1
|
Zhang W, Zhang X, Qiu C, Zhang Z, Su KJ, Luo Z, Liu M, Zhao B, Wu L, Tian Q, Shen H, Wu C, Deng HW. An atlas of genetic effects on the monocyte methylome across European and African populations. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.12.24311885. [PMID: 39211851 PMCID: PMC11361221 DOI: 10.1101/2024.08.12.24311885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Elucidating the genetic architecture of DNA methylation is crucial for decoding complex disease etiology. However, current epigenomic studies are often limited by incomplete methylation coverage and heterogeneous tissue samples. Here, we present the first comprehensive, multi-ancestry human methylome atlas of purified human monocytes, generated through integrated whole-genome bisulfite sequencing and whole-genome sequencing from 298 European Americans (EA) and 160 African Americans (AA). By analyzing over 25 million methylation sites, we identified 1,383,250 and 1,721,167 methylation quantitative trait loci (meQTLs) in cis- regions for EA and AA populations, respectively, revealing both shared (880,108 sites) and population-specific regulatory patterns. Furthermore, we developed population-specific DNAm imputation models, enabling methylome-wide association studies (MWAS) for 1,976,046 and 2,657,581 methylation sites in EA and AA, respectively. These models were validated through multi-ancestry analysis of 41 complex traits from the Million Veteran Program. The identified meQTLs, MWAS models, and data resources are freely available at www.gcbhub.org and https://osf.io/gct57/ .
Collapse
|
2
|
Saba L, Maindarkar M, Johri AM, Mantella L, Laird JR, Khanna NN, Paraskevas KI, Ruzsa Z, Kalra MK, Fernandes JFE, Chaturvedi S, Nicolaides A, Rathore V, Singh N, Isenovic ER, Viswanathan V, Fouda MM, Suri JS. UltraAIGenomics: Artificial Intelligence-Based Cardiovascular Disease Risk Assessment by Fusion of Ultrasound-Based Radiomics and Genomics Features for Preventive, Personalized and Precision Medicine: A Narrative Review. Rev Cardiovasc Med 2024; 25:184. [PMID: 39076491 PMCID: PMC11267214 DOI: 10.31083/j.rcm2505184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/24/2024] [Accepted: 03/05/2024] [Indexed: 07/31/2024] Open
Abstract
Cardiovascular disease (CVD) diagnosis and treatment are challenging since symptoms appear late in the disease's progression. Despite clinical risk scores, cardiac event prediction is inadequate, and many at-risk patients are not adequately categorised by conventional risk factors alone. Integrating genomic-based biomarkers (GBBM), specifically those found in plasma and/or serum samples, along with novel non-invasive radiomic-based biomarkers (RBBM) such as plaque area and plaque burden can improve the overall specificity of CVD risk. This review proposes two hypotheses: (i) RBBM and GBBM biomarkers have a strong correlation and can be used to detect the severity of CVD and stroke precisely, and (ii) introduces a proposed artificial intelligence (AI)-based preventive, precision, and personalized ( aiP 3 ) CVD/Stroke risk model. The PRISMA search selected 246 studies for the CVD/Stroke risk. It showed that using the RBBM and GBBM biomarkers, deep learning (DL) modelscould be used for CVD/Stroke risk stratification in the aiP 3 framework. Furthermore, we present a concise overview of platelet function, complete blood count (CBC), and diagnostic methods. As part of the AI paradigm, we discuss explainability, pruning, bias, and benchmarking against previous studies and their potential impacts. The review proposes the integration of RBBM and GBBM, an innovative solution streamlined in the DL paradigm for predicting CVD/Stroke risk in the aiP 3 framework. The combination of RBBM and GBBM introduces a powerful CVD/Stroke risk assessment paradigm. aiP 3 model signifies a promising advancement in CVD/Stroke risk assessment.
Collapse
Affiliation(s)
- Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria, 40138 Cagliari, Italy
| | - Mahesh Maindarkar
- School of Bioengineering Sciences and Research, MIT Art, Design and Technology University, 412021 Pune, India
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA
| | - Amer M. Johri
- Department of Medicine, Division of Cardiology, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Laura Mantella
- Department of Medicine, Division of Cardiology, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - John R. Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St Helena, CA 94574, USA
| | - Narendra N. Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, 110001 New Delhi, India
| | | | - Zoltan Ruzsa
- Invasive Cardiology Division, University of Szeged, 6720 Szeged, Hungary
| | - Manudeep K. Kalra
- Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Seemant Chaturvedi
- Department of Neurology & Stroke Program, University of Maryland, Baltimore, MD 20742, USA
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre and University of Nicosia Medical School, 2368 Agios Dometios, Cyprus
| | - Vijay Rathore
- Nephrology Department, Kaiser Permanente, Sacramento, CA 95823, USA
| | - Narpinder Singh
- Department of Food Science and Technology, Graphic Era Deemed to be University, Dehradun, 248002 Uttarakhand, India
| | - Esma R. Isenovic
- Department of Radiobiology and Molecular Genetics, National Institute of The Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | | | - Mostafa M. Fouda
- Department of Electrical and Computer Engineering, Idaho State University, Pocatello, ID 83209, USA
| | - Jasjit S. Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA
- Department of Computer Engineering, Graphic Era Deemed to be University, Dehradun, 248002 Uttarakhand, India
| |
Collapse
|
3
|
Díaz-García E, García-Sánchez A, Sánz-Rubio D, Alfaro E, López-Fernández C, Casitas R, Mañas Baena E, Cano-Pumarega I, Cubero P, Marin-Oto M, López-Collazo E, Marin JM, García-Río F, Cubillos-Zapata C. SMAD4 Expression in Monocytes as a Potential Biomarker for Atherosclerosis Risk in Patients with Obstructive Sleep Apnea. Int J Mol Sci 2023; 24:ijms24097900. [PMID: 37175608 PMCID: PMC10178665 DOI: 10.3390/ijms24097900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/14/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Obstructive sleep apnea (OSA) patients are at special risk of suffering atherosclerosis, leading to major cardiovascular diseases. Notably, the transforming growth factor (TGF-β) plays a crucial role in the development and progression of atherosclerosis. In this context, the central regulator of TGF-β pathway, SMAD4 (small mother against decapentaplegic homolog 4), has been previously reported to be augmented in OSA patients, which levels were even higher in patients with concomitant cardiometabolic diseases. Here, we analyzed soluble and intracellular SMAD4 levels in plasma and monocytes from OSA patients and non-apneic subjects, with or without early subclinical atherosclerosis (eSA). In addition, we used in vitro and ex vivo models to explore the mechanisms underlying SMAD4 upregulation and release. Our study confirmed elevated sSMAD4 levels in OSA patients and identified that its levels were even higher in those OSA patients with eSA. Moreover, we demonstrated that SMAD4 is overexpressed in OSA monocytes and that intermittent hypoxia contributes to SMAD4 upregulation and release in a process mediated by NLRP3. In conclusion, this study highlights the potential role of sSMAD4 as a biomarker for atherosclerosis risk in OSA patients and provides new insights into the mechanisms underlying its upregulation and release to the extracellular space.
Collapse
Affiliation(s)
- Elena Díaz-García
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), 28029 Madrid, Spain
- Respiratory Diseases Group, Respiratory Diseases Department, La Paz University Hospital, IdiPAZ, 28046 Madrid, Spain
| | - Aldara García-Sánchez
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), 28029 Madrid, Spain
- Servicio de Neumología, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - David Sánz-Rubio
- Precision Medicine in Respiratory Diseases Group, Miguel Servet University Hospital-IIS Aragon, 50009 Zaragoza, Spain
| | - Enrique Alfaro
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), 28029 Madrid, Spain
- Respiratory Diseases Group, Respiratory Diseases Department, La Paz University Hospital, IdiPAZ, 28046 Madrid, Spain
| | - Cristina López-Fernández
- Respiratory Diseases Group, Respiratory Diseases Department, La Paz University Hospital, IdiPAZ, 28046 Madrid, Spain
| | - Raquel Casitas
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), 28029 Madrid, Spain
- Respiratory Diseases Group, Respiratory Diseases Department, La Paz University Hospital, IdiPAZ, 28046 Madrid, Spain
| | - Eva Mañas Baena
- Servicio de Neumología, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Irene Cano-Pumarega
- Servicio de Neumología, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Pablo Cubero
- Precision Medicine in Respiratory Diseases Group, Miguel Servet University Hospital-IIS Aragon, 50009 Zaragoza, Spain
| | - Marta Marin-Oto
- Precision Medicine in Respiratory Diseases Group, Miguel Servet University Hospital-IIS Aragon, 50009 Zaragoza, Spain
| | - Eduardo López-Collazo
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), 28029 Madrid, Spain
- The Innate Immune Response Group, La Paz University Hospital, IdiPAZ, 28046 Madrid, Spain
| | - José María Marin
- Precision Medicine in Respiratory Diseases Group, Miguel Servet University Hospital-IIS Aragon, 50009 Zaragoza, Spain
- Department of Medicine, University of Zaragoza School of Medicine, 50009 Zaragoza, Spain
| | - Francisco García-Río
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), 28029 Madrid, Spain
- Respiratory Diseases Group, Respiratory Diseases Department, La Paz University Hospital, IdiPAZ, 28046 Madrid, Spain
- Faculty of Medicine, Autonomous University of Madrid, 28029 Madrid, Spain
| | - Carolina Cubillos-Zapata
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), 28029 Madrid, Spain
- Respiratory Diseases Group, Respiratory Diseases Department, La Paz University Hospital, IdiPAZ, 28046 Madrid, Spain
| |
Collapse
|
4
|
Piekarska K, Bonowicz K, Grzanka A, Jaworski ŁM, Reiter RJ, Slominski AT, Steinbrink K, Kleszczyński K, Gagat M. Melatonin and TGF-β-Mediated Release of Extracellular Vesicles. Metabolites 2023; 13:metabo13040575. [PMID: 37110233 PMCID: PMC10142249 DOI: 10.3390/metabo13040575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
The immune system, unlike other systems, must be flexible and able to "adapt" to fully cope with lurking dangers. The transition from intracorporeal balance to homeostasis disruption is associated with activation of inflammatory signaling pathways, which causes modulation of the immunology response. Chemotactic cytokines, signaling molecules, and extracellular vesicles act as critical mediators of inflammation and participate in intercellular communication, conditioning the immune system's proper response. Among the well-known cytokines allowing for the development and proper functioning of the immune system by mediating cell survival and cell-death-inducing signaling, the tumor necrosis factor α (TNF-α) and transforming growth factor β (TGF-β) are noteworthy. The high bloodstream concentration of those pleiotropic cytokines can be characterized by anti- and pro-inflammatory activity, considering the powerful anti-inflammatory and anti-oxidative stress capabilities of TGF-β known from the literature. Together with the chemokines, the immune system response is also influenced by biologically active chemicals, such as melatonin. The enhanced cellular communication shows the relationship between the TGF-β signaling pathway and the extracellular vesicles (EVs) secreted under the influence of melatonin. This review outlines the findings on melatonin activity on TGF-β-dependent inflammatory response regulation in cell-to-cell communication leading to secretion of the different EV populations.
Collapse
Affiliation(s)
- Klaudia Piekarska
- Department of Histology and Embryology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland
| | - Klaudia Bonowicz
- Department of Histology and Embryology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland
| | - Alina Grzanka
- Department of Histology and Embryology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland
| | - Łukasz M Jaworski
- Department of Histology and Embryology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health, Long School of Medicine, San Antonio, TX 78229, USA
| | - Andrzej T Slominski
- Department of Dermatology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Pathology and Laboratory Medicine Service, VA Medical Center, Birmingham, AL 35294, USA
| | - Kerstin Steinbrink
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany
| | - Konrad Kleszczyński
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany
| | - Maciej Gagat
- Department of Histology and Embryology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland
| |
Collapse
|
5
|
Gómez-Bernal F, Quevedo-Abeledo JC, García-González M, Fernández-Cladera Y, González-Rivero AF, Martín-González C, González-Gay MÁ, Ferraz-Amaro I. Transforming growth factor beta 1 is associated with subclinical carotid atherosclerosis in patients with systemic lupus erythematosus. Arthritis Res Ther 2023; 25:64. [PMID: 37069672 PMCID: PMC10108540 DOI: 10.1186/s13075-023-03046-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 04/05/2023] [Indexed: 04/19/2023] Open
Abstract
BACKGROUND Transforming growth factor beta (TGF-β1) is a multifunctional cytokine that has anti-inflammatory and immunosuppressive effects. TGF-β1 has been linked to cardiovascular disease in the general population. The immunosuppressive effect of TGF-β1 is believed to be dysregulated in patients with systemic lupus erythematosus (SLE). In the present work, we aimed to study the relationship of serum levels of TGF-β1 with subclinical carotid atherosclerosis in patients with SLE. METHODS The study included 284 patients with SLE. Serum levels of TGF-β1 and subclinical carotid atherosclerosis (by carotid ultrasonography) were evaluated. In addition, the complete lipid profile and insulin resistance were analyzed. Multivariable linear and logistic regression analysis was performed to establish the relationship of TGF-β1 with carotid subclinical atherosclerosis adjusting for traditional cardiovascular risk factors that included lipid profile and insulin resistance. RESULTS Circulating TGF-β1 was positively and significantly associated with higher levels of LDL:HDL cholesterol ratio and atherogenic index. TGF-β1 was also associated with significantly lower levels of HDL cholesterol and apolipoprotein A1. Remarkably, TGF-β1 was associated with the presence of carotid plaque not only after adjustment for demographics (age, sex, body mass index, diabetes, hypertension, and aspirin use) but also after adjustment for relationships of TGF-β1 with lipid profile molecules, insulin resistance, and SLEDAI disease score (odds ratio 1.14 [95% confidence interval 1.003-1.30], p = 0.045). CONCLUSION TGF-β1 serum levels are positively and independently associated with the presence of subclinical atherosclerosis disease in patients with SLE.
Collapse
Affiliation(s)
| | | | | | | | | | - Candelaria Martín-González
- Division of Internal Medicine, Hospital Universitario de Canarias, Tenerife, Spain
- Department of Internal Medicine, University of La Laguna (ULL), Tenerife, Spain
| | - Miguel Á. González-Gay
- Epidemiology, Genetics and Atherosclerosis Research Group On Systemic Inflammatory Diseases, Hospital Universitario Marqués de Valdecilla, IDIVAL, Santander, Spain
- Division of Rheumatology, Hospital Universitario Marqués de Valdecilla, Universidad de Cantabria, Santander, Spain
- Cardiovascular Pathophysiology and Genomics Research Unit, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Division of Rheumatology, IIS-Fundación Jiménez Díaz, Madrid, Spain
| | - Iván Ferraz-Amaro
- Division of Rheumatology, Hospital Universitario de Canarias, Tenerife, Spain
- Department of Internal Medicine, University of La Laguna (ULL), Tenerife, Spain
| |
Collapse
|
6
|
Klück V, Cabău G, Mies L, Bukkems F, van Emst L, Bakker R, van Caam A, Crişan TO, Joosten LAB. TGF-β is elevated in hyperuricemic individuals and mediates urate-induced hyperinflammatory phenotype in human mononuclear cells. Arthritis Res Ther 2023; 25:30. [PMID: 36850003 PMCID: PMC9969669 DOI: 10.1186/s13075-023-03001-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 01/29/2023] [Indexed: 03/01/2023] Open
Abstract
BACKGROUND Soluble urate leads to a pro-inflammatory phenotype in human monocytes characterized by increased production of IL-1β and downregulation of IL-1 receptor antagonist, the mechanism of which remains to be fully elucidated. Previous transcriptomic data identified differential expression of genes in the transforming growth factor (TGF)-β pathway in monocytes exposed to urate in vitro. In this study, we explore the role of TGF-β in urate-induced hyperinflammation in peripheral blood mononuclear cells (PBMCs). METHODS TGF-β mRNA in unstimulated PBMCs and protein levels in plasma were measured in individuals with normouricemia, hyperuricemia and gout. For in vitro validation, PBMCs of healthy volunteers were isolated and treated with a dose ranging concentration of urate for assessment of mRNA and pSMAD2. Urate and TGF-β priming experiments were performed with three inhibitors of TGF-β signalling: SB-505124, 5Z-7-oxozeaenol and a blocking antibody against TGF-β receptor II. RESULTS TGF-β mRNA levels were elevated in gout patients compared to healthy controls. TGF-β-LAP levels in serum were significantly higher in individuals with hyperuricemia compared to controls. In both cases, TGF-β correlated positively to serum urate levels. In vitro, urate exposure of PBMCs did not directly induce TGF-β but did enhance SMAD2 phosphorylation. The urate-induced pro-inflammatory phenotype of monocytes was partly reversed by blocking TGF-β. CONCLUSIONS TGF-β is elevated in individuals with hyperuricemia and correlated to serum urate concentrations. In addition, the urate-induced pro-inflammatory phenotype in human monocytes is mediated by TGF-β signalling. Future studies are warranted to explore the intracellular pathways involved and to assess the clinical significance of urate-TGF-β relation.
Collapse
Affiliation(s)
- Viola Klück
- Department of Internal Medicine, Radboud UMC, Nijmegen, The Netherlands.,Radboud Institute for Molecular Life Sciences (RIMLS), Nijmegen, The Netherlands
| | - Georgiana Cabău
- Department of Medical Genetics, "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Linda Mies
- Department of Internal Medicine, Radboud UMC, Nijmegen, The Netherlands
| | - Femke Bukkems
- Departement of Rheumatology, Radboud UMC, Nijmegen, The Netherlands
| | - Liesbeth van Emst
- Department of Internal Medicine, Radboud UMC, Nijmegen, The Netherlands
| | - René Bakker
- Departement of Rheumatology, Radboud UMC, Nijmegen, The Netherlands
| | - Arjan van Caam
- Departement of Rheumatology, Radboud UMC, Nijmegen, The Netherlands
| | | | - Tania O Crişan
- Department of Medical Genetics, "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Leo A B Joosten
- Department of Internal Medicine, Radboud UMC, Nijmegen, The Netherlands. .,Radboud Institute for Molecular Life Sciences (RIMLS), Nijmegen, The Netherlands. .,Department of Medical Genetics, "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj Napoca, Romania.
| |
Collapse
|
7
|
Wang Y, Tu S, Huang Y, Qin K, Chen Z. MicroRNA-181a regulates Treg functions via TGF-β1/Smad axis in the spleen of mice with acute gouty arthritis induced by MSU crystals. Braz J Med Biol Res 2022; 55:e12002. [PMID: 36477951 PMCID: PMC9728631 DOI: 10.1590/1414-431x2022e12002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 09/29/2022] [Indexed: 12/03/2022] Open
Abstract
Regulatory T cells (Tregs) play critical roles in restricting inflammatory pathogenesis and limiting undesirable Th2 response to environmental allergens. However, the role of miR-181a in regulating acute gouty arthritis (AGA) and Treg function remains unclear. This study aimed to investigate the potential roles of miR-181a in Treg immunity and the associated signaling pathway in the AGA mouse model. A solution with monosodium urate (MSU) crystals was injected into the joint tissue of mice to induce AGA. ELISA was used to examine inflammatory factors in blood samples, and flow cytometry was used to analyze Treg profile in mice with MSU-induced AGA. Cell proliferation and viability were assessed by CCK-8 assay. TGF-β1/Smad signaling activation was detected by western blot. We found that miR-181a expression showed a positive correlation with the changes of splenic Tregs percentage in AGA mice. miR-181a regulated the TGF-β1/Smad axis, since the transfection of miR-181a mimic increased the level of TGF-β1 and the phosphorylation of Smad2/3 in Tregs in AGA mice. Additionally, miR-181a mimic also promoted responses of Tregs via TGF-β1 in vitro and in vivo. Our work uncovered a vital role of miR-181a in the immune function of Treg cells by mediating the activity of the TGF-β1/Smad pathway in the AGA mouse model induced by MSU.
Collapse
Affiliation(s)
- Yu Wang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shenghao Tu
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ying Huang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kai Qin
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhe Chen
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
8
|
Zarkasi KA, Abdullah N, Abdul Murad NA, Ahmad N, Jamal R. Genetic Factors for Coronary Heart Disease and Their Mechanisms: A Meta-Analysis and Comprehensive Review of Common Variants from Genome-Wide Association Studies. Diagnostics (Basel) 2022; 12:2561. [PMID: 36292250 PMCID: PMC9601486 DOI: 10.3390/diagnostics12102561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 11/17/2022] Open
Abstract
Genome-wide association studies (GWAS) have discovered 163 loci related to coronary heart disease (CHD). Most GWAS have emphasized pathways related to single-nucleotide polymorphisms (SNPs) that reached genome-wide significance in their reports, while identification of CHD pathways based on the combination of all published GWAS involving various ethnicities has yet to be performed. We conducted a systematic search for articles with comprehensive GWAS data in the GWAS Catalog and PubMed, followed by a meta-analysis of the top recurring SNPs from ≥2 different articles using random or fixed-effect models according to Cochran Q and I2 statistics, and pathway enrichment analysis. Meta-analyses showed significance for 265 of 309 recurring SNPs. Enrichment analysis returned 107 significant pathways, including lipoprotein and lipid metabolisms (rs7412, rs6511720, rs11591147, rs1412444, rs11172113, rs11057830, rs4299376), atherogenesis (rs7500448, rs6504218, rs3918226, rs7623687), shared cardiovascular pathways (rs72689147, rs1800449, rs7568458), diabetes-related pathways (rs200787930, rs12146487, rs6129767), hepatitis C virus infection/hepatocellular carcinoma (rs73045269/rs8108632, rs56062135, rs188378669, rs4845625, rs11838776), and miR-29b-3p pathways (rs116843064, rs11617955, rs146092501, rs11838776, rs73045269/rs8108632). In this meta-analysis, the identification of various genetic factors and their associated pathways associated with CHD denotes the complexity of the disease. This provides an opportunity for the future development of novel CHD genetic risk scores relevant to personalized and precision medicine.
Collapse
Affiliation(s)
- Khairul Anwar Zarkasi
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 56000, Malaysia
- Biochemistry Unit, Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia (UPNM), Kuala Lumpur 57000, Malaysia
| | - Noraidatulakma Abdullah
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 56000, Malaysia
- Faculty of Health Sciences, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 50300, Malaysia
| | - Nor Azian Abdul Murad
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 56000, Malaysia
| | - Norfazilah Ahmad
- Epidemiology and Statistics Unit, Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 56000, Malaysia
| | - Rahman Jamal
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 56000, Malaysia
| |
Collapse
|
9
|
Jahan J, Monte de Oca I, Meissner B, Joshi S, Maghrabi A, Quiroz-Olvera J, Lopez-Yang C, Bartelmez SH, Garcia C, Jarajapu YP. Transforming growth factor-β1/Thrombospondin-1/CD47 axis mediates dysfunction in CD34 + cells derived from diabetic older adults. Eur J Pharmacol 2022; 920:174842. [PMID: 35217004 PMCID: PMC8967481 DOI: 10.1016/j.ejphar.2022.174842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 02/10/2022] [Accepted: 02/16/2022] [Indexed: 11/26/2022]
Abstract
Aging with diabetes is associated with impaired vasoprotective functions and decreased nitric oxide (NO) generation in CD34+ cells. Transforming growth factor- β1 (TGF-β1) is known to regulate hematopoietic functions. This study tested the hypothesis that transforming growth factor- β1 (TGF-β1) is upregulated in diabetic CD34+ cells and impairs NO generation via thrombospondin-1 (TSP-1)/CD47/NO pathway. CD34+ cells from nondiabetic (ND) (n=58) or diabetic older adults (DB) (both type 1 and type 2) (n=62) were isolated from peripheral blood. TGF-β1 was silenced by using an antisense delivered as phosphorodiamidate morpholino oligomer (PMO-TGF-β1). Migration and proliferation in response to stromal-derived factor-1α (SDF-1α) were evaluated. NO generation and eNOS phosphorylation were determined by flow cytometry. CD34+ cells from older, but not younger, diabetics have higher expression of TGF-β1 compared to that observed in cells derived from healthy individuals (P<0.05, n=14). TSP-1 expression was higher (n=11) in DB compared to ND cells. TGFβ1-PMO decreased the secretion of TGF-β1, which was accompanied with decreased TSP-1 expression. Impaired proliferation, migration and NO generation in response to SDF-1α in DB cells were reversed by TGF-β1-PMO (n=6). TSP-1 inhibited migration and proliferation of nondiabetic CD34+ cells that was reversed by CD47-siRNA, which also restored these responses in diabetic CD34+ cells. TSP-1 opposed SDF-1α-induced eNOS phosphorylation at Ser1177 that was reversed by CD47-siRNA. These results infer that increased TGF-β1 expression in CD34+ cells induces dysfunction in CD34+ cells from diabetic older adults via TSP-1/CD47-dependent inhibition of NO generation.
Collapse
Affiliation(s)
- Jesmin Jahan
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, ND, 58108, USA
| | | | - Brian Meissner
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, ND, 58108, USA
| | - Shrinidh Joshi
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, ND, 58108, USA
| | | | | | | | | | | | - Yagna P Jarajapu
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, ND, 58108, USA.
| |
Collapse
|
10
|
Brunton-O'Sullivan MM, Holley AS, Bird GK, Kristono GA, Harding SA, Larsen PD. Examining variation and temporal dynamics of extracellular matrix biomarkers following acute myocardial infarction. Biomark Med 2022; 16:147-161. [PMID: 35107387 DOI: 10.2217/bmm-2021-0531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Aim: This study investigated an optimal extracellular matrix (ECM) biomarker panel for measurement in acute myocardial infarction (AMI). Materials & methods: Blood samples were collected from 12 healthy volunteers, and from 23 patients during hospital admission (day 1-3) and 6 months following AMI. Protein assays measured: FGFb, MMP-2, -3, -8, -9, osteopontin, periostin, PINP, TGF-β1, TIMP-1, -4 and VEGF. Results: When compared with healthy levels, seven ECM biomarkers were significantly altered in AMI patients, and six of these biomarkers displayed stable expression during hospital admission. Clinical characteristics and baseline cardiac function were not well correlated with ECM biomarkers. Conclusion: We suggest, MMP-2, MMP-3, MMP-8, MMP-9, periostin, PINP and TIMP-1 may be useful ECM biomarkers for future studies in AMI patients.
Collapse
Affiliation(s)
- Morgane M Brunton-O'Sullivan
- Department of Surgery & Anaesthesia, University of Otago, Wellington, New Zealand.,Wellington Cardiovascular Research Group, University of Otago, Wellington, New Zealand
| | - Ana S Holley
- Department of Surgery & Anaesthesia, University of Otago, Wellington, New Zealand.,Wellington Cardiovascular Research Group, University of Otago, Wellington, New Zealand
| | - Georgina K Bird
- Wellington Cardiovascular Research Group, University of Otago, Wellington, New Zealand.,School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Gisela A Kristono
- Department of Surgery & Anaesthesia, University of Otago, Wellington, New Zealand.,Wellington Cardiovascular Research Group, University of Otago, Wellington, New Zealand
| | - Scott A Harding
- Wellington Cardiovascular Research Group, University of Otago, Wellington, New Zealand.,Department of Cardiology, Wellington Regional Hospital, Wellington, New Zealand
| | - Peter D Larsen
- Department of Surgery & Anaesthesia, University of Otago, Wellington, New Zealand.,Wellington Cardiovascular Research Group, University of Otago, Wellington, New Zealand.,School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
11
|
Wang J, Cai Y, Lu H, Zhang F, Zheng J. LncRNA APOA1-AS facilitates proliferation and migration and represses apoptosis of VSMCs through TAF15-mediated SMAD3 mRNA stabilization. Cell Cycle 2021; 20:1642-1652. [PMID: 34382908 DOI: 10.1080/15384101.2021.1951940] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Coronary atherosclerosis (CAS) is a major cause of cardiovascular disease. Long non-coding RNAs (lncRNAs) have been implicated as novel biomarkers in coronary artery disease (CAD). APOA1 antisense RNA (APOA1-AS) was proven to show high expression during atherosclerotic development, but no report has uncovered the detailed mechanism of APOA1-AS in CAS. Thus, this paper aims to explore the role of APOA1-AS in CAS. Vascular smooth muscle cells (VSMCs) were treated with oxidized low-density lipoprotein (ox-LDL) to mimic atherosclerosis-like injury. Quantitative real-time PCR (RT-qPCR) and western blot analysis analyzed gene expression. Cell counting kit-8 (CCK-8), wound healing assay, and flow cytometry were implemented to assess the function of APOA1-AS in modulating pathological phenotype of VSMCs. Results demonstrated that APOA1-AS was notably up-regulated in ox-LDL treated VSMCs (ox-LDL-VSMCs). The deficiency of APOA1-AS hindered proliferation and migration and stimulated apoptosis in ox-LDL-VSMCs. Mechanistically, APOA1-AS recruited TATA-box binding protein associated factor 15 (TAF15) protein to stabilized SMAD family member 3 (SMAD3) mRNA and activate the TGF-β/SMAD3 signaling pathway. In conclusion, APOA1-AS contributed to proliferation and migration and repressed apoptosis of VSMCs through TAF15-mediated SMAD3 mRNA stabilization, indicating that APOA1-AS could be a promising target for CAS.
Collapse
Affiliation(s)
- Jixiang Wang
- Department of Cardiology, Tianjin Chest Hospital, Tianjin, China
| | - Ying Cai
- Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin, China
| | - Hui Lu
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Fugeng Zhang
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Junyi Zheng
- Department of Cardiology, Tianjin Chest Hospital, Tianjin, China
| |
Collapse
|
12
|
Li W, Chekouo T. Bayesian group selection with non-local priors. Comput Stat 2021. [DOI: 10.1007/s00180-021-01115-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Sherif IO, Alshaalan AA, Al-Shaalan NH. Renoprotective effect of vildagliptin following hepatic ischemia/reperfusion injury. Ren Fail 2020; 42:208-215. [PMID: 32102588 PMCID: PMC7054956 DOI: 10.1080/0886022x.2020.1729189] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Remote renal injury is a drastic consequence of hepatic ischemia/reperfusion (IR) injury. Vildagliptin (V) is a dipeptidyl peptidase-4 inhibitor that has a hepatorenal protective effect against models of liver and renal IR. This research was done to explore the protective role of vildagliptin against renal injury following hepatic IR injury as well as the possible involvement of transforming growth factor-beta (TGF-β)/Smad/alpha-smooth muscle actin (α-SMA) expressions in the pathophysiological mechanism of the remote renal injury. Three groups of male Wistar rats were organized into: sham group, IR group, and V + IR group in which 10 mg/kg/day of vildagliptin was pretreated for 10 days intraperitoneally. Blood in addition to renal and hepatic tissue samples was used for biochemical and histopathological studies. Hepatic IR induced a marked increase in serum creatinine, blood urea nitrogen, liver enzymes, renal nitric oxide, malondialdehyde, tumor necrosis factor-alpha levels with a marked upregulation of renal mRNA expressions of TGF-β, Smad2, Smad3, and α-SMA in addition to a marked decline in renal catalase content comparing to the sham group. Abnormal histopathological findings of hepatic and renal injury were detected in the IR group. Vildagliptin significantly improved these biochemical markers as well as the histopathological changes. The upregulation of renal TGF-β/Smad/α-SMA mRNA expressions was involved for the first time in the pathogenesis of the renal injury following hepatic IR and vildagliptin ameliorated this renal injury through blocking these expressions.
Collapse
Affiliation(s)
- Iman O Sherif
- Emergency Hospital, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | | | - Nora H Al-Shaalan
- Chemistry Department, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| |
Collapse
|
14
|
Ramalingam A, Budin SB, Mohd Fauzi N, Ritchie RH, Zainalabidin S. Angiotensin II Type I Receptor Antagonism Attenuates Nicotine-Induced Cardiac Remodeling, Dysfunction, and Aggravation of Myocardial Ischemia-Reperfusion Injury in Rats. Front Pharmacol 2019; 10:1493. [PMID: 31920673 PMCID: PMC6920178 DOI: 10.3389/fphar.2019.01493] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/19/2019] [Indexed: 12/16/2022] Open
Abstract
Increased exposure to nicotine contributes to the development of cardiac dysfunction by promoting oxidative stress, fibrosis, and inflammation. These deleterious events altogether render cardiac myocytes more susceptible to acute cardiac insults such as ischemia-reperfusion (I/R) injury. This study sought to elucidate the role of angiotensin II type I (AT1) receptors in cardiac injury resulting from prolonged nicotine administration in a rat model. Male Sprague-Dawley rats were given nicotine (0.6 mg/kg ip) for 28 days to induce cardiac dysfunction, alone or in combination with the AT1 receptor antagonist, irbesartan (10 mg/kg, po). Vehicle-treated rats were used as controls. Rat hearts isolated from each experimental group at study endpoint were examined for changes in function, histology, gene expression, and susceptibility against acute I/R injury determined ex vivo. Rats administered nicotine alone exhibited significantly increased cardiac expression of angiotensin II and angiotensin-converting enzyme (ACE) in addition to elevated systolic blood pressure (SBP) and heart rate. Furthermore, nicotine administration markedly reduced left ventricular (LV) performance with concomitant increases in myocardial oxidative stress, fibrosis, and inflammation. Concomitant treatment with irbesartan attenuated these effects, lowering blood pressure, heart rate, oxidative stress, and expression of fibrotic and inflammatory genes. Importantly, the irbesartan-treated group also manifested reduced susceptibility to I/R injury ex vivo. These findings suggest that AT1 receptors play an important role in nicotine-induced cardiac dysfunction, and pharmacological approaches targeting cardiac AT1 receptors may thus benefit patients with sustained exposure to nicotine.
Collapse
Affiliation(s)
- Anand Ramalingam
- Programme of Biomedical Science, Centre for Applied and Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Siti Balkis Budin
- Programme of Biomedical Science, Centre for Applied and Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Norsyahida Mohd Fauzi
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Rebecca H Ritchie
- Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Satirah Zainalabidin
- Programme of Biomedical Science, Centre for Applied and Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
15
|
Cai C, Zhao C, Kilari S, Sharma A, Singh AK, Simeon ML, Misra A, Li Y, Misra S. Effect of sex differences in treatment response to angioplasty in a murine arteriovenous fistula model. Am J Physiol Renal Physiol 2019; 318:F565-F575. [PMID: 31813252 DOI: 10.1152/ajprenal.00474.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Failure to mature and venous neointimal hyperplasia formation are the two major causes of hemodialysis arteriovenous fistula (AVF) vascular access failure. Percutaneous transluminal angioplasty (PTA) is the firstline treatment for both of these conditions, but, clinically, women have decreased patency rates compared with men. The hypothesis to be tested in the present study was that female mice after PTA of venous areas of higher intimal thickening have increased gene expression of transforming growth factor-β1 (TGF-β1) and TGF-β receptor 1 (TGFβ-R1) accompanied with histological changes of fibrosis compared with male mice. Seventeen male and eighteen female C57BL/6J mice were used in this study. Chronic kidney disease was induced by partial nephrectomy, and, 28 days later, an AVF was created to connect the left carotid artery to the right jugular vein. Two weeks later, the higher intimal thickening area was treated with PTA, and mice were euthanized 3 days later for gene expression analysis or 14 days later for histopathological analysis. Doppler ultrasound was performed weekly after AVF creation. At day 3, female AVF had significantly higher average gene expression of TGF-β1 and TGFβ-R1 compared with male AVF. At day 14, female outflow veins had a smaller venous diameter, lumen vessel area, decreased wall shear stress, lower average peak systolic velocity, and an increased neointima area-to-media area ratio. Moreover, female outflow veins showed a significant increase in α-smooth muscle actin and fibroblast-specific protein-1. There was a decrease in M1/M2 with an increase in CD68.
Collapse
Affiliation(s)
- Chuanqi Cai
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Vascular and Interventional Radiology Translational Laboratory, Department of Radiology, Mayo Clinic, Rochester, Minnesota
| | - Chenglei Zhao
- Vascular and Interventional Radiology Translational Laboratory, Department of Radiology, Mayo Clinic, Rochester, Minnesota.,Department of Vascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Sreenivasulu Kilari
- Vascular and Interventional Radiology Translational Laboratory, Department of Radiology, Mayo Clinic, Rochester, Minnesota
| | - Amit Sharma
- Vascular and Interventional Radiology Translational Laboratory, Department of Radiology, Mayo Clinic, Rochester, Minnesota
| | - Avishek K Singh
- Vascular and Interventional Radiology Translational Laboratory, Department of Radiology, Mayo Clinic, Rochester, Minnesota
| | - Michael L Simeon
- Vascular and Interventional Radiology Translational Laboratory, Department of Radiology, Mayo Clinic, Rochester, Minnesota
| | - Avanish Misra
- Vascular and Interventional Radiology Translational Laboratory, Department of Radiology, Mayo Clinic, Rochester, Minnesota
| | - Yiqing Li
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sanjay Misra
- Vascular and Interventional Radiology Translational Laboratory, Department of Radiology, Mayo Clinic, Rochester, Minnesota.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota.,Department of Radiology, Vascular and Interventional Radiology, Mayo Clinic Rochester, Minnesota
| |
Collapse
|
16
|
Tiwari S, Dwivedi UN. Discovering Innovative Drugs Targeting Both Cancer and Cardiovascular Disease by Shared Protein-Protein Interaction Network Analyses. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2019; 23:417-425. [PMID: 31329050 DOI: 10.1089/omi.2019.0095] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cancer and cardiovascular disease (CVD) have a common co-occurrence. Both diseases display overlapping pathophysiology and risk factors, suggesting shared biological mechanisms. Conditions such as obesity, diabetes, hypertension, smoking, poor diet, and inadequate physical activity can cause both heart disease and cancer. The burgeoning field of onco-cardiology aims to develop diagnostics and innovative therapeutics for both diseases through targeting shared mechanisms and molecular targets. In this overarching context, this expert review presents an analysis of the protein-protein interaction (PPI) networks for onco-cardiology drug discovery. Several PPI complexes such as MDM2-TP53 and CDK4-pRB have been studied for their tumor-suppressive functions. In addition, XIAP-SMAC, RAC1-GEF, Sur-2ESX, and TP53-BRCA1 are other PPI complexes that offer potential breakthrough for onco-cardiology therapeutics innovation. As both cancer and CVD share biological mechanisms to a certain degree, the PPI network analyses for onco-cardiology drug discovery are promising for addressing comorbid diseases in the spirit of systems medicine. We discuss the emerging architecture of PPI networks in cancer and CVD and prospects and challenges for their exploitation toward therapeutics applications. Finally, we emphasize that PPIs that were once thought to be undruggable have become potential new class of innovative drug targets.
Collapse
Affiliation(s)
- Sameeksha Tiwari
- Bioinformatics Infrastructure Facility, Department of Biochemistry, Centre of Excellence in Bioinformatics, University of Lucknow, Lucknow, Uttar Pradesh, India
| | - Upendra N Dwivedi
- Bioinformatics Infrastructure Facility, Department of Biochemistry, Centre of Excellence in Bioinformatics, University of Lucknow, Lucknow, Uttar Pradesh, India.,Institute for Development of Advanced Computing, ONGC Centre for Advanced Studies, University of Lucknow, Lucknow, Uttar Pradesh, India
| |
Collapse
|
17
|
Hu WS, Ting WJ, Tamilselvi S, Day CH, Wang T, Chiang WD, Viswanadha VP, Yeh YL, Lin WT, Huang CY. Oral administration of alcalase potato protein hydrolysate-APPH attenuates high fat diet-induced cardiac complications via TGF-β/GSN axis in aging rats. ENVIRONMENTAL TOXICOLOGY 2019; 34:5-12. [PMID: 30240538 DOI: 10.1002/tox.22651] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 08/23/2018] [Accepted: 08/25/2018] [Indexed: 06/08/2023]
Abstract
Consumption of high fat diet (HFD) is associated with increased cardiovascular risk factors among elderly people. Aging and obesity induced-cardiac remodeling includes hypertrophy and fibrosis. Gelsolin (GSN) induces cardiac hypertrophy and TGF-β, a key cytokine, which induces fibrosis. The relationship between TGF-β and GSN in aging induced cardiac remodeling is still unknown. We evaluated the expressions of TGF-β and GSN in HFD fed 22 months old aging SD rats, followed by the administration of either probucol or alcalase potato protein hydrolysate (APPH). Western blotting and Masson trichrome staining showed that APPH (45 and 75 mg/kg/day) and probucol (500 mg/kg/day) treatments significantly reduced the aging and HFD-induced hypertrophy and fibrosis. Echocardiograph showed that the performance of the hearts was improved in APPH, and probucol treated HFD aging rats. Serum from all rats was collected and H9c2 cells were cultured with collected serums separately. The GSN dependent hypertrophy was inhibited with an exogenous TGF-β in H9c2 cells cultured in HFD+ APPH treated serum. Thus, we propose that along with its role in cardiac fibrosis, TGF-β also acts as an upstream activator of GSN dependent hypertrophy. Hence, TGF-β in serum could be a promising therapeutic target for cardiac remodeling in aging and/or obese subjects.
Collapse
Affiliation(s)
- Wei Syun Hu
- School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
- Division of Cardiovascular Medicine, Department of Medicine, China Medical University, Hospital, Taichung, Taiwan
| | - Wei Jen Ting
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Shanmugam Tamilselvi
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | | | - Ting Wang
- Department of hospitality management, College of Agriculture, Tunghai University, Taichung, Taiwan
| | - Wen-Dee Chiang
- Department of Food science, College of Agriculture, Tunghai University, Taichung, Taiwan
| | | | - Yu Lan Yeh
- Department of pathology, Changhua Christian Hospital, Changhua, Taiwan
- Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan
| | - Wan Teng Lin
- Department of hospitality management, College of Agriculture, Tunghai University, Taichung, Taiwan
| | - Chih Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
- Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
18
|
Li G, Hu R, Guo Y, He L, Zuo Q, Wang Y. Circulating Sulfatide, A Novel Biomarker for ST-Segment Elevation Myocardial Infarction. J Atheroscler Thromb 2019; 26:84-92. [PMID: 29887538 PMCID: PMC6308264 DOI: 10.5551/jat.43976] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Aims: ST-segment elevation myocardial infarction (STEMI) is an acute inflammatory and thrombotic disease due to coronary artery atherosclerotic lesions. Studies have established the correlation of serum sulfatides with inflammation, thrombogenesis, and atherosclerosis. We observed that serum sulfatides level significantly increased in STEMI patients. In this study, we try to identify the relationship of serum sulfatides level on clinical outcomes of patients in STEMI. Methods: Serum sulfatides level was monitored in 370 inpatients within 24 h of STEMI onset. On the basis of the level of serum sulfatides that was below 10 µmol/L in the normal population, the patients were divided into two groups with the median value of 15.2 µmol/L; low sulfatide group [serum sulfatides level ≤ 15.2 µmol/L (n = 200)] and high sulfatide group [serum sulfatides level > 15.2 µmol/L (n = 170)]. Patients' baseline characteristics, in-hospital outcomes, and late major adverse cardiovascular events (MACE) were analyzed. Independent incident for in-hospital death and late adverse events were modeled by multivariate logistic and Cox regression analysis. Results: Between the two groups, there were no differences in the angiographic characteristics, percutaneous coronary intervention (PCI) results, and in-hospital recovery. However, high serum sulfatides level is positively correlated with increased rate of in-hospital death (OR 0.971; 95% CI 0.926–0.990, p = 0.019). In addition, this group of patients has more cumulative incidences of target vessel revascularization (TVR) (23% vs. 8%, p < 0.05) and increased overall MACE (28% vs. 10%, p < 0.05). Cox regression analysis indicated that high serum sulfatides level contributes to TVR and overall MACE. Conclusions: Elevated serum sulfatides level positively correlate with in-hospital death and complications (TVR and MACE) in STEMI patients.
Collapse
Affiliation(s)
- Gang Li
- Division of Cardiology, Institute of Geriatric Diseases, Hebei General Hospital
| | - Rui Hu
- General Clinical Laboratory, The Second Hospital of Hebei Medical University
| | - Yifang Guo
- Division of Cardiology, Institute of Geriatric Diseases, Hebei General Hospital
| | - Lili He
- Division of Cardiology, Institute of Geriatric Diseases, Hebei General Hospital
| | - Qingjuan Zuo
- Division of Cardiology, Institute of Geriatric Diseases, Hebei General Hospital
| | - Yan Wang
- Division of Cardiology, Institute of Geriatric Diseases, Hebei General Hospital
| |
Collapse
|
19
|
Wang S, Zhang Q, Wang Y, You B, Meng Q, Zhang S, Li X, Ge Z. Transforming Growth Factor β1 (TGF-β1) Appears to Promote Coronary Artery Disease by Upregulating Sphingosine Kinase 1 (SPHK1) and Further Upregulating Its Downstream TIMP-1. Med Sci Monit 2018; 24:7322-7328. [PMID: 30317247 PMCID: PMC6198708 DOI: 10.12659/msm.910707] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Transforming growth factor (TGF)-β1 is involved in the pathogenesis of coronary artery disease (CAD), but the mechanism of its action remains unclear. Our study aimed to investigate the role of TGF-β1 in CAD and to explore the possible mechanisms. MATERIAL AND METHODS A total of 60 CAD patients and 54 healthy people were included in this study. Blood samples were drawn from each participant to prepare serum. ELISA was utilized to measure serum level of TGF-β1. TGF-β1 expression vector, TGF-β1 siRNA, and TIMP-1 siRNA were transfected into human primary coronary artery endothelial cell (HCAEC) line cells, and expression of TGF-β1 sphingosine kinase 1 (SPHK1) and TIMP metallopeptidase inhibitor 1 (TIMP-1) was detected by Western blot. Cell apoptosis was detected by MTT assay. RESULTS Serum level of TGF-β1 was specifically higher in patients with CAD than in healthy controls. Serum levels of active TGF-β1 can be used to effectively distinguish CAD patients from healthy controls. TGF-β1 overexpression promoted the apoptosis of HCAEC and TGF-β1 siRNA silencing inhibited the apoptosis of HCAEC. TGF-β1 overexpression also promoted the expression of SPHK1 and TIMP-1. SPHK1 overexpression upregulated TIMP-1 but it showed no significant effects on TGF-β1. TIMP-1 overexpression showed no significant effects on TGF-β1 or SPHK1. SPHK1 inhibitor and TIMP-1 silencing reduced the enhancing effects of TGF-β1 overexpression on cell apoptosis. CONCLUSIONS TGF-β1 appears to promote CAD through the induction of cell apoptosis by upregulating SPHK1 expression and further upregulating its downstream TIMP-1.
Collapse
Affiliation(s)
- Shoudong Wang
- Department of Cardiology, Qilu Hospital of Shandong University (Qingdao), Qingdao, Shandong, China (mainland)
| | - Qing Zhang
- Department of Cardiology, Qilu Hospital of Shandong University (Qingdao), Qingdao, Shandong, China (mainland)
| | - Yingcui Wang
- Department of Cardiology, Qilu Hospital of Shandong University (Qingdao), Qingdao, Shandong, China (mainland)
| | - Beian You
- Department of Cardiology, Qilu Hospital of Shandong University (Qingdao), Qingdao, Shandong, China (mainland)
| | - Qingfeng Meng
- Department of Cardiology, Qilu Hospital of Shandong University (Qingdao), Qingdao, Shandong, China (mainland)
| | - Sen Zhang
- Department of Cardiology,, Qilu Hospital of Shandong University (Qingdao), Qingdao, Shandong, China (mainland)
| | - Xuanlong Li
- Department of Cardiology,, Qilu Hospital of Shandong University (Qingdao), Qingdao, Shandong, China (mainland)
| | - Zhiming Ge
- Department of Cardiology, Qilu Hospital of Shandong University (Qingdao), Qingdao, Shandong, China (mainland)
| |
Collapse
|
20
|
Xu H, Sui F, Sun M, Guo G. Downregulated microRNA‐224 aggravates vulnerable atherosclerotic plaques and vascular remodeling in acute coronary syndrome through activation of the TGF‐β/Smad pathway. J Cell Physiol 2018; 234:2537-2551. [DOI: 10.1002/jcp.26945] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 06/12/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Hai‐Ming Xu
- Department of CardiologyChina‐Japan Union Hospital of Jilin UniversityChangchun China
| | - Feng‐Hua Sui
- Department of CardiologyChina‐Japan Union Hospital of Jilin UniversityChangchun China
| | - Mei‐Hua Sun
- Department of PediatricsThe First Hospital of Jilin UniversityChangchun China
| | - Gong‐Liang Guo
- Department of CardiologyChina‐Japan Union Hospital of Jilin UniversityChangchun China
| |
Collapse
|
21
|
Pesaro AE, Katz M, Liberman M, Pereira C, Mangueira CLP, de Carvalho AEZ, Carvalho KS, Nomura CH, Franken M, Serrano CV. Circulating osteogenic proteins are associated with coronary artery calcification and increase after myocardial infarction. PLoS One 2018; 13:e0202738. [PMID: 30138356 PMCID: PMC6107213 DOI: 10.1371/journal.pone.0202738] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 08/08/2018] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Coronary artery calcification (CAC) and atherosclerotic inflammation associate with increased risk of myocardial infarction (MI). Vascular calcification is regulated by osteogenic proteins (OPs). It is unknown whether an association exists between CAC and plasma OPs and if they are affected by atherothrombotic inflammation. We tested the association of osteogenic and inflammatory proteins with CAC and assessed these biomarkers after MI. METHODS Circulating OPs (osteoprotegerin, RANKL, fetuin-A, Matrix Gla protein [MGP]) and inflammatory proteins (C-reactive protein, oxidized-LDL, tumoral necrosis factor-α, transforming growth factor [TGF]-β1) were compared between stable patients with CAC (CAC ≥ 100 AU, n = 100) and controls (CAC = 0 AU, n = 30). The association between biomarkers and CAC was tested by multivariate analysis. In patients with MI (n = 40), biomarkers were compared between acute phase and 1-2 months post-MI, using controls as a baseline. RESULTS MGP and fetuin-A levels were higher within individuals with CAC. Higher levels of MGP and RANKL were associated with CAC (OR 3.12 [95% CI 1.20-8.11], p = 0.02; and OR 1.75 [95% CI 1.04-2.94] respectively, p = 0.035). After MI, C-reactive protein, OPG and oxidized-LDL levels increased in the acute phase, whereas MGP and TGF-β1 increased 1-2 months post-MI. CONCLUSIONS Higher MGP and RANKL levels associate with CAC. These findings highlight the potential role of these proteins as modulators and markers of CAC. In addition, the post-MI increase in OPG and MGP, as well as of inflammatory proteins suggest that the regulation of these OPs is affected by atherothrombotic inflammation.
Collapse
Affiliation(s)
| | - Marcelo Katz
- Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Xu YL, Zhang MH, Guo W, Xue Y, Du X, Zhang T, Wu N, Wu Y. MicroRNA-19 restores vascular endothelial cell function in lower limb ischemia-reperfusion injury through the KLF10-dependent TGF-β1/Smad signaling pathway in rats. J Cell Biochem 2018; 119:9303-9315. [PMID: 29953651 DOI: 10.1002/jcb.27207] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 05/24/2018] [Indexed: 12/25/2022]
Abstract
Ischemia-reperfusion injury (IRI) is a severe problem patients diagnosed with acute limb ischemia. Recently, microRNAs (miR) have emerged as regulators of IRI as well as ischemic preconditioning and ischemic postconditioning. Therefore, using rat models, this study aims to explore all of the possible mechanisms that miR-19 exhibits with its relation to the transforming growth factor beta (TGF-β1)/Smad signaling pathway in the lower limb IRI. An immunofluorescence staining method was used to identify the Krueppel-like factor 10 (KLF10) positive expression and the location of KLF10 expression. The targeting relationship that miR-19 has with KLF10 was verified by the dual-luciferase reporter gene assay. Vascular endothelial cells (VECs) were treated with elevated or suppressed miR-19 or KLF10 knockdown. A 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay was used to test cell proliferation, and flow cytometry was employed to detect both cell cycle and apoptosis. The KLF10-positive expression in the VECs (both in cytoplasm and nucleus) was found to be elevated in the IRI rats. We found that miR-19 was downregulated, KLF10 upregulated, and the TGF-β1/Smad signaling pathway activated in the vascular epithelial tissues of IRI rats. KLF10 is a target gene of miR-19. Overexpression of miR-19 decreased the expression of KLF10, TGF-β1, and Smad2/3. Decreased miR-19 inhibited VEC proliferation, arrested VECs at the G1 phase, and promoted the apoptosis of VECs following their lower limb I/R injury. These results indicate miR-19 as being an inhibitor in the VEC injury of IRI via the TGF-β1/Smad signaling pathway by suppression of KLF10.
Collapse
Affiliation(s)
- Yong-Le Xu
- Department of Vascular Surgery, Chinese PLA General Hospital, Beijing, China
| | - Min-Hong Zhang
- Department of Vascular Surgery, Chinese PLA General Hospital, Beijing, China
| | - Wei Guo
- Department of Cardiovascular Surgery, Chinese PLA Rocket Force General Hospital, Beijing, China
| | - Yan Xue
- Department of Vascular Surgery, Chinese PLA General Hospital, Beijing, China.,Department of Cardiovascular Surgery, General Hospital of Armed Police Force, Beijing, China
| | - Xin Du
- Department of Vascular Surgery, Chinese PLA General Hospital, Beijing, China
| | - Tao Zhang
- Department of Vascular Surgery, Peking University People's Hospital, Beijing, China
| | - Na Wu
- Department of Central Laboratory & Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing, China
| | - Ye Wu
- Department of Vascular Surgery, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
23
|
Infante T, Forte E, Schiano C, Cavaliere C, Tedeschi C, Soricelli A, Salvatore M, Napoli C. An integrated approach to coronary heart disease diagnosis and clinical management. Am J Transl Res 2017; 9:3148-3166. [PMID: 28804537 PMCID: PMC5553869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 06/16/2017] [Indexed: 06/07/2023]
Abstract
The major issue in coronary heart disease (CHD) diagnosis and management is that symptoms onset in an advanced state of disease. Despite the availability of several clinical risk scores, the prediction of cardiovascular events is lacking, and many patients at risk are not well stratified according to the canonical risk factors alone. Therefore, adequate risk assessment remains the most challenging issue. Recently, the integration of imaging data with biochemical markers in a radiogenomic framework has been proposed in many fields of medicine as well as in cardiology. Multimodal imaging and advanced processing techniques can provide both direct (e.g., remodeling index, calcium score, total plaque volume, plaque burden) and indirect (e.g., myocardial perfusion index, coronary flow reserve) imaging features of CHD. Furthermore, the identification of novel non-invasive biochemical markers, mainly focused on plasma and/or serum samples, has increased the specificity of findings, reflecting several pathophysiological pathways of atherosclerosis, the principal actor in CHD. In this context, a multifaced approach, derived from the strengths of all these modalities, appears promising for finer risk stratification and treatment strategies, facilitating the decision-making and clinical management of patients. This review underlines the role of different imaging modalities in the quantification of coronary atherosclerosis and describes novel blood-based markers that could improve diagnosis and have a better predictive value in CHD.
Collapse
Affiliation(s)
| | | | | | | | - Carlo Tedeschi
- Department of Cardiology, San Giovanni Bosco HospitalASL Napoli 1, Naples, Italy
| | - Andrea Soricelli
- IRCCS SDNNaples, Italy
- Department of Motor Sciences and Healthiness, University of Naples ParthenopeNaples, Italy
| | | | - Claudio Napoli
- IRCCS SDNNaples, Italy
- U.O.C. Immunohematology, Transfusion Medicine and Transplant Immunology, Regional Reference Laboratory of Transplant Immunology, Department of Internal and Specialty Medicine Azienda Universitaria Policlinico (AOU), Università degli Studi della Campania “Luigi Vanvitelli”Naples, Italy
| |
Collapse
|
24
|
Shim JE, Bang C, Yang S, Lee T, Hwang S, Kim CY, Singh-Blom UM, Marcotte EM, Lee I. GWAB: a web server for the network-based boosting of human genome-wide association data. Nucleic Acids Res 2017; 45:W154-W161. [PMID: 28449091 PMCID: PMC5793838 DOI: 10.1093/nar/gkx284] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 04/01/2017] [Accepted: 04/17/2017] [Indexed: 12/29/2022] Open
Abstract
During the last decade, genome-wide association studies (GWAS) have represented a major approach to dissect complex human genetic diseases. Due in part to limited statistical power, most studies identify only small numbers of candidate genes that pass the conventional significance thresholds (e.g. P ≤ 5 × 10-8). This limitation can be partly overcome by increasing the sample size, but this comes at a higher cost. Alternatively, weak association signals can be boosted by incorporating independent data. Previously, we demonstrated the feasibility of boosting GWAS disease associations using gene networks. Here, we present a web server, GWAB (www.inetbio.org/gwab), for the network-based boosting of human GWAS data. Using GWAS summary statistics (P-values) for SNPs along with reference genes for a disease of interest, GWAB reprioritizes candidate disease genes by integrating the GWAS and network data. We found that GWAB could more effectively retrieve disease-associated reference genes than GWAS could alone. As an example, we describe GWAB-boosted candidate genes for coronary artery disease and supporting data in the literature. These results highlight the inherent value in sub-threshold GWAS associations, which are often not publicly released. GWAB offers a feasible general approach to boost such associations for human disease genetics.
Collapse
Affiliation(s)
- Jung Eun Shim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
| | - Changbae Bang
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
| | - Sunmo Yang
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
| | - Tak Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
| | - Sohyun Hwang
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam-si 13496, Korea
| | - Chan Yeong Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
| | - U Martin Singh-Blom
- Cognition Group, Schibsted Products & Technologies, Västra Järnvägsgatan 21, 111 64 Stockholm, Sweden
| | - Edward M Marcotte
- Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, University of Texas, Austin, TX 78712, USA
- Department of Molecular Biosciences, University of Texas at Austin, TX 78712, USA
| | - Insuk Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
| |
Collapse
|
25
|
Al-Mohanna F. The Cardiokines. ENDOCRINOLOGY OF THE HEART IN HEALTH AND DISEASE 2017:87-114. [DOI: 10.1016/b978-0-12-803111-7.00004-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
26
|
Yan Y, Wang XJ, Li SQ, Yang SH, Lv ZC, Wang LT, He YY, Jiang X, Wang Y, Jing ZC. Elevated levels of plasma transforming growth factor-β1 in idiopathic and heritable pulmonary arterial hypertension. Int J Cardiol 2016; 222:368-374. [DOI: 10.1016/j.ijcard.2016.07.192] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 07/28/2016] [Indexed: 11/26/2022]
|
27
|
Yang M, Zhu M, Tang L, Zhu H, Lu Y, Xu B, Jiang J, Chen X. Polymorphisms of TGFβ-1 and TGFBR2 in relation to coronary artery disease in a Chinese population. Clin Biochem 2016; 49:873-8. [PMID: 27234600 DOI: 10.1016/j.clinbiochem.2016.05.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 05/18/2016] [Accepted: 05/20/2016] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND AIM TGF-β1 has been previously reported to be involved in the pathogenesis of atherosclerosis. The aim of the present study was to assess whether functional gene polymorphisms of TGF-β1 and its key receptor TGF-β receptor type II (TGFBR2) contribute as risk factors to the onset and severity of atherosclerotic coronary artery disease (CAD). DESIGN AND METHODS A total of 605 patients who underwent angiography for suspected CAD were prospectively recruited to this study. Coronary stenosis severity was assessed by the number of narrowed coronary vessels and the Gensini score. Among them, 502 patients had documented CAD, and 103 patients without documented CAD served as non-CAD controls. All patients were genotyped for one TGF-β1 polymorphism (rs1800470 (+T29C)) and two TGFBR2 polymorphisms (rs6785385 (-3779A/G), rs764522 (-1444C/G)) by polymerase chain reaction-restriction fragment length polymorphism and confirmed by direct sequencing. RESULTS No significant difference in the frequency for either polymorphism was found between CAD and control patients. Neither TGFBR2 rs6785385 (-3779A/G) nor rs764522 (-1444C/G) gene polymorphisms were associated with the severity of CAD (P>0.05). In male CAD patients, polymorphisms at TGF-β1 rs1800470 (+T29C) were, however, associated with the severity of CAD. The T allele frequency was significantly and positively correlated with the number of narrowed coronary arteries (three or more vessels: 49.3%, two vessels: 44.1%, one vessel: 36.9%) (P=0.039). Gensini scores in patients with the TT, CT, and CC genotype were 34.33±2.23, 32.06±4.79, and 26.90±3.83, respectively (P<0.05). In multiple linear regression analysis, the T allele of TGF-β1 polymorphism was independently correlated with the Gensini score (β=0.131). CONCLUSION TGF-β1 T29C gene polymorphism may be associated with severity of CAD in male patients. TGFBR2 polymorphisms may not determine the genetic susceptibility to CAD.
Collapse
Affiliation(s)
- Minjun Yang
- Laboratory of Cardiovascular Disease, China; Department of Cardiology, Taizhou Hospital, Wenzhou Medical University, Zhejiang Province 317000, China
| | - Min Zhu
- Enze Medical Research Center, Taizhou, Zhejiang Province 317000, China
| | - Lijiang Tang
- Laboratory of Cardiovascular Disease, China; Zhejiang Hospital, Zhejiang Province 317000, China
| | - Huanhuan Zhu
- Laboratory of Cardiovascular Disease, China; Department of Cardiology, Taizhou Hospital, Wenzhou Medical University, Zhejiang Province 317000, China
| | - Yifei Lu
- Laboratory of Cardiovascular Disease, China; Department of Cardiology, Taizhou Hospital, Wenzhou Medical University, Zhejiang Province 317000, China
| | - Baohui Xu
- Vascular Center, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jianjun Jiang
- Laboratory of Cardiovascular Disease, China; Department of Cardiology, Taizhou Hospital, Wenzhou Medical University, Zhejiang Province 317000, China.
| | - Xiaofeng Chen
- Laboratory of Cardiovascular Disease, China; Department of Cardiology, Taizhou Hospital, Wenzhou Medical University, Zhejiang Province 317000, China; Enze Medical Research Center, Taizhou, Zhejiang Province 317000, China.
| |
Collapse
|
28
|
Mohamed AR, El-Hadidy WF, Mannaa HF. Assessment of the prophylactic role of aspirin and/or clopidogrel on experimentally induced acute myocardial infarction in hypercholesterolemic rats. Drugs R D 2016; 14:233-9. [PMID: 25231707 PMCID: PMC4269823 DOI: 10.1007/s40268-014-0059-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Introduction Hyperlipidemia is a risk factor for cardiovascular diseases such as acute infarction. Inflammation and platelet activation are critical phenomena in acute myocardial infarction (AMI). Aim The aim of the study was to assess potential protective effects of aspirin and/or clopidogrel on AMI in hypercholesterolemic rats. Methods Forty adult male Wistar rats were divided into five groups (eight rats in each). Group I included normal healthy rats. The other 32 rats were subjected to induction of hypercholesterolemia by high-fat diet for 3 weeks, followed by induction of AMI by subcutaneous injections of isoproterenol (85 mg/kg/day, for 2 days). Rats were divided into the following groups: group II, rats with induced hypercholesterolemia and AMI; group III, hypercholesterolemic rats that received aspirin 30 mg/kg/day orally for 7 days before induction of AMI; group IV, hypercholesterolemic rats that received clopidogrel 10 mg/kg/day orally for 7 days before induction of AMI; and group V, hypercholesterolemic rats treated with both aspirin and clopidogrel in the same doses for 7 days before induction of AMI. Serum levels of pentraxin 3 (PTX3), transforming growth factor-β1 (TGF-β1), creatine kinase (CK), lactate dehydrogenase (LDH), total cholesterol and triglycerides were estimated in all rats. Results Isoproterenol-induced AMI in hypercholesterolemic rats was associated with an increase in serum levels of PTX3, TGF-β1, CK and LDH. Aspirin and/or clopidogrel pretreatment for 1 week led to a reduction of their levels as compared with non-treated rats. However, the reduction caused by combination of aspirin and clopidogrel was more than that caused by each drug separately. Conclusion Combination of aspirin and clopidogrel could be a therapeutic option for hypercholesterolemic patients to attenuate the complex vascular inflammatory process which is a key step in the setting of AMI.
Collapse
Affiliation(s)
- Adham R. Mohamed
- Physiology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Wessam F. El-Hadidy
- Pharmacology and Experimental Therapeutics Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Hazem F. Mannaa
- Medical Biochemistry Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
29
|
Luan YY, Yin CF, Qin QH, Dong N, Zhu XM, Sheng ZY, Zhang QH, Yao YM. Effect of Regulatory T Cells on Promoting Apoptosis of T Lymphocyte and Its Regulatory Mechanism in Sepsis. J Interferon Cytokine Res 2015; 35:969-80. [PMID: 26309018 DOI: 10.1089/jir.2014.0235] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
With both in vivo and in vitro experiments, the present study was conducted to investigate the effect of regulatory T cell (Treg) on promoting T-lymphocyte apoptosis and its regulatory mechanism through transforming growth factor-beta (TGF-β1) signaling in mice. A murine model of polymicrobial sepsis was reproduced by cecal ligation and puncture (CLP); PC61 and anti-TGF-β antibodies were used to decrease counts of CD4(+)CD25(+) Tregs and inhibit TGF-β activity, respectively. Splenic CD4(+)CD25(+) Tregs and CD4(+)CD25(-) T cells were isolated. Phenotypes, including cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4), forkhead/winged helix transcription factor p3 (Foxp3), and TGFβ1(m+), as well as the apoptotic rate of CD4(+)CD25(-) T cell, were analyzed by flow cytometry. Real-time reverse transcription-polymerase chain reaction was performed to determine mRNA expression of TGF-β1, and the expressions of Smad2/Smad3, Bcl-2 superfamily members of Bcl-2/Bim, cytochrome C, the mitochondrial membrane potential, and caspases in CD4(+)CD25(-) T cells were simultaneously determined. After treatment with PC61 or anti-TGF-β antibody, CTLA-4, Foxp3, and TGFβ1(m+) expressions of CD4(+)CD25(+) Tregs were markedly decreased in comparison to that of the CLP group and the apoptosis rate of CD4(+)CD25(-) T cells was significantly positively correlated with the expression of TGF-β1. Meanwhile, levels of P-Smad2/P-Smad3, proapoptotic protein Bim, cytochrome C, and activity of caspase-3, -8, -9 were downregulated, whereas the mitochondrial membrane potential and antiapoptotic protein Bcl-2 expression were restored. Taken together, our data indicated that the TGF-β1 signal could be partly involved in the apoptosis of CD4(+)CD25(-) T cells promoted by CD4(+)CD25(+) Tregs, therefore inhibition of TGF-β1 expression may provide a novel strategy for the improvement of host immunosuppression following sepsis.
Collapse
Affiliation(s)
- Ying-yi Luan
- Department of Microbiology and Immunology, Trauma Research Center , First Hospital Affiliated to the Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Cheng-fen Yin
- Department of Microbiology and Immunology, Trauma Research Center , First Hospital Affiliated to the Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Qing-hua Qin
- Department of Microbiology and Immunology, Trauma Research Center , First Hospital Affiliated to the Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Ning Dong
- Department of Microbiology and Immunology, Trauma Research Center , First Hospital Affiliated to the Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Xiao-mei Zhu
- Department of Microbiology and Immunology, Trauma Research Center , First Hospital Affiliated to the Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Zhi-yong Sheng
- Department of Microbiology and Immunology, Trauma Research Center , First Hospital Affiliated to the Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Qing-hong Zhang
- Department of Microbiology and Immunology, Trauma Research Center , First Hospital Affiliated to the Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Yong-ming Yao
- Department of Microbiology and Immunology, Trauma Research Center , First Hospital Affiliated to the Chinese PLA General Hospital, Beijing, People's Republic of China
| |
Collapse
|
30
|
Abstract
Glycosylation, the most abundant posttranslational modification, holds an unprecedented capacity for altering biological function. Our ability to harness glycosylation as a means to control biological systems is hampered by our inability to pinpoint the specific glycans and corresponding biosynthetic enzymes underlying a biological process. Herein we identify glycosylation enzymes acting as regulatory elements within a pathway using microRNA (miRNA) as a proxy. Leveraging the target network of the miRNA-200 family (miR-200f), regulators of epithelial-to-mesenchymal transition (EMT), we pinpoint genes encoding multiple promesenchymal glycosylation enzymes (glycogenes). We focus on three enzymes, beta-1,3-glucosyltransferase (B3GLCT), beta-galactoside alpha-2,3-sialyltransferase 5 (ST3GAL5), and (alpha-N-acetyl-neuraminyl-2,3-beta-galactosyl-1,3)-N-acetylgalactosaminide alpha-2,6-sialyltransferase 5 (ST6GALNAC5), encoding glycans that are difficult to analyze by traditional methods. Silencing these glycogenes phenocopied the effect of miR-200f, inducing mesenchymal-to-epithelial transition. In addition, all three are up-regulated in TGF-β-induced EMT, suggesting tight integration within the EMT-signaling network. Our work indicates that miRNA can act as a relatively simple proxy to decrypt which glycogenes, including those encoding difficult-to-analyze structures (e.g., proteoglycans, glycolipids), are functionally important in a biological pathway, setting the stage for the rapid identification of glycosylation enzymes driving disease states.
Collapse
|
31
|
Sionis A, Ruiz-Nodar JM, Fernández-Ortiz A, Marín F, Abu-Assi E, Díaz-Castro O, Nuñez-Gil IJ, Lidón RM. Actualización en cardiopatía isquémica y cuidados críticos cardiológicos. Rev Esp Cardiol 2015. [DOI: 10.1016/j.recesp.2014.11.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
32
|
Update on ischemic heart disease and intensive cardiac care. ACTA ACUST UNITED AC 2015; 68:234-41. [PMID: 25670216 DOI: 10.1016/j.rec.2014.11.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 11/12/2014] [Indexed: 01/11/2023]
Abstract
This article summarizes the main developments reported in 2014 on ischemic heart disease, together with the most important innovations in intensive cardiac care.
Collapse
|
33
|
Circulating microRNA-19a as a potential novel biomarker for diagnosis of acute myocardial infarction. Int J Mol Sci 2014; 15:20355-64. [PMID: 25383678 PMCID: PMC4264171 DOI: 10.3390/ijms151120355] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Revised: 10/20/2014] [Accepted: 10/24/2014] [Indexed: 12/31/2022] Open
Abstract
Acute myocardial infarction (AMI) is a serious cardiovascular disease. Investigating new susceptibility genes for effective methods of early diagnosis of AMI is important. In the current study, peripheral blood miR-19a levels were detected by real-time polymerase chain reaction. Significant differences and logistic correlation analyses were carried out by grouping of disease types and stratification of risk factors. Receiver-operator characteristic curve analysis was used to compare the current common clinical biochemical markers and evaluate the sensitivity and specificity of miR-19a for diagnosing AMI. Circulating miR-19a expression in the AMI group was higher than that in controls. The diagnostic effect of circulating miR-19a levels was superior to current clinical biochemical indices, such as CK, CK-MB, MYO, hs-TnI, and BNP. Our results show that there is a close association of circulating miR-19a levels with susceptibility to AMI. Circulating miR-19a levels could be a candidate diagnostic biomarker for AMI.
Collapse
|
34
|
Uluçay S, Çam FS, Batır MB, Sütçü R, Bayturan Ö, Demircan K. A novel association between TGFb1 and ADAMTS4 in coronary artery disease: A new potential mechanism in the progression of atherosclerosis and diabetes. Anatol J Cardiol 2014; 15:823-9. [PMID: 25592103 PMCID: PMC5336969 DOI: 10.5152/akd.2014.5762] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Objective: Coronary artery disease is characterized by atherosclerosis in the vessel wall. Recently, it has been thought that increasing LDL-binding capacity of subendothelial proteoglycan fragments that are formed by protease activity can be responsible for the initiation of atherosclerosis. ADAMTS4 is a member of the versican-degrading proteinases. In vitro studies demonstrated that TGFβ inhibits the expression of ADAMTS4 in macrophages. In this study, we aimed to investigate the role and association between TGFβ1 and ADAMTS4 in coronary artery disease. Methods: A total of 84 cases with atheroma plaque and 72 controls without plaque were analyzed. The severity of disease was determined by Gensini score. TGFβ1 gene polymorphisms were genotyped by the PCR-RFLP method. TGFβ1 and ADAMTS4 serum levels were measured by ELISA method. Statistical analyses of genotypes and their relationship with serum levels were performed by chi-square, student t test and ANOVA. Results: ADAMTS4 levels were higher in cases compared with controls (p<0.05). In the patient group, ADAMTS4 levels were higher than in controls and correlated with TGFβ1 serum levels (r=0.29; p<0.05) and severity of disease (r=0.20; p<0.05). The TGFβ1 gene CCA haplotype was associated with 3.3-fold increase in coronary artery disease (OR=3.26 95% CI 1.22-8.68; p<0.05). Unexpectedly, ADAMTS4 serum levels were also higher in diabetic cases (p=0.05). Conclusion: This study has demonstrated that ADAMTS4 may be responsible for the pathogenesis of atherosclerosis. This is the first report about the association between ADAMTS4 and TGFβ1 serum levels in the progression of atherosclerosis in CAD. Furthermore, it is seen that TGFβ1 haplotype can cause a genetic susceptibility to CAD in the Turkish population. To our knowledge, this is also the first report suggesting higher serum ADAMTS4 levels in diabetic patients.
Collapse
Affiliation(s)
- Safiye Uluçay
- Department of Medical Genetics, Faculty of Medicine, Celal Bayar University; Manisa Turkey.
| | | | | | | | | | | |
Collapse
|