1
|
Wang T, Brown C, Doherty N, Byrne NM, Islam R, Doherty M, Feng J, Yin C, Chambers S, McQuoid L, Mohamed-Smith L, Butterworth KT, Kerr EM, Coulter JA. Mannose and PMI depletion overcomes radiation resistance in HPV-negative head and neck cancer. Cell Commun Signal 2025; 23:189. [PMID: 40259370 PMCID: PMC12013184 DOI: 10.1186/s12964-025-02204-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 04/16/2025] [Indexed: 04/23/2025] Open
Abstract
Radiotherapy is critical component of multidisciplinary cancer care, used as a primary and adjuvant treatment for patients with head and neck squamous cell carcinoma. This study investigates how mannose, a naturally occurring monosaccharide, combined with phosphomannose isomerase (PMI) depletion, enhances the sensitivity of HPV-negative head and neck tumour models to radiation. Isogenic PMI knockout models were generated by CRISPR/Cas9 gene editing, yielding a 20-fold increase in sensitivity to mannose in vitro, and causing significant tumour growth delay in vivo. This effect is driven by metabolic reprogramming, resulting in potent glycolytic suppression coupled with consistent depletion of ATP and glycolytic intermediates in PMI-depleted models. Functionally, these changes impede DNA damage repair following radiation, resulting in a significant increase in radiation sensitivity. Mannose and PMI ablation supressed both oxygen consumption rate and extracellular acidification, pushing cells towards a state of metabolic quiescence, effects contributing to increased radiation sensitivity under both normoxic and hypoxic conditions. In 3D-tumoursphere models, metabolic suppression by mannose and PMI depletion was shown to elevate intra-tumoursphere oxygen levels, contributing to significant in vitro oxygen-mediated radiosensitisation. These findings position PMI as a promising anti-tumour target, highlighting the potential of mannose as a metabolic radiosensitiser enhancing cancer treatment efficacy.
Collapse
Affiliation(s)
- Tongchuan Wang
- School of Pharmacy, Queens University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Connor Brown
- Patrick G. Johnston Centre for Cancer Research, Queens University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Niamh Doherty
- Patrick G. Johnston Centre for Cancer Research, Queens University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Niall M Byrne
- School of Pharmacy, Queens University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Rayhanul Islam
- School of Pharmacy, Queens University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Meabh Doherty
- School of Pharmacy, Queens University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Jie Feng
- School of Pharmacy, Queens University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Cancan Yin
- School of Pharmacy, Queens University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Sarah Chambers
- School of Pharmacy, Queens University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Lydia McQuoid
- School of Pharmacy, Queens University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Letitia Mohamed-Smith
- Patrick G. Johnston Centre for Cancer Research, Queens University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Karl T Butterworth
- Patrick G. Johnston Centre for Cancer Research, Queens University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Emma M Kerr
- Patrick G. Johnston Centre for Cancer Research, Queens University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Jonathan A Coulter
- School of Pharmacy, Queens University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK.
| |
Collapse
|
2
|
Nosrat F, Dede C, McCullum LB, Garcia R, Mohamed AS, Scott JG, Bates JE, McDonald BA, Wahid KA, Naser MA, He R, Karagoz A, Moreno AC, van Dijk LV, Brock KK, Heukelom J, Hosseinian S, Hemmati M, Schaefer AJ, Fuller CD. Optimal timing of organs-at-risk-sparing adaptive radiation therapy for head-and-neck cancer under re-planning resource constraints. Phys Imaging Radiat Oncol 2025; 33:100715. [PMID: 40123771 PMCID: PMC11926540 DOI: 10.1016/j.phro.2025.100715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 11/29/2024] [Accepted: 01/24/2025] [Indexed: 03/25/2025] Open
Abstract
Background and purpose Prior work on adaptive organ-at-risk (OAR)-sparing radiation therapy has typically reported outcomes based on fixed-number or fixed-interval re-planning, which represent one-size-fits-all approaches and do not account for the variable progression of individual patients' toxicities. The purpose of this study was to determine the personalized optimal timing of re-planning in adaptive OAR-sparing radiation therapy, considering limited re-planning resources, for patients with head and neck cancer (HNC). Materials and methods A novel Markov decision process (MDP) model was developed to determine optimal timing of re-planning based on the patient's expected toxicity, characterized by normal tissue complication probability (NTCP), for four toxicities. The MDP parameters were derived from a dataset comprising 52 HNC patients treated between 2007 and 2013. Kernel density estimation was used to smooth the sample distributions. Optimal re-planning strategies were obtained when the permissible number of re-plans throughout the treatment was limited to 1, 2, and 3, respectively. Results The MDP (optimal) solution recommended re-planning when the difference between planned and actual NTCPs (ΔNTCP) was greater than or equal to 1%, 2%, 2%, and 4% at treatment fractions 10, 15, 20, and 25, respectively, exhibiting a temporally increasing pattern. The ΔNTCP thresholds remained constant across the number of re-planning allowances (1, 2, and 3). Conclusion In limited-resource settings that impeded high-frequency adaptations, ΔNTCP thresholds obtained from an MDP model could derive optimal timing of re-planning to minimize the likelihood of treatment toxicities.
Collapse
Affiliation(s)
- Fatemeh Nosrat
- Department of Computational Applied Mathematics and Operations Research, Rice University Houston TX USA
| | - Cem Dede
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center Houston TX USA
| | - Lucas B. McCullum
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center Houston TX USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences Houston TX USA
| | - Raul Garcia
- Department of Computational Applied Mathematics and Operations Research, Rice University Houston TX USA
| | - Abdallah S.R. Mohamed
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center Houston TX USA
- Department of Radiation Oncology, Baylor College of Medicine Houston TX USA
| | - Jacob G. Scott
- Department of Translational Hematology and Oncology Research, Lerner Research Institute Cleveland OH USA
| | - James E. Bates
- Department of Radiation Oncology, Emory University Atlanta GA USA
| | - Brigid A. McDonald
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center Houston TX USA
| | - Kareem A. Wahid
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center Houston TX USA
| | - Mohamed A. Naser
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center Houston TX USA
| | - Renjie He
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center Houston TX USA
| | - Aysenur Karagoz
- Department of Computational Applied Mathematics and Operations Research, Rice University Houston TX USA
| | - Amy C. Moreno
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center Houston TX USA
| | - Lisanne V. van Dijk
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center Houston TX USA
- Department of Radiation Oncology, University of Groningen University Medical Center Groningen Groningen Netherlands
| | - Kristy K. Brock
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center Houston TX USA
| | - Jolien Heukelom
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction Maastricht University Medical Centre+ Maastricht Netherlands
| | | | - Mehdi Hemmati
- School of Industrial and Systems Engineering, University of Oklahoma Norman OK USA
| | - Andrew J. Schaefer
- Department of Computational Applied Mathematics and Operations Research, Rice University Houston TX USA
| | - Clifton D. Fuller
- Department of Computational Applied Mathematics and Operations Research, Rice University Houston TX USA
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center Houston TX USA
| |
Collapse
|
3
|
Nosrat F, Dede C, McCullum LB, Garcia R, Mohamed ASR, Scott JG, Bates JE, McDonald BA, Wahid KA, Naser MA, He R, Karagoz A, Moreno AC, van Dijk LV, Brock KK, Heukelom J, Hosseinian S, Hemmati M, Schaefer AJ, Fuller CD. Optimal Timing of Organs-at-Risk-Sparing Adaptive Radiation Therapy for Head- and-Neck Cancer under Re-planning Resource Constraints. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.01.24305163. [PMID: 39417124 PMCID: PMC11482873 DOI: 10.1101/2024.04.01.24305163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Background and Purpose Prior work on adaptive organ-at-risk (OAR)-sparing radiation therapy has typically reported outcomes based on fixed-number or fixed-interval re-planning, which represent one-size-fits-all approaches and do not account for the variable progression of individual patients' toxicities. The purpose of this study was to determine the personalized optimal timing for re-planning in adaptive OAR-sparing radiation therapy, considering limited re-planning resources, for patients with head and neck cancer (HNC). Materials and Methods A novel Markov decision process (MDP) model was developed to determine optimal timing of re-planning based on the patient's expected toxicity, characterized by normal tissue complication probability (NTCP), for four toxicities. The MDP parameters were derived from a dataset comprising 52 HNC patients treated at the University of Texas MD Anderson Cancer Center between 2007 and 2013. Kernel density estimation was used to smooth the sample distributions. Optimal re-planning strategies were obtained when the permissible number of re-plans throughout the treatment was limited to 1, 2, and 3, respectively. Results The MDP (optimal) solution recommended re-planning when the difference between planned and actual NTCPs (ΔNTCP) was greater than or equal to 1%, 2%, 2%, and 4% at treatment fractions 10, 15, 20, and 25, respectively, exhibiting a temporally increasing pattern. The ΔNTCP thresholds remained constant across the number of re-planning allowances (1, 2, and 3). Conclusion In limited-resource settings that impeded high-frequency adaptations, ΔNTCP thresholds obtained from an MDP model could derive optimal timing of re-planning to minimize the likelihood of treatment toxicities.
Collapse
Affiliation(s)
- Fatemeh Nosrat
- Department of Computational Applied Mathematics and Operations Research, Rice University, Houston, TX, USA
| | - Cem Dede
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lucas B. McCullum
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Raul Garcia
- Department of Computational Applied Mathematics and Operations Research, Rice University, Houston, TX, USA
| | - Abdallah S. R. Mohamed
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Radiation Oncology, Baylor College of Medicine, Houston, TX, USA
| | - Jacob G. Scott
- Department of Translational Hematology and Oncology Research, Lerner Research Institute, Cleveland, OH, USA
| | - James E. Bates
- Department of Radiation Oncology, Emory University, Atlanta, GA, USA
| | - Brigid A. McDonald
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kareem A. Wahid
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mohamed A. Naser
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Renjie He
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Aysenur Karagoz
- Department of Computational Applied Mathematics and Operations Research, Rice University, Houston, TX, USA
| | - Amy C. Moreno
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lisanne V. van Dijk
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Kristy K. Brock
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jolien Heukelom
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, Netherlands
| | | | - Mehdi Hemmati
- School of Industrial and Systems Engineering, University of Oklahoma, Norman, OK, USA
| | - Andrew J. Schaefer
- Department of Computational Applied Mathematics and Operations Research, Rice University, Houston, TX, USA
| | - Clifton D. Fuller
- Department of Computational Applied Mathematics and Operations Research, Rice University, Houston, TX, USA
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
4
|
Ma B, Guo J, De Biase A, van Dijk LV, van Ooijen PMA, Langendijk JA, Both S, Sijtsema NM. PET/CT based transformer model for multi-outcome prediction in oropharyngeal cancer. Radiother Oncol 2024; 197:110368. [PMID: 38834153 DOI: 10.1016/j.radonc.2024.110368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/08/2024] [Accepted: 06/01/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND AND PURPOSE To optimize our previously proposed TransRP, a model integrating CNN (convolutional neural network) and ViT (Vision Transformer) designed for recurrence-free survival prediction in oropharyngeal cancer and to extend its application to the prediction of multiple clinical outcomes, including locoregional control (LRC), Distant metastasis-free survival (DMFS) and overall survival (OS). MATERIALS AND METHODS Data was collected from 400 patients (300 for training and 100 for testing) diagnosed with oropharyngeal squamous cell carcinoma (OPSCC) who underwent (chemo)radiotherapy at University Medical Center Groningen. Each patient's data comprised pre-treatment PET/CT scans, clinical parameters, and clinical outcome endpoints, namely LRC, DMFS and OS. The prediction performance of TransRP was compared with CNNs when inputting image data only. Additionally, three distinct methods (m1-3) of incorporating clinical predictors into TransRP training and one method (m4) that uses TransRP prediction as one parameter in a clinical Cox model were compared. RESULTS TransRP achieved higher test C-index values of 0.61, 0.84 and 0.70 than CNNs for LRC, DMFS and OS, respectively. Furthermore, when incorporating TransRP's prediction into a clinical Cox model (m4), a higher C-index of 0.77 for OS was obtained. Compared with a clinical routine risk stratification model of OS, our model, using clinical variables, radiomics and TransRP prediction as predictors, achieved larger separations of survival curves between low, intermediate and high risk groups. CONCLUSION TransRP outperformed CNN models for all endpoints. Combining clinical data and TransRP prediction in a Cox model achieved better OS prediction.
Collapse
Affiliation(s)
- Baoqiang Ma
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| | - Jiapan Guo
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Machine Learning Lab, Data Science Center in Health (DASH), Groningen, the Netherlands; Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence, University of Groningen, Groningen, the Netherlands
| | - Alessia De Biase
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Machine Learning Lab, Data Science Center in Health (DASH), Groningen, the Netherlands
| | - Lisanne V van Dijk
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Peter M A van Ooijen
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Machine Learning Lab, Data Science Center in Health (DASH), Groningen, the Netherlands
| | - Johannes A Langendijk
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Stefan Both
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Nanna M Sijtsema
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
5
|
de Leeuw ALMP, Giralt J, Tao Y, Benavente S, France Nguyen TV, Hoebers FJP, Hoeben A, Terhaard CHJ, Wai Lee L, Friesland S, Steenbakkers RJHM, Tans L, Heukelom J, Kayembe MT, van Kranen SR, Bartelink H, Rasch CRN, Sonke JJ, Hamming-Vrieze O. A multicentric randomized controlled phase III trial of adaptive and 18F-FDG-PET-guided dose-redistribution in locally advanced head and neck squamous cell carcinoma (ARTFORCE). Radiother Oncol 2024; 196:110281. [PMID: 38636708 DOI: 10.1016/j.radonc.2024.110281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 03/16/2024] [Accepted: 04/11/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND AND PURPOSE This multicenter randomized phase III trial evaluated whether locoregional control of patients with LAHNSCC could be improved by fluorodeoxyglucose-positron emission tomography (FDG-PET)-guided dose-escalation while minimizing the risk of increasing toxicity using a dose-redistribution and scheduled adaptation strategy. MATERIALS AND METHODS Patients with T3-4-N0-3-M0 LAHNSCC were randomly assigned (1:1) to either receive a dose distribution ranging from 64-84 Gy/35 fractions with adaptation at the 10thfraction (rRT) or conventional 70 Gy/35 fractions (cRT). Both arms received concurrent three-cycle 100 mg/m2cisplatin. Primary endpoints were 2-year locoregional control (LRC) and toxicity. Primary analysis was based on the intention-to-treat principle. RESULTS Due to slow accrual, the study was prematurely closed (at 84 %) after randomizing 221 eligible patients between 2012 and 2019 to receive rRT (N = 109) or cRT (N = 112). The 2-year LRC estimate difference of 81 % (95 %CI 74-89 %) vs. 74 % (66-83 %) in the rRT and cRT arm, respectively, was not found statistically significant (HR 0.75, 95 %CI 0.43-1.31,P=.31). Toxicity prevalence and incidence rates were similar between trial arms, with exception for a significant increased grade ≥ 3 pharyngolaryngeal stenoses incidence rate in the rRT arm (0 versus 4 %,P=.05). In post-hoc subgroup analyses, rRT improved LRC for patients with N0-1 disease (HR 0.21, 95 %CI 0.05-0.93) and oropharyngeal cancer (0.31, 0.10-0.95), regardless of HPV. CONCLUSION Adaptive and dose redistributed radiotherapy enabled dose-escalation with similar toxicity rates compared to conventional radiotherapy. While FDG-PET-guided dose-escalation did overall not lead to significant tumor control or survival improvements, post-hoc results showed improved locoregional control for patients with N0-1 disease or oropharyngeal cancer treated with rRT.
Collapse
Affiliation(s)
- Anna Liza M P de Leeuw
- Department of Radiation Oncology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands.
| | - Jordi Giralt
- Department of Radiation Oncology, Hospital General Vall d'Hebron, Barcelona, Spain; Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Yungan Tao
- Department of Radiation Oncology, Institut Gustave Roussy, Villejuif, France
| | - Sergi Benavente
- Department of Radiation Oncology, Hospital General Vall d'Hebron, Barcelona, Spain; Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | | | - Frank J P Hoebers
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Ann Hoeben
- Division of Medical Oncology, Department of Internal Medicine, GROW-School of Oncology and Developmental Biology Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Chris H J Terhaard
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lip Wai Lee
- Department of Radiation Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Signe Friesland
- Department of Radiation Oncology, Karolinska Institute, Stockholm, Sweden
| | - Roel J H M Steenbakkers
- Department of Radiation Oncology, University Medical Center Groningen, Groningen, The Netherlands
| | - Lisa Tans
- Department of Radiation Oncology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Jolien Heukelom
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Mutamba T Kayembe
- Department of Bioinformatics and Statistics, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Simon R van Kranen
- Department of Radiation Oncology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Harry Bartelink
- Department of Radiation Oncology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Coen R N Rasch
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jan-Jakob Sonke
- Department of Radiation Oncology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Olga Hamming-Vrieze
- Department of Radiation Oncology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands.
| |
Collapse
|
6
|
Al-Mamgani A, Kessels R, Gouw ZA, Navran A, Mohan V, van de Kamer JB, Sonke JJ, Vogel WV. Adaptive FDG-PET/CT guided dose escalation in head and neck squamous cell carcinoma: Late toxicity and oncologic outcomes (The ADMIRE study). Clin Transl Radiat Oncol 2023; 43:100676. [PMID: 37753461 PMCID: PMC10518442 DOI: 10.1016/j.ctro.2023.100676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/14/2023] [Indexed: 09/28/2023] Open
Abstract
Purpose To report on the late toxicity and local control (LC) of head and neck cancer patients treated with adaptive FDG-PET/CT response-guided radiotherapy (ADMIRE) with dose escalation (NCT03376386). Materials and methods Between December 2017 and April 2019, 20 patients with stage II-IV squamous cell carcinoma of the larynx, hypopharynx or oropharynx were treated within the ADMIRE study where FDG-PET/CT response-guided (Week 2&4) dose escalation was applied (total dose 70-78 Gy). Cisplatin or cetuximab was added to radiotherapy in case of T3-4 and/or N2c disease. To compare the LC and late toxicity of the study population, we used an external control group (n = 67) consisting of all eligible patients for the study (but not participated). These patients were treated in our institution during the same period with the current standard of 70 Gy radiotherapy. To reduce the effect of confounding, logistic regression analyses was done using stabilized inverse probability of treatment weighting (SIPTW). Results After median follow-up of 40 and 43 months for the ADMIRE and control groups, the 3-year LC-rates were 74% and 78%, respectively (adjusted HR after SIPTW 0.80, 95 %CI 0.25-2.52, p = 0.70). The incidences of any late G3 toxicity were 35% and 18%, respectively. The adjusted OR for any late G3 toxicity was 5.09 (95 %CI 1.64-15.8, p = 0.005), for any late G ≥ 2 toxicity was 3.67 (95 %CI 1.2-11.7, p = 0.02), for persistent laryngeal edema was 10.95 (95% CI 2.71-44.29, p = 0.001), for persistent mucosal ulcers was 4.67 (95% CI 1.23-17.7, p = 0.023), and for late G3 radionecrosis was 15.69 (95 %CI 2.43-101.39, p = 0.004). Conclusion Given the comparable LC rates with increased late toxicity in the ADMIRE group, selection criteria for future adaptive dose escalation trials (preferably randomized) need to be refined to include only patients at higher risk of local failure and/or lower risk of severe late toxicity.
Collapse
Affiliation(s)
- Abrahim Al-Mamgani
- Department of Radiation Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Rob Kessels
- Department of Biometrics, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Zeno A.R. Gouw
- Department of Radiation Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Arash Navran
- Department of Radiation Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Vineet Mohan
- Department of Radiation Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jeroen B. van de Kamer
- Department of Radiation Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jan-Jakob Sonke
- Department of Radiation Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Wouter V. Vogel
- Department of Radiation Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Nuclear Medicine, Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Cox MC, Jurcka T, Arens AIJ, van Rijk MC, Kaanders JHAM, van den Bosch S. Quantitative and clinical implications of the EARL2 versus EARL1 [ 18F]FDG PET-CT performance standards in head and neck squamous cell carcinoma. EJNMMI Res 2023; 13:91. [PMID: 37878160 PMCID: PMC10600079 DOI: 10.1186/s13550-023-01042-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 10/13/2023] [Indexed: 10/26/2023] Open
Abstract
BACKGROUND The EANM Research Ltd. (EARL) guidelines give recommendations for harmonization of [18F]FDG PET-CT image acquisition and reconstruction, aiming to ensure reproducibility of quantitative data between PET scanners. Recent technological advancements in PET-CT imaging resulted in an updated version of the EARL guidelines (EARL2). The aim of this study is to compare quantitative [18F]FDG uptake metrics of the primary tumor and lymph nodes in patients with head and neck squamous cell carcinoma (HNSCC) on EARL2 versus EARL1 reconstructed images and to describe clinical implications for nodal staging and treatment. METHODS Forty-nine consecutive patients with HNSCC were included. For all, both EARL1 and EARL2 images were reconstructed from a singular [18F]FDG PET-CT scan. Primary tumors and non-necrotic lymph nodes ≥ 5 mm were delineated on CT-scan. In the quantitative analysis, maximum standardized uptake values (SUVmax) and standardized uptake ratios (SURmax, i.e., SUVmax normalized to cervical spinal cord uptake) were calculated for all lesions on EARL1 and EARL2 reconstructions. Metabolic tumor volume (MTV) and total lesion glycolysis were compared between EARL1 and EARL2 using different segmentation methods (adaptive threshold; SUV2.5/3.5/4.5; SUR2.5/3.5/4.5; MAX40%/50%). In the qualitative analysis, each lymph node was scored independently by two nuclear medicine physicians on both EARL1 and EARL2 images on different occasions using a 4-point scale. RESULTS There was a significant increase in SUVmax (16.5%) and SURmax (9.6%) of primary tumor and lymph nodes on EARL2 versus EARL1 imaging (p < 0.001). The proportional difference of both SUVmax and SURmax between EARL2 and EARL1 decreased with increasing tumor volume (p < 0.001). Absolute differences in MTVs between both reconstructions were small (< 1.0 cm3), independent of the segmentation method. MTVs decreased on EARL2 using relative threshold methods (adaptive threshold; MAX40%/50%) and increased using static SUV or SUR thresholds. With visual scoring of lymph nodes 38% (11/29) of nodes with score 2 on EARL1 were upstaged to score 3 on EARL2, which resulted in an alteration of nodal stage in 18% (6/33) of the patients. CONCLUSIONS Using the EARL2 method for PET image reconstruction resulted in higher SUVmax and SURmax compared to EARL1, with nodal upstaging in a significant number of patients.
Collapse
Affiliation(s)
- Maurice C. Cox
- Department of Radiation Oncology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Tijn Jurcka
- Department of Radiation Oncology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Anne I. J. Arens
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Maartje C. van Rijk
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Sven van den Bosch
- Department of Radiation Oncology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
8
|
van der Hulst HJ, Jansen RW, Vens C, Bos P, Schats W, de Jong MC, Martens RM, Bodalal Z, Beets-Tan RGH, van den Brekel MWM, de Graaf P, Castelijns JA. The Prediction of Biological Features Using Magnetic Resonance Imaging in Head and Neck Squamous Cell Carcinoma: A Systematic Review and Meta-Analysis. Cancers (Basel) 2023; 15:5077. [PMID: 37894447 PMCID: PMC10605807 DOI: 10.3390/cancers15205077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Magnetic resonance imaging (MRI) is an indispensable, routine technique that provides morphological and functional imaging sequences. MRI can potentially capture tumor biology and allow for longitudinal evaluation of head and neck squamous cell carcinoma (HNSCC). This systematic review and meta-analysis evaluates the ability of MRI to predict tumor biology in primary HNSCC. Studies were screened, selected, and assessed for quality using appropriate tools according to the PRISMA criteria. Fifty-eight articles were analyzed, examining the relationship between (functional) MRI parameters and biological features and genetics. Most studies focused on HPV status associations, revealing that HPV-positive tumors consistently exhibited lower ADCmean (SMD: 0.82; p < 0.001) and ADCminimum (SMD: 0.56; p < 0.001) values. On average, lower ADCmean values are associated with high Ki-67 levels, linking this diffusion restriction to high cellularity. Several perfusion parameters of the vascular compartment were significantly associated with HIF-1α. Analysis of other biological factors (VEGF, EGFR, tumor cell count, p53, and MVD) yielded inconclusive results. Larger datasets with homogenous acquisition are required to develop and test radiomic-based prediction models capable of capturing different aspects of the underlying tumor biology. Overall, our study shows that rapid and non-invasive characterization of tumor biology via MRI is feasible and could enhance clinical outcome predictions and personalized patient management for HNSCC.
Collapse
Affiliation(s)
- Hedda J. van der Hulst
- Department of Radiology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
- GROW School for Oncology and Developmental Biology, University of Maastricht, 6211 LK Maastricht, The Netherlands
| | - Robin W. Jansen
- Department of Otolaryngology and Head & Neck Surgery, Amsterdam UMC Location Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, 1081 HV Amsterdam, The Netherlands
| | - Conchita Vens
- Department of Otolaryngology and Head & Neck Surgery, Amsterdam UMC Location Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
- School of Cancer Science, University of Glasgow, Glasgow G61 1QH, UK
| | - Paula Bos
- Department of Radiation Oncology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Winnie Schats
- Scientific Information Service, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Marcus C. de Jong
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, 1081 HV Amsterdam, The Netherlands
| | - Roland M. Martens
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, 1081 HV Amsterdam, The Netherlands
| | - Zuhir Bodalal
- Department of Radiology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
- GROW School for Oncology and Developmental Biology, University of Maastricht, 6211 LK Maastricht, The Netherlands
| | - Regina G. H. Beets-Tan
- Department of Radiology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
- GROW School for Oncology and Developmental Biology, University of Maastricht, 6211 LK Maastricht, The Netherlands
- Department of Regional Health Research, University of Southern Denmark, 5230 Odense, Denmark
| | - Michiel W. M. van den Brekel
- Department of Otolaryngology and Head & Neck Surgery, Amsterdam UMC Location Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
- Department of Head and Neck Oncology and Surgery, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
- Department of Otolaryngology and Head & Neck Surgery, Amsterdam UMC Location University of Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Pim de Graaf
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, 1081 HV Amsterdam, The Netherlands
| | - Jonas A. Castelijns
- Department of Radiology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
9
|
Buurman DJM, Speksnijder CM, Granzier ME, Timmer VCML, Hoebers FJP, Kessler P. The extent of unnecessary tooth loss due to extractions prior to radiotherapy based on radiation field and dose in patients with head and neck cancer. Radiother Oncol 2023; 187:109847. [PMID: 37543058 DOI: 10.1016/j.radonc.2023.109847] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/01/2023] [Accepted: 07/31/2023] [Indexed: 08/07/2023]
Abstract
BACKGROUND AND PURPOSE Prior to radiotherapy (RT), teeth with poor prognosis that pose a risk for post-RT osteoradionecrosis (ORN) are removed. To allow enough time for adequate wound healing prior to RT, decisions are made based on the estimated radiation dose. This study aimed to gain insight into (1) the overall number of teeth extracted and (2) the patient and tumor characteristics associated with the number of redundantly extracted teeth. MATERIALS AND METHODS Patients with head and neck cancer (HNC), treated with RT between 2015 and 2019, were included in this cross-sectional study. For each extracted tooth the radiation dose was calculated retrospectively. The cut-off point for valid extraction was set at ≥ 40 Gy in accordance with the national protocol. Potential factors for doses ≥ 40 Gy were identified, including age, sex, tumor location, tumor (T) and nodal stage (N), overall tumor stage and number of teeth extracted. RESULTS A total of 1759 teeth were removed from 358 patients. Of these 1759 teeth, 1274 (74%) appeared to have been removed redundantly, based on the mean dose (Dmean) of < 40 Gy. Using the maximum dose (Dmax) of < 40 Gy, 1080 teeth (61%) appeared to have been removed redundantly. Tumor location and N-classification emerged as the most important associative variables in the multivariable regression analysis. CONCLUSION To our knowledge this is the first study to provide insight into the amount of teeth redundantly extracted prior to RT and represents a step forward in de-escalating the damage to the masticatory system prior to RT.
Collapse
Affiliation(s)
- Doke J M Buurman
- Maastricht University Medical Center, Department of Cranio-Maxillofacial Surgery, P.O. Box 5800 6202 AZ, Maastricht, the Netherlands; Maastricht University Medical Center, GROW School for Oncology and Reproduction, P.O. Box 616 6200 MD, Maastricht, the Netherlands.
| | - Caroline M Speksnijder
- Maastricht University Medical Center, Department of Cranio-Maxillofacial Surgery, P.O. Box 5800 6202 AZ, Maastricht, the Netherlands; University Medical Center Utrecht Cancer Center, Department of Head and Neck Surgical Oncology, Utrecht University, P.O. Box 85500 3508 GA, Utrecht, the Netherlands; University Medical Center Utrecht, Department of Oral and Maxillofacial Surgery and Special Dental Care, Utrecht University, P.O. Box 85500 3508 GA, Utrecht, the Netherlands
| | - Marlies E Granzier
- MAASTRO, Department of Radiation Oncology, Doctor Tanslaan 12 6229 ET, Maastricht, the Netherlands
| | - Veronique C M L Timmer
- Maastricht University Medical Center, Department of Cranio-Maxillofacial Surgery, P.O. Box 5800 6202 AZ, Maastricht, the Netherlands; Maastricht University Medical Center, GROW School for Oncology and Reproduction, P.O. Box 616 6200 MD, Maastricht, the Netherlands
| | - Frank J P Hoebers
- Maastricht University Medical Center, GROW School for Oncology and Reproduction, P.O. Box 616 6200 MD, Maastricht, the Netherlands; MAASTRO, Department of Radiation Oncology, Doctor Tanslaan 12 6229 ET, Maastricht, the Netherlands
| | - Peter Kessler
- Maastricht University Medical Center, Department of Cranio-Maxillofacial Surgery, P.O. Box 5800 6202 AZ, Maastricht, the Netherlands; Maastricht University Medical Center, GROW School for Oncology and Reproduction, P.O. Box 616 6200 MD, Maastricht, the Netherlands
| |
Collapse
|
10
|
Castelli J, Thariat J, Benezery K, Hasbini A, Gery B, Berger A, Liem X, Guihard S, Chapet S, Thureau S, Auberdiac P, Pommier P, Ruffier A, Perrier L, Devillers A, Campillo-Gimenez B, de Crevoisier R. Weekly Adaptive Radiotherapy vs Standard Intensity-Modulated Radiotherapy for Improving Salivary Function in Patients With Head and Neck Cancer: A Phase 3 Randomized Clinical Trial. JAMA Oncol 2023; 9:1056-1064. [PMID: 37261806 PMCID: PMC10236337 DOI: 10.1001/jamaoncol.2023.1352] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 03/08/2023] [Indexed: 06/02/2023]
Abstract
Importance Xerostomia is a major toxic effect associated with intensity-modulated radiotherapy (IMRT) for oropharyngeal cancers. Objective To assess whether adaptive radiotherapy (ART) improves salivary function compared with IMRT in patients with head and neck cancer. Design, Setting, and Participants This phase 3 randomized clinical trial was conducted in 11 French centers. Patients aged 18 to 75 years with stage III-IVB squamous cell oropharyngeal cancer treated with chemoradiotherapy were enrolled between July 5, 2013, and October 1, 2018. Data were analyzed from November 2021 to May 2022. Interventions The patients were randomly assigned (1:1) to receive standard IMRT (without replanning) or ART (systematic weekly replanning). Main Outcomes and Measures The primary end point was the frequency of xerostomia, measured by stimulating salivary flow with paraffin. Secondary end points included salivary gland excretory function measured using technetium-99m pertechnetate scintigraphy, patient-reported outcomes (Eisbruch xerostomia-specific questionnaire and the MD Anderson Symptom Inventory for Head and Neck Cancer questionnaire), early and late toxic effects, disease control, and overall and cancer-specific survival. Results A total of 132 patients were randomized, and after 1 exclusion in the ART arm, 131 were analyzed: 66 in the ART arm (mean [SD] age at inclusion, 60 [8] years; 57 [86.4%] male) and 65 in the standard IMRT arm (mean [SD] age at inclusion, 60 [8] years; 57 [87.7%] male). The median follow-up was 26.4 months (IQR, 1.2-31.3 months). The mean (SD) salivary flow (paraffin) at 12 months was 630 (450) mg/min in the ART arm and 584 (464) mg/min in the standard arm (P = .64). The mean (SD) excretory function of the parotid gland at 12 months, measured by scintigraphy, improved in the ART arm (48% [17%]) compared with the standard arm (41% [17%]) (P = .02). The 2-year-overall survival was 76.9% (95% CI, 64.7%-85.4%) in both arms. Conclusions and Relevance This randomized clinical trial did not demonstrate a benefit of ART in decreasing xerostomia compared with standard IMRT. No significant differences were found in secondary end points except for parotid gland excretory function, as assessed by scintigraphy, or in survival rates. Trial Registration ClinicalTrials.gov Identifier: NCT01874587.
Collapse
Affiliation(s)
- Joël Castelli
- University of Rennes, CLCC Eugène Marquis, Inserm, LTSI–UMR 1099, Rennes, France
| | - Juliette Thariat
- Department of Radiation Oncology, Centre François Baclesse, Laboratoire de Physique Corpusculaire, Normandie Universite, Caen, France
| | - Karen Benezery
- Department of Radiotherapy, Centre Antoine Lacassagne, Nice, France
| | - Ali Hasbini
- Radiotherapy, Clinique Pasteur-Lanroze, Brest, France
| | - Bernard Gery
- Department of Radiation Oncology, Centre François Baclesse, Laboratoire de Physique Corpusculaire, Normandie Universite, Caen, France
| | - Antoine Berger
- Department of Radiotherapy, CHU Poitiers, Poitiers, France
| | - Xavier Liem
- Academic Department of Radiation Oncology and Brachytherapy, Oscar Lambret Center, Lille, France
| | - Sébastien Guihard
- Department of Radiotherapy, Institut de Cancérologie Strasbourg Europe, Strasbourg, France
| | - Sophie Chapet
- Department of Radiotherapy, CHU Tours, Tours, France
| | | | | | - Pascal Pommier
- Department of Radiotherapy, Centre Léon Bérard, Lyon, France
| | | | - Lionel Perrier
- University Lyon, Léon Bérard Cancer Centre, Lyon, France
| | - Anne Devillers
- Department of Nuclear Medicine, Centre Eugène Marquis, Rennes, France
| | | | - Renaud de Crevoisier
- University of Rennes, CLCC Eugène Marquis, Inserm, LTSI–UMR 1099, Rennes, France
| |
Collapse
|
11
|
Elbers JBW, Gunsch PA, Debets R, Keereweer S, van Meerten E, Zindler J, van Norden Y, Hoogeman MS, Verduijn GM, Kroesen M, Nout RA. HYpofractionated, dose-redistributed RAdiotherapy with protons and photons to combat radiation-induced immunosuppression in head and neck squamous cell carcinoma: study protocol of the phase I HYDRA trial. BMC Cancer 2023; 23:541. [PMID: 37312053 DOI: 10.1186/s12885-023-11031-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/31/2023] [Indexed: 06/15/2023] Open
Abstract
BACKGROUND Radiotherapy (RT) is the standard of care for most advanced head and neck squamous cell carcinoma (HNSCC) and results in an unfavorable 5-year overall survival of 40%. Despite strong biological rationale, combining RT with immune checkpoint inhibitors does not result in a survival benefit. Our hypothesis is that the combination of these individually effective treatments fails because of radiation-induced immunosuppression and lymphodepletion. By integrating modern radiobiology and innovative radiotherapy concepts, the patient's immune system could be maximally retained by (1) increasing the dose per fraction so that the total dose and number of fractions can be reduced (HYpofractionation), (2) redistributing the radiation dose towards a higher peak dose within the tumor center and a lowered elective lymphatic field dose (Dose-redistribution), and (3) using RAdiotherapy with protons instead of photons (HYDRA). METHODS The primary aim of this multicenter study is to determine the safety of HYDRA proton- and photon radiotherapy by conducting two parallel phase I trials. Both HYDRA arms are randomized with the standard of care for longitudinal immune profiling. There will be a specific focus on actionable immune targets and their temporal patterns that can be tested in future hypofractionated immunoradiotherapy trials. The HYDRA dose prescriptions (in 20 fractions) are 40 Gy elective dose and 55 Gy simultaneous integrated boost on the clinical target volume with a 59 Gy focal boost on the tumor center. A total of 100 patients (25 per treatment group) will be recruited, and the final analysis will be performed one year after the last patient has been included. DISCUSSION In the context of HNSCC, hypofractionation has historically only been reserved for small tumors out of fear for late normal tissue toxicity. To date, hypofractionated radiotherapy may also be safe for larger tumors, as both the radiation dose and volume can be reduced by the combination of advanced imaging for better target definition, novel accelerated repopulation models and high-precision radiation treatment planning and dose delivery. HYDRA's expected immune-sparing effect may lead to improved outcomes by allowing for future effective combination treatment with immunotherapy. TRIAL REGISTRATION The trial is registered at ClinicalTrials.gov; NCT05364411 (registered on May 6th, 2022).
Collapse
Affiliation(s)
- Joris B W Elbers
- Department of Radiotherapy, Erasmus MC Cancer Institute, Rotterdam, The Netherlands.
- Department of Radiotherapy, HollandPTC, Delft, The Netherlands.
| | - Pascal A Gunsch
- Department of Radiotherapy, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Reno Debets
- Department of Medical Oncology, Laboratory of Tumor Immunology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Stijn Keereweer
- Department of Otorhinolaryngology head and neck surgery, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Esther van Meerten
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Jaap Zindler
- Department of Radiotherapy, HollandPTC, Delft, The Netherlands
- Department of Radiotherapy, Haaglanden Medical Center, Den Haag, The Netherlands
| | - Yvette van Norden
- Department of Radiotherapy, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Mischa S Hoogeman
- Department of Radiotherapy, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
- Department of Radiotherapy, HollandPTC, Delft, The Netherlands
| | - Gerda M Verduijn
- Department of Radiotherapy, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Michiel Kroesen
- Department of Radiotherapy, HollandPTC, Delft, The Netherlands
| | - Remi A Nout
- Department of Radiotherapy, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| |
Collapse
|
12
|
Avery EW, Joshi K, Mehra S, Mahajan A. Role of PET/CT in Oropharyngeal Cancers. Cancers (Basel) 2023; 15:2651. [PMID: 37174116 PMCID: PMC10177278 DOI: 10.3390/cancers15092651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/03/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Oropharyngeal squamous cell carcinoma (OPSCC) comprises cancers of the tonsils, tongue base, soft palate, and uvula. The staging of oropharyngeal cancers varies depending upon the presence or absence of human papillomavirus (HPV)-directed pathogenesis. The incidence of HPV-associated oropharyngeal cancer (HPV + OPSCC) is expected to continue to rise over the coming decades. PET/CT is a useful modality for the diagnosis, staging, and follow up of patients with oropharyngeal cancers undergoing treatment and surveillance.
Collapse
Affiliation(s)
- Emily W. Avery
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Kavita Joshi
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Saral Mehra
- Department of Otolaryngology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Amit Mahajan
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
13
|
Gupta T, Maheshwari G, Joshi K, Sawant P, Mishra A, Khairnar S, Patel P, Sinha S, Swain M, Budrukkar A, Ghosh-Laskar S, Agarwal JP. Image-guidance triggered adaptive radiation therapy in head and neck squamous cell carcinoma: single-institution experience and implications for clinical practice. J Med Imaging Radiat Sci 2023; 54:88-96. [PMID: 36517346 DOI: 10.1016/j.jmir.2022.11.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 12/15/2022]
Abstract
PURPOSE To report frequency and timing of adaptive radiotherapy (ART) and assess patient, disease, and treatment-related characteristics potentially triggering the need for such adaptive replanning in head and neck squamous cell carcinoma (HNSCC). METHODS Medical records of HNSCC patients treated with definitive intensity modulated radiation therapy (IMRT) with or without concurrent systemic chemotherapy were reviewed retrospectively to identify patients undergoing image-guidance triggered adaptive replanning. Clinico-demographic characteristics of patients undergoing ART were compared with patients treated without adaptation using the chi-square test. RESULTS Two hundred patients with squamous cell cancers of the oropharynx, larynx, or hypopharynx treated with definitive IMRT between 2014 to 2019 comprised the study cohort. Twenty-seven (13.5%) patients underwent adaptive replanning during treatment at a median of 17 fractions (inter-quartile range 14-24 fractions). There were no significant differences in the baseline patient (age, gender), disease (site of primary, staging/grouping), and treatment-related characteristics (dose-fractionation, chemotherapy usage) in patients undergoing ART compared to those treated without adaptation. Weight loss during IMRT emerged as a significant factor predicting the need for ART; patients having ≥10% weight loss from baseline were more likely to undergo treatment adaptation compared to patients with <10% weight loss (p = 0.0002). There was variable impact of ART on dose-volume statistics of organs-at-risk such parotid glands and spinal cord. CONCLUSION Image-guidance triggered ART for HNSCC is not associated with significant improvement in OAR dosimetry. However, weight loss during definitive IMRT can be a potentially useful trigger for identifying patients who are most likely to benefit from such adaptive replanning.
Collapse
Affiliation(s)
- Tejpal Gupta
- Department of 1Radiation Oncology and Medical Physics, ACTREC/TMH, Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Mumbai, India.
| | - Guncha Maheshwari
- Department of 1Radiation Oncology and Medical Physics, ACTREC/TMH, Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Kishore Joshi
- Department of 1Radiation Oncology and Medical Physics, ACTREC/TMH, Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Priya Sawant
- Department of 1Radiation Oncology and Medical Physics, ACTREC/TMH, Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Ajay Mishra
- Department of 1Radiation Oncology and Medical Physics, ACTREC/TMH, Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Sunil Khairnar
- Department of 1Radiation Oncology and Medical Physics, ACTREC/TMH, Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Prapti Patel
- Department of 1Radiation Oncology and Medical Physics, ACTREC/TMH, Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Shwetabh Sinha
- Department of 1Radiation Oncology and Medical Physics, ACTREC/TMH, Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Monali Swain
- Department of 1Radiation Oncology and Medical Physics, ACTREC/TMH, Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Ashwini Budrukkar
- Department of 1Radiation Oncology and Medical Physics, ACTREC/TMH, Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Sarbani Ghosh-Laskar
- Department of 1Radiation Oncology and Medical Physics, ACTREC/TMH, Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Jai-Prakash Agarwal
- Department of 1Radiation Oncology and Medical Physics, ACTREC/TMH, Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Mumbai, India
| |
Collapse
|
14
|
Aren E, Trada Y, Lee M, Deshpande S, Jameson MG, Johnston M, Berry M, Estall V, Fowler A. Identifying the location of locoregional recurrences after definitive radiotherapy for head and neck cancer using metabolic parameters of baseline and mid-treatment 18F-FDG-PET scans. J Med Imaging Radiat Oncol 2023; 67:89-97. [PMID: 36300564 DOI: 10.1111/1754-9485.13486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 10/03/2022] [Indexed: 10/31/2022]
Abstract
INTRODUCTION Tumour recurrences after treatment of head and neck squamous cell carcinoma (HNSCC) are more likely to originate from regions of high-baseline FDG-PET uptake. Mid-treatment functional imaging can potentially predict for higher risk of tumour recurrence. The aim of this study is to correlate the location of locoregional tumour recurrence with baseline FDG-PET metabolic volumes and mid-treatment FDG-PET metabolic volumes in patients with HNSCC following definitive radiotherapy. METHODS A total of 23 patients with 26 local and/or regional recurrences underwent baseline (W0-PET) and mid-treatment (W3-PET) 18F-FDG PET scans as part of their radiotherapy. FDG-PET-based metabolic volumes (MTV20%, MTV40%, MTV60%, MTV80%, SUV2.5, SUVpeak and PET_EDGE) were delineated onto the FDG-PET scans. The recurrence nidus was identified on FDG-PET at the time of recurrence (REC-PET). DIR-based fusion was performed for REC-PET to W0-PET, and REC-PET to W3-PET. The location of the recurrence nidus was correlated with the FDG-PET volumes. Further analysis included a comparison of the recurrence density to FDG-PET metabolic volumes. RESULTS Most recurrences occurred within the MTV20%, MTV40% and SUV 2.5 volumes. Sixty-nine per cent of recurrences (18 of 26) occurred within both the W0 MTV40% and W3 MTV40% volumes. A higher recurrence density was seen for iso-SUV contours closer to the maximum SUV for both W0 and W3. For a number of the FDG-PET volumes, including MTV20%, MTV40% and SUV2.5, the recurrence density was improved for W3 compared to W0, however, this improvement was small in magnitude. The average volume of MTV40% contours was considerably smaller than MTV20% and SUV2.5 contours. CONCLUSION The metabolic parameters of SUV2.5, MTV20% and MTV40% delineated on the baseline and mid-treatment FDG-PET scans encompassed the majority of recurrences. The MTV40% is significantly smaller, hence, we prefer this volume for future dose escalation studies.
Collapse
Affiliation(s)
- Ewa Aren
- Cancer Therapy Centre, Liverpool Hospital, Sydney, New South Wales, Australia
| | - Yuvnik Trada
- Calvary Mater Newcastle, Newcastle, New South Wales, Australia.,Faculty of Medicine, The University of Sydney, Sydney, New South Wales, Australia
| | - Mark Lee
- Cancer Therapy Centre, Liverpool Hospital, Sydney, New South Wales, Australia
| | - Shrikant Deshpande
- Cancer Therapy Centre, Liverpool Hospital, Sydney, New South Wales, Australia.,Faculty of Medicine, The University of New South Wales, Sydney, New South Wales, Australia
| | - Michael G Jameson
- Faculty of Medicine, The University of New South Wales, Sydney, New South Wales, Australia.,GenesisCare, Sydney, New South Wales, Australia
| | - Meredith Johnston
- Cancer Therapy Centre, Liverpool Hospital, Sydney, New South Wales, Australia
| | - Megan Berry
- Cancer Therapy Centre, Liverpool Hospital, Sydney, New South Wales, Australia
| | - Vanessa Estall
- Cancer Therapy Centre, Liverpool Hospital, Sydney, New South Wales, Australia
| | - Allan Fowler
- Cancer Therapy Centre, Liverpool Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
15
|
van Dijk LV, Mohamed AS, Ahmed S, Nipu N, Marai GE, Wahid K, Sijtsema NM, Gunn B, Garden AS, Moreno A, Hope AJ, Langendijk JA, Fuller CD. Head and neck cancer predictive risk estimator to determine control and therapeutic outcomes of radiotherapy (HNC-PREDICTOR): development, international multi-institutional validation, and web implementation of clinic-ready model-based risk stratification for head and neck cancer. Eur J Cancer 2023; 178:150-161. [PMID: 36442460 PMCID: PMC9853413 DOI: 10.1016/j.ejca.2022.10.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/13/2022] [Accepted: 10/16/2022] [Indexed: 01/24/2023]
Abstract
BACKGROUND Personalised radiotherapy can improve treatment outcomes of patients with head and neck cancer (HNC), where currently a 'one-dose-fits-all' approach is the standard. The aim was to establish individualised outcome prediction based on multi-institutional international 'big-data' to facilitate risk-based stratification of patients with HNC. METHODS The data of 4611 HNC radiotherapy patients from three academic cancer centres were split into four cohorts: a training (n = 2241), independent test (n = 786), and external validation cohorts 1 (n = 1087) and 2 (n = 497). Tumour- and patient-related clinical variables were considered in a machine learning pipeline to predict overall survival (primary end-point) and local and regional tumour control (secondary end-points); serially, imaging features were considered for optional model improvement. Finally, patients were stratified into high-, intermediate-, and low-risk groups. RESULTS Performance score, AJCC8thstage, pack-years, and Age were identified as predictors for overall survival, demonstrating good performance in both the training cohort (c-index = 0.72 [95% CI, 0.66-0.77]) and in all three validation cohorts (c-indices: 0.76 [0.69-0.83], 0.73 [0.68-0.77], and 0.75 [0.68-0.80]). Excellent stratification of patients with HNC into high, intermediate, and low mortality risk was achieved; with 5-year overall survival rates of 17-46% for the high-risk group compared to 92-98% for the low-risk group. The addition of morphological image feature further improved the performance (c-index = 0.73 [0.64-0.81]). These models are integrated in a clinic-ready interactive web interface: https://uic-evl.github.io/hnc-predictor/ CONCLUSIONS: Robust model-based prediction was able to stratify patients with HNC in distinct high, intermediate, and low mortality risk groups. This can effectively be capitalised for personalised radiotherapy, e.g., for tumour radiation dose escalation/de-escalation.
Collapse
Affiliation(s)
- Lisanne V van Dijk
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| | - Abdallah Sr Mohamed
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sara Ahmed
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nafiul Nipu
- Department of Computer Science, The University of Illinois Chicago, Chicago, USA
| | - G Elisabeta Marai
- Department of Computer Science, The University of Illinois Chicago, Chicago, USA
| | - Kareem Wahid
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nanna M Sijtsema
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Brandon Gunn
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Adam S Garden
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Amy Moreno
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; MD Anderson Stiefel Center for Oropharyngeal Cancer Research and Education (MDA-SCORE), Houston, TX, USA
| | - Andrew J Hope
- Department of Radiation Oncology, University of Toronto, Toronto, Canada; Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Johannes A Langendijk
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Clifton D Fuller
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; MD Anderson Stiefel Center for Oropharyngeal Cancer Research and Education (MDA-SCORE), Houston, TX, USA
| |
Collapse
|
16
|
Quantitative Diffusion-Weighted Imaging Analyses to Predict Response to Neoadjuvant Immunotherapy in Patients with Locally Advanced Head and Neck Carcinoma. Cancers (Basel) 2022; 14:cancers14246235. [PMID: 36551718 PMCID: PMC9776484 DOI: 10.3390/cancers14246235] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Neoadjuvant immune checkpoint blockade (ICB) prior to surgery may induce early pathological responses in head and neck squamous cell carcinoma (HNSCC) patients. Routine imaging parameters fail to diagnose these responses early on. Magnetic resonance (MR) diffusion-weighted imaging (DWI) has proven to be useful for detecting HNSCC tumor mass after (chemo)radiation therapy. METHODS 32 patients with stage II-IV, resectable HNSCC, treated at a phase Ib/IIa IMCISION trial (NCT03003637), were retrospectively analyzed using MR-imaging before and after two doses of single agent nivolumab (anti-PD-1) (n = 6) or nivolumab with ipilimumab (anti-CTLA-4) ICB (n = 26). The primary tumors were delineated pre- and post-treatment. A total of 32 features were derived from the delineation and correlated with the tumor regression percentage in the surgical specimen. RESULTS MR-DWI data was available for 24 of 32 patients. Smaller baseline tumor diameter (p = 0.01-0.04) and higher sphericity (p = 0.03) were predictive of having a good pathological response to ICB. Post-treatment skewness and the change in skewness between MRIs were negatively correlated with the tumor's regression (p = 0.04, p = 0.02). CONCLUSION Pre-treatment DWI tumor diameter and sphericity may be quantitative biomarkers for the prediction of an early pathological response to ICB. Furthermore, our data indicate that ADC skewness could be a marker for individual response evaluation.
Collapse
|
17
|
de Ridder M, Raaijmakers CPJ, Pameijer FA, de Bree R, Reinders FCJ, Doornaert PAH, Terhaard CHJ, Philippens MEP. Target Definition in MR-Guided Adaptive Radiotherapy for Head and Neck Cancer. Cancers (Basel) 2022; 14:3027. [PMID: 35740691 PMCID: PMC9220977 DOI: 10.3390/cancers14123027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 02/01/2023] Open
Abstract
In recent years, MRI-guided radiotherapy (MRgRT) has taken an increasingly important position in image-guided radiotherapy (IGRT). Magnetic resonance imaging (MRI) offers superior soft tissue contrast in anatomical imaging compared to computed tomography (CT), but also provides functional and dynamic information with selected sequences. Due to these benefits, in current clinical practice, MRI is already used for target delineation and response assessment in patients with head and neck squamous cell carcinoma (HNSCC). Because of the close proximity of target areas and radiosensitive organs at risk (OARs) during HNSCC treatment, MRgRT could provide a more accurate treatment in which OARs receive less radiation dose. With the introduction of several new radiotherapy techniques (i.e., adaptive MRgRT, proton therapy, adaptive cone beam computed tomography (CBCT) RT, (daily) adaptive radiotherapy ensures radiation dose is accurately delivered to the target areas. With the integration of a daily adaptive workflow, interfraction changes have become visible, which allows regular and fast adaptation of target areas. In proton therapy, adaptation is even more important in order to obtain high quality dosimetry, due to its susceptibility for density differences in relation to the range uncertainty of the protons. The question is which adaptations during radiotherapy treatment are oncology safe and at the same time provide better sparing of OARs. For an optimal use of all these new tools there is an urgent need for an update of the target definitions in case of adaptive treatment for HNSCC. This review will provide current state of evidence regarding adaptive target definition using MR during radiotherapy for HNSCC. Additionally, future perspectives for adaptive MR-guided radiotherapy will be discussed.
Collapse
Affiliation(s)
- Mischa de Ridder
- Department of Radiotherapy, University Medical Center Utrecht, 3584 Utrecht, The Netherlands; (C.P.J.R.); (F.C.J.R.); (P.A.H.D.); (C.H.J.T.); (M.E.P.P.)
| | - Cornelis P. J. Raaijmakers
- Department of Radiotherapy, University Medical Center Utrecht, 3584 Utrecht, The Netherlands; (C.P.J.R.); (F.C.J.R.); (P.A.H.D.); (C.H.J.T.); (M.E.P.P.)
| | - Frank A. Pameijer
- Department of Radiology, University Medical Center Utrecht, 3584 Utrecht, The Netherlands;
| | - Remco de Bree
- Department of Head and Neck Surgical Oncology, University Medical Center Utrecht, 3584 Utrecht, The Netherlands;
| | - Floris C. J. Reinders
- Department of Radiotherapy, University Medical Center Utrecht, 3584 Utrecht, The Netherlands; (C.P.J.R.); (F.C.J.R.); (P.A.H.D.); (C.H.J.T.); (M.E.P.P.)
| | - Patricia A. H. Doornaert
- Department of Radiotherapy, University Medical Center Utrecht, 3584 Utrecht, The Netherlands; (C.P.J.R.); (F.C.J.R.); (P.A.H.D.); (C.H.J.T.); (M.E.P.P.)
| | - Chris H. J. Terhaard
- Department of Radiotherapy, University Medical Center Utrecht, 3584 Utrecht, The Netherlands; (C.P.J.R.); (F.C.J.R.); (P.A.H.D.); (C.H.J.T.); (M.E.P.P.)
| | - Marielle E. P. Philippens
- Department of Radiotherapy, University Medical Center Utrecht, 3584 Utrecht, The Netherlands; (C.P.J.R.); (F.C.J.R.); (P.A.H.D.); (C.H.J.T.); (M.E.P.P.)
| |
Collapse
|
18
|
Crișan G, Moldovean-Cioroianu NS, Timaru DG, Andrieș G, Căinap C, Chiș V. Radiopharmaceuticals for PET and SPECT Imaging: A Literature Review over the Last Decade. Int J Mol Sci 2022; 23:5023. [PMID: 35563414 PMCID: PMC9103893 DOI: 10.3390/ijms23095023] [Citation(s) in RCA: 118] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/23/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023] Open
Abstract
Positron emission tomography (PET) uses radioactive tracers and enables the functional imaging of several metabolic processes, blood flow measurements, regional chemical composition, and/or chemical absorption. Depending on the targeted processes within the living organism, different tracers are used for various medical conditions, such as cancer, particular brain pathologies, cardiac events, and bone lesions, where the most commonly used tracers are radiolabeled with 18F (e.g., [18F]-FDG and NA [18F]). Oxygen-15 isotope is mostly involved in blood flow measurements, whereas a wide array of 11C-based compounds have also been developed for neuronal disorders according to the affected neuroreceptors, prostate cancer, and lung carcinomas. In contrast, the single-photon emission computed tomography (SPECT) technique uses gamma-emitting radioisotopes and can be used to diagnose strokes, seizures, bone illnesses, and infections by gauging the blood flow and radio distribution within tissues and organs. The radioisotopes typically used in SPECT imaging are iodine-123, technetium-99m, xenon-133, thallium-201, and indium-111. This systematic review article aims to clarify and disseminate the available scientific literature focused on PET/SPECT radiotracers and to provide an overview of the conducted research within the past decade, with an additional focus on the novel radiopharmaceuticals developed for medical imaging.
Collapse
Affiliation(s)
- George Crișan
- Faculty of Physics, Babeş-Bolyai University, Str. M. Kogălniceanu 1, 400084 Cluj-Napoca, Romania; (G.C.); (N.S.M.-C.); (D.-G.T.)
- Department of Nuclear Medicine, County Clinical Hospital, Clinicilor 3-5, 400006 Cluj-Napoca, Romania;
| | | | - Diana-Gabriela Timaru
- Faculty of Physics, Babeş-Bolyai University, Str. M. Kogălniceanu 1, 400084 Cluj-Napoca, Romania; (G.C.); (N.S.M.-C.); (D.-G.T.)
| | - Gabriel Andrieș
- Department of Nuclear Medicine, County Clinical Hospital, Clinicilor 3-5, 400006 Cluj-Napoca, Romania;
| | - Călin Căinap
- The Oncology Institute “Prof. Dr. Ion Chiricuţă”, Republicii 34-36, 400015 Cluj-Napoca, Romania;
| | - Vasile Chiș
- Faculty of Physics, Babeş-Bolyai University, Str. M. Kogălniceanu 1, 400084 Cluj-Napoca, Romania; (G.C.); (N.S.M.-C.); (D.-G.T.)
- Institute for Research, Development and Innovation in Applied Natural Sciences, Babeș-Bolyai University, Str. Fântânele 30, 400327 Cluj-Napoca, Romania
| |
Collapse
|
19
|
PET/CT. PET Clin 2022; 17:297-305. [DOI: 10.1016/j.cpet.2021.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
20
|
Pang Y, Wang H, Li H. Medical Imaging Biomarker Discovery and Integration Towards AI-Based Personalized Radiotherapy. Front Oncol 2022; 11:764665. [PMID: 35111666 PMCID: PMC8801459 DOI: 10.3389/fonc.2021.764665] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/29/2021] [Indexed: 12/22/2022] Open
Abstract
Intensity-modulated radiation therapy (IMRT) has been used for high-accurate physical dose distribution sculpture and employed to modulate different dose levels into Gross Tumor Volume (GTV), Clinical Target Volume (CTV) and Planning Target Volume (PTV). GTV, CTV and PTV can be prescribed at different dose levels, however, there is an emphasis that their dose distributions need to be uniform, despite the fact that most types of tumour are heterogeneous. With traditional radiomics and artificial intelligence (AI) techniques, we can identify biological target volume from functional images against conventional GTV derived from anatomical imaging. Functional imaging, such as multi parameter MRI and PET can be used to implement dose painting, which allows us to achieve dose escalation by increasing doses in certain areas that are therapy-resistant in the GTV and reducing doses in less aggressive areas. In this review, we firstly discuss several quantitative functional imaging techniques including PET-CT and multi-parameter MRI. Furthermore, theoretical and experimental comparisons for dose painting by contours (DPBC) and dose painting by numbers (DPBN), along with outcome analysis after dose painting are provided. The state-of-the-art AI-based biomarker diagnosis techniques is reviewed. Finally, we conclude major challenges and future directions in AI-based biomarkers to improve cancer diagnosis and radiotherapy treatment.
Collapse
Affiliation(s)
- Yaru Pang
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Hui Wang
- Department of Chemical Engineering, University College London, London, United Kingdom
| | - He Li
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
21
|
Paganetti H, Botas P, Sharp GC, Winey B. Adaptive proton therapy. Phys Med Biol 2021; 66:10.1088/1361-6560/ac344f. [PMID: 34710858 PMCID: PMC8628198 DOI: 10.1088/1361-6560/ac344f] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/28/2021] [Indexed: 12/25/2022]
Abstract
Radiation therapy treatments are typically planned based on a single image set, assuming that the patient's anatomy and its position relative to the delivery system remains constant during the course of treatment. Similarly, the prescription dose assumes constant biological dose-response over the treatment course. However, variations can and do occur on multiple time scales. For treatment sites with significant intra-fractional motion, geometric changes happen over seconds or minutes, while biological considerations change over days or weeks. At an intermediate timescale, geometric changes occur between daily treatment fractions. Adaptive radiation therapy is applied to consider changes in patient anatomy during the course of fractionated treatment delivery. While traditionally adaptation has been done off-line with replanning based on new CT images, online treatment adaptation based on on-board imaging has gained momentum in recent years due to advanced imaging techniques combined with treatment delivery systems. Adaptation is particularly important in proton therapy where small changes in patient anatomy can lead to significant dose perturbations due to the dose conformality and finite range of proton beams. This review summarizes the current state-of-the-art of on-line adaptive proton therapy and identifies areas requiring further research.
Collapse
Affiliation(s)
- Harald Paganetti
- Department of Radiation Oncology, Physics Division, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Pablo Botas
- Department of Radiation Oncology, Physics Division, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
- Foundation 29 of February, Pozuelo de Alarcón, Madrid, Spain
| | - Gregory C Sharp
- Department of Radiation Oncology, Physics Division, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Brian Winey
- Department of Radiation Oncology, Physics Division, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
22
|
Weppler S, Quon H, Schinkel C, Yarschenko A, Barbera L, Harjai N, Smith W. Patient-Reported Outcomes-Guided Adaptive Radiation Therapy for Head and Neck Cancer. Front Oncol 2021; 11:759724. [PMID: 34737963 PMCID: PMC8560706 DOI: 10.3389/fonc.2021.759724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 09/20/2021] [Indexed: 01/12/2023] Open
Abstract
Purpose To identify which patient-reported outcomes (PROs) may be most improved through adaptive radiation therapy (ART) with the goal of reducing toxicity incidence among head and neck cancer patients. Methods One hundred fifty-five head and neck cancer patients receiving radical VMAT (chemo)radiotherapy (66-70 Gy in 30-35 fractions) completed the MD Anderson Symptom Inventory, MD Anderson Dysphagia Inventory (MDADI), and Xerostomia Questionnaire while attending routine follow-up clinics between June-October 2019. Hierarchical clustering characterized symptom endorsement. Conventional statistical approaches indicated associations between dose and commonly reported symptoms. These associations, and the potential benefit of interfractional dose corrections, were further explored via logistic regression. Results Radiotherapy-related symptoms were commonly reported (dry mouth, difficulty swallowing/chewing). Clustering identified three patient subgroups reporting: none/mild symptoms for most items (60.6% of patients); moderate/severe symptoms affecting some aspects of general well-being (32.9%); and moderate/severe symptom reporting for most items (6.5%). Clusters of PRO items broadly consisted of acute toxicities, general well-being, and head and neck-specific symptoms (xerostomia, dysphagia). Dose-PRO relationships were strongest between delivered pharyngeal constrictor Dmean and patient-reported dysphagia, with MDADI composite scores (mean ± SD) of 25.7 ± 18.9 for patients with Dmean <50 Gy vs. 32.4 ± 17.1 with Dmean ≥50 Gy. Based on logistic regression models, during-treatment dose corrections back to planned values may confer ≥5% decrease in the absolute risk of self-reported physical dysphagia symptoms ≥1 year post-treatment in 1.2% of patients, with a ≥5% decrease in relative risk in 23.3% of patients. Conclusions Patient-reported dysphagia symptoms are strongly associated with delivered dose to the pharyngeal constrictor. Dysphagia-focused ART may provide the greatest toxicity benefit to head and neck cancer patients, and represent a potential new direction for ART, given that the existing ART literature has focused almost exclusively on xerostomia reduction.
Collapse
Affiliation(s)
- Sarah Weppler
- Department of Physics and Astronomy, University of Calgary, Calgary, AB, Canada.,Department of Medical Physics, Tom Baker Cancer Centre, Calgary, AB, Canada
| | - Harvey Quon
- Department of Radiation Oncology, Tom Baker Cancer Centre, Calgary, AB, Canada.,Department of Oncology, University of Calgary, Calgary, AB, Canada
| | - Colleen Schinkel
- Department of Medical Physics, Tom Baker Cancer Centre, Calgary, AB, Canada.,Department of Oncology, University of Calgary, Calgary, AB, Canada
| | - Adam Yarschenko
- Department of Medical Physics, Tom Baker Cancer Centre, Calgary, AB, Canada.,Department of Mechanical Engineering, University of Calgary, Calgary, AB, Canada
| | - Lisa Barbera
- Department of Radiation Oncology, Tom Baker Cancer Centre, Calgary, AB, Canada.,Department of Oncology, University of Calgary, Calgary, AB, Canada
| | - Nabhya Harjai
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Wendy Smith
- Department of Physics and Astronomy, University of Calgary, Calgary, AB, Canada.,Department of Medical Physics, Tom Baker Cancer Centre, Calgary, AB, Canada.,Department of Oncology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
23
|
Abstract
Abstract
Purpose
The remarkable amount of preclinical data achieved on 89Zr-PET imaging led to a significant clinical translation, concerning mainly immuno-PET applications. The aim of this systematic review is to provide a complete overview on clinical applications of 89Zr-PET imaging, using a systematic approach to identify and collect published studies performed in humans, sorted by field of application and specific disease subsections.
Methods
A systematic literature search of articles suiting the inclusion criteria was conducted on Pubmed, Scopus, Central, and Web Of Science databases, including papers published from January 1967 to November 2020. Eligible studies had to be performed on humans through PET imaging with 89Zr-labeled compounds. The methodological quality was assessed through the Quality Assessment of Diagnostic accuracy Studies-2 tool.
Results
A total of 821 articles were screened. 74 studies performed on humans were assessed for eligibility with the exclusion of further 18, thus 56 articles were ultimately selected for the qualitative analysis.
Conclusions
89Zr has shown to be a powerful PET-imaging tool, in particular for radiolabeling antibodies in order to study antigen expression, biodistribution, anticancer treatment planning and follow-up. Other than oncologic applications, 89Zr-radiolabeled antibodies have been proposed for use in inflammatory and autoimmune disorders with interesting results. 89Zr-labeled nanoparticles represent groundbreaking radiopharmaceuticals with potential huge fields of application. To evaluate the clinical usefulness of 89Zr PET-imaging in different conditions and in real-world settings, and to widen its use in clinical practice, further translation of preclinical to clinical data is needed.
Collapse
|
24
|
LEE VSC, SchettIno G, Nisbet A. UK adaptive radiotherapy practices for head and neck cancer patients. BJR Open 2020; 2:20200051. [PMID: 33367201 PMCID: PMC7749087 DOI: 10.1259/bjro.20200051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/13/2020] [Accepted: 10/19/2020] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE To provide evidence on the extent and manner in which adaptive practices have been employed in the UK and identify the main barriers for the clinical implementation of adaptive radiotherapy (ART) in head and neck (HN) cancer cases. METHODS In December 2019, a Supplementary Material 1, of 23 questions, was sent to all UK radiotherapy centres (67). This covered general information to current ART practices and perceived barriers to implementation. RESULTS 31 centres responded (46%). 56% responding centres employed ART for between 10 and 20 patients/annum. 96% of respondents were using CBCT either alone or with other modalities for assessing "weight loss" and "shell gap," which were the main reasons for ART. Adaptation usually occurs at week three or four during the radiotherapy treatment. 25 responding centres used an online image-guided radiotherapy (IGRT) approach and 20 used an offline ad hoc ART approach, either with or without protocol level. Nearly 70% of respondents required 2 to 3 days to create an adaptive plan and 95% used 3-5 mm adaptive planning target volume margins. All centres performed pre-treatment QA. "Limited staff resources" and "lack of clinical relevance" were identified as the two main barriers for ART implementation. CONCLUSION There is no consensus in adaptive practice for HN cancer patients across the UK. For those centres not employing ART, similar clinical implementation barriers were identified. ADVANCES IN KNOWLEDGE An insight into contemporary UK practices of ART for HN cancer patients indicating national guidance for ART implementation for HN cancer patients may be required.
Collapse
Affiliation(s)
| | | | - Andrew Nisbet
- Department of Medical Physics & Biomedical Engineering, University College London, London, UK
| |
Collapse
|
25
|
Gouw ZA, La Fontaine MD, Vogel WV, van de Kamer JB, Sonke JJ, Al-Mamgani A. Single-Center Prospective Trial Investigating the Feasibility of Serial FDG-PET Guided Adaptive Radiation Therapy for Head and Neck Cancer. Int J Radiat Oncol Biol Phys 2020; 108:960-968. [DOI: 10.1016/j.ijrobp.2020.04.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/16/2020] [Accepted: 04/20/2020] [Indexed: 12/17/2022]
|
26
|
Sanduleanu S, Jochems A, Upadhaya T, Even AJG, Leijenaar RTH, Dankers FJWM, Klaassen R, Woodruff HC, Hatt M, Kaanders HJAM, Hamming-Vrieze O, van Laarhoven HWM, Subramiam RM, Huang SH, O'Sullivan B, Bratman SV, Dubois LJ, Miclea RL, Di Perri D, Geets X, Crispin-Ortuzar M, Apte A, Deasy JO, Oh JH, Lee NY, Humm JL, Schöder H, De Ruysscher D, Hoebers F, Lambin P. Non-invasive imaging prediction of tumor hypoxia: A novel developed and externally validated CT and FDG-PET-based radiomic signatures. Radiother Oncol 2020; 153:97-105. [PMID: 33137396 DOI: 10.1016/j.radonc.2020.10.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Tumor hypoxia increases resistance to radiotherapy and systemic therapy. Our aim was to develop and validate a disease-agnostic and disease-specific CT (+FDG-PET) based radiomics hypoxia classification signature. MATERIAL AND METHODS A total of 808 patients with imaging data were included: N = 100 training/N = 183 external validation cases for a disease-agnostic CT hypoxia classification signature, N = 76 training/N = 39 validation cases for the H&N CT signature and N = 62 training/N = 36 validation cases for the Lung CT signature. The primary gross tumor volumes (GTV) were manually defined by experts on CT. In order to dichotomize between hypoxic/well-oxygenated tumors a threshold of 20% was used for the [18F]-HX4-derived hypoxic fractions (HF). A random forest (RF)-based machine-learning classifier/regressor was trained to classify patients as hypoxia-positive/ negative based on radiomic features. RESULTS A 11 feature "disease-agnostic CT model" reached AUC's of respectively 0.78 (95% confidence interval [CI], 0.62-0.94), 0.82 (95% CI, 0.67-0.96) and 0.78 (95% CI, 0.67-0.89) in three external validation datasets. A "disease-agnostic FDG-PET model" reached an AUC of 0.73 (0.95% CI, 0.49-0.97) in validation by combining 5 features. The highest "lung-specific CT model" reached an AUC of 0.80 (0.95% CI, 0.65-0.95) in validation with 4 CT features, while the "H&N-specific CT model" reached an AUC of 0.84 (0.95% CI, 0.64-1.00) in validation with 15 CT features. A tumor volume-alone model was unable to significantly classify patients as hypoxia-positive/ negative. A significant survival split (P = 0.037) was found between CT-classified hypoxia strata in an external H&N cohort (n = 517), while 117 significant hypoxia gene-CT signature feature associations were found in an external lung cohort (n = 80). CONCLUSION The disease-specific radiomics signatures perform better than the disease agnostic ones. By identifying hypoxic patients our signatures have the potential to enrich interventional hypoxia-targeting trials.
Collapse
Affiliation(s)
- Sebastian Sanduleanu
- The-D-Lab, Dpt of Precision Medicine, GROW - School for Oncology, Maastricht University Medical Centre+, The Netherlands.
| | - Arthur Jochems
- The-D-Lab, Dpt of Precision Medicine, GROW - School for Oncology, Maastricht University Medical Centre+, The Netherlands
| | - Taman Upadhaya
- Laboratory of Medical Information Processing (LaTIM), INSERM, UMR 1101, Univ Brest, France; Department of Radiation Oncology, University of California, 1600 Divisadero Street, CA 94115, San Francisco, United States
| | - Aniek J G Even
- The-D-Lab, Dpt of Precision Medicine, GROW - School for Oncology, Maastricht University Medical Centre+, The Netherlands
| | - Ralph T H Leijenaar
- The-D-Lab, Dpt of Precision Medicine, GROW - School for Oncology, Maastricht University Medical Centre+, The Netherlands
| | - Frank J W M Dankers
- Department of Radiation Oncology, Radboud University Nijmegen Medical Centre, The Netherlands
| | - Remy Klaassen
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Henry C Woodruff
- The-D-Lab, Dpt of Precision Medicine, GROW - School for Oncology, Maastricht University Medical Centre+, The Netherlands; Department of Radiology and Nuclear Imaging, GROW - school for Oncology, Maastricht University Medical Centre+, The Netherlands
| | - Mathieu Hatt
- Laboratory of Medical Information Processing (LaTIM), INSERM, UMR 1101, Univ Brest, France
| | - Hans J A M Kaanders
- Department of Radiation Oncology, Radboud University Nijmegen Medical Centre, The Netherlands
| | - Olga Hamming-Vrieze
- Department of Radiation Oncology, Antoni van Leeuwenhoek - Netherlands Cancer institute, Amsterdam, The Netherlands
| | - Hanneke W M van Laarhoven
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Rathan M Subramiam
- Boston University School of Medicine, United States; Division of Nuclear Medicine, Russell H Morgan Department of Radiology and Radiologic Sciences, Johns Hopkins Medical Institutions, Baltimore, United States
| | - Shao Hui Huang
- Department of Radiation Oncology, Princess Margaret Cancer Center, University of Toronto, Canada
| | - Brian O'Sullivan
- Department of Radiation Oncology, Princess Margaret Cancer Center, University of Toronto, Canada
| | - Scott V Bratman
- Department of Radiation Oncology, Princess Margaret Cancer Center, University of Toronto, Canada
| | - Ludwig J Dubois
- Department of Precision Medicine, The M-LAB, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre+, The Netherlands
| | - Razvan L Miclea
- Department of Radiology and Nuclear Imaging, GROW - school for Oncology, Maastricht University Medical Centre+, The Netherlands
| | - Dario Di Perri
- Center of Molecular Imaging, Radiotherapy and Oncology (MIRO), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Belgium; Department of Radiation Oncology, Cliniques universitaires Saint-Luc, Brussels, Belgium
| | - Xavier Geets
- Center of Molecular Imaging, Radiotherapy and Oncology (MIRO), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Belgium; Department of Radiation Oncology, Cliniques universitaires Saint-Luc, Brussels, Belgium
| | - Mireia Crispin-Ortuzar
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, United States; Cancer Research UK Cambridge Institute, University of Cambridge, UK
| | - Aditya Apte
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Joseph O Deasy
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Jung Hun Oh
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Nancy Y Lee
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, United States
| | - John L Humm
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Heiko Schöder
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Dirk De Ruysscher
- Department of Radiation Oncology (Maastro), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre+, The Netherlands
| | - Frank Hoebers
- Department of Radiation Oncology (Maastro), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre+, The Netherlands
| | - Philippe Lambin
- The-D-Lab, Dpt of Precision Medicine, GROW - School for Oncology, Maastricht University Medical Centre+, The Netherlands; Department of Radiology and Nuclear Imaging, GROW - school for Oncology, Maastricht University Medical Centre+, The Netherlands
| |
Collapse
|
27
|
Paterson C, Hargreaves S, Rumley CN. Functional Imaging to Predict Treatment Response in Head and Neck Cancer: How Close are We to Biologically Adaptive Radiotherapy? Clin Oncol (R Coll Radiol) 2020; 32:861-873. [PMID: 33127234 DOI: 10.1016/j.clon.2020.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/28/2020] [Accepted: 10/05/2020] [Indexed: 02/07/2023]
Abstract
It is increasingly recognised that head and neck cancer represents a spectrum of disease with a differential response to standard treatments. Although prognostic factors are well established, they do not reliably predict response. The ability to predict response early during radiotherapy would allow adaptation of treatment: intensifying treatment for those not responding adequately or de-intensifying remaining therapy for those likely to achieve a complete response. Functional imaging offers such an opportunity. Changes in parameters obtained with functional magnetic resonance imaging or positron emission tomography-computed tomography during treatment have been found to be predictive of disease control in head and neck cancer. Although many questions remain unanswered regarding the optimal implementation of these techniques, current, maturing and future studies may provide the much-needed homogeneous cohorts with larger sample sizes and external validation of parameters. With a stepwise and collaborative approach, we may be able to develop imaging biomarkers that allow us to deliver personalised, biologically adaptive radiotherapy for head and neck cancer.
Collapse
Affiliation(s)
- C Paterson
- Beatson West of Scotland Cancer Centre, Glasgow, UK.
| | | | - C N Rumley
- Department of Radiation Oncology, Townsville University Hospital, Douglas, Australia; South Western Clinical School, University of New South Wales, Sydney, Australia; Ingham Institute for Applied Medical Research, Sydney, Australia
| |
Collapse
|
28
|
Wakefield DV, Carnell M, Dove APH, Edmonston DY, Garner WB, Hubler A, Makepeace L, Hanson R, Ozdenerol E, Chun SG, Spencer S, Pisu M, Martin M, Jiang B, Punglia RS, Schwartz DL. Location as Destiny: Identifying Geospatial Disparities in Radiation Treatment Interruption by Neighborhood, Race, and Insurance. Int J Radiat Oncol Biol Phys 2020; 107:815-826. [PMID: 32234552 DOI: 10.1016/j.ijrobp.2020.03.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/11/2020] [Accepted: 03/07/2020] [Indexed: 12/25/2022]
Abstract
PURPOSE Radiation therapy interruption (RTI) worsens cancer outcomes. Our purpose was to benchmark and map RTI across a region in the United States with known cancer outcome disparities. METHODS AND MATERIALS All radiation therapy (RT) treatments at our academic center were cataloged. Major RTI was defined as ≥5 unplanned RT appointment cancellations. Univariate and multivariable logistic and linear regression analyses identified associated factors. Major RTI was mapped by patient residence. A 2-sided P value <.0001 was considered statistically significant. RESULTS Between 2015 and 2017, a total of 3754 patients received RT, of whom 3744 were eligible for analysis: 962 patients (25.8%) had ≥2 RT interruptions and 337 patients (9%) had major RTI. Disparities in major RTI were seen across Medicaid versus commercial/Medicare insurance (22.5% vs 7.2%; P < .0001), low versus high predicted income (13.0% vs 5.9%; P < .0001), Black versus White race (12.0% vs 6.6%; P < .0001), and urban versus suburban treatment location (12.0% vs 6.3%; P < .0001). On multivariable analysis, increased odds of major RTI were seen for Medicaid patients (odds ratio [OR], 3.35; 95% confidence interval [CI], 2.25-5.00; P < .0001) versus those with commercial/Medicare insurance and for head and neck (OR, 3.74; 95% CI, 2.56-5.46; P < .0001), gynecologic (OR, 3.28; 95% CI, 2.09-5.15; P < .0001), and lung cancers (OR, 3.12; 95% CI, 1.96-4.97; P < .0001) compared with breast cancer. Major RTI was mapped to urban, majority Black, low-income neighborhoods and to rural, majority White, low-income regions. CONCLUSIONS Radiation treatment interruption disproportionately affects financially and socially vulnerable patient populations and maps to high-poverty neighborhoods. Geospatial mapping affords an opportunity to correlate RT access on a neighborhood level to inform potential intervention strategies.
Collapse
Affiliation(s)
- Daniel V Wakefield
- Department of Radiation Oncology, University of Tennessee Health Science Center, Memphis, Tennessee; T. H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Matthew Carnell
- University of Tennessee Health Science Center, College of Medicine, Memphis, Tennessee
| | - Austin P H Dove
- Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Drucilla Y Edmonston
- Department of Radiation Oncology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Wesley B Garner
- Department of Radiation Oncology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Adam Hubler
- University of Tennessee Health Science Center, College of Medicine, Memphis, Tennessee
| | - Lydia Makepeace
- University of Tennessee Health Science Center, College of Medicine, Memphis, Tennessee
| | - Ryan Hanson
- Department of Earth Sciences, Spatial Analysis and Geographic Education Laboratory, University of Memphis, Memphis, Tennessee
| | - Esra Ozdenerol
- Department of Earth Sciences, Spatial Analysis and Geographic Education Laboratory, University of Memphis, Memphis, Tennessee
| | - Stephen G Chun
- Division of Radiation Oncology, University of Texas, M.D. Anderson Cancer Center, Houston, Texas
| | - Sharon Spencer
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Maria Pisu
- Division of Preventive Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Michelle Martin
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Bo Jiang
- Department of Radiation Oncology, Biostatistics, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Rinaa S Punglia
- Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Boston, Massachusetts
| | - David L Schwartz
- Department of Radiation Oncology, University of Tennessee Health Science Center, Memphis, Tennessee; Division of Radiation Oncology, University of Texas, M.D. Anderson Cancer Center, Houston, Texas; Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, Tennessee.
| |
Collapse
|
29
|
Truffault B, Bourhis D, Chaput A, Calais J, Robin P, Le Pennec R, Lucia F, Leclère JC, Gujral DM, Vera P, Salaün PY, Schick U, Abgral R. Correlation Between FDG Hotspots on Pre-radiotherapy PET/CT and Areas of HNSCC Local Relapse: Impact of Treatment Position and Images Registration Method. Front Med (Lausanne) 2020; 7:218. [PMID: 32582727 PMCID: PMC7287148 DOI: 10.3389/fmed.2020.00218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/30/2020] [Indexed: 01/04/2023] Open
Abstract
Aim: Several series have already demonstrated that intratumoral subvolumes with high tracer avidity (hotspots) in 18F-flurodesoxyglucose positron-emission tomography (FDG-PET/CT) are preferential sites of local recurrence (LR) in various solid cancers after radiotherapy (RT), becoming potential targets for dose escalation. However, studies conducted on head and neck squamous cell carcinoma (HNSCC) found only a moderate overlap between pre- and post-treatment subvolumes. A limitation of these studies was that scans were not performed in RT treatment position (TP) and were coregistred using a rigid registration (RR) method. We sought to study (i) the influence of FDG-PET/CT acquisition in TP and (ii) the impact of using an elastic registration (ER) method to improve the localization of hotpots in HNSCC. Methods: Consecutive patients with HNSCC treated by RT between March 2015 and September 2017 who underwent FDG-PET/CT in TP at initial staging (PETA) and during follow-up (PETR) were prospectively included. We utilized a control group scanned in non treatment position (NTP) from our previous retrospective study. Scans were registered with both RR and ER methods. Various sub-volumes (AX; x = 30, 40, 50, 60, 70, 80, and 90%SUVmax) within the initial tumor and in the subsequent LR (RX; x = 40 and 70%SUVmax) were overlaid on the initial PET/CT for comparison [Dice, Jaccard, overlap fraction = OF, common volume/baseline volume = AXnRX/AX, common volume/recurrent volume = AXnRX/RX]. Results: Of 199 patients included, 43 (21.6%) had LR (TP = 15; NTP = 28). The overlap between A30, A40, and A50 sub-volumes on PETA and the whole metabolic volume of recurrence R40 and R70 on PETR showed moderate to good agreements (0.41–0.64) with OF and AXnRX/RX index, regardless of registration method or patient position. Comparison of registration method demonstrated OF and AXnRX/RX indices (x = 30% to 50%SUVmax) were significantly higher with ER vs. RR in NTP (p < 0.03), but not in TP. For patient position, the OF and AXnRX/RX indices were higher in TP than in NTP when RR was used with a trend toward significance, particularly for x=40%SUVmax (0.50±0.22 vs. 0.31 ± 0.13, p = 0.094). Conclusion: Our study suggested that PET/CT acquired in TP improves results in the localization of FDG hotspots in HNSCC. If TP is not possible, using an ER method is significantly more accurate than RR for overlap estimation.
Collapse
Affiliation(s)
- Blandine Truffault
- Department of Nuclear Medicine, Brest University Hospital, Brest, France
| | - David Bourhis
- Department of Nuclear Medicine, Brest University Hospital, Brest, France.,European University of Brittany, Brest, France
| | - Anne Chaput
- Department of Nuclear Medicine, Brest University Hospital, Brest, France
| | - Jeremie Calais
- Department of Medical and Molecular Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Nuclear Medicine and Radiology, Henri Becquerel Center, QuantIF (LITIS EA 4108 - FR CNRS 3638), Rouen University Hospital, Rouen, France
| | - Philippe Robin
- Department of Nuclear Medicine, Brest University Hospital, Brest, France.,European University of Brittany, Brest, France
| | - Romain Le Pennec
- Department of Nuclear Medicine, Brest University Hospital, Brest, France
| | - François Lucia
- Department of Radiotherapy, Brest University Hospital, Brest, France
| | | | - Dorothy M Gujral
- Clinical Oncology Department, Imperial College Healthcare NHS Trust, Charing Cross Hospital, Hammersmith, London, United Kingdom.,Department of Cancer and Surgery, Imperial College London, London, United Kingdom
| | - Pierre Vera
- Department of Nuclear Medicine and Radiology, Henri Becquerel Center, QuantIF (LITIS EA 4108 - FR CNRS 3638), Rouen University Hospital, Rouen, France
| | - Pierre-Yves Salaün
- Department of Nuclear Medicine, Brest University Hospital, Brest, France.,European University of Brittany, Brest, France
| | - Ulrike Schick
- Department of Radiotherapy, Brest University Hospital, Brest, France
| | - Ronan Abgral
- Department of Nuclear Medicine, Brest University Hospital, Brest, France.,European University of Brittany, Brest, France
| |
Collapse
|
30
|
Gurney-Champion OJ, Mahmood F, van Schie M, Julian R, George B, Philippens MEP, van der Heide UA, Thorwarth D, Redalen KR. Quantitative imaging for radiotherapy purposes. Radiother Oncol 2020; 146:66-75. [PMID: 32114268 PMCID: PMC7294225 DOI: 10.1016/j.radonc.2020.01.026] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/22/2020] [Accepted: 01/29/2020] [Indexed: 02/07/2023]
Abstract
Quantitative imaging biomarkers show great potential for use in radiotherapy. Quantitative images based on microscopic tissue properties and tissue function can be used to improve contouring of the radiotherapy targets. Furthermore, quantitative imaging biomarkers might be used to predict treatment response for several treatment regimens and hence be used as a tool for treatment stratification, either to determine which treatment modality is most promising or to determine patient-specific radiation dose. Finally, patient-specific radiation doses can be further tailored to a tissue/voxel specific radiation dose when quantitative imaging is used for dose painting. In this review, published standards, guidelines and recommendations on quantitative imaging assessment using CT, PET and MRI are discussed. Furthermore, critical issues regarding the use of quantitative imaging for radiation oncology purposes and resultant pending research topics are identified.
Collapse
Affiliation(s)
- Oliver J Gurney-Champion
- Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom.
| | - Faisal Mahmood
- Department of Oncology, Odense University Hospital, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Marcel van Schie
- Department of Radiation Oncology, the Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Robert Julian
- Department of Radiotherapy Physics, Royal Surrey NHS Foundation Trust, Guildford, United Kingdom
| | - Ben George
- Radiation Therapy Medical Physics Group, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, United Kingdom
| | | | - Uulke A van der Heide
- Department of Radiation Oncology, the Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Daniela Thorwarth
- Section for Biomedical Physics, Department of Radiation Oncology, Eberhard Karls University of Tübingen, Germany
| | - Kathrine R Redalen
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
31
|
Kanehira T, Svensson S, van Kranen S, Sonke JJ. Accurate estimation of daily delivered radiotherapy dose with an external treatment planning system. Phys Imaging Radiat Oncol 2020; 14:39-42. [PMID: 33458312 PMCID: PMC7807587 DOI: 10.1016/j.phro.2020.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 05/16/2020] [Accepted: 05/18/2020] [Indexed: 11/28/2022] Open
Abstract
Accurate estimation of the daily radiotherapy dose is challenging in a multi-institutional collaboration when the institution specific treatment planning system (TPS) is not available. We developed and evaluated a method to tackle this problem. Residual errors in daily estimations were minimized with single correction based on the planned dose. For nine patients, medians of the absolute estimation errors for targets and OARs were less than 0.2 Gy (Dmean), 0.3 Gy (D1), and 0.1 Gy (D99). In general, mimicking errors were significantly smaller than dose differences caused by anatomical changes. The demonstrated accuracy may facilitate dose accumulation in a multi-institutional/multi-vendor setting.
Collapse
Affiliation(s)
- Takahiro Kanehira
- Department of Radiation Oncology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | | | - Simon van Kranen
- Department of Radiation Oncology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Jan-Jakob Sonke
- Department of Radiation Oncology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
32
|
Giraud N, Popinat G, Regaieg H, Tonnelet D, Vera P. Positron-emission tomography-guided radiation therapy: Ongoing projects and future hopes. Cancer Radiother 2020; 24:437-443. [PMID: 32247689 DOI: 10.1016/j.canrad.2020.02.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 02/06/2020] [Indexed: 02/08/2023]
Abstract
Radiation therapy has undergone significant advances these last decades, particularly thanks to technical improvements, computer science and a better ability to define the target volumes via morphological and functional imaging breakthroughs. Imaging contributes to all three stages of patient care in radiation oncology: before, during and after treatment. Before the treatment, the choice of optimal imaging type and, if necessary, the adequate functional tracer will allow a better definition of the volume target. During radiation therapy, image-guidance aims at locating the tumour target and tailoring the volume target to anatomical and tumoral variations. Imaging systems are now integrated with conventional accelerators, and newer accelerators have techniques allowing tumour tracking during the irradiation. More recently, MRI-guided systems have been developed, and are already active in a few French centres. Finally, after radiotherapy, imaging plays a major role in most patients' monitoring, and must take into account post-radiation tissue modification specificities. In this review, we will focus on the ongoing projects of nuclear imaging in oncology, and how they can help the radiation oncologist to better treat patients. To this end, a literature review including the terms "Radiotherapy", "Radiation Oncology" and "PET-CT" was performed in August 2019 on Medline and ClinicalTrials.gov. We chose to review successively these novelties organ-by-organ, focusing on the most promising advances. As a conclusion, the help of modern functional imaging thanks to a better definition and new specific radiopharmaceuticals tracers could allow even more precise treatments and enhanced surveillance. Finally, it could provide determinant information to artificial intelligence algorithms in "-omics" models.
Collapse
Affiliation(s)
- N Giraud
- Radiation Oncology Department, hôpital Haut-Lévêque, CHU de Bordeaux, avenue Magellan, 33600 Pessac, France.
| | - G Popinat
- Nuclear Medicine Department, centre Henri-Becquerel, 1, rue d'Amiens, 76038 Rouen, France
| | - H Regaieg
- Nuclear Medicine Department, centre Henri-Becquerel, 1, rue d'Amiens, 76038 Rouen, France
| | - D Tonnelet
- Nuclear Medicine Department, centre Henri-Becquerel, 1, rue d'Amiens, 76038 Rouen, France
| | - P Vera
- Nuclear Medicine Department, centre Henri-Becquerel, 1, rue d'Amiens, 76038 Rouen, France
| |
Collapse
|
33
|
van der Heijden M, Essers PBM, de Jong MC, de Roest RH, Sanduleanu S, Verhagen CVM, Hamming-Vrieze O, Hoebers F, Lambin P, Bartelink H, Leemans CR, Verheij M, Brakenhoff RH, van den Brekel MWM, Vens C. Biological Determinants of Chemo-Radiotherapy Response in HPV-Negative Head and Neck Cancer: A Multicentric External Validation. Front Oncol 2020; 9:1470. [PMID: 31998639 PMCID: PMC6966332 DOI: 10.3389/fonc.2019.01470] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 12/09/2019] [Indexed: 12/20/2022] Open
Abstract
Purpose: Tumor markers that are related to hypoxia, proliferation, DNA damage repair and stem cell-ness, have a prognostic value in advanced stage HNSCC patients when assessed individually. Here we aimed to evaluate and validate this in a multifactorial context and assess interrelation and the combined role of these biological factors in determining chemo-radiotherapy response in HPV-negative advanced HNSCC. Methods: RNA sequencing data of pre-treatment biopsy material from 197 HPV-negative advanced stage HNSCC patients treated with definitive chemoradiotherapy was analyzed. Biological parameter scores were assigned to patient samples using previously generated and described gene expression signatures. Locoregional control rates were used to assess the role of these biological parameters in radiation response and compared to distant metastasis data. Biological factors were ranked according to their clinical impact using bootstrapping methods and multivariate Cox regression analyses that included clinical variables. Multivariate Cox regression analyses comprising all biological variables were used to define their relative role among all factors when combined. Results: Only few biomarker scores correlate with each other, underscoring their independence. The different biological factors do not correlate or cluster, except for the two stem cell markers CD44 and SLC3A2 (r = 0.4, p < 0.001) and acute hypoxia prediction scores which correlated with T-cell infiltration score, CD8+ T cell abundance and proliferation scores (r = 0.52, 0.56, and 0.6, respectively with p < 0.001). Locoregional control association analyses revealed that chronic (Hazard Ratio (HR) = 3.9) and acute hypoxia (HR = 1.9), followed by stem cell-ness (CD44/SLC3A2; HR = 2.2/2.3), were the strongest and most robust determinants of radiation response. Furthermore, multivariable analysis, considering other biological and clinical factors, reveal a significant role for EGFR expression (HR = 2.9, p < 0.05) and T-cell infiltration (CD8+T-cells: HR = 2.2, p < 0.05; CD8+T-cells/Treg: HR = 2.6, p < 0.01) signatures in locoregional control of chemoradiotherapy-treated HNSCC. Conclusion: Tumor acute and chronic hypoxia, stem cell-ness, and CD8+ T-cell parameters are relevant and largely independent biological factors that together contribute to locoregional control. The combined analyses illustrate the additive value of multifactorial analyses and support a role for EGFR expression analysis and immune cell markers in addition to previously validated biomarkers. This external validation underscores the relevance of biological factors in determining chemoradiotherapy outcome in HNSCC.
Collapse
Affiliation(s)
- Martijn van der Heijden
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, Netherlands.,Department of Head and Neck Oncology and Surgery, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Paul B M Essers
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, Netherlands.,Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Monique C de Jong
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Reinout H de Roest
- Amsterdam UMC, Vrije Universiteit Amsterdam, Otolaryngology/Head and Neck Surgery, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Sebastian Sanduleanu
- Department of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Caroline V M Verhagen
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, Netherlands.,Department of Head and Neck Oncology and Surgery, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Olga Hamming-Vrieze
- Department of Head and Neck Oncology and Surgery, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Frank Hoebers
- Department of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Philippe Lambin
- The D-Lab and The M-Lab, Department of Precision Medicine, GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| | - Harry Bartelink
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - C René Leemans
- Amsterdam UMC, Vrije Universiteit Amsterdam, Otolaryngology/Head and Neck Surgery, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Marcel Verheij
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, Netherlands.,Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, Netherlands.,Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Ruud H Brakenhoff
- Amsterdam UMC, Vrije Universiteit Amsterdam, Otolaryngology/Head and Neck Surgery, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Michiel W M van den Brekel
- Department of Head and Neck Oncology and Surgery, The Netherlands Cancer Institute, Amsterdam, Netherlands.,Department of Oral and Maxillofacial Surgery, Amsterdam UMC, Academic Medical Center, Amsterdam, Netherlands
| | - Conchita Vens
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, Netherlands.,Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| |
Collapse
|
34
|
Morgan HE, Sher DJ. Adaptive radiotherapy for head and neck cancer. CANCERS OF THE HEAD & NECK 2020; 5:1. [PMID: 31938572 PMCID: PMC6953291 DOI: 10.1186/s41199-019-0046-z] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/11/2019] [Indexed: 12/14/2022]
Abstract
Background Although there have been dramatic improvements in radiotherapy for head and neck squamous cell carcinoma (HNSCC), including robust intensity modulation and daily image guidance, these advances are not able to account for inherent structural and spatial changes that may occur during treatment. Many sources have reported volume reductions in the primary target, nodal volumes, and parotid glands over treatment, which may result in unintended dosimetric changes affecting the side effect profile and even efficacy of the treatment. Adaptive radiotherapy (ART) is an exciting treatment paradigm that has been developed to directly adjust for these changes. Main body Adaptive radiotherapy may be divided into two categories: anatomy-adapted (A-ART) and response-adapted ART (R-ART). Anatomy-adapted ART is the process of re-planning patients based on structural and spatial changes occurring over treatment, with the intent of reducing overdosage of sensitive structures such as the parotids, improving dose homogeneity, and preserving coverage of the target. In contrast, response-adapted ART is the process of re-planning patients based on response to treatment, such that the target and/or dose changes as a function of interim imaging during treatment, with the intent of dose escalating persistent disease and/or de-escalating surrounding normal tissue. The impact of R-ART on local control and toxicity outcomes is actively being investigated in several currently accruing trials. Conclusions Anatomy-adapted ART is a promising modality to improve rates of xerostomia and coverage in individuals who experience significant volumetric changes during radiation, while R-ART is currently being studied to assess its utility in either dose escalation of radioresistant disease, or de-intensification of surrounding normal tissue following treatment response. In this paper, we will review the existing literature and recent advances regarding A-ART and R-ART.
Collapse
Affiliation(s)
- Howard E Morgan
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, 2280 Inwood Rd, Dallas, TX 75390 USA
| | - David J Sher
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, 2280 Inwood Rd, Dallas, TX 75390 USA
| |
Collapse
|
35
|
Atwell D, Elks J, Cahill K, Hearn N, Vignarajah D, Lagopoulos J, Min M. A Review of Modern Radiation Therapy Dose Escalation in Locally Advanced Head and Neck Cancer. Clin Oncol (R Coll Radiol) 2020; 32:330-341. [PMID: 31911016 DOI: 10.1016/j.clon.2019.12.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/27/2019] [Accepted: 11/07/2019] [Indexed: 12/30/2022]
Abstract
The management of head and neck cancer is complex and often involves multimodality treatment. Certain groups of patients, such as those with inoperable or advanced disease, are at higher risk of treatment failure and may therefore benefit from radiation therapy dose escalation. This can be difficult to achieve without increasing toxicity. However, the combination of modern treatment techniques and increased research into the use of functional imaging modalities that assist with target delineation allows researchers to push this boundary further. This review aims to summarise modern dose escalation trials to identify the impact on disease outcomes and explore the growing role of functional imaging modalities. Studies experimenting with dose escalation above standard fractionated regimens as outlined in National Comprehensive Cancer Network guidelines using photon therapy were chosen for review. Seventeen papers were considered suitable for inclusion in the review. Eight studies investigated nasopharyngeal cancer, with the remainder treating a range of subsites. Six studies utilised functional imaging modalities for target delineation. Doses as high as 85.9 Gy in 2.6 Gy fractions (EQD2 90.2 Gy10) were reportedly delivered with the aid of functional imaging modalities. Dose escalation in nasopharyngeal cancer resulted in 3-year locoregional control rates of 86.6-100% and overall survival of 82-95.2%. For other mucosal primary tumour sites, 3-year locoregional control reached 68.2-85.9% and 48.4-54% for overall survival. There were no clear trends in acute or late toxicity across studies, regardless of dose or addition of chemotherapy. However, small cohort sizes and short follow-up times may have resulted in under-reporting. This review highlights the future possibilities of radiation therapy dose escalation in head and neck cancer and the potential for improved target delineation with careful patient selection and the assistance of functional imaging modalities.
Collapse
Affiliation(s)
- D Atwell
- Cancer Services, Sunshine Coast University Hospital, Birtinya, Queensland, Australia; Icon Cancer Centre, Maroochydore, Queensland, Australia; Sunshine Coast Mind and Neuroscience - Thompson Institute, University of the Sunshine Coast, Sippy Downs, Queensland, Australia.
| | - J Elks
- Sunshine Coast Mind and Neuroscience - Thompson Institute, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - K Cahill
- Cancer Services, Sunshine Coast University Hospital, Birtinya, Queensland, Australia; Sunshine Coast Mind and Neuroscience - Thompson Institute, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - N Hearn
- Cancer Services, Sunshine Coast University Hospital, Birtinya, Queensland, Australia; Icon Cancer Centre, Maroochydore, Queensland, Australia; Sunshine Coast Mind and Neuroscience - Thompson Institute, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - D Vignarajah
- Cancer Services, Sunshine Coast University Hospital, Birtinya, Queensland, Australia; Icon Cancer Centre, Maroochydore, Queensland, Australia
| | - J Lagopoulos
- Sunshine Coast Mind and Neuroscience - Thompson Institute, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - M Min
- Cancer Services, Sunshine Coast University Hospital, Birtinya, Queensland, Australia; Icon Cancer Centre, Maroochydore, Queensland, Australia; Sunshine Coast Mind and Neuroscience - Thompson Institute, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| |
Collapse
|
36
|
Dammes N, Peer D. Monoclonal antibody-based molecular imaging strategies and theranostic opportunities. Theranostics 2020; 10:938-955. [PMID: 31903161 PMCID: PMC6929980 DOI: 10.7150/thno.37443] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 09/26/2019] [Indexed: 01/13/2023] Open
Abstract
Molecular imaging modalities hold great potential as less invasive techniques for diagnosis and management of various diseases. Molecular imaging combines imaging agents with targeting moieties to specifically image diseased sites in the body. Monoclonal antibodies (mAbs) have become increasingly popular as novel therapeutics against a variety of diseases due to their specificity, affinity and serum stability. Because of the same properties, mAbs are also exploited in molecular imaging to target imaging agents such as radionuclides to the cell of interest in vivo. Many studies investigated the use of mAb-targeted imaging for a variety of purposes, for instance to monitor disease progression and to predict response to a specific therapeutic agent. Herein, we highlighted the application of mAb-targeted imaging in three different types of pathologies: autoimmune diseases, oncology and cardiovascular diseases. We also described the potential of molecular imaging strategies in theranostics and precision medicine. Due to the nearly infinite repertoire of mAbs, molecular imaging can change the future of modern medicine by revolutionizing diagnostics and response prediction in practically any disease.
Collapse
Affiliation(s)
- Niels Dammes
- Laboratory of Precision NanoMedicine, Tel Aviv University, Tel Aviv 69978, Israel
- School of Molecular Cell Biology and Biotechnology, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
- Center for Nanoscience and Nanotechnology, and Tel Aviv University, Tel Aviv 69978, Israel
- Cancer Biology Research Center, Tel Aviv University, Tel Aviv 69978, Israel
| | - Dan Peer
- Laboratory of Precision NanoMedicine, Tel Aviv University, Tel Aviv 69978, Israel
- School of Molecular Cell Biology and Biotechnology, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
- Center for Nanoscience and Nanotechnology, and Tel Aviv University, Tel Aviv 69978, Israel
- Cancer Biology Research Center, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
37
|
Blanchard P, Biau J, Castelli J, Tao Y, Graff P, Nguyen F. [Individualization of dose and fractionation of radiotherapy for head and neck cancers]. Cancer Radiother 2019; 23:784-788. [PMID: 31420129 DOI: 10.1016/j.canrad.2019.07.131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 10/26/2022]
Abstract
Head and neck cancers comprise a variety of tumours depending on the sub-site, for which target volumes and the prescribed doses need to be individualized according to each patient's history and presentation. This article aims at describing the main factors involved in decision-making regarding dose and volume, as well as ongoing research. Contouring and treatment guidelines, use of altered fractionation, major prognostic factors, the role of Human papillomavirus and of functional imaging will be presented and discussed.
Collapse
Affiliation(s)
- P Blanchard
- Département de radiothérapie oncologie, Gustave-Roussy Cancer Campus, 114, rue Édouard-Vaillant, 94800 Villejuif, France; Inserm, U1018 « Centre de recherche en épidémiologie et santé des populations » (CESP), 94800 Villejuif, France; Université Paris-Saclay, 94800 Villejuif, France.
| | - J Biau
- Département de radiothérapie oncologie, centre Jean-Perrin, 63000 Clermont-Ferrand, France; Université Clermont-Auvergne, 63000 Clermont-Ferrand, France; Inserm, U1240 « Imagerie moléculaire et stratégies théranostiques » (Imost), 63000 Clermont-Ferrand, France
| | - J Castelli
- Département de radiothérapie, centre Eugène-Marquis, 35000 Rennes, France; Inserm, U1099 « Laboratoire traitement du signal et de l'image » (LTSI), 35000 Rennes, France; Université Rennes 1, 35000 Rennes, France
| | - Y Tao
- Département de radiothérapie oncologie, Gustave-Roussy Cancer Campus, 114, rue Édouard-Vaillant, 94800 Villejuif, France
| | - P Graff
- Département de radiothérapie, IUCT Oncopole, 31000 Toulouse, France
| | - F Nguyen
- Département de radiothérapie oncologie, Gustave-Roussy Cancer Campus, 114, rue Édouard-Vaillant, 94800 Villejuif, France
| |
Collapse
|
38
|
Head and Neck Cancer Adaptive Radiation Therapy (ART): Conceptual Considerations for the Informed Clinician. Semin Radiat Oncol 2019; 29:258-273. [PMID: 31027643 DOI: 10.1016/j.semradonc.2019.02.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
For nearly 2 decades, adaptive radiation therapy (ART) has been proposed as a method to account for changes in head and neck tumor and normal tissue to enhance therapeutic ratios. While technical advances in imaging, planning and delivery have allowed greater capacity for ART delivery, and a series of dosimetric explorations have consistently shown capacity for improvement, there remains a paucity of clinical trials demonstrating the utility of ART. Furthermore, while ad hoc implementation of head and neck ART is reported, systematic full-scale head and neck ART remains an as yet unreached reality. To some degree, this lack of scalability may be related to not only the complexity of ART, but also variability in the nomenclature and descriptions of what is encompassed by ART. Consequently, we present an overview of the history, current status, and recommendations for the future of ART, with an eye toward improving the clarity and description of head and neck ART for interested clinicians, noting practical considerations for implementation of an ART program or clinical trial. Process level considerations for ART are noted, reminding the reader that, paraphrasing the writer Elbert Hubbard, "Art is not a thing, it is a way."
Collapse
|
39
|
Keall P, Kron T, Zaidi H. In the future, emission-guided radiation therapy will play a critical role in clinical radiation oncology. Med Phys 2019; 46:1519-1522. [PMID: 30697754 DOI: 10.1002/mp.13408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 01/21/2019] [Accepted: 01/23/2019] [Indexed: 12/25/2022] Open
Affiliation(s)
- Paul Keall
- ACRF Image X Institute, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Tomas Kron
- Sir Peter MacCallum Cancer Institute, University of Melbourne, Melbourne, Vic., Australia
| | | |
Collapse
|
40
|
Mendez LC, Conrad T, Lee J, Smith B, Brotherston D, Le T, Kiss A, Caldwell CB, Karam I, Poon I. Prospective evaluation of pretreatment and intratreatment FDG PET-CT SUV stability in primary head and neck cancer. Head Neck 2019; 41:1889-1894. [PMID: 30688385 DOI: 10.1002/hed.25624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 11/12/2018] [Accepted: 12/12/2018] [Indexed: 11/09/2022] Open
Abstract
PURPOSE To evaluate standardized uptake value (SUV) stability on pretreatment and intratreatment 18-fluorodeoxyglucose (FDG) positron emission tomography-computed tomography (PET-CT) in patients undergoing definitive CRT for head and neck cancer (HNC). METHODS Primary tumor and nodal volumes of interest (VOIs) from HNC patients were contoured on the pretreatment and intratreatment PET-CT by two independent observers. SUV stability was measured with intersection calculations (DICE, overlap fraction, center to center) between the VOIs at threshold levels of 50%, 60%, 70%, 80%, and 90% of the SUV maximum. RESULTS The mean calculated DICE of the 50%, 60%, 70%, 80%, 90% SUV threshold was 0.53, 0.48, 0.41, 0.28, and 0.12, respectively. The mean calculated overlap fraction was 0.71, 0.65, 0.58, 0.43, and 0.2, respectively. Center-center difference demonstrates spatial variability of 7.8, 8.2, 8.6, 9.5, and 11.2 mm for these SUV subvolumes of interest. CONCLUSIONS HNC subvolumes defined by SUV thresholding technique in FDG PET-CT imaging do not remain physically stable during (chemo)RT. HIGHLIGHTS All pretreatment and intratreatment SUV thresholds (50%-90%) overlap indexes are low during the course of (chemo)radiation. Pretreatment and intratreatment center to center variation further corroborates that all FDG threshold volumes do not remain stable during treatment. No difference in SUV threshold stability was seen between p16 positive and negative tumors.
Collapse
Affiliation(s)
- Lucas C Mendez
- Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, University of Toronto, Toronto, Ontario, Canada
| | - Tatiana Conrad
- Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, University of Toronto, Toronto, Ontario, Canada
| | - Justin Lee
- Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, University of Toronto, Toronto, Ontario, Canada
| | - Benjamin Smith
- Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, University of Toronto, Toronto, Ontario, Canada
| | - Drew Brotherston
- Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, University of Toronto, Toronto, Ontario, Canada
| | - Tuyen Le
- Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, University of Toronto, Toronto, Ontario, Canada
| | - Alex Kiss
- Department of Research Design and Biostatistics, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Curtis B Caldwell
- Department of Medical Imaging, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Irene Karam
- Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, University of Toronto, Toronto, Ontario, Canada
| | - Ian Poon
- Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
41
|
Hamming-Vrieze O, Navran A, Al-Mamgani A, Vogel WV. Biological PET-guided adaptive radiotherapy for dose escalation in head and neck cancer: a systematic review. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF RADIOPHARMACEUTICAL CHEMISTRY AND BIOLOGY 2018; 62:349-368. [DOI: 10.23736/s1824-4785.18.03087-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
42
|
Abstract
Although visual assessment using the Deauville criteria is strongly recommended by guidelines for treatment response monitoring in all FDG-avid lymphoma histologies, the high rate of false-positives and concerns about interobserver variability have motivated the development of quantitative tools to facilitate objective measurement of tumor response in both routine and clinical trial settings. Imaging studies using functional quantitative measures play a significant role in profiling oncologic processes. These quantitative metrics allow for objective end points in multicenter clinical trials. However, the standardization of imaging procedures including image acquisition parameters, reconstruction and analytic measures, and validation of these methods are essential to enable an individualized treatment approach. A robust quality control program associated with the inclusion of proper scanner calibration, cross-calibration with dose calibrators and across other scanners is required for accurate quantitative measurements. In this section, we will review the technical and methodological considerations related to PET-derived quantitative metrics and the relevant published data to emphasize the potential value of these metrics in the prediction of patient prognosis in lymphoma.
Collapse
Affiliation(s)
- Lale Kostakoglu
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY.
| | - Stéphane Chauvie
- Department of Medical Physics, 'Santa Croce e Carle' Hospital, Cuneo, Italy
| |
Collapse
|
43
|
Radiomics in Nuclear Medicine Applied to Radiation Therapy: Methods, Pitfalls, and Challenges. Int J Radiat Oncol Biol Phys 2018; 102:1117-1142. [PMID: 30064704 DOI: 10.1016/j.ijrobp.2018.05.022] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 04/27/2018] [Accepted: 05/02/2018] [Indexed: 02/06/2023]
Abstract
Radiomics is a recent area of research in precision medicine and is based on the extraction of a large variety of features from medical images. In the field of radiation oncology, comprehensive image analysis is crucial to personalization of treatments. A better characterization of local heterogeneity and the shape of the tumor, depicting individual cancer aggressiveness, could guide dose planning and suggest volumes in which a higher dose is needed for better tumor control. In addition, noninvasive imaging features that could predict treatment outcome from baseline scans could help the radiation oncologist to determine the best treatment strategies and to stratify patients as at low risk or high risk of recurrence. Nuclear medicine molecular imaging reflects information regarding biological processes in the tumor thanks to a wide range of radiotracers. Many studies involving 18F-fluorodeoxyglucose positron emission tomography suggest an added value of radiomics compared with the use of conventional PET metrics such as standardized uptake value for both tumor diagnosis and prediction of recurrence or treatment outcome. However, these promising results should not hide technical difficulties that still currently prevent the approach from being widely studied or clinically used. These difficulties mostly pertain to the variability of the imaging features as a function of the acquisition device and protocol, the robustness of the models with respect to that variability, and the interpretation of the radiomic models. Addressing the impact of the variability in acquisition and reconstruction protocols is needed, as is harmonizing the radiomic feature calculation methods, to ensure the reproducibility of studies in a multicenter context and their implementation in a clinical workflow. In this review, we explain the potential impact of positron emission tomography radiomics for radiation therapy and underline the various aspects that need to be carefully addressed to make the most of this promising approach.
Collapse
|
44
|
Gago-Arias A, Sánchez-Nieto B, Espinoza I, Karger CP, Pardo-Montero J. Impact of different biologically-adapted radiotherapy strategies on tumor control evaluated with a tumor response model. PLoS One 2018; 13:e0196310. [PMID: 29698534 PMCID: PMC5919644 DOI: 10.1371/journal.pone.0196310] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 04/10/2018] [Indexed: 11/26/2022] Open
Abstract
Motivated by the capabilities of modern radiotherapy techniques and by the recent developments of functional imaging techniques, dose painting by numbers (DPBN) was proposed to treat tumors with heterogeneous biological characteristics. This work studies different DPBN optimization techniques for virtual head and neck tumors assessing tumor response in terms of cell survival and tumor control probability with a previously published tumor response model (TRM). Uniform doses of 2 Gy are redistributed according to the microscopic oxygen distribution and the density distribution of tumor cells in four virtual tumors with different biological characteristics. In addition, two different optimization objective functions are investigated, which: i) minimize tumor cell survival (OFsurv) or; ii) maximize the homogeneity of the density of surviving tumor cells (OFstd). Several adaptive schemes, ranging from single to daily dose optimization, are studied and the treatment response is compared to that of the uniform dose. The results show that the benefit of DPBN treatments depends on the tumor reoxygenation capability, which strongly differed among the set of virtual tumors investigated. The difference between daily (fraction by fraction) and three weekly optimizations (at the beginning of weeks 1, 3 and 4) was found to be small, and higher benefit was observed for the treatments optimized using OFsurv. This in silico study corroborates the hypothesis that DPBN may be beneficial for treatments of tumors which show reoxygenation during treatment, and that a few optimizations may be sufficient to achieve this therapeutic benefit.
Collapse
Affiliation(s)
- Araceli Gago-Arias
- Instituto de Física, Pontificia Universidad Católica de Chile, Santiago, Chile
- * E-mail:
| | | | - Ignacio Espinoza
- Instituto de Física, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Christian P. Karger
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - Juan Pardo-Montero
- Grupo de Imaxe Molecular, Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain
- Servizo de Radiofísica e Protección Radiolóxica, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
45
|
Quantitative assessment of Zirconium-89 labeled cetuximab using PET/CT imaging in patients with advanced head and neck cancer: a theragnostic approach. Oncotarget 2018; 8:3870-3880. [PMID: 27965472 PMCID: PMC5354801 DOI: 10.18632/oncotarget.13910] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 12/02/2016] [Indexed: 12/25/2022] Open
Abstract
Biomarkers predicting treatment response to the monoclonal antibody cetuximab in locally advanced head and neck squamous cell carcinomas (LAHNSCC) are lacking. We hypothesize that tumor accessibility is an important factor in treatment success of the EGFR targeting drug. We quantified uptake of cetuximab labeled with Zirconium-89 (89Zr) using PET/CT imaging. Seventeen patients with stage III-IV LAHNSCC received a loading dose unlabeled cetuximab, followed by 10 mg 54.5±9.6 MBq 89Zr-cetuximab. PET/CT images were acquired either 3 and 6 or 4 and 7 days post-injection. 89Zr-cetuximab uptake was quantified using standardized uptake value (SUV) and tumor-to-background ratio (TBR), and correlated to EGFR immunohistochemistry. TBR was compared between scan days to determine optimal timing. Uptake of 89Zr-cetuximab varied between patients (day 6-7: SUVpeak range 2.5-6.2). TBR increased significantly (49±28%, p < 0.01) between first (1.1±0.3) and second scan (1.7±0.6). Between groups with a low and high EGFR expression a significant difference in SUVmean (2.1 versus 3.0) and SUVpeak (3.2 versus 4.7) was found, however, not in TBR. Data is available at www.cancerdata.org (DOI: 10.17195/candat.2016.11.1). In conclusion, 89Zr-cetuximab PET imaging shows large inter-patient variety in LAHNSCC and provides additional information over FDG-PET and EGFR expression. Validation of the predictive value is recommended with scans acquired 6-7 days post-injection.
Collapse
|
46
|
Structured review of the patient-reported outcome instruments used in clinical trials in head and neck surgery. Br J Oral Maxillofac Surg 2018; 56:161-167. [PMID: 29395443 DOI: 10.1016/j.bjoms.2017.10.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 10/17/2017] [Indexed: 11/24/2022]
Abstract
The number of clinical trials that relate to patients with cancer of the head and neck is growing. Patient-reported outcomes, which are rarely the primary outcome, are now an important component, and in this structured review to identify and report the characteristics of the questionnaires that have been used in these trials, we summarise the findings reported. We searched several online databases using the key terms: head and neck oncology, head and neck surgery, reconstruction, clinical trials patient-reported outcomes, questionnaires, quality of life (QoL), validated instruments, and patients' satisfaction. We screened 1342 papers to collect information about the topic of the paper, sample size, selection criteria, main advantages and disadvantages of the patient-reported outcome used, and if it was used in conjunction with another measure. A total of 54 were eligible, and from them we identified 22 questionnaires. The primary reason for using a questionnaire was its relevance to the focus of the paper, such as xerostomia, pain, or swallowing. To allow the experience of patients to be the focus of the primary outcome in a clinical trial, we recommend that the measures used should be appropriate, reliable, valid, responsive, precise, interpretable, acceptable, and feasible. The trials used validated questionnaires, but the patient-reported outcome measures tended not to be the focus. There is merit in such measures being the primary outcomes in future trials and these should be designed around an explicit hypothesis.
Collapse
|
47
|
Mönnich D, Thorwarth D, Leibfarth S, Pfannenberg C, Reischl G, Mauz PS, Nikolaou K, la Fougère C, Zips D, Welz S. Overlap of highly FDG-avid and FMISO hypoxic tumor subvolumes in patients with head and neck cancer. Acta Oncol 2017; 56:1577-1582. [PMID: 28849721 DOI: 10.1080/0284186x.2017.1363910] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND PET imaging may be used to personalize radiotherapy (RT) by identifying radioresistant tumor subvolumes for RT dose escalation. Using the tracers [18F]-fluorodeoxyglucose (FDG) and [18F]-fluoromisonidazole (FMISO), different aspects of tumor biology can be visualized. FDG depicts various biological aspects, e.g., proliferation, glycolysis and hypoxia, while FMISO is more hypoxia specific. In this study, we analyzed size and overlap of volumes based on the two markers for head-and-neck cancer patients (HNSCC). MATERIAL AND METHODS Twenty five HNSCC patients underwent a CT scan, as well as FDG and dynamic FMISO PET/CT prior to definitive radio-chemotherapy in a prospective FMISO dose escalation study. Three PET-based subvolumes of the primary tumor (GTVprim) were segmented: a highly FDG-avid volume VFDG, a hypoxic volume on the static FMISO image acquired four hours post tracer injection (VH) and a retention/perfusion volume (VM) using pharmacokinetic modeling of dynamic FMISO data. Absolute volumes, overlaps and distances to agreement (DTA) were evaluated. RESULTS Sizes of PET-based volumes and the GTVprim are significantly different (GTVprim>VFDG>VH >VM; p < .05). VH is covered by VFDG or DTAs are small (mean coverage 74.4%, mean DTA 1.4 mm). Coverage of VM is less pronounced. With respect to VFDG and VH, the mean coverage is 48.7% and 43.1% and the mean DTA is 5.3 mm and 6.3 mm, respectively. For two patients, DTAs were larger than 2 cm. CONCLUSIONS Hypoxic subvolumes from static PET imaging are typically covered by or in close proximity to highly FDG-avid subvolumes. Therefore, dose escalation to FDG positive subvolumes should cover the static hypoxic subvolumes in most patients, with the disadvantage of larger volumes, resulting in a higher risk of dose-limiting toxicity. Coverage of subvolumes from dynamic FMISO PET is less pronounced. Further studies are needed to explore the relevance of mismatches in functional imaging.
Collapse
Affiliation(s)
- David Mönnich
- Department of Radiation Oncology, Section for Biomedical Physics, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK), Partner Site Tübingen, Tübingen, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniela Thorwarth
- Department of Radiation Oncology, Section for Biomedical Physics, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK), Partner Site Tübingen, Tübingen, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sara Leibfarth
- Department of Radiation Oncology, Section for Biomedical Physics, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Christina Pfannenberg
- Department of Diagnostic and Interventional Radiology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Gerald Reischl
- Department of Diagnostic and Interventional Radiology, Preclinical Imaging and Radiopharmacy, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Paul-Stefan Mauz
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Konstantin Nikolaou
- Department of Diagnostic and Interventional Radiology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Christian la Fougère
- Department of Radiology, Nuclear Medicine, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Daniel Zips
- German Cancer Consortium (DKTK), Partner Site Tübingen, Tübingen, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Stefan Welz
- Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Tübingen, Germany
| |
Collapse
|
48
|
Molecular imaging in drug development: Update and challenges for radiolabeled antibodies and nanotechnology. Methods 2017; 130:23-35. [DOI: 10.1016/j.ymeth.2017.07.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/08/2017] [Accepted: 07/18/2017] [Indexed: 01/01/2023] Open
|
49
|
Arts T, Breedveld S, de Jong MA, Astreinidou E, Tans L, Keskin-Cambay F, Krol ADG, van de Water S, Bijman RG, Hoogeman MS. The impact of treatment accuracy on proton therapy patient selection for oropharyngeal cancer patients. Radiother Oncol 2017; 125:520-525. [PMID: 29074078 DOI: 10.1016/j.radonc.2017.09.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 09/22/2017] [Accepted: 09/23/2017] [Indexed: 11/26/2022]
Abstract
BACKGROUND AND PURPOSE The impact of treatment accuracy on NTCP-based patient selection for proton therapy is currently unknown. This study investigates this impact for oropharyngeal cancer patients. MATERIALS AND METHODS Data of 78 patients was used to automatically generate treatment plans for a simultaneously integrated boost prescribing 70 GyRBE/54.25 GyRBE in 35 fractions. IMRT treatment plans were generated with three different margins; intensity modulated proton therapy (IMPT) plans for five different setup and range robustness settings. Four NTCP models were evaluated. Patients were selected for proton therapy if NTCP reduction was ≥10% or ≥5% for grade II or III complications, respectively. RESULTS The degree of robustness had little impact on patient selection for tube feeding dependence, while the margin had. For other complications the impact of the robustness setting was noticeably higher. For high-precision IMRT (3 mm margin) and high-precision IMPT (3 mm setup/3% range error), most patients were selected for proton therapy based on problems swallowing solid food (51.3%) followed by tube feeding dependence (37.2%), decreased parotid flow (29.5%), and patient-rated xerostomia (7.7%). CONCLUSIONS Treatment accuracy has a significant impact on the number of patients selected for proton therapy. Therefore, it cannot be ignored in estimating the number of patients for proton therapy.
Collapse
Affiliation(s)
- Tine Arts
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands.
| | - Sebastiaan Breedveld
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | | | | | - Lisa Tans
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Fatma Keskin-Cambay
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | | | - Steven van de Water
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Rik G Bijman
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Mischa S Hoogeman
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| |
Collapse
|
50
|
Troost EGC, Koi L, Yaromina A, Krause M. Therapeutic options to overcome tumor hypoxia in radiation oncology. Clin Transl Imaging 2017. [DOI: 10.1007/s40336-017-0247-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|