1
|
Garg VK, Joshi H, Sharma AK, Yadav K, Yadav V. Host defense peptides at the crossroad of endothelial cell physiology: Insight into mechanistic and pharmacological implications. Peptides 2024; 182:171320. [PMID: 39547414 DOI: 10.1016/j.peptides.2024.171320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
Antimicrobial peptides (AMPs), particularly host defense peptides (HDPs), have gained recognition for their role in host defense mechanisms, but they have also shown potential as a promising anticancer, antiviral, antiparasitic, antifungal and immunomodulatory agent. Research studies in recent years have shown HDPs play a crucial role in endothelial cell function and biology. The function of endothelial cells is impacted by HDPs' complex interplay between cytoprotective and cytotoxic actions as they are known to modulate barrier integrity, inflammatory response and angiogenesis. This biphasic response varies and depends on the peptide structure, its concentration, and the microenvironment. These effects are mediated through key signaling pathways, including MAPK, NF-κB, and PI3K/Akt, which controls responses such as cell proliferation, apoptosis, and migration. In the present review, we have discussed the significance of the intriguing relationship between HDPs and endothelial cell physiology which suggests it potential as a therapeutic agents for the treating wounds, cardiovascular diseases, and inflammation-related endothelial damage.
Collapse
Affiliation(s)
- Vivek Kumar Garg
- Department of Medical Lab Technology, University Institute of Allied Health Sciences, Chandigarh University, Gharuan, Mohali, Punjab 140413, India
| | - Hemant Joshi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India; Division of Experimental Medicine, University of California San Francisco, San Francisco, CA 94107, USA
| | - Amarish Kumar Sharma
- Department of Biotechnology, School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Kiran Yadav
- Faculty of Pharmaceutical Sciences, The ICFAI University, Himachal Pradesh, India
| | - Vikas Yadav
- Department of Clinical Sciences, Clinical Research Centre, Skåne University Hospital, Lund University, Malmö SE-20213, Sweden.
| |
Collapse
|
2
|
Qiu P, Jiang Q, Song H. Unveiling the hidden world of transfer RNA-derived small RNAs in inflammation. J Inflamm (Lond) 2024; 21:46. [PMID: 39533297 PMCID: PMC11556027 DOI: 10.1186/s12950-024-00418-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Transfer RNA-derived small RNAs (tsRNAs) are a newly discovered class of small noncoding RNAs (sncRNAs) that include tRNA-derived stress-induced RNAs (tiRNAs) and tRNA-derived fragments (tRFs). Following the development of high-throughput sequencing technology, an increasing number of tsRNAs have been discovered with vital functions in different physiological and pathophysiological processes. Extensive research has revealed that tsRNAs are involved in various diseases, such as cancers, autoimmune illnesses and other diseases. This review focuses on the role and significance of tsRNAs in inflammation, such as the regulation of substances including inflammatory inducers, inflammatory cells and inflammatory factors, which contribute to the pathogenesis of inflammation-related diseases. Moreover, we discuss in-depth the molecular pathogenic mechanisms of tsRNAs in inflammation-related diseases through different signaling pathways and assess their clinical value, providing new perspectives for the exploration of tsRNA functions and inflammation-related diseases.
Collapse
Affiliation(s)
- Peiru Qiu
- Health Science Center, Ningbo University, Ningbo, China
| | - Qi Jiang
- Gastroenterology Department, The First Affiliated Hospital of Ningbo University, Ningbo, China.
| | - Haojun Song
- Gastroenterology Department, The First Affiliated Hospital of Ningbo University, Ningbo, China.
- Department of Gastroenterology, Ningbo Key Laboratory of Translational Medicine Research on Gastroenterology and Hepatology, Biobank, Ningbo, China.
| |
Collapse
|
3
|
Pawar K, Kawamura T, Kirino Y. The tRNA Val half: A strong endogenous Toll-like receptor 7 ligand with a 5'-terminal universal sequence signature. Proc Natl Acad Sci U S A 2024; 121:e2319569121. [PMID: 38683985 PMCID: PMC11087793 DOI: 10.1073/pnas.2319569121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/24/2024] [Indexed: 05/02/2024] Open
Abstract
Toll-like receptors (TLRs) are crucial components of the innate immune system. Endosomal TLR7 recognizes single-stranded RNAs, yet its endogenous ssRNA ligands are not fully understood. We previously showed that extracellular (ex-) 5'-half molecules of tRNAHisGUG (the 5'-tRNAHisGUG half) in extracellular vesicles (EVs) of human macrophages activate TLR7 when delivered into endosomes of recipient macrophages. Here, we fully explored immunostimulatory ex-5'-tRNA half molecules and identified the 5'-tRNAValCAC/AAC half, the most abundant tRNA-derived RNA in macrophage EVs, as another 5'-tRNA half molecule with strong TLR7 activation capacity. Levels of the ex-5'-tRNAValCAC/AAC half were highly up-regulated in macrophage EVs upon exposure to lipopolysaccharide and in the plasma of patients infected with Mycobacterium tuberculosis. The 5'-tRNAValCAC/AAC half-mediated activation of TLR7 effectively eradicated bacteria infected in macrophages. Mutation analyses of the 5'-tRNAValCAC/AAC half identified the terminal GUUU sequence as a determinant for TLR7 activation. We confirmed that GUUU is the optimal ratio of guanosine and uridine for TLR7 activation; microRNAs or other RNAs with the terminal GUUU motif can indeed stimulate TLR7, establishing the motif as a universal signature for TLR7 activation. These results advance our understanding of endogenous ssRNA ligands of TLR7 and offer insights into diverse TLR7-involved pathologies and their therapeutic strategies.
Collapse
Affiliation(s)
- Kamlesh Pawar
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA19107
- Department of Life Sciences, School of Natural Science, Shiv Nadar Institution of Eminence Deemed to be University, Delhi National Capital Region, Greater Noida201314, India
| | - Takuya Kawamura
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA19107
| | - Yohei Kirino
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA19107
| |
Collapse
|
4
|
Bei J, Qiu Y, Cockrell D, Chang Q, Husseinzadeh S, Zhou C, Fang X, Bao X, Jin Y, Gaitas A, Khanipov K, Saito TB, Gong B. Identification of common sequence motifs shared exclusively among selectively packed exosomal pathogenic microRNAs during rickettsial infections. J Cell Physiol 2023; 238:1937-1948. [PMID: 37334929 DOI: 10.1002/jcp.31061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/12/2023] [Accepted: 05/22/2023] [Indexed: 06/21/2023]
Abstract
We previously reported that microRNA (miR)23a and miR30b are selectively sorted into exosomes derived from rickettsia-infected endothelial cells (R-ECExos). Yet, the mechanism remains unknown. Cases of spotted fever rickettsioses have been increasing, and infections with these bacteria cause life-threatening diseases by targeting brain and lung tissues. Therefore, the goal of the present study is to further dissect the molecular mechanism underlying R-ECExos-induced barrier dysfunction of normal recipient microvascular endothelial cells (MECs), depending on their exosomal RNA cargos. Infected ticks transmit the rickettsiae to human hosts following a bite and injections of the bacteria into the skin. In the present study, we demonstrate that treatment with R-ECExos, which were derived from spotted fever group R parkeri infected human dermal MECs, induced disruptions of the paracellular adherens junctional protein VE-cadherin, and breached the paracellular barrier function in recipient pulmonary MECs (PMECs) in an exosomal RNA-dependent manner. We did not detect different levels of miRs in parent dermal MECs following rickettsial infections. However, we demonstrated that the microvasculopathy-relevant miR23a-27a-24 cluster and miR30b are selectively enriched in R-ECExos. Bioinformatic analysis revealed that common sequence motifs are shared exclusively among the exosomal, selectively-enriched miR23a cluster and miR30b at different levels. Taken together, these data warrant further functional identification and characterization of a monopartition, bipartition, or tripartition among ACA, UCA, and CAG motifs that guide recognition of microvasculopathy-relevant miR23a-27a-24 and miR30b, and subsequently results in their selective enrichments in R-ECExos.
Collapse
Affiliation(s)
- Jiani Bei
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Yuan Qiu
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Diane Cockrell
- Laboratory of Bacteriology, Division of Intramural Research, NIAID-NIH, Hamilton, Montana, USA
| | - Qing Chang
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Sorosh Husseinzadeh
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Changcheng Zhou
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Xiang Fang
- Department of Neurology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Xiaoyong Bao
- Department of Pediatric, University of Texas Medical Branch, Galveston, Texas, USA
| | - Yang Jin
- Department of Medicine, Pulmonary and Critical Care Medicine Division, Boston University Medical Campus, Boston, Massachusetts, USA
| | - Angelo Gaitas
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kamil Khanipov
- Department of Pharmacology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Tais B Saito
- Laboratory of Bacteriology, Division of Intramural Research, NIAID-NIH, Hamilton, Montana, USA
| | - Bin Gong
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
5
|
Bei J, Qiu Y, Cockrell D, Chang Q, Husseinzadeh S, Zhou C, Gaitas A, Fang X, Jin Y, Khanipov K, Saito TB, Gong B. Identification of common sequence motifs shared exclusively among selectively packed exosomal pathogenic microRNAs during rickettsial infections. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.06.522907. [PMID: 36712112 PMCID: PMC9881928 DOI: 10.1101/2023.01.06.522907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We previously reported that microRNA (miR)23a and miR30b are selectively sorted into rickettsia-infected, endothelial cell-derived exosomes ( R -ECExos). Yet, the mechanism remains unknown. The number of cases of spotted fever rickettsioses has been increasing in recent years, and infections with these bacteria cause life-threatening diseases by targeting brain and lung tissues. Therefore, the aim of the present study is to continue to dissect the molecular mechanism underlying R -ECExos-induced barrier dysfunction of normal recipient microvascular endothelial cells (MECs), depending on their exosomal RNA cargos. Rickettsiae are transmitted to human hosts by the bite of an infected tick into the skin. In the present study we demonstrate that treatment with R -ECExos, which were derived from spotted fever group R parkeri infected human dermal MECs, induced disruptions of the paracellular adherens junctional protein VE-cadherin and breached the paracellular barrier function in recipient pulmonary MECs (PMECs) in an exosomal RNA-dependent manner. Similarly, we did not detect different levels of miRs in parent dermal MECs following rickettsial infections. However, we demonstrated that the microvasculopathy-relevant miR23a-27a-24 cluster and miR30b are selectively enriched in R -ECExos. Bioinformatic analysis revealed that common sequence motifs are shared exclusively among the exosomal, selectively-enriched miR23a cluster and miR30b at different levels. Taken together, these data warrant further functional identification and characterization of a single, bipartition, or tripartition among ACA, UCA, and CAG motifs that guide recognition of microvasculopathy-relevant miR23a-27a-24 and miR30b, and subsequently results in their selective enrichments in R -ECExos.
Collapse
|
6
|
Su J, Cheng J, Hu Y, Yu Q, Li Z, Li J, Zheng N, Zhang Z, Yang J, Li X, Zhang Z, Wang Y, Zhu K, Du W, Chen X. Transfer RNA-derived small RNAs and their potential roles in the therapeutic heterogeneity of sacubitril/valsartan in heart failure patients after acute myocardial infarction. Front Cardiovasc Med 2022; 9:961700. [PMID: 36247465 PMCID: PMC9558900 DOI: 10.3389/fcvm.2022.961700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 09/14/2022] [Indexed: 12/05/2022] Open
Abstract
BackgroundIt has been reported that sacubitril/valsartan can improve cardiac function in acute myocardial infarction (AMI) patients complicated by heart failure (HF). However, a number of patients cannot be treated successfully; this phenomenon is called sacubitril/valsartan resistance (SVR), and the mechanisms remain unclear.MethodsIn our present research, the expression profiles of transfer RNA (tRNA)-derived small RNAs (tsRNAs) in SVR along with no sacubitril/valsartan resistance (NSVR) patients were determined by RNA sequencing. Through bioinformatics, quantitative real-time PCR (qRT-PCR), and cell-based experiments, we identified SVR-related tsRNAs and confirmed their diagnostic value, predicted their targeted genes, and explored the enriched signal pathways as well as regulatory roles of tsRNAs in SVR.ResultsOur research indicated that 36 tsRNAs were upregulated and that 21 tsRNAs were downregulated in SVR. Among these tsRNAs, the expression of tRF-59:76-Tyr-GTA-2-M3 and tRF-60:76-Val-AAC-1-M5 was upregulated, while the expression of tRF-1:29-Gly-GCC-1 was downregulated in the group of SVR. Receiver operating characteristic (ROC) curve analysis demonstrated that these three tsRNAs were potential biomarkers of the therapeutic heterogeneity of sacubitril/valsartan. Moreover, tRF-60:76-Val-AAC-1-M5 might target Tnfrsf10b and Bcl2l1 to influence the observed therapeutic heterogeneity through the lipid and atherosclerosis signaling pathways.ConclusionHence, tsRNA might play a vital role in SVR. These discoveries provide new insights for the mechanistic investigation of responsiveness to sacubitril/valsartan.
Collapse
Affiliation(s)
- Jia Su
- Department of Cardiology, Ningbo No. 1 Hospital, Ningbo, Zhejiang, China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, Zhejiang, China
| | - Ji Cheng
- Department of Emergency, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
| | - Yingchu Hu
- Department of Cardiology, Ningbo No. 1 Hospital, Ningbo, Zhejiang, China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, Zhejiang, China
| | - Qinglin Yu
- Department of Traditional Chinese Internal Medicine, Ningbo No. 1 Hospital, Ningbo, Zhejiang, China
| | - Zhenwei Li
- Department of Cardiology, Ningbo No. 1 Hospital, Ningbo, Zhejiang, China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, Zhejiang, China
| | - Jiyi Li
- Department of Cardiology, Yuyao People’s Hospital of Zhejiang Province, Yuyao, Zhejiang, China
| | - Nan Zheng
- Department of Cardiology, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
| | - Zhaoxia Zhang
- Department of Cardiology, Ningbo No. 1 Hospital, Ningbo, Zhejiang, China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, Zhejiang, China
| | - Jin Yang
- Department of Geriatrics, Ningbo No. 1 Hospital, Ningbo, Zhejiang, China
| | - Xiaojing Li
- Department of Geriatrics, Ningbo No. 1 Hospital, Ningbo, Zhejiang, China
| | - Zeqin Zhang
- Department of Cardiology, Ningbo No. 1 Hospital, Ningbo, Zhejiang, China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, Zhejiang, China
| | - Yong Wang
- Department of Cardiology, Ningbo No. 1 Hospital, Ningbo, Zhejiang, China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, Zhejiang, China
| | - Keqi Zhu
- Department of Traditional Chinese Internal Medicine, Ningbo No. 1 Hospital, Ningbo, Zhejiang, China
- *Correspondence: Keqi Zhu,
| | - Weiping Du
- Department of Cardiology, Ningbo No. 1 Hospital, Ningbo, Zhejiang, China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, Zhejiang, China
- Weiping Du,
| | - Xiaomin Chen
- Department of Cardiology, Ningbo No. 1 Hospital, Ningbo, Zhejiang, China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, Zhejiang, China
- Xiaomin Chen,
| |
Collapse
|
7
|
Zhou C, Bei J, Qiu Y, Chang Q, Nyong E, Vasilakis N, Yang J, Krishnan B, Khanipov K, Jin Y, Fang X, Gaitas A, Gong B. Exosomally Targeting microRNA23a Ameliorates Microvascular Endothelial Barrier Dysfunction Following Rickettsial Infection. Front Immunol 2022; 13:904679. [PMID: 35812423 PMCID: PMC9260018 DOI: 10.3389/fimmu.2022.904679] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/23/2022] [Indexed: 11/25/2022] Open
Abstract
Spotted fever group rickettsioses caused by Rickettsia (R) are devastating human infections, which mainly target microvascular endothelial cells (ECs) and can induce lethal EC barrier dysfunction in the brain and lungs. Our previous evidence reveals that exosomes (Exos) derived from rickettsial-infected ECs, namely R-ECExos, can induce disruption of the tight junctional (TJ) protein ZO-1 and barrier dysfunction of human normal recipient brain microvascular endothelial cells (BMECs). However, the underlying mechanism remains elusive. Given that we have observed that microRNA23a (miR23a), a negative regulator of endothelial ZO-1 mRNA, is selectively sorted into R-ECExos, the aim of the present study was to characterize the potential functional role of exosomal miR23a delivered by R-ECExos in normal recipient BMECs. We demonstrated that EC-derived Exos (ECExos) have the capacity to deliver oligonucleotide RNAs to normal recipient BMECs in an RNase-abundant environment. miR23a in ECExos impairs normal recipient BMEC barrier function, directly targeting TJ protein ZO-1 mRNAs. In separate studies using a traditional in vitro model and a novel single living-cell biomechanical assay, our group demonstrated that miR23a anti-sense oligonucleotide-enriched ECExos ameliorate R-ECExo-provoked recipient BMEC dysfunction in association with stabilization of ZO-1 in a dose-dependent manner. These results suggest that Exo-based therapy could potentially prove to be a promising strategy to improve vascular barrier function during bacterial infection and concomitant inflammation.
Collapse
Affiliation(s)
- Changcheng Zhou
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Jiani Bei
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Yuan Qiu
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Qing Chang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Emmanuel Nyong
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Nikos Vasilakis
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
- Department of Preventive Medicine and Population Health, The University of Texas Medical Branch, Galveston, TX, United States
- Center for Vector Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, TX, United States
- The Center of Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, United States
- Center for Tropical Diseases, University of Texas Medical Branch, Galveston, TX, United States
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX, United States
| | - Jun Yang
- Department of Internal Medicine, Endocrinology, University of Texas Medical Branch, Galveston, TX, United States
| | - Balaji Krishnan
- Mitchell Center for Neurodegenerative Diseases, Department of Neurology, University of Texas Medical Branch, Galveston, TX, United States
| | - Kamil Khanipov
- Department of Pharmacology, University of Texas Medical Branch, Galveston, TX, United States
| | - Yang Jin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University Medical Campus, Boston, MA, United States
| | - Xiang Fang
- Mitchell Center for Neurodegenerative Diseases, Department of Neurology, University of Texas Medical Branch, Galveston, TX, United States
| | - Angelo Gaitas
- The Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Bin Gong
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
- Center for Vector Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, TX, United States
- The Center of Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, United States
- Center for Tropical Diseases, University of Texas Medical Branch, Galveston, TX, United States
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
8
|
Qiu Y, Chien CC, Maroulis B, Bei J, Gaitas A, Gong B. Extending applications of AFM to fluidic AFM in single living cell studies. J Cell Physiol 2022; 237:3222-3238. [PMID: 35696489 PMCID: PMC9378449 DOI: 10.1002/jcp.30809] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/25/2022] [Indexed: 12/30/2022]
Abstract
In this article, a review of a series of applications of atomic force microscopy (AFM) and fluidic Atomic Force Microscopy (fluidic AFM, hereafter fluidFM) in single-cell studies is presented. AFM applications involving single-cell and extracellular vesicle (EV) studies, colloidal force spectroscopy, and single-cell adhesion measurements are discussed. FluidFM is an offshoot of AFM that combines a microfluidic cantilever with AFM and has enabled the research community to conduct biological, pathological, and pharmacological studies on cells at the single-cell level in a liquid environment. In this review, capacities of fluidFM are discussed to illustrate (1) the speed with which sequential measurements of adhesion using coated colloid beads can be done, (2) the ability to assess lateral binding forces of endothelial or epithelial cells in a confluent cell monolayer in an appropriate physiological environment, and (3) the ease of measurement of vertical binding forces of intercellular adhesion between heterogeneous cells. Furthermore, key applications of fluidFM are reviewed regarding to EV absorption, manipulation of a single living cell by intracellular injection, sampling of cellular fluid from a single living cell, patch clamping, and mass measurements of a single living cell.
Collapse
Affiliation(s)
- Yuan Qiu
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Chen-Chi Chien
- The Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Basile Maroulis
- The Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Jiani Bei
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Angelo Gaitas
- The Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York City, New York, USA.,BioMedical Engineering & Imaging Institute, Leon and Norma Hess Center for Science and Medicine, New York City, New York, USA
| | - Bin Gong
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA.,Sealy Center for Vector Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, Texas, USA.,Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, USA.,Institute for Human Infectious and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
9
|
Fiorillo C, Yen PS, Colantoni A, Mariconti M, Azevedo N, Lombardo F, Failloux AB, Arcà B. MicroRNAs and other small RNAs in Aedes aegypti saliva and salivary glands following chikungunya virus infection. Sci Rep 2022; 12:9536. [PMID: 35681077 PMCID: PMC9184468 DOI: 10.1038/s41598-022-13780-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/27/2022] [Indexed: 11/10/2022] Open
Abstract
Mosquito saliva facilitates blood feeding through the anti-haemostatic, anti-inflammatory and immunomodulatory properties of its proteins. However, the potential contribution of non-coding RNAs to host manipulation is still poorly understood. We analysed small RNAs from Aedes aegypti saliva and salivary glands and show here that chikungunya virus-infection triggers both the siRNA and piRNA antiviral pathways with limited effects on miRNA expression profiles. Saliva appears enriched in specific miRNA subsets and its miRNA content is well conserved among mosquitoes and ticks, clearly pointing to a non-random sorting and occurrence. Finally, we provide evidence that miRNAs from Ae. aegypti saliva may target human immune and inflammatory pathways, as indicated by prediction analysis and searching for experimentally validated targets of identical human miRNAs. Overall, we believe these observations convincingly support a scenario where both proteins and miRNAs from mosquito saliva are injected into vertebrates during blood feeding and contribute to the complex vector-host-pathogen interactions.
Collapse
Affiliation(s)
- Carmine Fiorillo
- Department of Public Health and Infectious Diseases - Division of Parasitology, "Sapienza" University, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Pei-Shi Yen
- Arboviruses and Insect Vectors Unit, Institute Pasteur, 25 rue Dr. Roux, 75724, Paris Cedex 15, France
| | - Alessio Colantoni
- Department of Biology and Biotechnology, "Sapienza" University, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Marina Mariconti
- Arboviruses and Insect Vectors Unit, Institute Pasteur, 25 rue Dr. Roux, 75724, Paris Cedex 15, France
| | - Nayara Azevedo
- Genomics Core Facility, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Fabrizio Lombardo
- Department of Public Health and Infectious Diseases - Division of Parasitology, "Sapienza" University, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Anna-Bella Failloux
- Arboviruses and Insect Vectors Unit, Institute Pasteur, 25 rue Dr. Roux, 75724, Paris Cedex 15, France
| | - Bruno Arcà
- Department of Public Health and Infectious Diseases - Division of Parasitology, "Sapienza" University, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| |
Collapse
|
10
|
Hu Y, Cai A, Xu J, Feng W, Wu A, Liu R, Cai W, Chen L, Wang F. An emerging role of the 5' termini of mature tRNAs in human diseases: Current situation and prospects. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166314. [PMID: 34863896 DOI: 10.1016/j.bbadis.2021.166314] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 10/30/2021] [Accepted: 11/18/2021] [Indexed: 02/07/2023]
Abstract
The fundamental biological roles of a class of small noncoding RNAs (sncRNAs), derived from mature tRNAs or pre-tRNAs, in human diseases have received increasing attention in recent years. These ncRNAs are called tRNA-derived fragments (tRFs) or tRNA-derived small RNAs (tsRNAs). tRFs mainly include tRF-1, tRF-5, tRF-3 and tRNA halves (tiRNAs or tRHs), which are produced by enzyme-specific cleavage of tRNAs. Here, we classify tRF-5 and 5' tiRNAs into the same category: 5'-tRFs and review the biological functions and regulatory mechanisms of 5'-tRFs in cancer and other diseases (metabolic diseases, neurodegenerative diseases, pathological stress injury and virus infection) to provide a new theoretical basis for the diagnosis and treatment of diseases.
Collapse
Affiliation(s)
- Yuhao Hu
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Jiangsu, China
| | - Aiting Cai
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Jiangsu, China
| | - Jing Xu
- Department of Laboratory Medicine, School of public health, Nantong University, Jiangsu, China
| | - Wei Feng
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Jiangsu, China
| | - Anqi Wu
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Jiangsu, China
| | - Ruoyu Liu
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Jiangsu, China
| | - Weihua Cai
- Department of Hepatology Laboratory, Nantong Third Hospital Affiliated to Nantong University, Jiangsu, China
| | - Lin Chen
- Department of Hepatology Laboratory, Nantong Third Hospital Affiliated to Nantong University, Jiangsu, China.
| | - Feng Wang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Jiangsu, China.
| |
Collapse
|
11
|
Pandey KK, Madhry D, Ravi Kumar YS, Malvankar S, Sapra L, Srivastava RK, Bhattacharyya S, Verma B. Regulatory roles of tRNA-derived RNA fragments in human pathophysiology. MOLECULAR THERAPY-NUCLEIC ACIDS 2021; 26:161-173. [PMID: 34513302 PMCID: PMC8413677 DOI: 10.1016/j.omtn.2021.06.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hundreds of tRNA genes and pseudogenes are encoded by the human genome. tRNAs are the second most abundant type of RNA in the cell. Advancement in deep-sequencing technologies have revealed the presence of abundant expression of functional tRNA-derived RNA fragments (tRFs). They are either generated from precursor (pre-)tRNA or mature tRNA. They have been found to play crucial regulatory roles during different pathological conditions. Herein, we briefly summarize the discovery and recent advances in deciphering the regulatory role played by tRFs in the pathophysiology of different human diseases.
Collapse
Affiliation(s)
- Kush Kumar Pandey
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Deeksha Madhry
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Y S Ravi Kumar
- Department of Biotechnology, M.S. Ramaiah, Institute of Technology, MSR Nagar, Bengaluru, India
| | - Shivani Malvankar
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Leena Sapra
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Rupesh K Srivastava
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Sankar Bhattacharyya
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Bhupendra Verma
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| |
Collapse
|
12
|
Abstract
Spotted fever group rickettsioses (SFRs) are devastating human infections. Vascular endothelial cells (ECs) are the primary targets of rickettsial infection. Edema resulting from EC barrier dysfunction occurs in the brain and lungs in most cases of lethal SFR, but the underlying mechanisms remain unclear. The aim of the study was to explore the potential role of Rickettsia-infected, EC-derived exosomes (Exos) during infection. Using size exclusion chromatography (SEC), we purified Exos from conditioned, filtered, bacterium-free media collected from Rickettsia parkeri-infected human umbilical vein ECs (HUVECs) (R-ECExos) and plasma of Rickettsia australis- or R. parkeri-infected mice (R-plsExos). We observed that rickettsial infection increased the release of heterogeneous plsExos, but endothelial exosomal size, morphology, and production were not significantly altered following infection. Compared to normal plsExos and ECExos, both R-plsExos and R-ECExos induced dysfunction of recipient normal brain microvascular ECs (BMECs). The effect of R-plsExos on mouse recipient BMEC barrier function is dose dependent. The effect of R-ECExos on human recipient BMEC barrier function is dependent on the exosomal RNA cargo. Next-generation sequencing analysis and stem-loop quantitative reverse transcription-PCR (RT-qPCR) validation revealed that rickettsial infection triggered the selective enrichment of endothelial exosomal mir-23a and mir-30b, which potentially target the endothelial barrier. To our knowledge, this is the first report on the functional role of extracellular vesicles following infection by obligately intracellular bacteria.
Collapse
|
13
|
Zong T, Yang Y, Zhao H, Li L, Liu M, Fu X, Tang G, Zhou H, Aung LHH, Li P, Wang J, Wang Z, Yu T. tsRNAs: Novel small molecules from cell function and regulatory mechanism to therapeutic targets. Cell Prolif 2021; 54:e12977. [PMID: 33507586 PMCID: PMC7941233 DOI: 10.1111/cpr.12977] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/07/2020] [Accepted: 12/18/2020] [Indexed: 12/18/2022] Open
Abstract
tsRNAs are small fragments of RNAs with specific lengths that are generated by particular ribonucleases, such as dicer and angiogenin (ANG), clipping on the rings of transfer RNAs (tRNAs) in specific cells and tissues under specific conditions. Depending on where the splicing site is, tsRNAs can be segmented into two main types, tRNA‐derived stress‐induced RNAs (tiRNAs) and tRNA‐derived fragments (tRFs). Many studies have shown that tsRNAs are functional molecules, not the random degradative products of tRNAs. Notably, due to their regulatory mechanism in regulating mRNA stability, transcription, ribosomal RNA (rRNA) synthesis and RNA reverse transcription, tsRNAs are significantly involved in the cell function, such as cell proliferation, migration, cycle and apoptosis, as well as the occurrence and development of a variety of diseases. In addition, tsRNAs may represent a new generation of clinical biomarkers or therapeutic targets because of their stable structures, high conservation and widely distribution, particularly in the peripheral tissues, bodily fluids and exosomes. In this review, we describe the generation, function and mechanism of tsRNAs and illustrate the current research progress of tsRNAs in various diseases, highlight their potentials as biomarkers and therapeutic targets in clinical application. Although our understanding of tsRNAs is still in infancy, the application prospects shown in this field deserve further exploration.
Collapse
Affiliation(s)
- Tingyu Zong
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yanyan Yang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Hui Zhao
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lin Li
- Department of Vascular surgery, Qingdao Hiser Medical Center, Qingdao, China
| | - Meixin Liu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiuxiu Fu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Guozhang Tang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hong Zhou
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lynn Htet Htet Aung
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jianxun Wang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Zhibin Wang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tao Yu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China.,Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
14
|
Pawar K, Shigematsu M, Sharbati S, Kirino Y. Infection-induced 5'-half molecules of tRNAHisGUG activate Toll-like receptor 7. PLoS Biol 2020; 18:e3000982. [PMID: 33332353 PMCID: PMC7745994 DOI: 10.1371/journal.pbio.3000982] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/13/2020] [Indexed: 01/15/2023] Open
Abstract
Toll-like receptors (TLRs) play a crucial role in the innate immune response. Although endosomal TLR7 recognizes single-stranded RNAs, their endogenous RNA ligands have not been fully explored. Here, we report 5'-tRNA half molecules as abundant activators of TLR7. Mycobacterial infection and accompanying surface TLR activation up-regulate the expression of 5'-tRNA half molecules in human monocyte-derived macrophages (HMDMs). The abundant accumulation of 5'-tRNA halves also occur in HMDM-secreted extracellular vehicles (EVs); the abundance of EV-5'-tRNAHisGUG half molecules is >200-fold higher than that of the most abundant EV-microRNA (miRNA). Sequence identification of the 5'-tRNA halves using cP-RNA-seq revealed abundant and selective packaging of specific 5'-tRNA half species into EVs. The EV-5'-tRNAHisGUG half was experimentally demonstrated to be delivered into endosomes in recipient cells and to activate endosomal TLR7. Up-regulation of the 5'-tRNA half molecules was also observed in the plasma of patients infected with Mycobacterium tuberculosis. These results unveil a novel tRNA-engaged pathway in the innate immune response and assign the role of "immune activators" to 5'-tRNA half molecules.
Collapse
Affiliation(s)
- Kamlesh Pawar
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Megumi Shigematsu
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Soroush Sharbati
- Institute of Veterinary Biochemistry, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Yohei Kirino
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
15
|
Magee R, Rigoutsos I. On the expanding roles of tRNA fragments in modulating cell behavior. Nucleic Acids Res 2020; 48:9433-9448. [PMID: 32890397 PMCID: PMC7515703 DOI: 10.1093/nar/gkaa657] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/26/2020] [Indexed: 12/17/2022] Open
Abstract
The fragments that derive from transfer RNAs (tRNAs) are an emerging category of regulatory RNAs. Known as tRFs, these fragments were reported for the first time only a decade ago, making them a relatively recent addition to the ever-expanding pantheon of non-coding RNAs. tRFs are short, 16-35 nucleotides (nts) in length, and produced through cleavage of mature and precursor tRNAs at various positions. Both cleavage positions and relative tRF abundance depend strongly on context, including the tissue type, tissue state, and disease, as well as the sex, population of origin, and race/ethnicity of an individual. These dependencies increase the urgency to understand the regulatory roles of tRFs. Such efforts are gaining momentum, and comprise experimental and computational approaches. System-level studies across many tissues and thousands of samples have produced strong evidence that tRFs have important and multi-faceted roles. Here, we review the relevant literature on tRF biology in higher organisms, single cell eukaryotes, and prokaryotes.
Collapse
Affiliation(s)
- Rogan Magee
- Computational Medicine Center, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Isidore Rigoutsos
- To whom correspondence should be addressed. Tel: +1 215 503 4219; Fax: +1 215 503 0466;
| |
Collapse
|
16
|
Fisher J, Card G, Soong L. Neuroinflammation associated with scrub typhus and spotted fever group rickettsioses. PLoS Negl Trop Dis 2020; 14:e0008675. [PMID: 33091013 PMCID: PMC7580963 DOI: 10.1371/journal.pntd.0008675] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Scrub typhus and spotted fever rickettsioses (SFR) are understudied, vector-borne diseases of global significance. Over 1 billion individuals are at risk for scrub typhus alone in an endemic region, spanning across eastern and southern Asia to Northern Australia. While highly treatable, diagnostic challenges make timely antibiotic intervention difficult for these diseases. Delayed therapy may lead to severe outcomes affecting multiple organs, including the central nervous system (CNS), where infection and associated neuroinflammation may be lethal or lead to lasting sequelae. Meningitis and encephalitis are prevalent in both scrub typhus and SFR. Additionally, case reports detailing focal neurological deficits have come to light, with attention to both acute and chronic sequelae of infection. Despite the increasing number of clinical reports outlining neurologic consequences of these diseases, relatively little research has examined underlying mechanisms of neuroinflammation. Animal models of scrub typhus have identified cerebral T-cell infiltration and vascular damage associated with endothelial infection and neuropathogenesis. Differential gene expression analysis of brain tissues during murine scrub typhus have revealed selective increases in CXCR3 ligands, proinflammatory and type-1 cytokines and chemokines, and cytotoxicity molecules, as well as alterations in the complement pathway. In SFR, microglial expansion and macrophage infiltration contribute to neurological disease progression. This narrative Review highlights clinical neurologic features of scrub typhus and SFR and evaluates our current understanding of basic research into neuroinflammation for both diseases in animal models. Further investigation into key mediators of neuropathogenesis may yield prognostic markers and treatment regimens for severe patients.
Collapse
Affiliation(s)
- James Fisher
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Galen Card
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Lynn Soong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|
17
|
Su Z, Chang Q, Drelich A, Shelite T, Judy B, Liu Y, Xiao J, Zhou C, He X, Jin Y, Saito T, Tang S, Soong L, Wakamiya M, Fang X, Bukreyev A, Ksiazek T, Russell WK, Gong B. Annexin A2 depletion exacerbates the intracerebral microhemorrhage induced by acute rickettsia and Ebola virus infections. PLoS Negl Trop Dis 2020; 14:e0007960. [PMID: 32687500 PMCID: PMC7392349 DOI: 10.1371/journal.pntd.0007960] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 07/30/2020] [Accepted: 06/02/2020] [Indexed: 12/17/2022] Open
Abstract
Intracerebral microhemorrhages (CMHs) are small foci of hemorrhages in the cerebrum. Acute infections induced by some intracellular pathogens, including rickettsia, can result in CMHs. Annexin a2 (ANXA2) has been documented to play a functional role during intracellular bacterial adhesion. Here we report that ANXA2-knockout (KO) mice are more susceptible to CMHs in response to rickettsia and Ebola virus infections, suggesting an essential role of ANXA2 in protecting vascular integrity during these intracellular pathogen infections. Proteomic analysis via mass spectrometry of whole brain lysates and brain-derived endosomes from ANXA2-KO and wild-type (WT) mice post-infection with R. australis revealed that a variety of significant proteins were differentially expressed, and the follow-up function enrichment analysis had identified several relevant cell-cell junction functions. Immunohistology study confirmed that both infected WT and infected ANXA2-KO mice were subjected to adherens junctional protein (VE-cadherin) damages. However, key blood-brain barrier (BBB) components, tight junctional proteins ZO-1 and occludin, were disorganized in the brains from R. australis-infected ANXA2-KO mice, but not those of infected WT mice. Similar ANXA2-KO dependent CMHs and fragments of ZO-1 and occludin were also observed in Ebola virus-infected ANXA2-KO mice, but not found in infected WT mice. Overall, our study revealed a novel role of ANXA2 in the formation of CMHs during R. australis and Ebola virus infections; and the underlying mechanism is relevant to the role of ANXA2-regulated tight junctions and its role in stabilizing the BBB in these deadly infections.
Collapse
Affiliation(s)
- Zhengchen Su
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Qing Chang
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Aleksandra Drelich
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Thomas Shelite
- Department of Internal Medicine, Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Barbara Judy
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Yakun Liu
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Jie Xiao
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Changchen Zhou
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Xi He
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Yang Jin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University Medical Campus, Boston, Massachusetts, United States of America
| | - Tais Saito
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Galveston National Laboratory, Galveston, Texas, United States of America
| | - Shaojun Tang
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Lynn Soong
- Galveston National Laboratory, Galveston, Texas, United States of America
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Maki Wakamiya
- Department of Neurology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Xiang Fang
- Department of Neurology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Alexander Bukreyev
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Galveston National Laboratory, Galveston, Texas, United States of America
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Thomas Ksiazek
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Galveston National Laboratory, Galveston, Texas, United States of America
| | - William K. Russell
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Bin Gong
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Galveston National Laboratory, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
18
|
Zhu C, Sun B, Nie A, Zhou Z. The tRNA-associated dysregulation in immune responses and immune diseases. Acta Physiol (Oxf) 2020; 228:e13391. [PMID: 31529760 DOI: 10.1111/apha.13391] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 08/31/2019] [Accepted: 09/08/2019] [Indexed: 12/12/2022]
Abstract
Transfer RNA (tRNA), often considered as a housekeeping molecule, mainly participates in protein translation by transporting amino acids to the ribosome. Nevertheless, accumulating evidence has shown that tRNAs are closely related to various physiological and pathological processes. The proper functioning of the immune system is the key to human health. The aim of this review is to investigate the relationships between tRNAs and the immune system. We detail the biogenesis and structure of tRNAs and summarize the pathogen tRNA-mediated infection and host responses. In addition, we address recent advances in different aspects of tRNA-associated dysregulation in immune responses and immune diseases, such as tRNA molecules, tRNA modifications, tRNA derivatives and tRNA aminoacylation. Therefore, tRNAs play an important role in immune regulation. Although our knowledge of tRNAs in the context of immunity remains, for the most part, unknown, this field deserves in-depth research to provide new ideas for the treatment of immune diseases.
Collapse
Affiliation(s)
- Chunsheng Zhu
- Department of Chinese Medicine The First Affiliated Hospital of Zhengzhou University Zhengzhou China
| | - Bao Sun
- Department of Clinical Pharmacology Xiangya Hospital Central South University Changsha China
- Hunan Key Laboratory of Pharmacogenetics Institute of Clinical Pharmacology Central South University Changsha China
| | - Anzheng Nie
- Department of Chinese Medicine The First Affiliated Hospital of Zhengzhou University Zhengzhou China
| | - Zheng Zhou
- Department of Chinese Medicine The First Affiliated Hospital of Zhengzhou University Zhengzhou China
| |
Collapse
|
19
|
Das S, Ninan GA, Jasper S, George M, Iyadurai R. Spotted fever rickettsiosis presenting with bilateral anterior uveitis and retinitis: A case report. J Family Med Prim Care 2020; 9:1236-1239. [PMID: 32318504 PMCID: PMC7114010 DOI: 10.4103/jfmpc.jfmpc_1009_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/09/2020] [Accepted: 01/23/2020] [Indexed: 11/18/2022] Open
Abstract
Spotted fever is a common rickettsial disease in India. It is caused by Rickettsia conorii, which demonstrates vascular tropism and causes endothelial injury. Ocular manifestations include multifocal retinitis and disc edema. Anterior uveitis as a presenting feature of spotted fever is uncommon. We present a 32-year-old man with spotted fever and bilateral anterior uveitis.
Collapse
Affiliation(s)
- Sohini Das
- Department of Medicine, Christian Medical College, Vellore, Tamil Nadu, India
| | - George A Ninan
- Department of Medicine, Christian Medical College, Vellore, Tamil Nadu, India
| | - Smitha Jasper
- Department of Ophthalmology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Minu George
- Department of Ophthalmology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Ramya Iyadurai
- Department of Medicine, Christian Medical College, Vellore, Tamil Nadu, India
| |
Collapse
|
20
|
Liu Y, Xiao J, Zhang B, Shelite TR, Su Z, Chang Q, Judy B, Li X, Drelich A, Bei J, Zhou Y, Zheng J, Jin Y, Rossi SL, Tang SJ, Wakamiya M, Saito T, Ksiazek T, Kaphalia B, Gong B. Increased talin-vinculin spatial proximities in livers in response to spotted fever group rickettsial and Ebola virus infections. J Transl Med 2020; 100:1030-1041. [PMID: 32238906 PMCID: PMC7111589 DOI: 10.1038/s41374-020-0420-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 03/12/2020] [Accepted: 03/12/2020] [Indexed: 12/17/2022] Open
Abstract
Talin and vinculin, both actin-cytoskeleton-related proteins, have been documented to participate in establishing bacterial infections, respectively, as the adapter protein to mediate cytoskeleton-driven dynamics of the plasma membrane. However, little is known regarding the potential role of the talin-vinculin complex during spotted fever group rickettsial and Ebola virus infections, two dreadful infectious diseases in humans. Many functional properties of proteins are determined by their participation in protein-protein complexes, in a temporal and/or spatial manner. To resolve the limitation of application in using mouse primary antibodies on archival, multiple formalin-fixed mouse tissue samples, which were collected from experiments requiring high biocontainment, we developed a practical strategic proximity ligation assay (PLA) capable of employing one primary antibody raised in mouse to probe talin-vinculin spatial proximal complex in mouse tissue. We observed an increase of talin-vinculin spatial proximities in the livers of spotted fever Rickettsia australis or Ebola virus-infected mice when compared with mock mice. Furthermore, using EPAC1-knockout mice, we found that deletion of EPAC1 could suppress the formation of spatial proximal complex of talin-vinculin in rickettsial infections. In addition, we observed increased colocalization between spatial proximity of talin-vinculin and filamentous actin-specific phalloidin staining in single survival mouse from an ordinarily lethal dose of rickettsial or Ebola virus infection. These findings may help to delineate a fresh insight into the mechanisms underlying liver specific pathogenesis during infection with spotted fever rickettsia or Ebola virus in the mouse model.
Collapse
Affiliation(s)
- Yakun Liu
- 0000 0001 1547 9964grid.176731.5Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Jie Xiao
- 0000 0001 1547 9964grid.176731.5Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Ben Zhang
- 0000 0001 1547 9964grid.176731.5Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Thomas R. Shelite
- 0000 0001 1547 9964grid.176731.5Department of Internal Medicine, Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Zhengchen Su
- 0000 0001 1547 9964grid.176731.5Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Qing Chang
- 0000 0001 1547 9964grid.176731.5Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Barbara Judy
- 0000 0001 1547 9964grid.176731.5Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Xiang Li
- 0000 0001 1547 9964grid.176731.5Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Aleksandra Drelich
- 0000 0001 1547 9964grid.176731.5Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Jiani Bei
- 0000 0001 1547 9964grid.176731.5Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555 USA ,0000 0004 0532 1428grid.265231.1Present Address: Life Science Department, Tunghai University, Taichung City, Taiwan
| | - Yixuan Zhou
- 0000 0001 1547 9964grid.176731.5Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555 USA ,0000 0004 0369 1599grid.411525.6Present Address: Department of Cardiovascular Surgery, Changhai Hospital, Shanghai, China
| | - Junying Zheng
- 0000 0001 1547 9964grid.176731.5Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Yang Jin
- 0000 0004 1936 7558grid.189504.1Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University Medical Campus, Boston, MA USA
| | - Shannan L. Rossi
- 0000 0001 1547 9964grid.176731.5Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Shao-Jun Tang
- 0000 0001 1547 9964grid.176731.5Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Maki Wakamiya
- 0000 0001 1547 9964grid.176731.5Department of Neurology, University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Tais Saito
- 0000 0001 1547 9964grid.176731.5Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Thomas Ksiazek
- 0000 0001 1547 9964grid.176731.5Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Bhupendra Kaphalia
- 0000 0001 1547 9964grid.176731.5Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Bin Gong
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| |
Collapse
|
21
|
Tominello TR, Oliveira ERA, Hussain SS, Elfert A, Wells J, Golden B, Ismail N. Emerging Roles of Autophagy and Inflammasome in Ehrlichiosis. Front Immunol 2019; 10:1011. [PMID: 31134081 PMCID: PMC6517498 DOI: 10.3389/fimmu.2019.01011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 04/23/2019] [Indexed: 12/16/2022] Open
Abstract
Human monocytic ehrlichiosis (HME) is a potentially life-threatening tick-borne rickettsial disease (TBRD) caused by the obligate intracellular Gram-negative bacteria, Ehrlichia. Fatal HME presents with acute ailments of sepsis and toxic shock-like symptoms that can evolve to multi-organ failure and death. Early clinical and laboratory diagnosis of HME are problematic due to non-specific flu-like symptoms and limitations in the current diagnostic testing. Several studies in murine models showed that cell-mediated immunity acts as a “double-edged sword” in fatal ehrlichiosis. Protective components are mainly formed by CD4 Th1 and NKT cells, in contrast to deleterious effects originated from neutrophils and TNF-α-producing CD8 T cells. Recent research has highlighted the central role of the inflammasome and autophagy as part of innate immune responses also leading to protective or pathogenic scenarios. Recognition of pathogen-associated molecular patterns (PAMPS) or damage-associated molecular patterns (DAMPS) triggers the assembly of the inflammasome complex that leads to multiple outcomes. Recognition of PAMPs or DAMPs by such complexes can result in activation of caspase-1 and -11, secretion of the pro-inflammatory cytokines IL-1β and IL-18 culminating into dysregulated inflammation, and inflammatory cell death known as pyroptosis. The precise functions of inflammasomes and autophagy remain unexplored in infections with obligate intracellular rickettsial pathogens, such as Ehrlichia. In this review, we discuss the intracellular innate immune surveillance in ehrlichiosis involving the regulation of inflammasome and autophagy, and how this response influences the innate and adaptive immune responses against Ehrlichia. Understanding such mechanisms would pave the way in research for novel diagnostic, preventative and therapeutic approaches against Ehrlichia and other rickettsial diseases.
Collapse
Affiliation(s)
- Tyler R Tominello
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Edson R A Oliveira
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Shah S Hussain
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Amr Elfert
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Jakob Wells
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Brandon Golden
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Nahed Ismail
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
22
|
He X, Drelich A, Yu S, Chang Q, Gong D, Zhou Y, Qu Y, Yuan Y, Su Z, Qiu Y, Tang SJ, Gaitas A, Ksiazek T, Xu Z, Zhou J, Feng Z, Wakamiya M, Lu F, Gong B. Exchange protein directly activated by cAMP plays a critical role in regulation of vascular fibrinolysis. Life Sci 2019; 221:1-12. [PMID: 30738042 DOI: 10.1016/j.lfs.2019.02.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 02/04/2019] [Accepted: 02/04/2019] [Indexed: 01/09/2023]
Abstract
Plasmin-mediated fibrinolysis at the surface of vascular endothelial cells (SVEC) plays a key role in maintaining vascular hemostasis, in which the cAMP pathway participates. After externalization to the SVEC, annexin A2 (ANXA2) serves as a platform for conversion of plasminogen to plasmin. Here we describe a regulatory role of the exchange protein directly activated by cAMP (EPAC) in ANXA2 externalization and vascular fibrinolysis. Knockout of EPAC1 in mice results in a decreased ANXA2 expression on the SVEC associated with increased fibrin deposition and fibrinolytic dysfunction. Reduced levels of EPAC1 are also found in endocardial tissues beneath atrial mural thrombi in patients. Notably, administration of recombinant ANXA2 ameliorates fibrinolytic dysfunction in the EPAC1-null mice. Mechanistically, EPAC1 regulates the SVEC plasminogen conversion depended on ANXA2. EPAC1 promotes tyrosine-23 phosphorylation of ANXA2, a prerequisite for its recruitment to the SVEC. Our data thus reveal a novel regulatory role for EPAC1 in vascular fibrinolysis.
Collapse
Affiliation(s)
- Xi He
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; Department of Cardiovascular Surgery, Changhai Hospital, Shanghai 200433, China
| | - Aleksandra Drelich
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Shangyi Yu
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; Department of Cardiovascular Surgery, Changhai Hospital, Shanghai 200433, China
| | - Qing Chang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Dejun Gong
- Department of Cardiovascular Surgery, Changhai Hospital, Shanghai 200433, China
| | - Yixuan Zhou
- Department of Cardiovascular Surgery, Changhai Hospital, Shanghai 200433, China
| | - Yue Qu
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Yang Yuan
- Department of Cardiovascular Surgery, Changhai Hospital, Shanghai 200433, China
| | - Zhengchen Su
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Yuan Qiu
- Department of Mathematics and Statistics, Texas Tech University, Lubbock, TX 79409, USA
| | - Shao-Jun Tang
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Angelo Gaitas
- Department of Neurology, Icahn School of Medicine at Mount Sinai, NY 10029, USA
| | - Thomas Ksiazek
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Zhiyun Xu
- Department of Cardiovascular Surgery, Changhai Hospital, Shanghai 200433, China
| | - Jia Zhou
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Zongdi Feng
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Maki Wakamiya
- Department of Neurology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Fanglin Lu
- Department of Cardiovascular Surgery, Changhai Hospital, Shanghai 200433, China.
| | - Bin Gong
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
23
|
Liu S, Chen Y, Ren Y, Zhou J, Ren J, Lee I, Bao X. A tRNA-derived RNA Fragment Plays an Important Role in the Mechanism of Arsenite -induced Cellular Responses. Sci Rep 2018; 8:16838. [PMID: 30442959 PMCID: PMC6237853 DOI: 10.1038/s41598-018-34899-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 10/24/2018] [Indexed: 12/20/2022] Open
Abstract
Chronic exposure to environmental heavy metals is a worldwide health concern. It is acknowledged to be an important cause of lower respiratory tract damage in children. However, the molecular mechanisms underlying the heavy metal-induced cellular stress/toxicity are not completely understood. Small non-coding RNAs (sncRNAs), such as microRNAs (miRNA) and more recently identified tRNA-derived RNA fragments (tRFs), are critical to the posttranscriptional control of genes. We used deep sequencing to investigate whether cellular sncRNA profiles are changed by environmental heavy metals. We found that the treatment of arsenite, an important groundwater heavy metal, leads to abundant production of tRFs, that are ~30 nucleotides (nts) long and most of which correspond to the 5'-end of mature tRNAs. It is unlikely for these tRFs to be random degradation by-products, as the type of induced tRFs is heavy metal-dependent. Three most inducible tRFs and their roles in arsenite-induced cellular responses were then investigated. We identified that p65, an important transcription factor belonging to NF-κB family and also a key factor controlling inflammatory gene expression, is a regulated target of a tRF derived from 5'-end of mature tRNA encoding AlaCGC (tRF5-AlaCGC). tRF5-AlaCGC activates p65, subsequently leading to enhanced secretion of IL-8 in arsenite response. In this study, we also identified that endonuclease Dicer and angiogenin temporally control the induction of tRF5-AlaCGC, providing an insight into the control of tRF biogenesis and subsequently the prevention of cellular damage.
Collapse
Affiliation(s)
- Shengxuan Liu
- Department of Pediatrics, TongJi Hospital, TongJi Medical College, Huazhong University of Science and Technology, Huazhong, China
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, USA
| | - Yu Chen
- Department of Pediatrics, TongJi Hospital, TongJi Medical College, Huazhong University of Science and Technology, Huazhong, China
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, USA
| | - Yuping Ren
- Department of Pediatrics, TongJi Hospital, TongJi Medical College, Huazhong University of Science and Technology, Huazhong, China
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, USA
| | - Jiehua Zhou
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, USA
| | - Junping Ren
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, USA
| | | | - Xiaoyong Bao
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, USA.
- Sealy Center for Environmental Toxicology, University of Texas Medical Branch, Galveston, TX, USA.
- Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, TX, USA.
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX, USA.
- Institute for Human Infections & Immunity, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
24
|
Sahni A, Fang R, Sahni SK, Walker DH. Pathogenesis of Rickettsial Diseases: Pathogenic and Immune Mechanisms of an Endotheliotropic Infection. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2018; 14:127-152. [PMID: 30148688 DOI: 10.1146/annurev-pathmechdis-012418-012800] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Obligately intracytosolic rickettsiae that cycle between arthropod and vertebrate hosts cause human diseases with a spectrum of severity, primarily by targeting microvascular endothelial cells, resulting in endothelial dysfunction. Endothelial cells and mononuclear phagocytes have important roles in the intracellular killing of rickettsiae upon activation by the effector molecules of innate and adaptive immunity. In overwhelming infection, immunosuppressive effects contribute to the severity of illness. Rickettsia-host cell interactions involve host cell receptors for rickettsial ligands that mediate cell adhesion and, in some instances, trigger induced phagocytosis. Rickettsiae interact with host cell actin to effect both cellular entry and intracellular actin-based mobility. The interaction of rickettsiae with the host cell also involves rickettsial evasion of host defense mechanisms and exploitation of the intracellular environment. Signal transduction events exemplify these effects. An intriguing frontier is the array of rickettsial noncoding RNA molecules and their potential effects on the pathogenesis and transmission of rickettsial diseases.
Collapse
Affiliation(s)
- Abha Sahni
- The University of Texas Medical Branch at Galveston, Galveston, Texas 77555-0609, USA; , , ,
| | - Rong Fang
- The University of Texas Medical Branch at Galveston, Galveston, Texas 77555-0609, USA; , , ,
| | - Sanjeev K Sahni
- The University of Texas Medical Branch at Galveston, Galveston, Texas 77555-0609, USA; , , ,
| | - David H Walker
- The University of Texas Medical Branch at Galveston, Galveston, Texas 77555-0609, USA; , , ,
| |
Collapse
|
25
|
Santibáñez S, Portillo A, Palomar AM, Oteo JA. Isolation of Rickettsia amblyommatis in HUVEC line. New Microbes New Infect 2017; 21:117-121. [PMID: 29321939 PMCID: PMC5756052 DOI: 10.1016/j.nmni.2017.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 12/05/2017] [Indexed: 11/16/2022] Open
Abstract
Rickettsia amblyommatis, formerly named Rickettsia amblyommii and ‘Candidatus Rickettsia amblyommii’ is an intracellular bacterium belonging to the spotted fever group Rickettsia. It is highly prevalent in Amblyomma americanum and in other Amblyomma spp. throughout the Western Hemisphere. R. amblyommatis has been cultivated in chicken fibroblast, primary embryonated chicken eggs, Vero cells and arthropod-derived cells. Because of the affinity of rickettsiae to invade vascular endothelial cells, we tried to isolate R. amblyommatis from a nymph of Amblyomma cajennense s.l. collected in Saltillo (Coahulia, Mexico) using human umbilical vein endothelial cells (HUVEC). One tick half was analysed by ompA PCR and was found to be positive for R. amblyommatis. The other half was selected for in vitro culture of Rickettsia spp. It was triturated in 1 mL of endothelial cell growth medium with 1% antibiotic–antimycotic solution, and the homogenate was inoculated into a HUVEC line. Culture was maintained at 33°C in endothelial cell growth medium plus 2 mM l-glutamine and 2% fetal calf serum, with 5% CO2. The medium was changed weekly. Culture was checked by Gimenez stain for Rickettsia-like intracellular organisms. After 48 days of incubation, Rickettsia-like organisms were observed in HUVEC. PCR assays and sequencing of ompA gene in the culture suspension showed 100% identity with R. amblyommatis. This isolate was successfully established in HUVEC, and it has been deposited in the collection of the Center of Rickettsioses and Arthropod-Borne Diseases, Infectious Diseases Department, Hospital San Pedro–Center of Biomedical Research from La Rioja, Logroño, Spain. The HUVEC line is a useful tool for the isolation of R. amblyommatis.
Collapse
Affiliation(s)
- S Santibáñez
- Center of Rickettsiosis and Arthropod-Borne Diseases, Infectious Diseases Department, Hospital San Pedro-Center of Biomedical Research from La Rioja (CIBIR), Logroño, La Rioja, Spain
| | - A Portillo
- Center of Rickettsiosis and Arthropod-Borne Diseases, Infectious Diseases Department, Hospital San Pedro-Center of Biomedical Research from La Rioja (CIBIR), Logroño, La Rioja, Spain
| | - A M Palomar
- Center of Rickettsiosis and Arthropod-Borne Diseases, Infectious Diseases Department, Hospital San Pedro-Center of Biomedical Research from La Rioja (CIBIR), Logroño, La Rioja, Spain
| | - J A Oteo
- Center of Rickettsiosis and Arthropod-Borne Diseases, Infectious Diseases Department, Hospital San Pedro-Center of Biomedical Research from La Rioja (CIBIR), Logroño, La Rioja, Spain
| |
Collapse
|
26
|
Soprano AS, Smetana JHC, Benedetti CE. Regulation of tRNA biogenesis in plants and its link to plant growth and response to pathogens. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1861:344-353. [PMID: 29222070 DOI: 10.1016/j.bbagrm.2017.12.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/29/2017] [Accepted: 12/03/2017] [Indexed: 12/23/2022]
Abstract
The field of tRNA biology, encompassing the functional and structural complexity of tRNAs, has fascinated scientists over the years and is continuously growing. Besides their fundamental role in protein translation, new evidence indicates that tRNA-derived molecules also regulate gene expression and protein synthesis in all domains of life. This review highlights some of the recent findings linking tRNA transcription and modification with plant cell growth and response to pathogens. In fact, mutations in proteins directly involved in tRNA synthesis and modification most often lead to pleiotropic effects on plant growth and immunity. As plants need to optimize and balance their energy and nutrient resources towards growth and defense, regulatory pathways that play a central role in integrating tRNA transcription and protein translation with cell growth control and organ development, such as the auxin-TOR signaling pathway, also influence the plant immune response against pathogens. As a consequence, distinct pathogens employ an array of effector molecules including tRNA fragments to target such regulatory pathways to exploit the plant's translational capacity, gain access to nutrients and evade defenses. An example includes the RNA polymerase III repressor MAF1, a conserved component of the TOR signaling pathway that controls ribosome biogenesis and tRNA synthesis required for plant growth and which is targeted by a pathogen effector molecule to promote disease. This article is part of a Special Issue entitled: SI: Regulation of tRNA synthesis and modification in physiological conditions and disease edited by Dr. Boguta Magdalena.
Collapse
Affiliation(s)
- Adriana Santos Soprano
- Brazilian Nacional Biosciences Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-100 Campinas, SP, Brazil
| | - Juliana Helena Costa Smetana
- Brazilian Nacional Biosciences Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-100 Campinas, SP, Brazil
| | - Celso Eduardo Benedetti
- Brazilian Nacional Biosciences Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-100 Campinas, SP, Brazil.
| |
Collapse
|
27
|
Zhou J, Liu S, Chen Y, Fu Y, Silver AJ, Hill MS, Lee I, Lee YS, Bao X. Identification of two novel functional tRNA-derived fragments induced in response to respiratory syncytial virus infection. J Gen Virol 2017; 98:1600-1610. [PMID: 28708049 DOI: 10.1099/jgv.0.000852] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infection (LRTI) in children from infancy up to early childhood. Recently, we demonstrated that RSV infection alters cellular small non-coding RNA (sncRNA) expression, most notably the tRNA-derived RNA fragments (tRFs). However, the functions of the tRFs in virus-host interaction are largely unknown. Herein, we examined the role of three RSV-induced tRFs derived from the 5-end of mature tRNAs decoding GlyCCC, LysCTT and CysGCA (named tRF5-GlyCCC, tRF5-LysCTT and tRF5-CysGCA, respectively) in controlling RSV replication. We found that tRF5-GlyCCC and tRF5-LysCTT, but not tRF5-CysGCA, promote RSV replication, demonstrating the functional specificity of tRFs. The associated molecular mechanisms underlying the functions of tRF5-GlyCCC and tRF5-LysCTT were also investigated. Regulating the expression and/or activity of these tRFs may provide new insights into preventive and therapeutic strategies for RSV infection. The study also accumulated data for future development of a tRF targeting algorithm.
Collapse
Affiliation(s)
- Jiehua Zhou
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, USA
| | - Shenxuan Liu
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, USA.,Department of Pediatrics, TongJi Hospital, Huazhong University of Science and Technology, PR China
| | - Yu Chen
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, USA.,Department of Pediatrics, TongJi Hospital, Huazhong University of Science and Technology, PR China
| | - Yu Fu
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, USA
| | - Alexander J Silver
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, USA.,Department of Chemistry, Williams College, Williamstown, MA, USA
| | - Mark S Hill
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, USA
| | | | - Yong Sun Lee
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA.,Department of Cancer System Science, Graduate School of Cancer Science and Policy, National Cancer Center, Republic of Korea
| | - Xiaoyong Bao
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA.,Institute for Translational Science, University of Texas Medical Branch, Galveston, Texas, TX, USA.,Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
28
|
Loher P, Telonis AG, Rigoutsos I. MINTmap: fast and exhaustive profiling of nuclear and mitochondrial tRNA fragments from short RNA-seq data. Sci Rep 2017; 7:41184. [PMID: 28220888 PMCID: PMC5318995 DOI: 10.1038/srep41184] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 12/15/2016] [Indexed: 12/21/2022] Open
Abstract
Transfer RNA fragments (tRFs) are an established class of constitutive regulatory molecules that arise from precursor and mature tRNAs. RNA deep sequencing (RNA-seq) has greatly facilitated the study of tRFs. However, the repeat nature of the tRNA templates and the idiosyncrasies of tRNA sequences necessitate the development and use of methodologies that differ markedly from those used to analyze RNA-seq data when studying microRNAs (miRNAs) or messenger RNAs (mRNAs). Here we present MINTmap (for MItochondrial and Nuclear TRF mapping), a method and a software package that was developed specifically for the quick, deterministic and exhaustive identification of tRFs in short RNA-seq datasets. In addition to identifying them, MINTmap is able to unambiguously calculate and report both raw and normalized abundances for the discovered tRFs. Furthermore, to ensure specificity, MINTmap identifies the subset of discovered tRFs that could be originating outside of tRNA space and flags them as candidate false positives. Our comparative analysis shows that MINTmap exhibits superior sensitivity and specificity to other available methods while also being exceptionally fast. The MINTmap codes are available through https://github.com/TJU-CMC-Org/MINTmap/ under an open source GNU GPL v3.0 license.
Collapse
Affiliation(s)
- Phillipe Loher
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Aristeidis G Telonis
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Isidore Rigoutsos
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| |
Collapse
|
29
|
Abstract
Background: The progress of next-generation sequencing technologies has unveiled various non-coding RNAs that have previously been considered products of random degradation and attracted only minimal interest. Among small RNA families, microRNA (miRNAs) have traditionally been considered key post-transcriptional regulators. However, recent studies have reported evidence for widespread presence of fragments of tRNA molecules (tRFs) across a range of organisms and tissues, and of tRF involvement in Argonaute complexes.
Methods:To elucidate potential tRF functionality, we compared available RNA sequencing datasets derived from the brains of young, mid-aged and old rats. Using sliding 7-mer windows along a tRF, we searched for putative seed sequences with high numbers of conserved complementary sites within 3' UTRs of 23 vertebrate genomes. We analyzed Gene Ontology term enrichment of predicted tRF targets and compared their transcript levels with targets of miRNAs in the context of age.
Results and Discussion: We detected tRFs originating from 3’- and 5’-ends of tRNAs in rat brains at significant levels. These fragments showed dynamic changes: 3’ tRFs monotonously increased with age, while 5’ tRFs displayed less consistent patterns. Furthermore, 3’ tRFs showed a narrow size range compared to 5’ tRFs, suggesting a difference in their biogenesis mechanisms. Similar to our earlier results in
Drosophila and compatible with other experimental findings, we found “seed” sequence locations on both ends of different tRFs. Putative targets of these fragments were found to be enriched in neuronal and developmental functions. Comparison of tRFs and miRNAs increasing in abundance with age revealed small, but distinct changes in brain target transcript levels for these two types of small RNA, with the higher proportion of tRF targets decreasing with age. We also illustrated the utility of tRF analysis for annotating tRNA genes in sequenced genomes.
Collapse
Affiliation(s)
- Spyros Karaiskos
- Department of Biology, Center for Computational and Integrative Biology, Rutgers University, Camden, USA
| | - Andrey Grigoriev
- Department of Biology, Center for Computational and Integrative Biology, Rutgers University, Camden, USA
| |
Collapse
|
30
|
Li Q, Hu B, Hu GW, Chen CY, Niu X, Liu J, Zhou SM, Zhang CQ, Wang Y, Deng ZF. tRNA-Derived Small Non-Coding RNAs in Response to Ischemia Inhibit Angiogenesis. Sci Rep 2016; 6:20850. [PMID: 26865164 PMCID: PMC4749989 DOI: 10.1038/srep20850] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 01/12/2016] [Indexed: 12/31/2022] Open
Abstract
Ischemic injuries will lead to necrotic tissue damage, and post-ischemia angiogenesis plays critical roles in blood flow restoration and tissue recovery. Recently, several types of small RNAs have been reported to be involved in this process. In this study, we first generated a rat brain ischemic model to investigate the involvement of new types of small RNAs in ischemia. We utilized deep sequencing and bioinformatics analyses to demonstrate that the level of small RNA fragments derived from tRNAs strikingly increased in the ischemic rat brain. Among these sequences, tRNAVal- and tRNAGly-derived small RNAs account for the most abundant segments. The up-regulation of tRNAVal- and tRNAGly-derived fragments was verified through northern blot and quantitative PCR analyses. The levels of these two fragments also increased in a mouse hindlimb ischemia model and cellular hypoxia model. Importantly, up-regulation of the tRNAVal- and tRNAGly-derived fragments in endothelial cells inhibited cell proliferation, migration and tube formation. Furthermore, we showed that these small RNAs are generated by angiogenin cleavage. Our results indicate that tRNA-derived fragments are involved in tissue ischemia, and we demonstrate for the first time that tRNAVal- and tRNAGly-derived fragments inhibit angiogenesis by modulating the function of endothelial cells.
Collapse
Affiliation(s)
- Qing Li
- Institute of Microsurgery on Extremities, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Bin Hu
- Institute of Microsurgery on Extremities, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Guo-Wen Hu
- Department of Neurosurgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai 200233, China.,Graduate School of Nanchang University, Nanchang 330006, China
| | - Chun-Yuan Chen
- Institute of Microsurgery on Extremities, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai 200233, China.,Graduate School of Nanchang University, Nanchang 330006, China
| | - Xin Niu
- Institute of Microsurgery on Extremities, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Juan Liu
- Department of Neurosurgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Shu-Min Zhou
- Institute of Microsurgery on Extremities, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Chang-Qing Zhang
- Institute of Microsurgery on Extremities, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai 200233, China.,Department of Orthopedic Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Yang Wang
- Institute of Microsurgery on Extremities, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Zhi-Feng Deng
- Department of Neurosurgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| |
Collapse
|
31
|
Soares AR, Fernandes N, Reverendo M, Araújo HR, Oliveira JL, Moura GMR, Santos MAS. Conserved and highly expressed tRNA derived fragments in zebrafish. BMC Mol Biol 2015; 16:22. [PMID: 26694924 PMCID: PMC4688932 DOI: 10.1186/s12867-015-0050-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 12/09/2015] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Small non-coding RNAs (sncRNAs) are a class of transcripts implicated in several eukaryotic regulatory mechanisms, namely gene silencing and chromatin regulation. Despite significant progress in their identification by next generation sequencing (NGS) we are still far from understanding their full diversity and functional repertoire. RESULTS Here we report the identification of tRNA derived fragments (tRFs) by NGS of the sncRNA fraction of zebrafish. The tRFs identified are 18-30 nt long, are derived from specific 5' and 3' processing of mature tRNAs and are differentially expressed during development and in differentiated tissues, suggesting that they are likely produced by specific processing rather than random degradation of tRNAs. We further show that a highly expressed tRF (5'tRF-Pro(CGG)) is cleaved in vitro by Dicer and has silencing ability, indicating that it can enter the RNAi pathway. A computational analysis of zebrafish tRFs shows that they are conserved among vertebrates and mining of publicly available datasets reveals that some 5'tRFs are differentially expressed in disease conditions, namely during infection and colorectal cancer. CONCLUSIONS tRFs constitute a class of conserved regulatory RNAs in vertebrates and may be involved in mechanisms of genome regulation and in some diseases.
Collapse
Affiliation(s)
- Ana Raquel Soares
- Department of Medical Sciences and Institute for Biomedicine-iBiMED, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Noémia Fernandes
- Department of Medical Sciences and Institute for Biomedicine-iBiMED, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Marisa Reverendo
- Department of Medical Sciences and Institute for Biomedicine-iBiMED, University of Aveiro, 3810-193, Aveiro, Portugal.
| | | | | | - Gabriela M R Moura
- Department of Medical Sciences and Institute for Biomedicine-iBiMED, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Manuel A S Santos
- Department of Medical Sciences and Institute for Biomedicine-iBiMED, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
32
|
Karaiskos S, Naqvi AS, Swanson KE, Grigoriev A. Age-driven modulation of tRNA-derived fragments in Drosophila and their potential targets. Biol Direct 2015; 10:51. [PMID: 26374501 PMCID: PMC4572633 DOI: 10.1186/s13062-015-0081-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 09/07/2015] [Indexed: 12/20/2022] Open
Abstract
Background Development of sequencing technologies and supporting computation enable discovery of small RNA molecules that previously escaped detection or were ignored due to low count numbers. While the focus in the analysis of small RNA libraries has been primarily on microRNAs (miRNAs), recent studies have reported findings of fragments of transfer RNAs (tRFs) across a range of organisms. Results Here we describe Drosophila melanogaster tRFs, which appear to have a number of structural and functional features similar to those of miRNAs but are less abundant. As is the case with miRNAs, (i) tRFs seem to have distinct isoforms preferentially originating from 5’ or 3’ end of a precursor molecule (in this case, tRNA), (ii) ends of tRFs appear to contain short “seed” sequences matching conserved regions across 12 Drosophila genomes, preferentially in 3’ UTRs but also in introns and exons; (iii) tRFs display specific isoform loading into Ago1 and Ago2 and thus likely function in RISC complexes; (iii) levels of loading in Ago1 and Ago2 differ considerably; and (iv) both tRF expression and loading appear to be age-dependent, indicating potential regulatory changes from young to adult organisms. Conclusions We found that Drosophila tRF reads mapped to both nuclear and mitochondrial tRNA genes for all 20 amino acids, while previous studies have usually reported fragments from only a few tRNAs. These tRFs show a number of similarities with miRNAs, including seed sequences. Based on complementarity with conserved Drosophila regions we identified such seed sequences and their possible targets with matches in the 3’UTR regions. Strikingly, the potential target genes of the most abundant tRFs show significant Gene Ontology enrichment in development and neuronal function. The latter suggests that involvement of tRFs in the RNA interfering pathway may play a role in brain activity or brain changes with age. Reviewers This article was reviewed by Eugene Koonin, Neil Smalheiser and Alexander Kel. Electronic supplementary material The online version of this article (doi:10.1186/s13062-015-0081-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Spyros Karaiskos
- Department of BiologyCenter for Computational and Integrative Biology, Rutgers University, Camden, NJ, 08102, USA.
| | - Ammar S Naqvi
- Department of BiologyCenter for Computational and Integrative Biology, Rutgers University, Camden, NJ, 08102, USA.
| | - Karl E Swanson
- Department of BiologyCenter for Computational and Integrative Biology, Rutgers University, Camden, NJ, 08102, USA.
| | - Andrey Grigoriev
- Department of BiologyCenter for Computational and Integrative Biology, Rutgers University, Camden, NJ, 08102, USA.
| |
Collapse
|
33
|
Blenkiron C, Tsai P, Brown LA, Tintinger V, Askelund KJ, Windsor JA, Phillips AR. Characterisation of the small RNAs in the biomedically important green-bottle blowfly Lucilia sericata. PLoS One 2015; 10:e0122203. [PMID: 25803701 PMCID: PMC4372549 DOI: 10.1371/journal.pone.0122203] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Accepted: 02/08/2015] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The green bottle fly maggot, Lucilia sericata, is a species with importance in medicine, agriculture and forensics. Improved understanding of this species' biology is of great potential benefit to many research communities. MicroRNAs (miRNA) are a short non-protein coding regulatory RNA, which directly regulate a host of protein coding genes at the translational level. They have been shown to have developmental and tissue specific distributions where they impact directly on gene regulation. In order to improve understanding of the biology of L. sericata maggots we have performed small RNA-sequencing of their secretions and tissue at different developmental stages. RESULTS We have successfully isolated RNA from the secretions of L. sericata maggots. Illumina small RNA-sequencing of these secretions and the three tissues (crop, salivary gland, gut) revealed that the most common small RNA fragments were derived from ribosomal RNA and transfer RNAs of both insect and bacterial origins. These RNA fragments were highly specific, with the most common tRNAs, such as GlyGCC, predominantly represented by reads derived from the 5' end of the mature maggot tRNA. Each library also had a unique profile of miRNAs with a high abundance of miR-10-5p in the maggot secretions and gut and miR-8 in the food storage organ the crop and salivary glands. The pattern of small RNAs in the bioactive maggot secretions suggests they originate from a combination of saliva, foregut and hindgut tissues. Droplet digital RT-PCR validation of the RNA-sequencing data shows that not only are there differences in the tissue profiles for miRNAs and small RNA fragments but that these are also modulated through developmental stages of the insect. CONCLUSIONS We have identified the small-RNAome of the medicinal maggots L. sericata and shown that there are distinct subsets of miRNAs expressed in specific tissues that also alter during the development of the insect. Furthermore there are very specific RNA fragments derived from other non-coding RNAs present in tissues and in the secretions. This new knowledge has applicability in diverse research fields including wound healing, agriculture and forensics.
Collapse
Affiliation(s)
- Cherie Blenkiron
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Biodiscovery, University of Auckland, Auckland, New Zealand
- * E-mail:
| | - Peter Tsai
- Bioinformatics Institute, University of Auckland, Auckland, New Zealand
| | - Lisa A. Brown
- Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Vernon Tintinger
- Department of Anthropology, University of Auckland, Auckland, New Zealand
| | - Kathryn J. Askelund
- Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - John A. Windsor
- Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Anthony R. Phillips
- Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Biodiscovery, University of Auckland, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
34
|
Macchiaroli N, Cucher M, Zarowiecki M, Maldonado L, Kamenetzky L, Rosenzvit MC. microRNA profiling in the zoonotic parasite Echinococcus canadensis using a high-throughput approach. Parasit Vectors 2015; 8:83. [PMID: 25656283 PMCID: PMC4326209 DOI: 10.1186/s13071-015-0686-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 01/21/2015] [Indexed: 01/08/2023] Open
Abstract
Background microRNAs (miRNAs), a class of small non-coding RNAs, are key regulators of gene expression at post-transcriptional level and play essential roles in fundamental biological processes such as development and metabolism. The particular developmental and metabolic characteristics of cestode parasites highlight the importance of studying miRNA gene regulation in these organisms. Here, we perform a comprehensive analysis of miRNAs in the parasitic cestode Echinococcus canadensis G7, one of the causative agents of the neglected zoonotic disease cystic echinococcosis. Methods Small RNA libraries from protoscoleces and cyst walls of E. canadensis G7 and protoscoleces of E. granulosus sensu stricto G1 were sequenced using Illumina technology. For miRNA prediction, miRDeep2 core algorithm was used. The output list of candidate precursors was manually curated to generate a high confidence set of miRNAs. Differential expression analysis of miRNAs between stages or species was estimated with DESeq. Expression levels of selected miRNAs were validated using poly-A RT-qPCR. Results In this study we used a high-throughput approach and found transcriptional evidence of 37 miRNAs thus expanding the miRNA repertoire of E. canadensis G7. Differential expression analysis showed highly regulated miRNAs between life cycle stages, suggesting a role in maintaining the features of each developmental stage or in the regulation of developmental timing. In this work we characterize conserved and novel Echinococcus miRNAs which represent 30 unique miRNA families. Here we confirmed the remarkable loss of conserved miRNA families in E. canadensis, reflecting their low morphological complexity and high adaptation to parasitism. Conclusions We performed the first in-depth study profiling of small RNAs in the zoonotic parasite E. canadensis G7. We found that miRNAs are the preponderant small RNA silencing molecules, suggesting that these small RNAs could be an essential mechanism of gene regulation in this species. We also identified both parasite specific and divergent miRNAs which are potential biomarkers of infection. This study will provide valuable information for better understanding of the complex biology of this parasite and could help to find new potential targets for therapy and/or diagnosis. Electronic supplementary material The online version of this article (doi:10.1186/s13071-015-0686-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Natalia Macchiaroli
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Facultad de Medicina, Universidad de Buenos Aires (UBA)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Paraguay 2155, Piso 13, CP 1121, Buenos Aires, Argentina.
| | - Marcela Cucher
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Facultad de Medicina, Universidad de Buenos Aires (UBA)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Paraguay 2155, Piso 13, CP 1121, Buenos Aires, Argentina.
| | - Magdalena Zarowiecki
- Parasite Genomics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.
| | - Lucas Maldonado
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Facultad de Medicina, Universidad de Buenos Aires (UBA)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Paraguay 2155, Piso 13, CP 1121, Buenos Aires, Argentina.
| | - Laura Kamenetzky
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Facultad de Medicina, Universidad de Buenos Aires (UBA)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Paraguay 2155, Piso 13, CP 1121, Buenos Aires, Argentina.
| | - Mara Cecilia Rosenzvit
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Facultad de Medicina, Universidad de Buenos Aires (UBA)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Paraguay 2155, Piso 13, CP 1121, Buenos Aires, Argentina.
| |
Collapse
|
35
|
Small tRNA-derived RNAs are increased and more abundant than microRNAs in chronic hepatitis B and C. Sci Rep 2015; 5:7675. [PMID: 25567797 PMCID: PMC4286764 DOI: 10.1038/srep07675] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 12/05/2014] [Indexed: 12/17/2022] Open
Abstract
Persistent infections with hepatitis B virus (HBV) or hepatitis C virus (HCV) account for the majority of cases of hepatic cirrhosis and hepatocellular carcinoma (HCC) worldwide. Small, non-coding RNAs play important roles in virus-host interactions. We used high throughput sequencing to conduct an unbiased profiling of small (14-40 nts) RNAs in liver from Japanese subjects with advanced hepatitis B or C and hepatocellular carcinoma (HCC). Small RNAs derived from tRNAs, specifically 30–35 nucleotide-long 5′ tRNA-halves (5′ tRHs), were abundant in non-malignant liver and significantly increased in humans and chimpanzees with chronic viral hepatitis. 5′ tRH abundance exceeded microRNA abundance in most infected non-cancerous tissues. In contrast, in matched cancer tissue, 5′ tRH abundance was reduced, and relative abundance of individual 5′ tRHs was altered. In hepatitis B-associated HCC, 5′ tRH abundance correlated with expression of the tRNA-cleaving ribonuclease, angiogenin. These results demonstrate that tRHs are the most abundant small RNAs in chronically infected liver and that their abundance is altered in liver cancer.
Collapse
|
36
|
Dhahbi JM, Spindler SR, Atamna H, Boffelli D, Mote P, Martin DIK. 5′-YRNA fragments derived by processing of transcripts from specific YRNA genes and pseudogenes are abundant in human serum and plasma. Physiol Genomics 2013; 45:990-8. [DOI: 10.1152/physiolgenomics.00129.2013] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Small noncoding RNAs carry out a variety of functions in eukaryotic cells, and in multiple species they can travel between cells, thus serving as signaling molecules. In mammals multiple small RNAs have been found to circulate in the blood, although in most cases the targets of these RNAs, and even their functions, are not well understood. YRNAs are small (84–112 nt) RNAs with poorly characterized functions, best known because they make up part of the Ro ribonucleoprotein autoantigens in connective tissue diseases. In surveying small RNAs present in the serum of healthy adult humans, we have found YRNA fragments of lengths 27 nt and 30–33 nt, derived from the 5′-ends of specific YRNAs and generated by cleavage within a predicted internal loop. Many of the YRNAs from which these fragments are derived were previously annotated only as pseudogenes, or predicted informatically. These 5′-YRNA fragments make up a large proportion of all small RNAs (including miRNAs) present in human serum. They are also present in plasma, are not present in exosomes or microvesicles, and circulate as part of a complex with a mass between 100 and 300 kDa. Mouse serum contains far fewer 5′-YRNA fragments, possibly reflecting the much greater copy number of YRNA genes and pseudogenes in humans. The function of the 5′-YRNA fragments is at present unknown, but the processing and secretion of specific YRNAs to produce 5′-end fragments that circulate in stable complexes are consistent with a signaling function.
Collapse
Affiliation(s)
- Joseph M. Dhahbi
- Department of Biochemistry, University of California at Riverside, Riverside, California
| | - Stephen R. Spindler
- Department of Biochemistry, University of California at Riverside, Riverside, California
| | - Hani Atamna
- Department of Basic Sciences, Neuroscience, The Commonwealth Medical College, Scranton, Pennsylvania
| | - Dario Boffelli
- Center for Genetics, Childrens Hospital Oakland Research Institute, Oakland, California
| | - Patricia Mote
- Department of Biochemistry, University of California at Riverside, Riverside, California
| | - David I. K. Martin
- Center for Genetics, Childrens Hospital Oakland Research Institute, Oakland, California
| |
Collapse
|