occurs after 2 major types of pulmonary injury: direct lung injury affecting the lung epithelium or indirect lung injury disrupting the vascular endothelium. Greater understanding of the differences between direct and indirect lung injury may refine the classification of patients with ARDS and lead to development of new therapeutics targeted at specific subpopulations of patients with ARDS.
Collapse
|
21
|
Kuiper JW, Groeneveld ABJ, Haitsma JJ, Smeding L, Begieneman MPV, Jothy S, Vaschetto R, Plötz FB. Injurious mechanical ventilation causes kidney apoptosis and dysfunction during sepsis but not after intra-tracheal acid instillation: an experimental study. BMC Nephrol 2014; 15:126. [PMID: 25073618 PMCID: PMC4119441 DOI: 10.1186/1471-2369-15-126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 07/08/2014] [Indexed: 11/12/2022] Open
Abstract
Background Intratracheal aspiration and sepsis are leading causes of acute lung injury that frequently necessitate mechanical ventilation (MV), which may aggravate lung injury thereby potentially increasing the risk of acute kidney injury (AKI). We compared the effects of ventilation strategies and underlying conditions on the development of AKI. Methods Spraque Dawley rats were challenged by intratracheal acid instillation or 24 h of abdominal sepsis, followed by MV with a low tidal volume (LVT) and 5 cm H2O positive end-expiratory pressure (PEEP) or a high tidal volume (HVT) and no PEEP, which is known to cause more lung injury after acid instillation than in sepsis. Rats were ventilated for 4 hrs and kidney function and plasma mediator levels were measured. Kidney injury was assessed by microscopy; apoptosis was quantified by TUNEL staining. Results During sepsis, but not after acid instillation, MV with HVT caused more renal apoptosis than MV with LVT. Increased plasma active plasminogen activator inhibitor-1 correlated to kidney apoptosis in the cortex and medulla. Increased apoptosis after HVT ventilation during sepsis was associated with a 40% decrease in creatinine clearance. Conclusions AKI is more likely to develop after MV induced lung injury during an indirect (as in sepsis) than after a direct (as after intra-tracheal instillation) insult to the lungs, since it induces kidney apoptosis during sepsis but not after acid instillation, opposite to the lung injury it caused. Our findings thus suggest using protective ventilatory strategies in human sepsis, even in the absence of overt lung injury, to protect the kidney.
Collapse
Affiliation(s)
- Jan Willem Kuiper
- Department of Paediatric Intensive Care, Erasmus MC - Sophia Children's Hospital, Dr, Molewaterplein 60, 3015 GJ Rotterdam, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Mirabella L, Grasselli G, Haitsma JJ, Zhang H, Slutsky AS, Sinderby C, Beck J. Lung protection during non-invasive synchronized assist versus volume control in rabbits. Crit Care 2014; 18:R22. [PMID: 24456613 PMCID: PMC4057206 DOI: 10.1186/cc13706] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Accepted: 01/14/2014] [Indexed: 11/10/2022] Open
Abstract
Introduction Experimental work provides insight into potential lung protective strategies. The objective of this study was to evaluate markers of ventilator-induced lung injury after two different ventilation approaches: (1) a “conventional” lung-protective strategy (volume control (VC) with low tidal volume, positive end-expiratory pressure (PEEP) and paralysis), (2) a physiological approach with spontaneous breathing, permitting synchrony, variability and a liberated airway. For this, we used non-invasive Neurally Adjusted Ventilatory Assist (NIV-NAVA), with the hypothesis that liberation of upper airways and the ventilator’s integration with lung protective reflexes would be equally lung protective. Methods In this controlled and randomized in vivo laboratory study, 25 adult White New Zealand rabbits were studied, including five non-ventilated control animals. The twenty animals with aspiration-induced lung injury were randomized to ventilation with either VC (6 mL/kg, PEEP 5 cm H2O, and paralysis) or NIV-NAVA for six hours (PEEP = zero because of leaks). Markers of lung function, lung injury, vital signs and ventilator parameters were assessed. Results At the end of six hours of ventilation (n = 20), there were no significant differences between VC and NIV-NAVA for vital signs, PaO2/FiO2 ratio, lung wet-to-dry ratio and broncho-alveolar Interleukin 8 (Il-8). Plasma IL-8 was higher in VC (P <0.05). Lung injury score was lower for NIV-NAVA (P = 0.03). Dynamic lung compliance recovered after six hours in NIV-NAVA but not in VC (P <0.05). During VC, peak pressures increased from 9.2 ± 2.4 cm H2O (hour 1) to 12.3 ± 12.3 cm H2O (hour 6) (P <0.05). During NIV-NAVA, the tracheal end-expiratory pressure was similar to the end-expiratory pressure during VC. Two animals regurgitated during NIV-NAVA, without clinical consequences, and survived the protocol. Conclusions In experimental acute lung injury, NIV-NAVA is as lung-protective as VC 6 ml/kg with PEEP. Electronic supplementary material The online version of this article (doi:10.1186/cc13706) contains supplementary material, which is available to authorized users.
Collapse
|
23
|
Unilateral acid aspiration augments the effects of ventilator lung injury in the contralateral lung. Anesthesiology 2013; 119:642-51. [PMID: 23681142 DOI: 10.1097/aln.0b013e318297d487] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Mechanical ventilation is necessary during acute respiratory distress syndrome, but it promotes lung injury because of the excessive stretch applied to the aerated parenchyma. The authors' hypothesis was that after a regional lung injury, the noxious effect of mechanical ventilation on the remaining aerated parenchyma would be more pronounced. METHODS Mice, instilled with hydrochloric acid (HCl) in the right lung, was assigned to one of the following groups: mechanical ventilation with tidal volumes (VT) 25 ml/kg (HCl-VILI25, n = 12), or VT 15 ml/kg (HCl-VILI15, n = 9), or spontaneous breathing (HCl-SB, n = 14). Healthy mice were ventilated with VT 25 ml/kg (VILI25, n = 11). Arterial oxygenation, lung compliance, bronchoalveolar lavage inflammatory cells, albumin, and cytokines concentration were measured. RESULTS After 7 h, oxygenation and lung compliance resulted lower in HCl-VILI25 than in VILI25 (P < 0.05, 210 ± 54 vs. 479 ± 83 mmHg, and 32 ± 3.5 vs. 45 ± 4.1 µl/cm H2O, mean ± SD, respectively). After right lung injury, the left lung of HCl-VILI25 group received a greater fraction of the VT than the VILI25 group, despite an identical global VT. The number of total and polymorphonuclear cells in bronchoalveolar lavage resulted significantly higher in HCl-VILI25, compared with the other groups, in not only the right lung, but also in the left lung. The albumin content in the left lung resulted higher in HCl-VILI25 than in VILI25 (224 ± 85 vs. 33 ± 6 µg/ml; P < 0.05). Cytokines levels did not differ between groups. CONCLUSION Aggressive mechanical ventilation aggravates the preexisting lung injury, which is noxious for the contralateral, not previously injured lung, possibly because of a regional redistribution of VT.
Collapse
|
24
|
Bolat F, Comert S, Bolat G, Kucuk O, Can E, Bulbul A, Uslu HS, Nuhoglu A. Acute kidney injury in a single neonatal intensive care unit in Turkey. World J Pediatr 2013; 9:323-9. [PMID: 24235066 DOI: 10.1007/s12519-012-0371-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 08/15/2012] [Indexed: 10/26/2022]
Abstract
BACKGROUND Although advances in perinatal medicine have increased the survival rates of critically ill neonates, acute kidney injury (AKI) is still one of the major causes of mortality and morbidity in neonatal intensive care units. This study aimed to determine the prevalence of AKI and analyze demographic data and risk factors associated with the mortality or morbidity. METHODS Of 1992 neonates hospitalized between January 2009 and January 2011, 168 with AKI were reviewed in the study. The diagnosis of AKI was based on plasma creatinine level >1.5 mg/dL, which persists for more than 24 hours or increases more than 0.3 mg/dL per day after the first 48 hours of birth while showing normal maternal renal function. RESULTS The prevalence of AKI was 8.4%. The common cause of AKI was respiratory distress syndrome, followed by sepsis, asphyxia, dehydration, congenital anomalies of the urinary tract, congenital heart disease, and medication. The prevalence of AKI in neonates with birth weight lower than 1500 g was about three-fold higher than in those with birth weight higher than 1500 g (P<0.05). Pregnancy-induced hypertension, preterm prolonged rupture of membranes, and administration of antenatal corticosteroid were associated with increased risk of AKI (P<0.05). Umbilical vein catheterization, mechanical ventilation and ibuprofen therapy for patent ductus arteriosus closure were found to be associated with AKI (P<0.05). The overall mortality rate was 23.8%. Multivariate analysis revealed that birth weight less than 1500 g, mechanical ventilation, bronchopulmonary dysplasia, anuria, and dialysis were the risk factors for the mortality of infants with AKI. CONCLUSIONS Prenatal factors and medical devices were significantly associated with AKI. Early detection of risk factors can reduce the mortality of AKI patients.
Collapse
Affiliation(s)
- Fatih Bolat
- Department of Pediatrics, Division of Neonatology, Faculty of Medicine, Cumhuriyet University, Sivas, Turkey,
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Cornélio Favarin D, Robison de Oliveira J, Jose Freire de Oliveira C, de Paula Rogerio A. Potential effects of medicinal plants and secondary metabolites on acute lung injury. BIOMED RESEARCH INTERNATIONAL 2013; 2013:576479. [PMID: 24224172 PMCID: PMC3810192 DOI: 10.1155/2013/576479] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 08/16/2013] [Accepted: 08/23/2013] [Indexed: 12/20/2022]
Abstract
Acute lung injury (ALI) is a life-threatening syndrome that causes high morbidity and mortality worldwide. ALI is characterized by increased permeability of the alveolar-capillary membrane, edema, uncontrolled neutrophils migration to the lung, and diffuse alveolar damage, leading to acute hypoxemic respiratory failure. Although corticosteroids remain the mainstay of ALI treatment, they cause significant side effects. Agents of natural origin, such as medicinal plants and their secondary metabolites, mainly those with very few side effects, could be excellent alternatives for ALI treatment. Several studies, including our own, have demonstrated that plant extracts and/or secondary metabolites isolated from them reduce most ALI phenotypes in experimental animal models, including neutrophil recruitment to the lung, the production of pro-inflammatory cytokines and chemokines, edema, and vascular permeability. In this review, we summarized these studies and described the anti-inflammatory activity of various plant extracts, such as Ginkgo biloba and Punica granatum, and such secondary metabolites as epigallocatechin-3-gallate and ellagic acid. In addition, we highlight the medical potential of these extracts and plant-derived compounds for treating of ALI.
Collapse
Affiliation(s)
- Daniely Cornélio Favarin
- Departamento de Clínica Médica, Laboratório de ImunoFarmacologia Experimental, Instituto de Ciências da Saúde, Universidade Federal do Triângulo Mineiro, Rua Manoel Carlos 162, 38025-380 Uberaba, MG, Brazil
| | - Jhony Robison de Oliveira
- Departamento de Clínica Médica, Laboratório de ImunoFarmacologia Experimental, Instituto de Ciências da Saúde, Universidade Federal do Triângulo Mineiro, Rua Manoel Carlos 162, 38025-380 Uberaba, MG, Brazil
| | | | - Alexandre de Paula Rogerio
- Departamento de Clínica Médica, Laboratório de ImunoFarmacologia Experimental, Instituto de Ciências da Saúde, Universidade Federal do Triângulo Mineiro, Rua Manoel Carlos 162, 38025-380 Uberaba, MG, Brazil
| |
Collapse
|
26
|
Smeding L, Kuiper JW, Plötz FB, Kneyber MC, Groeneveld AJ. Aggravation of myocardial dysfunction by injurious mechanical ventilation in LPS-induced pneumonia in rats. Respir Res 2013; 14:92. [PMID: 24047433 PMCID: PMC3848739 DOI: 10.1186/1465-9921-14-92] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 09/09/2013] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Mechanical ventilation (MV) may cause ventilator-induced lung injury (VILI) and may thereby contribute to fatal multiple organ failure. We tested the hypothesis that injurious MV of lipopolysaccharide (LPS) pre-injured lungs induces myocardial inflammation and further dysfunction ex vivo, through calcium (Ca2+)-dependent mechanism. MATERIALS AND METHODS N = 35 male anesthetized and paralyzed male Wistar rats were randomized to intratracheal instillation of 2 mg/kg LPS or nothing and subsequent MV with lung-protective settings (low tidal volume (Vt) of 6 mL/kg and 5 cmH2O positive end-expiratory pressure (PEEP)) or injurious ventilation (high Vt of 19 mL/kg and 1 cmH2O PEEP) for 4 hours. Myocardial function ex vivo was evaluated in a Langendorff setup and Ca2+ exposure. Key mediators were determined in lung and heart at the mRNA level. RESULTS Instillation of LPS and high Vt MV impaired gas exchange and, particularly when combined, increased pulmonary wet/dry ratio; heat shock protein (HSP)70 mRNA expression also increased by the interaction between LPS and high Vt MV. For the heart, C-X-C motif ligand (CXCL)1 and Toll-like receptor (TLR)2 mRNA expression increased, and ventricular (LV) systolic pressure, LV developed pressure, LV +dP/dtmax and contractile responses to increasing Ca2+ exposure ex vivo decreased by LPS. High Vt ventilation aggravated the effects of LPS on myocardial inflammation and dysfunction but not on Ca2+ responses. CONCLUSIONS Injurious MV by high Vt aggravates the effects of intratracheal instillation of LPS on myocardial dysfunction, possibly through enhancing myocardial inflammation via pulmonary release of HSP70 stimulating cardiac TLR2, not involving Ca2+ handling and sensitivity.
Collapse
Affiliation(s)
- Lonneke Smeding
- Institute for Cardiovascular Research ICaR-VU, VU University Medical Center, Amsterdam, Netherlands.
| | | | | | | | | |
Collapse
|