1
|
Mzizi Y, Mbambara S, Moetlhoa B, Mahapane J, Mdanda S, Sathekge M, Kgatle M. Ionising radiation exposure-induced regulation of selected biomarkers and their impact in cancer and treatment. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2024; 4:1469897. [PMID: 39498386 PMCID: PMC11532091 DOI: 10.3389/fnume.2024.1469897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/30/2024] [Indexed: 11/07/2024]
Abstract
Ionising radiation (IR) is a form of energy that travels as electromagnetic waves or particles. While it is vital in medical and occupational health settings, IR can also damage DNA, leading to mutations, chromosomal aberrations, and transcriptional changes that disrupt the functions of certain cell regulators, genes, and transcription factors. These disruptions can alter functions critical for cancer development, progression, and treatment response. Additionally, IR can affect various cellular proteins and their regulators within different cell signalling pathways, resulting in physiological changes that may promote cancer development, progression, and resistance to treatment. Understanding these impacts is crucial for developing strategies to mitigate the harmful effects of IR exposure and improve cancer treatment outcomes. This review focuses on specific genes and protein biomarkers regulated in response to chronic IR exposure, and how their regulation impacts disease onset, progression, and treatment response.
Collapse
Affiliation(s)
- Yonwaba Mzizi
- Department of Nuclear Medicine, University of Pretoria and Steve Biko Academic Hospital, Pretoria, South Africa
- Basic and Translational Research, Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria, South Africa
| | - Saidon Mbambara
- Department of Nuclear Medicine, University of Pretoria and Steve Biko Academic Hospital, Pretoria, South Africa
- Basic and Translational Research, Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria, South Africa
- Department of Biomedical Sciences, Tropical Diseases Research Centre, Ndola, Zambia
| | - Boitumelo Moetlhoa
- Basic and Translational Research, Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria, South Africa
- School of Health Systems and Public Health, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Johncy Mahapane
- Department of Radiography, University of Pretoria, Pretoria, South Africa
| | - Sipho Mdanda
- Department of Nuclear Medicine, University of Pretoria and Steve Biko Academic Hospital, Pretoria, South Africa
- Basic and Translational Research, Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria, South Africa
| | - Mike Sathekge
- Department of Nuclear Medicine, University of Pretoria and Steve Biko Academic Hospital, Pretoria, South Africa
- Basic and Translational Research, Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria, South Africa
| | - Mankgopo Kgatle
- Department of Nuclear Medicine, University of Pretoria and Steve Biko Academic Hospital, Pretoria, South Africa
- Basic and Translational Research, Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria, South Africa
- Department of Medicine, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa
| |
Collapse
|
2
|
Mateu-Sanz M, Tornín J, Ginebra MP, Canal C. Cold Atmospheric Plasma: A New Strategy Based Primarily on Oxidative Stress for Osteosarcoma Therapy. J Clin Med 2021; 10:893. [PMID: 33672274 PMCID: PMC7926371 DOI: 10.3390/jcm10040893] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/10/2021] [Accepted: 02/15/2021] [Indexed: 12/12/2022] Open
Abstract
Osteosarcoma is the most common primary bone tumor, and its first line of treatment presents a high failure rate. The 5-year survival for children and teenagers with osteosarcoma is 70% (if diagnosed before it has metastasized) or 20% (if spread at the time of diagnosis), stressing the need for novel therapies. Recently, cold atmospheric plasmas (ionized gases consisting of UV-Vis radiation, electromagnetic fields and a great variety of reactive species) and plasma-treated liquids have been shown to have the potential to selectively eliminate cancer cells in different tumors through an oxidative stress-dependent mechanism. In this work, we review the current state of the art in cold plasma therapy for osteosarcoma. Specifically, we emphasize the mechanisms unveiled thus far regarding the action of plasmas on osteosarcoma. Finally, we review current and potential future approaches, emphasizing the most critical challenges for the development of osteosarcoma therapies based on this emerging technique.
Collapse
Affiliation(s)
- Miguel Mateu-Sanz
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Escola d’Enginyeria Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC), 08930 Barcelona, Spain; (M.M.-S.); (J.T.); (M.-P.G.)
- Barcelona Research Center in Multiscale Science and Engineering, UPC, 08930 Barcelona, Spain
- Research Centre for Biomedical Engineering (CREB), UPC, 08034 Barcelona, Spain
| | - Juan Tornín
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Escola d’Enginyeria Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC), 08930 Barcelona, Spain; (M.M.-S.); (J.T.); (M.-P.G.)
- Barcelona Research Center in Multiscale Science and Engineering, UPC, 08930 Barcelona, Spain
- Research Centre for Biomedical Engineering (CREB), UPC, 08034 Barcelona, Spain
| | - Maria-Pau Ginebra
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Escola d’Enginyeria Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC), 08930 Barcelona, Spain; (M.M.-S.); (J.T.); (M.-P.G.)
- Barcelona Research Center in Multiscale Science and Engineering, UPC, 08930 Barcelona, Spain
- Research Centre for Biomedical Engineering (CREB), UPC, 08034 Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), 08034 Barcelona, Spain
| | - Cristina Canal
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Escola d’Enginyeria Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC), 08930 Barcelona, Spain; (M.M.-S.); (J.T.); (M.-P.G.)
- Barcelona Research Center in Multiscale Science and Engineering, UPC, 08930 Barcelona, Spain
- Research Centre for Biomedical Engineering (CREB), UPC, 08034 Barcelona, Spain
| |
Collapse
|
3
|
Siebert N, Zumpe M, von Lojewski L, Troschke-Meurer S, Marx M, Lode HN. Reduction of CD11b + myeloid suppressive cells augments anti-neuroblastoma immune response induced by the anti-GD 2 antibody ch14.18/CHO. Oncoimmunology 2020; 9:1836768. [PMID: 33150046 PMCID: PMC7588217 DOI: 10.1080/2162402x.2020.1836768] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Neuroblastoma (NB) still remains a major challenge in pediatric oncology. We recently showed CD11b+-dependent upregulation of the PD-1/PD-L1 checkpoint on NB cells treated with the chimeric anti-GD2 antibody (Ab) ch14.18/CHO. Here, we report effects of reduction of CD11b+ myeloid suppressive cells on ch14.18/CHO immunotherapy against NB. Flow cytometry, immunohistochemistry and RT-PCR were used to assess tumor infiltrating leukocytes and expression of myeloid suppressive cell-associated genes. XTT assay was used to show impact of 5-FU on tumor and effector cells. Antitumor effects of the combined treatment with ch14.18/CHO and reduction of myeloid suppressive cells were evaluated in a syngeneic NB mouse model. Tumor tissue of untreated mice showed a strong infiltration by CD11b+ cells (53% of all tumor infiltrating leukocytes). RT-PCR analysis of tumors revealed strong expression of the myeloid suppressive cell-associated genes analyzed with the strongest induction of M-CSFr, CCL2, IL-1β, IL-4, IL-6 r, IL-8, Arg1, and NOS2. Compared to controls, application of anti-CD11b Ab resulted in reduction of both CD11b+ cells in tumors and expression of myeloid suppressive cell-associated genes as well as delayed tumor growth and prolonged survival. These effects could be further improved by 5-FU. Importantly, the combinatorial immunotherapy with ch14.18/CHO and 5-FU showed the strongest antitumor effects and superior survival rates. In conclusion, reduction of immune suppressive myeloid cells augments anti-NB efficacy of a ch14.18/CHO-based immunotherapy representing a new effective treatment strategy against GD2-positive cancers.
Collapse
Affiliation(s)
- Nikolai Siebert
- Department of Pediatric Oncology and Hematology, University Medicine Greifswald, Greifswald, Germany
| | - Maxi Zumpe
- Department of Pediatric Oncology and Hematology, University Medicine Greifswald, Greifswald, Germany
| | - Leon von Lojewski
- Department of Pediatric Oncology and Hematology, University Medicine Greifswald, Greifswald, Germany
| | - Sascha Troschke-Meurer
- Department of Pediatric Oncology and Hematology, University Medicine Greifswald, Greifswald, Germany
| | - Madlen Marx
- Department of Pediatric Oncology and Hematology, University Medicine Greifswald, Greifswald, Germany
| | - Holger N Lode
- Department of Pediatric Oncology and Hematology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
4
|
Transcriptome-Wide Analysis of CXCR5 Deficient Retinal Pigment Epithelial (RPE) Cells Reveals Molecular Signatures of RPE Homeostasis. Biomedicines 2020; 8:biomedicines8060147. [PMID: 32492870 PMCID: PMC7345337 DOI: 10.3390/biomedicines8060147] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/30/2020] [Accepted: 05/31/2020] [Indexed: 12/19/2022] Open
Abstract
Age-related macular degeneration (AMD) is the most common cause of irreversible blindness in the elderly population. In our previous studies, we found that deficiency of CXCR5 causes AMD-like pathological phenotypes in mice, characterized by abnormalities and dysfunction of the retinal pigment epithelium (RPE) cells. The abnormalities included abnormal cellular shape and impaired barrier function. In the present study, primary RPE cells were derived separately from CXCR5 knockout (KO) mice and from C57BL6 wild type (WT). The isolated primary cells were cultured for several days, and then total RNA was isolated and used for library preparation, sequencing, and the resultant raw data analyzed. Relative to the WT, a total of 1392 differentially expressed genes (DEG) were identified. Gene ontology analysis showed various biological processes, cellular components, and molecular functions were enriched. Pathway enrichment analysis revealed several pathways, including the PI3K-Akt signaling, mTOR signaling, FoxO, focal adhesion, endocytosis, ubiquitin-mediated proteolysis, TNFα-NF-kB Signaling, adipogenesis genes, p53 signaling, Ras, autophagy, epithelial–mesenchymal transition (EMT), and mitochondrial pathway. This study explores molecular signatures associated with deficiency of CXCR5 in RPE cells. Many of these signatures are important for homeostasis of this tissue. The identified pathways and genes require further evaluation to better understand the pathophysiology of AMD.
Collapse
|
5
|
Sieberath A, Della Bella E, Ferreira AM, Gentile P, Eglin D, Dalgarno K. A Comparison of Osteoblast and Osteoclast In Vitro Co-Culture Models and Their Translation for Preclinical Drug Testing Applications. Int J Mol Sci 2020; 21:E912. [PMID: 32019244 PMCID: PMC7037207 DOI: 10.3390/ijms21030912] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/10/2020] [Accepted: 01/21/2020] [Indexed: 12/23/2022] Open
Abstract
As the population of western societies on average ages, the number of people affected by bone remodeling-associated diseases such as osteoporosis continues to increase. The development of new therapeutics is hampered by the high failure rates of drug candidates during clinical testing, which is in part due to the poor predictive character of animal models during preclinical drug testing. Co-culture models of osteoblasts and osteoclasts offer an alternative to animal testing and are considered to have the potential to improve drug development processes in the future. However, a robust, scalable, and reproducible 3D model combining osteoblasts and osteoclasts for preclinical drug testing purposes has not been developed to date. Here we review various types of osteoblast-osteoclast co-culture models and outline the remaining obstacles that must be overcome for their successful translation.
Collapse
Affiliation(s)
- Alexander Sieberath
- School of Engineering, Newcastle University, Newcastle-Upon-Tyne NE1 7RU, UK; (A.S.); (A.M.F.); (P.G.)
| | - Elena Della Bella
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland; (E.D.B.); (D.E.)
| | - Ana Marina Ferreira
- School of Engineering, Newcastle University, Newcastle-Upon-Tyne NE1 7RU, UK; (A.S.); (A.M.F.); (P.G.)
| | - Piergiorgio Gentile
- School of Engineering, Newcastle University, Newcastle-Upon-Tyne NE1 7RU, UK; (A.S.); (A.M.F.); (P.G.)
| | - David Eglin
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland; (E.D.B.); (D.E.)
| | - Kenny Dalgarno
- School of Engineering, Newcastle University, Newcastle-Upon-Tyne NE1 7RU, UK; (A.S.); (A.M.F.); (P.G.)
| |
Collapse
|
6
|
Salamanna F, Borsari V, Brogini S, Giavaresi G, Parrilli A, Cepollaro S, Cadossi M, Martini L, Mazzotti A, Fini M. An in vitro 3D bone metastasis model by using a human bone tissue culture and human sex-related cancer cells. Oncotarget 2018; 7:76966-76983. [PMID: 27765913 PMCID: PMC5363563 DOI: 10.18632/oncotarget.12763] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 09/27/2016] [Indexed: 01/08/2023] Open
Abstract
One of the main limitations, when studying cancer-bone metastasis, is the complex nature of the native bone environment and the lack of reliable, simple, inexpensive models that closely mimic the biological processes occurring in patients and allowing the correct translation of results. To enhance the understanding of the mechanisms underlying human bone metastases and in order to find new therapies, we developed an in vitro three-dimensional (3D) cancer-bone metastasis model by culturing human breast or prostate cancer cells with human bone tissue isolated from female and male patients, respectively. Bone tissue discarded from total hip replacement surgery was cultured in a rolling apparatus system in a normoxic or hypoxic environment. Gene expression profile, protein levels, histological, immunohistochemical and four-dimensional (4D) micro-CT analyses showed a noticeable specificity of breast and prostate cancer cells for bone colonization and ingrowth, thus highlighting the species-specific and sex-specific osteotropism and the need to widen the current knowledge on cancer-bone metastasis spread in human bone tissues. The results of this study support the application of this model in preclinical studies on bone metastases and also follow the 3R principles, the guiding principles, aimed at replacing/reducing/refining (3R) animal use and their suffering for scientific purposes.
Collapse
Affiliation(s)
- Francesca Salamanna
- Laboratory of Biocompatibility, Technological Innovation and Advanced Therapy, Rizzoli RIT, Rizzoli Orthopedic Institute, Bologna, Italy.,Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Veronica Borsari
- Laboratory of Biocompatibility, Technological Innovation and Advanced Therapy, Rizzoli RIT, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Silvia Brogini
- Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Gianluca Giavaresi
- Laboratory of Biocompatibility, Technological Innovation and Advanced Therapy, Rizzoli RIT, Rizzoli Orthopedic Institute, Bologna, Italy.,Laboratory of Tissue Engineering-Innovative Technology Platforms for Tissue Engineering, Rizzoli Orthopedic Institute, Palermo, Italy
| | - Annapaola Parrilli
- Laboratory of Biocompatibility, Technological Innovation and Advanced Therapy, Rizzoli RIT, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Simona Cepollaro
- Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopaedic Institute, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Matteo Cadossi
- I Orthopaedics and Trauma Clinic, Rizzoli Orthopaedic Institute, Bologna, Italy.,University of Bologna, Bologna, Italy
| | - Lucia Martini
- Laboratory of Biocompatibility, Technological Innovation and Advanced Therapy, Rizzoli RIT, Rizzoli Orthopedic Institute, Bologna, Italy.,Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Antonio Mazzotti
- I Orthopaedics and Trauma Clinic, Rizzoli Orthopaedic Institute, Bologna, Italy.,University of Bologna, Bologna, Italy
| | - Milena Fini
- Laboratory of Biocompatibility, Technological Innovation and Advanced Therapy, Rizzoli RIT, Rizzoli Orthopedic Institute, Bologna, Italy.,Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopaedic Institute, Bologna, Italy
| |
Collapse
|
7
|
Gupta M, Mishra SK, Kumar BSH, Khushu S, Rana P. Early detection of whole body radiation induced microstructural and neuroinflammatory changes in hippocampus: A diffusion tensor imaging and gene expression study. J Neurosci Res 2016; 95:1067-1078. [PMID: 27436454 DOI: 10.1002/jnr.23833] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 06/21/2016] [Accepted: 06/21/2016] [Indexed: 11/09/2022]
Abstract
Ionizing radiation is known to a cause systemic inflammatory response within hours of exposure that may affect the central nervous system (CNS). The present study was carried out to look upon the influence of radiation induced systemic inflammatory response in hippocampus within 24 hr of whole body radiation exposure. A Diffusion Tensor Imaging (DTI) study was conducted in mice exposed to a 5-Gy radiation dose through a 60 Co source operating at 2.496 Gy/min at 3 hr and 24 hr post irradiation and in sham-irradiated controls using 7 T animal MRI system. The results showed a significant decrease in Mean Diffusivity (MD), Radial Diffusivity (RD), and Axial Diffusivity (AD) in hippocampus at 24 hr compared with controls. Additionally, marked change in RD was observed at 3 hr. Increased serum C-Reactive Protein (CRP) level depicted an increased systemic/peripheral inflammation. The neuroinflammatory response in hippocampus was characterized by increased mRNA expression of IL-1β, IL-6, and Cox-2 at the 24 hr time point. Additionally, in the irradiated group, reactive astrogliosis was illustrated, with noticeable changes in GFAP expression at 24 hr. Altered diffusivity and enhanced neuroinflammatory expression in the hippocampal region showed peripheral inflammation induced changes in brain. Moreover, a negative correlation between gene expression and DTI parameters depicted a neuroinflammation induced altered microenvironment that might affect water diffusivity. The study showed that there was an influence of whole body radiation exposure on hippocampus even during the early acute phase that could be reflected in terms of neuroinflammatory response as well as microstructural changes. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Mamta Gupta
- NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Sushanta Kumar Mishra
- NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - B S Hemanth Kumar
- NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Subash Khushu
- NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Poonam Rana
- NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| |
Collapse
|
8
|
Slosky LM, Largent-Milnes TM, Vanderah TW. Use of Animal Models in Understanding Cancer-induced Bone Pain. CANCER GROWTH AND METASTASIS 2015; 8:47-62. [PMID: 26339191 PMCID: PMC4552039 DOI: 10.4137/cgm.s21215] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 06/14/2015] [Accepted: 06/16/2015] [Indexed: 12/13/2022]
Abstract
Many common cancers have a propensity to metastasize to bone. Although malignancies often go undetected in their native tissues, bone metastases produce excruciating pain that severely compromises patient quality of life. Cancer-induced bone pain (CIBP) is poorly managed with existing medications, and its multifaceted etiology remains to be fully elucidated. Novel analgesic targets arise as more is learned about this complex and distinct pain state. Over the past two decades, multiple animal models have been developed to study CIBP’s unique pathology and identify therapeutic targets. Here, we review animal models of CIBP and the mechanistic insights gained as these models evolve. Findings from immunocompromised and immunocompetent host systems are discussed separately to highlight the effect of model choice on outcome. Gaining an understanding of the unique neuromolecular profile of cancer pain through the use of appropriate animal models will aid in the development of more effective therapeutics for CIBP.
Collapse
Affiliation(s)
- Lauren M Slosky
- Department of Medical Pharmacology, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Tally M Largent-Milnes
- Department of Medical Pharmacology, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Todd W Vanderah
- Department of Medical Pharmacology, University of Arizona College of Medicine, Tucson, AZ, USA
| |
Collapse
|
9
|
Templeton ZS, Bachmann MH, Alluri RV, Maloney WJ, Contag CH, King BL. Methods for culturing human femur tissue explants to study breast cancer cell colonization of the metastatic niche. J Vis Exp 2015:52656. [PMID: 25867136 PMCID: PMC4401351 DOI: 10.3791/52656] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Bone is the most common site of breast cancer metastasis. Although it is widely accepted that the microenvironment influences cancer cell behavior, little is known about breast cancer cell properties and behaviors within the native microenvironment of human bone tissue.We have developed approaches to track, quantify and modulate human breast cancer cells within the microenvironment of cultured human bone tissue fragments isolated from discarded femoral heads following total hip replacement surgeries. Using breast cancer cells engineered for luciferase and enhanced green fluorescent protein (EGFP) expression, we are able to reproducibly quantitate migration and proliferation patterns using bioluminescence imaging (BLI), track cell interactions within the bone fragments using fluorescence microscopy, and evaluate breast cells after colonization with flow cytometry. The key advantages of this model include: 1) a native, architecturally intact tissue microenvironment that includes relevant human cell types, and 2) direct access to the microenvironment, which facilitates rapid quantitative and qualitative monitoring and perturbation of breast and bone cell properties, behaviors and interactions. A primary limitation, at present, is the finite viability of the tissue fragments, which confines the window of study to short-term culture. Applications of the model system include studying the basic biology of breast cancer and other bone-seeking malignancies within the metastatic niche, and developing therapeutic strategies to effectively target breast cancer cells in bone tissues.
Collapse
Affiliation(s)
| | | | - Rajiv V Alluri
- Department of Pediatrics, Stanford University School of Medicine
| | - William J Maloney
- Department of Orthopaedic Surgery, Stanford University School of Medicine
| | | | - Bonnie L King
- Department of Pediatrics, Stanford University School of Medicine;
| |
Collapse
|
10
|
Contag CH, Lie WR, Bammer MC, Hardy JW, Schmidt TL, Maloney WJ, King BL. Monitoring dynamic interactions between breast cancer cells and human bone tissue in a co-culture model. Mol Imaging Biol 2014; 16:158-66. [PMID: 24008275 DOI: 10.1007/s11307-013-0685-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE Bone is a preferential site of breast cancer metastasis, and models are needed to study this process at the level of the microenvironment. We have used bioluminescence imaging (BLI) and multiplex biomarker immunoassays to monitor dynamic breast cancer cell behaviors in co-culture with human bone tissue. PROCEDURES Femur tissue fragments harvested from hip replacement surgeries were co-cultured with luciferase-positive MDA-MB-231-fLuc cells. BLI was performed to quantify breast cell proliferation and track migration relative to bone tissue. Breast cell colonization of bone tissues was assessed with immunohistochemistry. Biomarkers in co-culture supernatants were profiled with MILLIPLEX(®) immunoassays. RESULTS BLI demonstrated increased MDA-MB-231-fLuc cell proliferation (p < 0.001) in the presence vs. absence of bones and revealed breast cell migration toward bone. Immunohistochemistry illustrated MDA-MB-231-fLuc cell colonization of bone, and MILLIPLEX(®) profiles of culture supernatants suggested breast/bone crosstalk. CONCLUSIONS Breast cell behaviors that facilitate metastasis occur reproducibly in human bone tissue co-cultures and can be monitored and quantified using BLI and multiplex immunoassays.
Collapse
Affiliation(s)
- Christopher H Contag
- Department of Pediatrics, Stanford University School of Medicine, 150E Clark Center, 318 Campus Drive, Stanford, CA, 94305-5427, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Pevida M, González-Rodríguez S, Lastra A, García-Suárez O, Hidalgo A, Menéndez L, Baamonde A. Involvement of spinal chemokine CCL2 in the hyperalgesia evoked by bone cancer in mice: a role for astroglia and microglia. Cell Mol Neurobiol 2014; 34:143-56. [PMID: 24122510 PMCID: PMC11488896 DOI: 10.1007/s10571-013-9995-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 09/27/2013] [Indexed: 11/26/2022]
Abstract
The hypernociceptive role played by the chemokine CCL2, and its main receptor, CCR2, in pathological settings is being increasingly recognized. We aimed to characterize the involvement of spinal CCL2 in the hyperalgesia due to the intratibial inoculation of fibrosarcoma NCTC 2472 cells in mice. The intrathecal (i.t.) administration of the CCR2 antagonist RS 504393 (1–3 μg) or an anti-CCL2 antibody inhibited tumoral hyperalgesia. No change in the expression of spinal CCR2 was detected by western blot, whereas immunohistochemical experiments demonstrated increased CCL2 staining at the superficial laminae of the spinal cord ipsilateral to the tumor. This spinal CCL2 does not seem to be released from nociceptors since CCL2 mRNA and CCL2 levels in DRGs, as measured by RT-PCR and ELISA, remain unmodified in tumor-bearing mice. In contrast, immunohistochemical assays demonstrated the spinal up-regulations of GFAP and Iba-1, respective markers of astroglia and microglia, and the expression of CCL2 in both types of glial cells at the superficial laminae of the spinal cord of tumor-bearing mice. Finally, since CCL2 could induce astroglial or microglial activation, we studied whether the blockade of CCR2 could inhibit the increased spinal glial expression. GFAP, but not Iba-1, up-regulation was reduced in tumor-bearing mice treated for 3 days with i.t. RS 504393, indicating that spinal CCL2 acts as an astroglial activator in this setting. The participation at spinal level of CCL2/CCR2 in tumoral hypernociception, together with its previously described involvement at periphery, makes attractive the modulation of this system for the alleviation of neoplastic pain.
Collapse
Affiliation(s)
- Marta Pevida
- Laboratorio de Farmacología, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, c/ Julián Clavería 6, 33006 Oviedo, Asturias Spain
| | - Sara González-Rodríguez
- Laboratorio de Farmacología, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, c/ Julián Clavería 6, 33006 Oviedo, Asturias Spain
- Present Address: Department of Anesthesiology and Critical Care Medicine, Charité Campus Benjamin Franklin, Freie Universität Berlin, Hindenburgdamm 30, 12200 Berlin, Germany
| | - Ana Lastra
- Laboratorio de Farmacología, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, c/ Julián Clavería 6, 33006 Oviedo, Asturias Spain
| | - Olivia García-Suárez
- Departamento de Morfologia y Biologia Celular, Facultad de Medicina, Universidad de Oviedo, c/ Julián Clavería 6, 33006 Oviedo, Asturias Spain
| | - Agustín Hidalgo
- Laboratorio de Farmacología, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, c/ Julián Clavería 6, 33006 Oviedo, Asturias Spain
| | - Luis Menéndez
- Laboratorio de Farmacología, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, c/ Julián Clavería 6, 33006 Oviedo, Asturias Spain
| | - Ana Baamonde
- Laboratorio de Farmacología, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, c/ Julián Clavería 6, 33006 Oviedo, Asturias Spain
| |
Collapse
|
12
|
Lozano-Ondoua AN, Symons-Liguori AM, Vanderah TW. Cancer-induced bone pain: Mechanisms and models. Neurosci Lett 2013; 557 Pt A:52-9. [PMID: 24076008 DOI: 10.1016/j.neulet.2013.08.003] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 07/19/2013] [Accepted: 08/01/2013] [Indexed: 12/13/2022]
Abstract
Cancerous cells can originate in a number of different tissues such as prostate, breast and lung, but often go undetected and are non-painful. Many types of cancers have a propensity to metastasize to the bone microenvironment first. Tumor burden within the bone causes excruciating breakthrough pain with properties of ongoing pain that is inadequately managed with current analgesics. Part of this failure is due to the poor understanding of the etiology of cancer pain. Animal models of cancer-induced bone pain (CIBP) have revealed that the neurochemistry of cancer has features distinctive from other chronic pain states. For example, preclinical models of metastatic cancer often result in the positive modulation of neurotrophins, such as NGF and BDNF, that can lead to nociceptive sensitization. Preclinical cancer models also demonstrate nociceptive neuronal expression of acid-sensing receptors, such as ASIC1 and TRPV1, which respond to cancer-induced acidity within the bone. CIBP is correlated with a significant increase in pro-inflammatory mediators acting peripherally and centrally, contributing to neuronal hypersensitive states. Finally, cancer cells generate high levels of oxidative molecules that are thought to increase extracellular glutamate concentrations, thus activating primary afferent neurons. Knowledge of the unique neuro-molecular profile of cancer pain will ultimately lead to the development of novel and superior therapeutics for CIBP.
Collapse
Affiliation(s)
- A N Lozano-Ondoua
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | | | | |
Collapse
|
13
|
Mognetti B, La Montagna G, Perrelli MG, Pagliaro P, Penna C. Bone marrow mesenchymal stem cells increase motility of prostate cancer cells via production of stromal cell-derived factor-1α. J Cell Mol Med 2013; 17:287-92. [PMID: 23301946 PMCID: PMC3822591 DOI: 10.1111/jcmm.12010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 12/06/2012] [Indexed: 12/15/2022] Open
Abstract
Prostate cancer frequently metastasizes to the bone, and the interaction between cancer cells and bone microenvironment has proven to be crucial in the establishment of new metastases. Bone marrow mesenchymal stem cells (BM-MSCs) secrete various cytokines that can regulate the behaviour of neighbouring cell. However, little is known about the role of BM-MSCs in influencing the migration and the invasion of prostate cancer cells. We hypothesize that the stromal cell-derived factor-1α released by BM-MSCs may play a pivotal role in these processes. To study the interaction between factors secreted by BM-MSCs and prostate cancer cells we established an in vitro model of transwell co-culture of BM-MSCs and prostate cancer cells DU145. Using this model, we have shown that BM-MSCs produce soluble factors which increase the motility of prostate cancer cells DU145. Neutralization of stromal cell-derived factor-1α (SDF1α) via a blocking antibody significantly limits the chemoattractive effect of bone marrow MSCs. Moreover, soluble factors produced by BM-MSCs greatly activate prosurvival kinases, namely AKT and ERK 1/2. We provide further evidence that SDF1α is involved in the interaction between prostate cancer cells and BM-MSCs. Such interaction may play an important role in the migration and the invasion of prostate cancer cells within bone.
Collapse
Affiliation(s)
- Barbara Mognetti
- Department of Clinical and Biological Science, University of Turin, Orbassano, Italy.
| | | | | | | | | |
Collapse
|
14
|
CCL2 released at tumoral level contributes to the hyperalgesia evoked by intratibial inoculation of NCTC 2472 but not B16-F10 cells in mice. Naunyn Schmiedebergs Arch Pharmacol 2012; 385:1053-61. [DOI: 10.1007/s00210-012-0787-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 07/18/2012] [Indexed: 01/01/2023]
|
15
|
Fallica B, Makin G, Zaman MH. Bioengineering approaches to study multidrug resistance in tumor cells. Integr Biol (Camb) 2011; 3:529-39. [PMID: 21387035 DOI: 10.1039/c0ib00142b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The ability of cancer cells to become resistant to chemotherapeutic agents is a major challenge for the treatment of malignant tumors. Several strategies have emerged to attempt to inhibit chemoresistance, but the fact remains that resistance is a problem for every effective anticancer drug. The first part of this review will focus on the mechanisms of chemoresistance. It is important to understand the environmental cues, transport limitations and the cellular signaling pathways associated with chemoresistance before we can hope to effectively combat it. The second part of this review focuses on the work that needs to be done moving forward. Specifically, this section focuses on the necessity of translational research and interdisciplinary directives. It is critical that the expertise of oncologists, biologists, and engineers be brought together to attempt to tackle the problem. This discussion is from an engineering perspective, as the dialogue between engineers and other cancer researchers is the most challenging due to non-overlapping background knowledge. Chemoresistance is a complex and devastating process, meaning that we urgently need sophisticated methods to study the process of how cells become resistant.
Collapse
Affiliation(s)
- Brian Fallica
- Department of Biomedical Engineering, Boston University, USA
| | | | | |
Collapse
|
16
|
Mauro L, Wenzel S, Sindberg G. Regulation of chick bone growth by leptin and catecholamines. Poult Sci 2010; 89:697-708. [DOI: 10.3382/ps.2009-00363] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
17
|
Abangan RS, Williams CR, Mehrotra M, Duncan JD, Larue AC. MCP1 directs trafficking of hematopoietic stem cell-derived fibroblast precursors in solid tumor. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 176:1914-26. [PMID: 20167869 DOI: 10.2353/ajpath.2010.080839] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Our previous studies have demonstrated that hematopoietic stem cells (HSCs) are a novel source of carcinoma-associated fibroblasts. However, the mechanisms regulating recruitment and homing of HSC-derived carcinoma-associated fibroblasts or their precursors to the tumor microenvironment are unknown. Herein, we demonstrate using a single cell transplantation model that circulating fibroblast precursors (CFPs) are of HSC origin. This population increased with tumor burden in vivo and functional in vitro studies showed that CFPs preferentially migrated and differentiated into fibroblasts in response to tumor, suggesting that HSC-derived CFPs serve as an intermediate between the bone marrow and tumor. Based on this chemotactic ability and our demonstration of a monocyte lineage origin for CFPs, we investigated the role of monocyte chemoattractant protein (MCP1) in mediating CFP recruitment/homing. Blocking tumor-produced MCP1 inhibited in vitro migration of CFPs in response to multiple tumor types, indicating broad biological significance for this CFP/chemokine interaction. In vivo, CCR2-expressing CFPs increased in circulation during the period of active tumor growth and stromal development. Inhibition of MCP1 during tumor development resulted in decreased tumor volume in tumor-bearing mice. Together these findings confirm an HSC origin for CFPs, demonstrate a role for MCP1 in regulating their contribution to the tumor microenvironment, and suggest a potential therapeutic target for limiting tumor growth.
Collapse
Affiliation(s)
- Romeo S Abangan
- Ralph H. Johnson VA Medical Center, Charleston, SC 29401, USA
| | | | | | | | | |
Collapse
|