1
|
Megha KB, Arathi A, Shikha S, Alka R, Ramya P, Mohanan PV. Significance of Melatonin in the Regulation of Circadian Rhythms and Disease Management. Mol Neurobiol 2024; 61:5541-5571. [PMID: 38206471 DOI: 10.1007/s12035-024-03915-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024]
Abstract
Melatonin, the 'hormone of darkness' is a neuronal hormone secreted by the pineal gland and other extra pineal sites. Responsible for the circadian rhythm and seasonal behaviour of vertebrates and mammals, melatonin is responsible for regulating various physiological conditions and the maintenance of sleep, body weight and the neuronal activities of the ocular sites. With its unique amphiphilic structure, melatonin can cross the cellular barriers and elucidate its activities in the subcellular components, including mitochondria. Melatonin is a potential scavenger of oxygen and nitrogen-reactive species and can directly obliterate the ROS and RNS by a receptor-independent mechanism. It can also regulate the pro- and anti-inflammatory cytokines in various pathological conditions and exhibit therapeutic activities against neurodegenerative, psychiatric disorders and cancer. Melatonin is also found to show its effects on major organs, particularly the brain, liver and heart, and also imparts a role in the modulation of the immune system. Thus, melatonin is a multifaceted candidate with immense therapeutic potential and is still considered an effective supplement on various therapies. This is primarily due to rectification of aberrant circadian rhythm by improvement of sleep quality associated with risk development of neurodegenerative, cognitive, cardiovascular and other metabolic disorders, thereby enhancing the quality of life.
Collapse
Affiliation(s)
- K B Megha
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum, 695 012, Kerala, India
| | - A Arathi
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum, 695 012, Kerala, India
| | - Saini Shikha
- CSIR-Institute of Microbial Technology, Sector 39-A, Chandigarh, 160036, India
| | - Rao Alka
- CSIR-Institute of Microbial Technology, Sector 39-A, Chandigarh, 160036, India
- Academy of Scientific and Innovation Research (AcSIR), Ghaziabad, 201002, India
| | - Prabhu Ramya
- P.G. Department of Biotechnology, Government Arts College, Trivandrum, 695 014, India
| | - P V Mohanan
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum, 695 012, Kerala, India.
| |
Collapse
|
2
|
Peters SU, Shelton AR, Malow BA, Neul JL. A clinical-translational review of sleep problems in neurodevelopmental disabilities. J Neurodev Disord 2024; 16:41. [PMID: 39033100 PMCID: PMC11265033 DOI: 10.1186/s11689-024-09559-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 07/05/2024] [Indexed: 07/23/2024] Open
Abstract
Sleep disorders are very common across neurodevelopmental disorders and place a large burden on affected children, adolescents, and their families. Sleep disturbances seem to involve a complex interplay of genetic, neurobiological, and medical/environmental factors in neurodevelopmental disorders. In this review, we discuss animal models of sleep problems and characterize their presence in two single gene disorders, Rett Syndrome, and Angelman Syndrome and two more commonly occurring neurodevelopmental disorders, Down Syndrome, and autism spectrum disorders. We then discuss strategies for novel methods of assessment using wearable sensors more broadly for neurodevelopmental disorders in general, including the importance of analytical validation. An increased understanding of the mechanistic contributions and potential biomarkers of disordered sleep may offer quantifiable targets for interventions that improve overall quality of life for affected individuals and their families.
Collapse
Affiliation(s)
- Sarika U Peters
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, USA.
- Vanderbilt Kennedy Center for Research on Human Development, One Magnolia Circle, Room 404B, Nashville, TN, 37203, USA.
| | - Althea Robinson Shelton
- Vanderbilt Kennedy Center for Research on Human Development, One Magnolia Circle, Room 404B, Nashville, TN, 37203, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, USA
| | - Beth A Malow
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, USA
- Vanderbilt Kennedy Center for Research on Human Development, One Magnolia Circle, Room 404B, Nashville, TN, 37203, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, USA
| | - Jeffrey L Neul
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, USA
- Vanderbilt Kennedy Center for Research on Human Development, One Magnolia Circle, Room 404B, Nashville, TN, 37203, USA
| |
Collapse
|
3
|
Wu H, Cui X, Guan S, Li G, Yao Y, Wu H, Zhang J, Zhang X, Yu T, Li Y, Lian Z, Zhang L, Liu G. The Improved Milk Quality and Enhanced Anti-Inflammatory Effect in Acetylserotonin-O-methyltransferase ( ASMT) Overexpressed Goats: An Association with the Elevated Endogenous Melatonin Production. Molecules 2022; 27:572. [PMID: 35056885 PMCID: PMC8778916 DOI: 10.3390/molecules27020572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Transgenic animal production is an important means of livestock breeding and can be used to model pharmaceutical applications. METHODS In this study, to explore the biological activity of endogenously produced melatonin, Acetylserotonin-O-methyltransferase (ASMT)-overexpressed melatonin-enriched dairy goats were successfully generated through the use of pBC1-ASMT expression vector construction and prokaryotic embryo microinjection. RESULTS These transgenic goats have the same normal phenotype as the wild-type goats (WT). However, the melatonin levels in their blood and milk were significantly increased (p < 0.05). In addition, the quality of their milk was also improved, showing elevated protein content and a reduced somatic cell number compared to the WT goats. No significant changes were detected in the intestinal microbiota patterns between groups. When the animals were challenged by the intravenous injection of E. coli, the ASMT-overexpressed goats had a lower level of pro-inflammatory cytokines and higher anti-inflammatory cytokines compared to the WT goats. Metabolic analysis uncovered a unique arachidonic acid metabolism pattern in transgenic goats. CONCLUSIONS The increased melatonin production due to ASMT overexpression in the transgenic goats may have contributed to their improved milk quality and enhanced the anti-inflammatory ability compared to the WT goats.
Collapse
Affiliation(s)
- Hao Wu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.W.); (S.G.); (G.L.); (Y.Y.); (H.W.); (Z.L.); (L.Z.)
| | - Xudai Cui
- Qingdao Senmiao Industrial Co., Ltd., Qingdao 266101, China; (X.C.); (Y.L.)
| | - Shengyu Guan
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.W.); (S.G.); (G.L.); (Y.Y.); (H.W.); (Z.L.); (L.Z.)
| | - Guangdong Li
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.W.); (S.G.); (G.L.); (Y.Y.); (H.W.); (Z.L.); (L.Z.)
| | - Yujun Yao
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.W.); (S.G.); (G.L.); (Y.Y.); (H.W.); (Z.L.); (L.Z.)
| | - Haixin Wu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.W.); (S.G.); (G.L.); (Y.Y.); (H.W.); (Z.L.); (L.Z.)
| | - Jinlong Zhang
- Tianjin Institute of Animal Husbandry and Veterinary, Tianjin 300192, China; (J.Z.); (X.Z.)
| | - Xiaosheng Zhang
- Tianjin Institute of Animal Husbandry and Veterinary, Tianjin 300192, China; (J.Z.); (X.Z.)
| | - Tuan Yu
- Tianheng Animal Health and Product Quality Supervision Station, Qingdao 266200, China;
| | - Yunxiang Li
- Qingdao Senmiao Industrial Co., Ltd., Qingdao 266101, China; (X.C.); (Y.L.)
| | - Zhengxing Lian
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.W.); (S.G.); (G.L.); (Y.Y.); (H.W.); (Z.L.); (L.Z.)
| | - Lu Zhang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.W.); (S.G.); (G.L.); (Y.Y.); (H.W.); (Z.L.); (L.Z.)
| | - Guoshi Liu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.W.); (S.G.); (G.L.); (Y.Y.); (H.W.); (Z.L.); (L.Z.)
| |
Collapse
|
4
|
Wu KK. Control of Tissue Fibrosis by 5-Methoxytryptophan, an Innate Anti-Inflammatory Metabolite. Front Pharmacol 2021; 12:759199. [PMID: 34858185 PMCID: PMC8632247 DOI: 10.3389/fphar.2021.759199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/28/2021] [Indexed: 12/23/2022] Open
Abstract
Tissue fibrosis causes debilitating human diseases such as liver cirrhosis, heart failure, chronic kidney disease and pulmonary insufficiency. It is a dynamic process orchestrated by specific subsets of monocyte-macrophages, fibroblasts, pericytes and hepatic stellate cells. Fibrosis is linked to tissue inflammation. Pro-inflammatory macrophages promote fibrosis by driving myofibroblast differentiation and macrophage myofibroblast transition. Myofibroblasts express α-smooth muscle cell actin (α-SMA) and secrete extracellular matrix (ECM) proteins notably collagen I and III. Deposition of ECM proteins at injury sites and interstitial tissues distorts normal structure and impairs vital functions. Despite advances in the mechanisms of fibrosis at cellular, molecular and genetic levels, prevention and treatment of fibrotic diseases remain poorly developed. Recent reports suggest that 5-methoxytryptophan (5-MTP) is effective in attenuating injury-induced liver, kidney, cardiac and pulmonary fibrosis. It inhibits macrophage activation and blocks fibroblast differentiation to myofibroblasts. Furthermore, it inhibits hepatic stellate cell differentiation into myofibroblasts. As 5-MTP is an endogenous molecule derived from tryptophan catabolism via tryptophan hydroxylase pathway, it is well-suited as a lead compound for developing new anti-fibrotic drugs. This article provides an overview of 5-MTP synthesis, and a critical review of its anti-fibrotic activities. Its mechanisms of actions and potential therapeutic value will be discussed.
Collapse
Affiliation(s)
- Kenneth K Wu
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan.,Institute of Biotechnology, College of Life Science, National Tsing-Hua University, Hsinchu, Taiwan
| |
Collapse
|
5
|
Tan DX, Hardeland R. The Reserve/Maximum Capacity of Melatonin's Synthetic Function for the Potential Dimorphism of Melatonin Production and Its Biological Significance in Mammals. Molecules 2021; 26:7302. [PMID: 34885890 PMCID: PMC8659113 DOI: 10.3390/molecules26237302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/27/2021] [Accepted: 11/29/2021] [Indexed: 01/13/2023] Open
Abstract
In this article, we attempt to classify a potential dimorphism of melatonin production. Thus, a new concept of "reserve or maximum capacity of melatonin synthetic function" is introduced to explain the subtle dimorphism of melatonin production in mammals. Considering ASMT/ASMTL genes in the pseudoautosomal region of sex chromosomes with high prevalence of mutation in males, as well as the sex bias of the mitochondria in which melatonin is synthesized, we hypothesize the existence of a dimorphism in melatonin production to favor females, which are assumed to possess a higher reserve capacity for melatonin synthesis than males. Under physiological conditions, this subtle dimorphism is masked by the fact that cells or tissues only need baseline melatonin production, which can be accomplished without exploiting the full potential of melatonin's synthetic capacity. This capacity is believed to exceed the already remarkable nocturnal increase as observed within the circadian cycle. However, during aging or under stressful conditions, the reserve capacity of melatonin's synthetic function is required to be activated to produce sufficiently high levels of melatonin for protective purposes. Females seem to possess a higher reserve/maximum capacity for producing more melatonin than males. Thus, this dimorphism of melatonin production becomes manifest and detectable under these conditions. The biological significance of the reserve/maximum capacity of melatonin's synthetic function is to improve the recovery rate of organisms from injury, to increase resistance to pathogen infection, and even to enhance their chances of survival by maximizing melatonin production under stressful conditions. The higher reserve/maximum capacity of melatonin synthesis in females may also contribute to the dimorphism in longevity, favoring females in mammals.
Collapse
Affiliation(s)
- Dun-Xian Tan
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX 78229, USA
| | - Rüdiger Hardeland
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, 37073 Göttingen, Germany;
| |
Collapse
|
6
|
Woodford EC, McLay L, France KG, Blampied NM, Gibbs R, Swan CE, Eggleston M. Endogenous melatonin and sleep in individuals with Rare Genetic Neurodevelopmental Disorders (RGND): A systematic review. Sleep Med Rev 2021; 57:101433. [PMID: 33561678 DOI: 10.1016/j.smrv.2021.101433] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/18/2020] [Accepted: 09/14/2020] [Indexed: 11/25/2022]
Abstract
Individuals with Rare Genetic Neurodevelopmental Disorders (RGND) present with significant sleep problems and circadian rhythm abnormalities of uncertain aetiology. Abnormal melatonin secretion may play a role in sleep disturbance in individuals with higher incidence developmental disabilities, however, RGND research is limited. This review compared the melatonin profiles in a range of RGND with that of the general population and considered the impact of any differences on sleep. A systematic search identified 19 studies that met inclusion criteria. Each study was examined to extract data relating to the study design, participant characteristics, objectives, sleep measures and results, and melatonin measures and findings. Studies were evaluated using the BIOCROSS quality appraisal tool. Nine studies focussed on Smith-Magenis syndrome (SMS), the rest included individuals with Angelman (AS), Fragile-X (FXS), Prader-Willi (PWS), septo-optic dysplasia, PAX6/WAGR and Williams (WS) syndromes (N = 349). Individuals with RGND present with a range of sleep problems, particularly dyssomnias. The melatonin profile varied within and between RGND, with low nocturnal melatonin levels commonly reported. Understanding the relationship between specific sleep and melatonin parameters within RGND may help inform sleep intervention.
Collapse
Affiliation(s)
- Emma C Woodford
- School of Health Sciences, College of Education, Health and Human Development, University of Canterbury, Christchurch, New Zealand.
| | - Laurie McLay
- School of Health Sciences, College of Education, Health and Human Development, University of Canterbury, Christchurch, New Zealand
| | - Karyn G France
- School of Health Sciences, College of Education, Health and Human Development, University of Canterbury, Christchurch, New Zealand
| | - Neville M Blampied
- School of Psychology Speech & Hearing, College of Science, University of Canterbury, Christchurch, New Zealand
| | - Rosina Gibbs
- School of Health Sciences, College of Education, Health and Human Development, University of Canterbury, Christchurch, New Zealand
| | - Catherine E Swan
- Department of Paediatrics, Canterbury District Health Board, Christchurch, New Zealand
| | - Matt Eggleston
- Mental Health Division, Canterbury District Health Board, New Zealand
| |
Collapse
|
7
|
Hu W, Tang J, Zhang Z, Tang Q, Yan Y, Wang P, Wang X, Liu Q, Guo X, Jin M, Zhang Y, Di R, Chu M. Polymorphisms in the ASMT and ADAMTS1 gene may increase litter size in goats. Vet Med Sci 2020; 6:775-787. [PMID: 32529744 PMCID: PMC7738733 DOI: 10.1002/vms3.301] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Prolificacy of most local goat breeds in China is low. Jining Grey goat is one of the most prolific goat breeds in China, it is an important goat breed for the rural economy. ASMT (acetylserotonin O‐methyltransferase) and ADAMTS1 (ADAM metallopeptidase with thrombospondin type 1 motif) are essential for animal reproduction. Single nucleotide polymorphisms (SNPs) of ASMT and ADAMTS1 genes in the highly prolific breed (Jining Grey goats), medium prolific breed (Boer goats and Guizhou White goats) and low prolific breeds (Angora goats, Liaoning Cashmere goats and Inner Mongolia Cashmere goats) were detected by polymerase chain reaction‐restriction fragment length polymorphism and sequencing. Two SNPs (g.158122T>C, g.158700G>A) of ASMT gene and two SNPs (g.7979798A>G, g.7979477C>T) of ADAMTS1 gene were identified. For g.158122T>C of ASMT gene, further analysis revealed that genotype TC or CC had 0.66 (p < 0.05) or 0.75 (p < 0.05) kids more than those with genotype TT in Jining Grey goats. No significant difference (p > 0.05) was found in litter size between TC and CC genotypes. The SNP (g.158122T>C) caused a p.Tyr298His change and this SNP mutation resulted in changes in protein binding sites and macromolecule‐binding sites. The improvement in reproductive performance may be due to changes in the structure of ASMT protein. For g.7979477C>T of ADAMTS1 gene, Jining Grey does with genotype CT or TT had 0.82 (p < 0.05) or 0.86 (p < 0.05) more kids than those with genotype CC. No significant difference (p > 0.05) was found in litter size between CT or TT genotypes. These results preliminarily indicated that C allele (g.158122T>C) of ASMT gene and T allele (g.7979477C>T) of ADAMTS1 gene are potential molecular markers which could improve litter size of Jining Grey goats and be used in goat breeding.
Collapse
Affiliation(s)
- Wenping Hu
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Jishun Tang
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, PR China.,Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, PR China
| | - Zhuangbiao Zhang
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Qianqian Tang
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Yan Yan
- Bioengineering College, Chongqing University, Chongqing, PR China
| | - Pinqing Wang
- Bioengineering College, Chongqing University, Chongqing, PR China
| | - Xiangyu Wang
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Qiuyue Liu
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Xiaofei Guo
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Mei Jin
- College of Life Science, Liaoning Normal University, Dalian, PR China
| | - Yingjie Zhang
- College of Animal Science and Technology, Agricultural University of Hebei, Baoding, PR China
| | - Ran Di
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Mingxing Chu
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, PR China
| |
Collapse
|
8
|
Bertolini M, Ramot Y, Gherardini J, Heinen G, Chéret J, Welss T, Giesen M, Funk W, Paus R. Theophylline exerts complex anti-ageing and anti-cytotoxicity effects in human skin ex vivo. Int J Cosmet Sci 2019; 42:79-88. [PMID: 31633195 DOI: 10.1111/ics.12589] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 10/17/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Theophylline is a phosphodiesterase inhibitor that is being used clinically for asthma therapy. In addition, it is recognized as a cosmetic agent with possible anti-ageing and anti-oxidative properties. Nevertheless, how it affects human skin is still poorly examined. METHODS Theophylline (10 or 100 µM) was administered to the culture medium of full-thickness human skin ex vivo for 24 or 72 h. RESULTS Theophylline stimulated protein expression of the anti-oxidant metallothionein-1 and mRNA levels of collagen I and III. Assessment of fibrillin-1 immunohistology revealed enhanced structural stability of dermal microfibrils. Theophylline also exerted extracellular matrix-protective effects by decreasing MMP-2 and MMP-9 mRNA levels, partially antagonizing the effects of menadione, the potent, toxic ROS donor. In addition, it decreased menadione-stimulated epidermal keratinocytes apoptosis. Interestingly, theophylline also increased the level of intracutaneously produced melatonin, that is the most potent ROS-protective and DNA damage repair neuromediator, and tendentially increased protein expression of MT1, the melatonin receptor. Theophylline also increased the expression of keratin 15, the stem cell marker, in the epidermal basal layer but did not change mitochondrial activity or epidermal pigmentation. CONCLUSION This ex vivo pilot study in human skin shows that theophylline possesses several interesting complex skin-protective properties. It encourages further examination of theophylline as a topical candidate for anti-ageing treatment.
Collapse
Affiliation(s)
- M Bertolini
- Monasterium Laboratory GmbH, 48149 , Muenster, Germany
| | - Y Ramot
- Department of Dermatology, The Faculty of Medicine, Hadassah Medical Center, Hebrew University of Jerusalem, 9112001 , Jerusalem, Israel
| | - J Gherardini
- Monasterium Laboratory GmbH, 48149 , Muenster, Germany
| | - G Heinen
- Henkel AG & Co. KGaA, 40589 , Düsseldorf, Germany
| | - J Chéret
- Monasterium Laboratory GmbH, 48149 , Muenster, Germany.,Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, 33136 , Miami, FL, USA
| | - T Welss
- Henkel AG & Co. KGaA, 40589 , Düsseldorf, Germany
| | - M Giesen
- Henkel AG & Co. KGaA, 40589 , Düsseldorf, Germany
| | - W Funk
- Clinic for Plastic, Aesthetic and Reconstructive Surgery, Dr. Dr. med. Funk, 81739, Munich, Germany
| | - R Paus
- Monasterium Laboratory GmbH, 48149 , Muenster, Germany.,Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, 33136 , Miami, FL, USA.,Centre for Dermatology Research, University of Manchester, M13 9PL, Manchester, UK
| |
Collapse
|
9
|
Betti L, Palego L, Demontis GC, Miraglia F, Giannaccini G. Hydroxyindole- O-methyltransferase (HIOMT) activity in the retina of melatonin-proficient mice. Heliyon 2019; 5:e02417. [PMID: 31687544 PMCID: PMC6819757 DOI: 10.1016/j.heliyon.2019.e02417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 07/19/2019] [Accepted: 09/02/2019] [Indexed: 01/02/2023] Open
Abstract
Numerous pieces of evidence support the expression by the mammalian retina of Hydroxyindole-O-methyltransferase (HIOMT, EC 2.1.1.4), the enzyme directly responsible for the biosynthesis of the pineal chronobiotic hormone melatonin (MLT). However, conflicting results obtained so far by enzyme-kinetic and immune-detection techniques still make HIOMT presence and relevance in the eye a matter of debate. This work aimed at evaluating unambiguously HIOMT activity in the mouse retina, a valuable model for studying the effects of MLT variations on ocular pathophysiology. Since laboratory mouse strains can bear genetic polymorphisms yielding defective enzymes of MLT biosynthesis, retinas and control pineal glands used in this study were obtained in a MLT-proficient crossing of A/J mice, the A/J/C57BL/10 strain. To improve the radiochemical reference assay, we tested different homogenization procedures coupled with HPLC detection. Concomitantly, we quantified MLT, and its precursor N-acetyl-serotonin (NAS) by HPLC coupled to electrochemical detection in retinas isolated from either light- or dark-adapted mice. Results showed that the standard radio-chemical assay was successful for pineal HIOMT only, whereas specific homogenization buffers and HPLC were required to detect retinal activity, presumably due to interfering methyl-transferases inhibited by NAS. Under present conditions, retinal HIOMT Vmax accounted for by ≈ 40 fmol/h/mg protein, 2.6-hundreds-fold lower than the pineal counterpart, displaying equivalent KMs (≈10 μM). Moreover, NAS and MLT rapidly decreased in light-exposed isolated retinas, corroborating light-sensitive in-situ MLT formation. Conclusively, we measured mouse retinal HIOMT kinetics under basal conditions, a useful result to elucidate the regulatory patterns, the possible impact on eye health, and therapeutic approaches related to this enzyme.
Collapse
Affiliation(s)
- Laura Betti
- Department of Pharmacy, Via Bonanno 6, University of Pisa, 56126 Pisa, Italy
- Corresponding author.
| | - Lionella Palego
- Department of Clinical and Experimental Medicine, Via Savi 10, University of Pisa, 56126 Pisa, Italy
- Corresponding author.
| | - Gian Carlo Demontis
- Department of Pharmacy, Via Bonanno 6, University of Pisa, 56126 Pisa, Italy
| | - Fabiana Miraglia
- Department of Pharmacy, Via Bonanno 6, University of Pisa, 56126 Pisa, Italy
| | - Gino Giannaccini
- Department of Pharmacy, Via Bonanno 6, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
10
|
Maras A, Schroder CM, Malow BA, Findling RL, Breddy J, Nir T, Shahmoon S, Zisapel N, Gringras P. Long-Term Efficacy and Safety of Pediatric Prolonged-Release Melatonin for Insomnia in Children with Autism Spectrum Disorder. J Child Adolesc Psychopharmacol 2018; 28:699-710. [PMID: 30132686 PMCID: PMC6306655 DOI: 10.1089/cap.2018.0020] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Objective: A recent double-blind randomized placebo-controlled study demonstrated 3-month efficacy and safety of a novel pediatric-appropriate prolonged-release melatonin (PedPRM) for insomnia in children and adolescents with autism spectrum disorder (ASD) and neurogenetic disorders (NGD) with/without attention-deficit/hyperactivity disorder comorbidity. Long-term efficacy and safety of PedPRM treatment was studied. Methods: A prospective, open-label efficacy and safety follow-up of nightly 2, 5, or 10 mg PedPRM in subjects who completed the 13-week double-blind trial (51 PedPRM; 44 placebo). Measures included caregiver-reported Sleep and Nap Diary, Composite Sleep Disturbance Index (CSDI), caregiver's Pittsburgh Sleep Quality Index (PSQI), Epworth Sleepiness Scale, and quality of life (WHO-5 Well-Being Index). Results: Ninety-five subjects (74.7% males; mean [standard deviation] age, 9 [4.24]; range, 2-17.5 years) received PedPRM (2/5 mg) according to the double-blind phase dose, for 39 weeks with optional dose adjustment (2, 5, or 10 mg/day) after the first 13 weeks. After 52 weeks of continuous treatment (PedPRM-randomized group) subjects slept (mean [SE]) 62.08 (21.5) minutes longer (p = 0.007); fell asleep 48.6 (10.2) minutes faster (p < 0.001); had 89.1 (25.5) minutes longer uninterrupted sleep episodes (p = 0.001); 0.41 (0.12) less nightly awakenings (>50% decrease; p = 0.001); and better sleep quality (p < 0.001) compared with baseline. The placebo-randomized group also improved with PedPRM. Altogether, by the end of 39-week follow-up, regardless of randomization assignment, 55/72 (76%) of completers achieved overall improvement of ≥1 hour in total sleep time (TST), sleep latency or both, over baseline, with no evidence of decreased efficacy. In parallel, CSDI child sleep disturbance and caregivers' satisfaction of their child's sleep patterns (p < 0.001 for both), PSQI global (p < 0.001), and WHO-5 (p = 0.001) improved in statistically significant and clinically relevant manner (n = 72) compared with baseline. PedPRM was generally safe; most frequent treatment-related adverse events were fatigue (5.3%) and mood swings (3.2% of patients). Conclusion: PedPRM, an easily swallowed formulation shown to be efficacious versus placebo, is an efficacious and safe option for long-term treatment (up to 52 weeks reported here) of children with ASD and NGD who suffer from insomnia and subsequently improves caregivers' quality of life.
Collapse
Affiliation(s)
- Athanasios Maras
- Yulius Academy, Yulius Mental Health Organization, Barendrecht, The Netherlands.,Address correspondence to: Athanasios Maras, MD, Yulius Academy, Yulius Mental Health Organization, Dennenhout 1, Barendrecht 2994 GC, The Netherlands
| | - Carmen M. Schroder
- Strasbourg University Hospital Department of Child and Adolescent Psychiatry, Strasbourg, France.,CNRS UPR 3212, Department of Psychiatry and Mental Health, Institute of Cellular and Integrative Neurosciences, Strasbourg, France
| | - Beth A. Malow
- Sleep Division, Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Robert L. Findling
- Department of Psychiatry and Behavioral Sciences, Kennedy Krieger Institute/Johns Hopkins University, Baltimore, Maryland
| | - John Breddy
- Pharmastat Consulting Ltd., Canterbury, United Kingdom
| | - Tali Nir
- Neurim Pharmaceuticals Ltd., Tel Aviv, Israel
| | | | | | - Paul Gringras
- Children's Sleep Medicine, Evelina London Children's Hospital, Guy's and St. Thomas', London, United Kingdom
| |
Collapse
|
11
|
Khemakhem AM, Frye RE, El-Ansary A, Al-Ayadhi L, Bacha AB. Novel biomarkers of metabolic dysfunction is autism spectrum disorder: potential for biological diagnostic markers. Metab Brain Dis 2017; 32:1983-1997. [PMID: 28831647 DOI: 10.1007/s11011-017-0085-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 08/01/2017] [Indexed: 12/21/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder that is behaviorally defined by social and communication impairments and restricted interests and repetitive behaviors. There is currently no biomarkers that can help in the diagnosis. Several studies suggest that mitochondrial dysfunction is commonly involved in ASD pathophysiology, but standard mitochondrial biomarkers are thought to be very variable. In the present study we examine a wide variety of plasma biomarkers of mitochondrial metabolism and the related abnormalities of oxidative stress and apoptosis in 41 ASD patients assessed for ASD severity using the Childhood Autism Rating Scales and 41 non-related age and sex matched healthy controls. Our findings confirm previous studies indicating abnormal mitochondrial and related biomarkers in children with ASD including pyruvate, creatine kinase, Complex 1, Glutathione S-Transferase, glutathione and Caspase 7. As a novel finding, we report that lactate dehydrogenase is abnormal in children with ASD. We also identified that only the most severe children demonstrated abnormalities in Complex 1 activity and Glutathione S-Transferase. Additionally, we find that several biomarkers could be candidates for differentiating children with ASD and typically developing children, including Caspase 7, gluthatione and Glutathione S-Transferase by themselves and lactate dehydrogenase and Complex I when added to other biomarkers in combination. Caspase 7 was the most discriminating biomarker between ASD patients and healthy controls suggesting its potential use as diagnostic marker for the early recognition of ASD pathophysiology. This study confirms that several mitochondrial biomarkers are abnormal in children with ASD and suggest that certain mitochondrial biomarkers can differentiate between ASD and typically developing children, making them possibly useful as a tool to diagnosis ASD and identify ASD subgroups.
Collapse
Affiliation(s)
- Asma M Khemakhem
- Laboratory of Plant Biotechnology Applied to Crop Improvement, Faculty of Science of Sfax, University of Sfax, 3038, Sfax, Tunisia
| | - Richard E Frye
- Arkansas Children's Research Institute, Slot 512-41B, Room R4041, 13 Children's Way, Little Rock, AR, 72202, USA.
| | - Afaf El-Ansary
- Autism Research and Treatment Center, King Saud University, P O Box 2925, Riyadh, 11461, Saudi Arabia
- Shaik AL-Amodi Autism Research Chair, King Saud University, P O Box 2925, Riyadh, 11461, Saudi Arabia
- Central Laboratory, King Saud University, P.O Box 22452, Zip code, Riyadh, 11495, Saudi Arabia
| | - Laila Al-Ayadhi
- Autism Research and Treatment Center, King Saud University, P O Box 2925, Riyadh, 11461, Saudi Arabia
- Shaik AL-Amodi Autism Research Chair, King Saud University, P O Box 2925, Riyadh, 11461, Saudi Arabia
- Department of Physiology, Faculty of Medicine, King Saud University, P O Box 2925, Riyadh, 11461, Saudi Arabia
| | - Abir Ben Bacha
- Laboratory of Plant Biotechnology Applied to Crop Improvement, Faculty of Science of Sfax, University of Sfax, 3038, Sfax, Tunisia
- Biochemistry Department, Science College, King Saud University, P.O Box 22452, Zip code, Riyadh, 11495, Saudi Arabia
| |
Collapse
|
12
|
Disruption of melatonin synthesis is associated with impaired 14-3-3 and miR-451 levels in patients with autism spectrum disorders. Sci Rep 2017; 7:2096. [PMID: 28522826 PMCID: PMC5437096 DOI: 10.1038/s41598-017-02152-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 04/06/2017] [Indexed: 12/12/2022] Open
Abstract
Autism spectrum disorders (ASD) are characterized by a wide genetic and clinical heterogeneity. However, some biochemical impairments, including decreased melatonin (crucial for circadian regulation) and elevated platelet N-acetylserotonin (the precursor of melatonin) have been reported as very frequent features in individuals with ASD. To address the mechanisms of these dysfunctions, we investigated melatonin synthesis in post-mortem pineal glands - the main source of melatonin (9 patients and 22 controls) - and gut samples - the main source of serotonin (11 patients and 13 controls), and in blood platelets from 239 individuals with ASD, their first-degree relatives and 278 controls. Our results elucidate the enzymatic mechanism for melatonin deficit in ASD, involving a reduction of both enzyme activities contributing to melatonin synthesis (AANAT and ASMT), observed in the pineal gland as well as in gut and platelets of patients. Further investigations suggest new, post-translational (reduced levels of 14-3-3 proteins which regulate AANAT and ASMT activities) and post-transcriptional (increased levels of miR-451, targeting 14-3-3ζ) mechanisms to these impairments. This study thus gives insights into the pathophysiological pathways involved in ASD.
Collapse
|
13
|
Abbasi S, Raza S, Azam SS, Liedl KR, Fuchs JE. Interaction mechanisms of a melatonergic inhibitor in the melatonin synthesis pathway. J Mol Liq 2016. [DOI: 10.1016/j.molliq.2016.06.034] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
14
|
Relationship between Oxidative Stress, Circadian Rhythms, and AMD. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:7420637. [PMID: 26885250 PMCID: PMC4738726 DOI: 10.1155/2016/7420637] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 10/24/2015] [Accepted: 10/26/2015] [Indexed: 12/31/2022]
Abstract
This work reviews concepts regarding oxidative stress and the mechanisms by which endogenous and exogenous factors produce reactive oxygen species (ROS). It also surveys the relationships between oxidative stress, circadian rhythms, and retinal damage in humans, particularly those related to light and photodamage. In the first section, the production of ROS by different cell organelles and biomolecules and the antioxidant mechanisms that antagonize this damage are reviewed. The second section includes a brief review of circadian clocks and their relationship with the cellular redox state. In the third part of this work, the relationship between retinal damage and ROS is described. The last part of this work focuses on retinal degenerative pathology, age-related macular degeneration, and the relationships between this pathology, ROS, and light. Finally, the possible interactions between the retinal pigment epithelium (RPE), circadian rhythms, and this pathology are discussed.
Collapse
|
15
|
Frank E, Benabou M, Bentzley B, Bianchi M, Goldstein T, Konopka G, Maywood E, Pritchett D, Sheaves B, Thomas J. Influencing circadian and sleep-wake regulation for prevention and intervention in mood and anxiety disorders: what makes a good homeostat? Ann N Y Acad Sci 2014; 1334:1-25. [PMID: 25532787 PMCID: PMC4350368 DOI: 10.1111/nyas.12600] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
All living organisms depend on homeostasis, the complex set of interacting metabolic chemical reactions for maintaining life and well-being. This is no less true for psychiatric well-being than for physical well-being. Indeed, a focus on homeostasis forces us to see how inextricably linked mental and physical well-being are. This paper focuses on these linkages. In particular, it addresses the ways in which understanding of disturbed homeostasis may aid in creating classes of patients with mood and anxiety disorders based on such phenotypes. At the cellular level, we may be able to compensate for the inability to study living brain tissue through the study of homeostatic mechanisms in fibroblasts, pluripotent human cells, and mitochondria and determine how homeostasis is disturbed at the level of these peripheral tissues through exogenous stress. We also emphasize the remarkable opportunities for enhancing knowledge in this area that are offered by advances in technology. The study of human behavior, especially when combined with our greatly improved capacity to study unique but isolated populations, offers particularly clear windows into the relationships among genetic, environmental, and behavioral contributions to homeostasis.
Collapse
Affiliation(s)
- Ellen Frank
- Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Marion Benabou
- Human Genetics and Cognitive Functions, Institut Pasteur, Paris, France
| | - Brandon Bentzley
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina
| | - Matt Bianchi
- Department of Neurology, Sleep Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Tina Goldstein
- Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Genevieve Konopka
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Elizabeth Maywood
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - David Pritchett
- Nuffield Department of Clinical Neurosciences (Nuffield Laboratory of Ophthalmology), University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Bryony Sheaves
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, United Kingdom
| | - Jessica Thomas
- Molecular Sleep Laboratory, Glostrup University Hospital, Glostrup, Denmark
| |
Collapse
|
16
|
Talarowska M, Szemraj J, Zajączkowska M, Gałecki P. ASMT gene expression correlates with cognitive impairment in patients with recurrent depressive disorder. Med Sci Monit 2014; 20:905-12. [PMID: 24881886 PMCID: PMC4052942 DOI: 10.12659/msm.890160] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Recurrent depressive disorder is a multifactorial disease; one of the typical features is cognitive impairment. The purpose of this study was analysis of ASMT gene expression both on mRNA and protein levels in patients with recurrent depressive disorder (rDD) and assessment of the relationship between plasma level of ASMT protein, gene expression on mRNA level, and cognitive performance. MATERIAL AND METHODS The study included 236 subjects: patients with rDD (n=131) and healthy subjects (n=105, CG). Cognitive function assessment was based on: Trail Making Test, The Stroop Test, Verbal Fluency Test (VFT), and Auditory Verbal Learning Test (AVLT). RESULTS Both mRNA and protein expression levels of ASMT gene were significantly higher in healthy subjects when compared to rDD. The average ASMT mRNA expression level measured for the entire group was M=0.21 (SD=0.09), and the protein level was M=12.84 (SD=3.29). In patients with rDD, statistically significant correlations occurred between both mRNA and protein expression levels and part A of the TMT (negative correlation) and verbal fluency test (positive correlation). In the group CG, there was no statistically significant association between the analyzed variables. In the entire group there was a statistically significant correlation between both ASMT mRNA and protein expression levels and all the neuropsychological tests used in the survey. CONCLUSIONS 1. Our study confirms previous results showing decreased mRNA and protein expression levels of ASMT gene in depression. 2. Our data suggest a relationship between decreased mRNA and protein expression levels of ASMT gene and cognitive impairment.
Collapse
Affiliation(s)
- Monika Talarowska
- Department of Adult Psychiatry, Medical University of Łódź, Łódź, Poland
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Łódź, Łódź, Poland
| | | | - Piotr Gałecki
- Department of Adult Psychiatry, Medical University of Łódź, Łódź, Poland
| |
Collapse
|
17
|
Jung JY, DeLuca TF, Nelson TH, Wall DP. A literature search tool for intelligent extraction of disease-associated genes. J Am Med Inform Assoc 2014; 21:399-405. [PMID: 23999671 PMCID: PMC3994846 DOI: 10.1136/amiajnl-2012-001563] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 07/15/2013] [Accepted: 08/08/2013] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE To extract disorder-associated genes from the scientific literature in PubMed with greater sensitivity for literature-based support than existing methods. METHODS We developed a PubMed query to retrieve disorder-related, original research articles. Then we applied a rule-based text-mining algorithm with keyword matching to extract target disorders, genes with significant results, and the type of study described by the article. RESULTS We compared our resulting candidate disorder genes and supporting references with existing databases. We demonstrated that our candidate gene set covers nearly all genes in manually curated databases, and that the references supporting the disorder-gene link are more extensive and accurate than other general purpose gene-to-disorder association databases. CONCLUSIONS We implemented a novel publication search tool to find target articles, specifically focused on links between disorders and genotypes. Through comparison against gold-standard manually updated gene-disorder databases and comparison with automated databases of similar functionality we show that our tool can search through the entirety of PubMed to extract the main gene findings for human diseases rapidly and accurately.
Collapse
Affiliation(s)
- Jae-Yoon Jung
- Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA
| | - Todd F DeLuca
- Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA
| | - Tristan H Nelson
- Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Dennis P Wall
- Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA
- Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
18
|
Braam W, Keijzer H, Struijker Boudier H, Didden R, Smits M, Curfs L. CYP1A2 polymorphisms in slow melatonin metabolisers: a possible relationship with autism spectrum disorder? JOURNAL OF INTELLECTUAL DISABILITY RESEARCH : JIDR 2013; 57:993-1000. [PMID: 22823064 DOI: 10.1111/j.1365-2788.2012.01595.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
BACKGROUND In some of our patients with intellectual disabilities (ID) and sleep problems, the initial good response to melatonin disappeared within a few weeks after starting treatment. In these patients melatonin levels at noon were extremely high (>50 pg/ml). We hypothesise that the disappearing effectiveness is associated with slow metabolisation of melatonin because of a single nucleotide polymorphism (SNP) of CYP1A2. METHOD In this pilot study we analysed DNA extracted from saliva samples of 15 consecutive patients with disappearing effectiveness of melatonin. Saliva was collected at noon and 4 pm for measuring melatonin levels. RESULTS In all patients' salivary melatonin levels at noon were >50 or melatonin half time was > 5 h. A SNP was found in eight of 15 patients. The allele 1C was found in two patients and in six patients the 1F allele was found. CONCLUSIONS Of 15 patients with disappearing effectiveness of melatonin, seven were diagnosed with autism spectrum disorder, and in four of them a SNP was found. The other eight patients were known with a genetic syndrome. In six of them behaviour was considered to be autistic-type and in three of them a SNP was found. This finding may give a new direction for research into the genetic background of autism.
Collapse
Affiliation(s)
- W Braam
- Department Advisium, 's Heeren Loo Zuid-Veluwe, Wekerom, The Netherlands Department of Clinical Chemistry, Rijnstate Hospital, Arnhem, The Netherlands Department of Pharmacology and Toxicology, Maastricht University, Maastricht, The Netherlands Special Education, Behavioural Science Institute, Radboud University Nijmegen, Nijmegen, The Netherlands Department of Neurology, Gelderse Vallei Hospital, Ede, The Netherlands Department of Clinical Genetics, University Maastricht/Academic Hospital, Maastricht, The Netherlands
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
Autism spectrum conditions (ASCs) are defined behaviorally, but they also involve multileveled disturbances of underlying biology that find striking parallels in the physiological impacts of electromagnetic frequency and radiofrequency radiation exposures (EMF/RFR). Part I (Vol 776) of this paper reviewed the critical contributions pathophysiology may make to the etiology, pathogenesis and ongoing generation of behaviors currently defined as being core features of ASCs. We reviewed pathophysiological damage to core cellular processes that are associated both with ASCs and with biological effects of EMF/RFR exposures that contribute to chronically disrupted homeostasis. Many studies of people with ASCs have identified oxidative stress and evidence of free radical damage, cellular stress proteins, and deficiencies of antioxidants such as glutathione. Elevated intracellular calcium in ASCs may be due to genetics or may be downstream of inflammation or environmental exposures. Cell membrane lipids may be peroxidized, mitochondria may be dysfunctional, and various kinds of immune system disturbances are common. Brain oxidative stress and inflammation as well as measures consistent with blood-brain barrier and brain perfusion compromise have been documented. Part II of this paper documents how behaviors in ASCs may emerge from alterations of electrophysiological oscillatory synchronization, how EMF/RFR could contribute to these by de-tuning the organism, and policy implications of these vulnerabilities. It details evidence for mitochondrial dysfunction, immune system dysregulation, neuroinflammation and brain blood flow alterations, altered electrophysiology, disruption of electromagnetic signaling, synchrony, and sensory processing, de-tuning of the brain and organism, with autistic behaviors as emergent properties emanating from this pathophysiology. Changes in brain and autonomic nervous system electrophysiological function and sensory processing predominate, seizures are common, and sleep disruption is close to universal. All of these phenomena also occur with EMF/RFR exposure that can add to system overload ('allostatic load') in ASCs by increasing risk, and can worsen challenging biological problems and symptoms; conversely, reducing exposure might ameliorate symptoms of ASCs by reducing obstruction of physiological repair. Various vital but vulnerable mechanisms such as calcium channels may be disrupted by environmental agents, various genes associated with autism or the interaction of both. With dramatic increases in reported ASCs that are coincident in time with the deployment of wireless technologies, we need aggressive investigation of potential ASC-EMF/RFR links. The evidence is sufficient to warrant new public exposure standards benchmarked to low-intensity (non-thermal) exposure levels now known to be biologically disruptive, and strong, interim precautionary practices are advocated.
Collapse
|
20
|
Diagnostic yield of array comparative genomic hybridization in adults with autism spectrum disorders. Genet Med 2013; 16:70-7. [PMID: 23765050 DOI: 10.1038/gim.2013.78] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 04/18/2013] [Indexed: 11/08/2022] Open
Abstract
PURPOSE Array comparative genomic hybridization is available for the evaluation of autism spectrum disorders. The diagnostic yield of testing is 5-18% in children with developmental disabilities, including autism spectrum disorders and multiple congenital anomalies. The yield of array comparative genomic hybridization in the adult autism spectrum disorder population is unknown. METHODS We performed a retrospective chart review for 40 consecutive patients referred for genetic evaluation of autism from July 2009 through April 2012. Four pediatric patients were excluded. Medical history and prior testing were reviewed. Clinical genetic evaluation and testing were offered to all patients. RESULTS The study population comprised 36 patients (age range 18-45, mean 25.3 years). An autism spectrum disorder diagnosis was confirmed in 34 of 36 patients by medical record review. One patient had had an abnormal karyotype; none had prior array comparative genomic hybridization testing. Of the 23 patients with autism who underwent array comparative genomic hybridization, 2 of 23 (8.7%) had pathogenic or presumed pathogenic abnormalities and 2 of 23 (8.7%) had likely pathogenic copy-number variants. An additional 5 of 23 (22%) of autism patients had variants of uncertain significance without subclassification. CONCLUSION Including one patient newly diagnosed with fragile X syndrome, our data showed abnormal or likely pathogenic findings in 5 of 24 (21%) adult autism patients. Genetic reevaluation in adult autism patients is warranted.
Collapse
|
21
|
Wang L, Li J, Ruan Y, Lu T, Liu C, Jia M, Yue W, Liu J, Bourgeron T, Zhang D. Sequencing ASMT identifies rare mutations in Chinese Han patients with autism. PLoS One 2013; 8:e53727. [PMID: 23349736 PMCID: PMC3547942 DOI: 10.1371/journal.pone.0053727] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 12/04/2012] [Indexed: 11/18/2022] Open
Abstract
Melatonin is involved in the regulation of circadian and seasonal rhythms and immune function. Prior research reported low melatonin levels in autism spectrum disorders (ASD). ASMT located in pseudo-autosomal region 1 encodes the last enzyme of the melatonin biosynthesis pathway. A previous study reported an association between ASD and single nucleotide polymorphisms (SNPs) rs4446909 and rs5989681 located in the promoter of ASMT. Furthermore, rare deleterious mutations were identified in a subset of patients. To investigate the association between ASMT and autism, we sequenced all ASMT exons and its neighboring region in 398 Chinese Han individuals with autism and 437 healthy controls. Although our study did not detect significant differences of genotypic distribution and allele frequencies of the common SNPs in ASMT between patients with autism and healthy controls, we identified new rare coding mutations of ASMT. Among these rare variants, 4 were exclusively detected in patients with autism including a stop mutation (p.R115W, p.V166I, p.V179G, and p.W257X). These four coding variants were observed in 6 of 398 (1.51%) patients with autism and none in 437 controls (Chi-Square test, Continuity Correction p = 0.032, two-sided). Functional prediction of impact of amino acid showed that p.R115W might affect protein function. These results indicate that ASMT might be a susceptibility gene for autism. Further studies in larger samples are needed to better understand the degree of variation in this gene as well as to understand the biochemical and clinical impacts of ASMT/melatonin deficiency.
Collapse
Affiliation(s)
- Lifang Wang
- Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, People's Republic of China
- Institute of Mental Health, Peking University, Beijing, People's Republic of China
- * E-mail: (LW); (DZ)
| | - Jun Li
- Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, People's Republic of China
- Institute of Mental Health, Peking University, Beijing, People's Republic of China
| | - Yanyan Ruan
- Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, People's Republic of China
- Institute of Mental Health, Peking University, Beijing, People's Republic of China
| | - Tianlan Lu
- Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, People's Republic of China
- Institute of Mental Health, Peking University, Beijing, People's Republic of China
| | - Chenxing Liu
- Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, People's Republic of China
- Institute of Mental Health, Peking University, Beijing, People's Republic of China
| | - Meixiang Jia
- Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, People's Republic of China
| | - Weihua Yue
- Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, People's Republic of China
- Institute of Mental Health, Peking University, Beijing, People's Republic of China
| | - Jing Liu
- Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, People's Republic of China
| | - Thomas Bourgeron
- Human Genetics and Cognitive Functions, Institute Pasteur, Paris, France
- CNRS URA 2182 ‘Genes, synapses and cognition’, Institut Pasteur, Paris, France
- University Paris Diderot, Sorbonne Paris Cité, Human Genetics and Cognitive Functions, Paris, France
| | - Dai Zhang
- Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, People's Republic of China
- Institute of Mental Health, Peking University, Beijing, People's Republic of China
- Peking-Tsinghua Center for Life Sciences, Beijing, People's Republic of China
- * E-mail: (LW); (DZ)
| |
Collapse
|
22
|
Botros HG, Legrand P, Pagan C, Bondet V, Weber P, Ben-Abdallah M, Lemière N, Huguet G, Bellalou J, Maronde E, Beguin P, Haouz A, Shepard W, Bourgeron T. Crystal structure and functional mapping of human ASMT, the last enzyme of the melatonin synthesis pathway. J Pineal Res 2013; 54:46-57. [PMID: 22775292 DOI: 10.1111/j.1600-079x.2012.01020.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Melatonin is a synchronizer of many physiological processes. Abnormal melatonin signaling is associated with human disorders related to sleep, metabolism, and neurodevelopment. Here, we present the X-ray crystal structure of human N-acetyl serotonin methyltransferase (ASMT), the last enzyme of the melatonin biosynthesis pathway. The polypeptide chain of ASMT consists of a C-terminal domain, which is typical of other SAM-dependent O-methyltransferases, and an N-terminal domain, which intertwines several helices with another monomer to form the physiologically active dimer. Using radioenzymology, we analyzed 20 nonsynonymous variants identified through the 1000 genomes project and in patients with neuropsychiatric disorders. We found that the majority of these mutations reduced or abolished ASMT activity including one relatively frequent polymorphism in the Han Chinese population (N17K, rs17149149). Overall, we estimate that the allelic frequency of ASMT deleterious mutations ranges from 0.66% in Europe to 2.97% in Asia. Mapping of the variants on to the 3-dimensional structure clarifies why some are harmful and provides a structural basis for understanding melatonin deficiency in humans.
Collapse
Affiliation(s)
- Hany Goubran Botros
- Institut Pasteur, Human Genetics and Cognitive Functions Unit, Paris, France CNRS URA 2182 'Genes, synapses and cognition', Institut Pasteur, Paris, France University Paris Diderot, Sorbonne Paris Cité, Human Genetics and Cognitive Functions, Paris, France Synchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin BP48, Gif-sur-Yvette, France Institut Pasteur, Plate forme 5, 25 rue Dr. Roux, Paris, France Institut Pasteur, Plate forme 6, CNRS-UMR3528, 25 rue Dr. Roux, Paris, France Institute for Anatomy III, Goethe University, Frankfurt, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Schaevitz LR, Berger-Sweeney JE. Gene-Environment Interactions and Epigenetic Pathways in Autism: The Importance of One-Carbon Metabolism. ILAR J 2012; 53:322-40. [DOI: 10.1093/ilar.53.3-4.322] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
24
|
Melatonin Antioxidative Defense: Therapeutical Implications for Aging and Neurodegenerative Processes. Neurotox Res 2012; 23:267-300. [DOI: 10.1007/s12640-012-9337-4] [Citation(s) in RCA: 173] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 06/12/2012] [Accepted: 06/13/2012] [Indexed: 12/12/2022]
|
25
|
Kripke DF, Nievergelt CM, Tranah GJ, Murray SS, McCarthy MJ, Rex KM, Parimi N, Kelsoe JR. Polymorphisms in melatonin synthesis pathways: possible influences on depression. J Circadian Rhythms 2011; 9:8. [PMID: 21827647 PMCID: PMC3177871 DOI: 10.1186/1740-3391-9-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 08/09/2011] [Indexed: 11/14/2022] Open
Abstract
Background It has been reported that rs4446909, a single nucleotide polymorphism (SNP) in the promoter of acetylserotonin methyltransferase (ASMT), influences the expression of the ASMT enzyme. The common G allele is associated with lower ASMT activity, and therefore, diminishes conversion of N-acetylserotonin to melatonin. The G allele was associated with recurrent depressive disorder in a Polish group. ASMT might also affect bipolar relapse, given evidence that N-acetylserotonin might stimulate TRKB receptors, and TRKB may influence mood relapse in bipolar disorder. Additionally, arylalkylamine N-acetyltransferase (AANAT) polymorphisms have been reported associated with depression, perhaps through their influence upon N-acetylserotonin or melatonin synthesis. Results To replicate and further explore these ideas, rs4446909 was genotyped in four research groups, as part of a panel of 610 SNPs surveyed by an Illumina Golden Gate assay. In 768 cases with delayed sleep phase disorder or matched controls, rs4446909 was indeed associated with the depressive symptoms on a self-report scale (P = 0.01, R2 = 0.007). However, there was no significant association of rs4446909 with self-reported depression in a sleep clinic patient group or with two groups of elderly men and women from multicenter studies, nor was the response to lithium treatment associated with rs4446909 in bipolar patients. No associations of two AANAT SNPs with depression were found. Conclusions The evidence did not support a strong influence of rs4446909 upon mood, but the partial replication may be consistent with a modest effect. It is possible that larger or younger subject groups with improved phenotype ascertainment might demonstrate more persuasive replication.
Collapse
Affiliation(s)
- Daniel F Kripke
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA.
| | | | | | | | | | | | | | | |
Collapse
|