1
|
Dudina AN, Tomyshev AS, Ilina EV, Romanov DV, Lebedeva IS. Structural and functional alterations in different types of delusions across schizophrenia spectrum: A systematic review. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111185. [PMID: 39486472 DOI: 10.1016/j.pnpbp.2024.111185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/22/2024] [Accepted: 10/27/2024] [Indexed: 11/04/2024]
Abstract
BACKGROUND Despite the high clinical role of delusions as a transnosological psychopathological phenomenon, the number of experimental studies on the different types of delusions across schizophrenia spectrum is still relatively small, and their results are somehow inconsistent. We aimed to understand the current state of knowledge regarding the structural and functional brain alterations in delusions to determine whether particular types of delusions are associated with specific brain changes and to identify common alterations underlying the formation and persistence of delusions regardless of their content. METHODS For this systematic review, we followed PRISMA guidelines to search in PubMed for English papers published between 1953 and September 30, 2023. The initial inclusion criteria for screening purposes were articles that investigated delusions or subclinical delusional beliefs in schizophrenia spectrum disorders, high clinical or genetic risk for schizophrenia using fMRI, sMRI or/and dwMRI methods. Exclusion criteria during the screening phase were articles that investigated lesion-induced or substance-induced delusions, delusions in Alzheimer's disease and other neurocognitive disorders, single case studies and non-human studies. The publication metadata were uploaded to the web-tool for working on systematic reviews, Rayyan. For each of the studies, a table was filled out with detailed information. RESULTS We found 1752 records, of which 95 full-text documents were reviewed and included in the current paper. Both nonspecific and particular types of delusions were associated with widespread structural and functional alterations. The most prominent areas affected across all types of delusions were the superior temporal cortex (predominantly left language processing areas), anterior cingulate/medial prefrontal cortex and insula. The most reproducible findings in paranoia may be alterations in the functioning of the amygdala and its interactions with other regions. Somatic delusions and delusional infestation were mostly characterized by alterations in the insula and thalamus. DISCUSSION The data are ambiguous; however, in general the predictive processing framework seems to be the most widely accepted approach to explaining different types of delusions. Aberrant prediction errors signaling during processing of social, self-generated and sensory information may lead to inaccuracies in assessing the intentions of others, self-relevancy of ambiguous stimuli, misattribution of self-generated actions and unusual sensations, which could provoke delusional ideation with persecutory, reference, control and somatic content correspondingly. However, currently available data are still insufficient to draw conclusions about the specific biological mechanisms of predictive coding account of delusions. Thus, further studies exploring more homogeneous groups and interaction of diagnoses by types of delusions are needed. There are also some limitations in this review. Studies that investigate delusions induced by lesions, substance abuse or neurodegeneration and studies using modalities other than fMRI, sMRI or dwMRI were not included in the review. Due to the relatively small number of publications, we systematized them based on a certain type of delusions, while the results could also be affected by the diagnosis of patients, the presence and type of therapy, illness duration etc.
Collapse
Affiliation(s)
- Anastasiia N Dudina
- Mental Health Research Center, 34 Kashirskoye Sh, Moscow 115522, Russian Federation.
| | - Alexander S Tomyshev
- Mental Health Research Center, 34 Kashirskoye Sh, Moscow 115522, Russian Federation
| | - Ekaterina V Ilina
- I.M. Sechenov First Moscow State Medical University, 8-2 Trubetskaya Str, Moscow 119991, Russian Federation
| | - Dmitriy V Romanov
- Mental Health Research Center, 34 Kashirskoye Sh, Moscow 115522, Russian Federation; I.M. Sechenov First Moscow State Medical University, 8-2 Trubetskaya Str, Moscow 119991, Russian Federation
| | - Irina S Lebedeva
- Mental Health Research Center, 34 Kashirskoye Sh, Moscow 115522, Russian Federation
| |
Collapse
|
2
|
Martino M, Magioncalda P. A working model of neural activity and phenomenal experience in psychosis. Mol Psychiatry 2024; 29:3814-3825. [PMID: 38844531 DOI: 10.1038/s41380-024-02607-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 05/02/2024] [Accepted: 05/09/2024] [Indexed: 12/05/2024]
Abstract
According to classical phenomenology, phenomenal experience is composed of perceptions (related to environmental stimuli) and imagery/ideas (unrelated to environmental stimuli). Intensity/vividness is supposed to represent the key phenomenal difference between perceptions and ideas, higher in perceptions than ideas, and thus the core subjective criterion to distinguish reality from imagination. At a neural level, phenomenal experience is related to brain activity in the sensory areas, driven by receptor stimulation (underlying perception) or associative areas (underlying imagery/ideas). An alteration of the phenomenal experience that leads to a loss of contact with reality characterizes psychosis, which mainly consists of hallucinations (false perceptions) and delusions (fixed ideas). According to the current data on their neural correlates across subclinical conditions and different neuropsychiatric disorders (such as schizophrenia), hallucinations are mainly associated with: transient (modality-specific) activations of sensory cortices (primarily superior temporal gyrus, occipito-temporal cortex, postcentral gyrus, and insula) during the hallucinatory experience; increased intrinsic activity/connectivity of associative/default-mode network (DMN) areas (primarily temporoparietal junction, posterior cingulate cortex, and medial prefrontal cortex); and deficits in the sensory systems. Analogously, delusions are mainly associated with increased intrinsic activity/connectivity of associative/DMN areas (primarily medial prefrontal cortex). Integrating these data into our three-dimensional model of neural activity and phenomenal-behavioral patterns, we propose the following model of psychosis. A functional/structural deficit in the sensory systems complemented by a functional reconfiguration of intrinsic brain activity favoring hyperactivity of associative/DMN areas may drive neuronal activations in the sensory (auditory/visual/somatosensory) areas and insular (interoceptive) areas with spatiotemporal configurations maximally independent from environmental stimuli and predominantly related to associative processing. This manifests in perception deficit and imagery/ideas composed of exteroceptive-like and interoceptive/affective-like elements that show a phenomenal intensity indistinguishable from perceptions, impairing the reality monitoring, along with minimal changeability by environmental stimuli, ultimately resulting in dissociation of the phenomenal experience from the environment, i.e., psychosis.
Collapse
Affiliation(s)
- Matteo Martino
- Graduate Institute of Mind Brain and Consciousness, Taipei Medical University, Taipei, Taiwan.
| | - Paola Magioncalda
- International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
- Department of Medical Research, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan.
- Department of Radiology, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan.
| |
Collapse
|
3
|
Chatterjee I, Baumgärtner L. Unveiling Functional Biomarkers in Schizophrenia: Insights from Region of Interest Analysis Using Machine Learning. J Integr Neurosci 2024; 23:179. [PMID: 39344241 DOI: 10.31083/j.jin2309179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/11/2024] [Accepted: 07/26/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Schizophrenia is a complex and disabling mental disorder that represents one of the most important challenges for neuroimaging research. There were many attempts to understand these basic mechanisms behind the disorder, yet we know very little. By employing machine learning techniques with age-matched samples from the auditory oddball task using multi-site functional magnetic resonance imaging (fMRI) data, this study aims to address these challenges. METHODS The study employed a three-stage model to gain a better understanding of the neurobiology underlying schizophrenia and techniques that could be applied for diagnosis. At first, we constructed four-level hierarchical sets from each fMRI volume of 34 schizophrenia patients (SZ) and healthy controls (HC) individually in terms of hemisphere, gyrus, lobes, and Brodmann areas. Second, we employed statistical methods, namely, t-tests and Pearson's correlation, to assess the group differences in cortical activation. Finally, we assessed the predictive power of the brain regions for machine learning algorithms using K-nearest Neighbor (KNN), Naive Bayes, Decision Tree (DT), Random Forest (RF), Support Vector Machines (SVMs), and Extreme Learning Machine (ELM). RESULTS Our investigation depicts promising results, obtaining an accuracy of up to 84% when applying Pearson's correlation-selected features at lobes and Brodmann region level (81% for Gyrus), as well as Hemispheres involving different stages. Thus, the results of our study were consistent with previous studies that have revealed some functional abnormalities in several brain regions. We also discovered the involvement of other brain regions which were never sufficiently studied in previous literature, such as the posterior lobe (posterior cerebellum), Pyramis, and Brodmann Area 34. CONCLUSIONS We present a unique and comprehensive approach to investigating the neurological basis of schizophrenia in this study. By bridging the gap between neuroimaging and computable analysis, we aim to improve diagnostic accuracy in patients with schizophrenia and identify potential prognostic markers for disease progression.
Collapse
Affiliation(s)
- Indranath Chatterjee
- Department of Computing and Mathematics, Manchester Metropolitan University, M1 5GD Manchester, UK
- School of Technology, Woxsen University, 502345 Hyderabad, India
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, 140401 Punjab, India
| | - Lea Baumgärtner
- Department of Media, Hochschule der Medien, University of Applied Science, 70569 Stuttgart, Germany
| |
Collapse
|
4
|
Deng W, Tuominen L, Sussman R, Leathem L, Vinke LN, Holt DJ. Changes in responses of the amygdala and hippocampus during fear conditioning are associated with persecutory beliefs. Sci Rep 2024; 14:8173. [PMID: 38589562 PMCID: PMC11001942 DOI: 10.1038/s41598-024-57746-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/21/2024] [Indexed: 04/10/2024] Open
Abstract
The persecutory delusion is the most common symptom of psychosis, yet its underlying neurobiological mechanisms are poorly understood. Prior studies have suggested that abnormalities in medial temporal lobe-dependent associative learning may contribute to this symptom. In the current study, this hypothesis was tested in a non-clinical sample of young adults without histories of psychiatric treatment (n = 64), who underwent classical Pavlovian fear conditioning while fMRI data were collected. During the fear conditioning procedure, participants viewed images of faces which were paired (the CS+) or not paired (the CS-) with an aversive stimulus (a mild electrical shock). Fear conditioning-related neural responses were measured in two medial temporal lobe regions, the amygdala and hippocampus, and in other closely connected brain regions of the salience and default networks. The participants without persecutory beliefs (n = 43) showed greater responses to the CS- compared to the CS+ in the right amygdala and hippocampus, while the participants with persecutory beliefs (n = 21) failed to exhibit this response. These between-group differences were not accounted for by symptoms of depression, anxiety or a psychosis risk syndrome. However, the severity of subclinical psychotic symptoms overall was correlated with the level of this aberrant response in the amygdala (p = .013) and hippocampus (p = .033). Thus, these findings provide evidence for a disruption of medial temporal lobe-dependent associative learning in young people with subclinical psychotic symptoms, specifically persecutory thinking.
Collapse
Affiliation(s)
- Wisteria Deng
- Department of Psychiatry, Massachusetts General Hospital, 149 13th, St. Charlestown, Boston, MA, 02129, USA
- Department of Psychology, Yale University, New Haven, CT, USA
| | - Lauri Tuominen
- Department of Psychiatry, Massachusetts General Hospital, 149 13th, St. Charlestown, Boston, MA, 02129, USA
- Department of Psychiatry, University of Ottawa, Ottawa, ON, Canada
| | - Rachel Sussman
- Department of Psychiatry, Massachusetts General Hospital, 149 13th, St. Charlestown, Boston, MA, 02129, USA
| | - Logan Leathem
- Department of Psychiatry, Massachusetts General Hospital, 149 13th, St. Charlestown, Boston, MA, 02129, USA
| | - Louis N Vinke
- Department of Psychiatry, Massachusetts General Hospital, 149 13th, St. Charlestown, Boston, MA, 02129, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Daphne J Holt
- Department of Psychiatry, Massachusetts General Hospital, 149 13th, St. Charlestown, Boston, MA, 02129, USA.
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
5
|
Xue T, Sheng J, Gao H, Gu Y, Dai J, Yang X, Peng H, Gao H, Lu R, Shen Y, Wang L, Wang L, Shi Y, Li Z, Cui D. Eight-month intensive meditation-based intervention improves refractory hallucinations and delusions and quality of life in male inpatients with schizophrenia: a randomized controlled trial. Psychiatry Clin Neurosci 2024; 78:248-258. [PMID: 38318694 DOI: 10.1111/pcn.13641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/10/2023] [Accepted: 12/25/2023] [Indexed: 02/07/2024]
Abstract
AIM This study investigated the impact of an 8-month daily-guided intensive meditation-based intervention (iMI) on persistent hallucinations/delusions and health-related quality of life (QoL) in male inpatients with schizophrenia with treatment-refractory hallucinations and delusions (TRHDs). METHODS A randomized controlled trial assigned 64 male inpatients with schizophrenia and TRHD equally to an 8-month iMI plus general rehabilitation program (GRP) or GRP alone. Assessments were conducted at baseline and the third and eighth months using the Positive and Negative Syndrome Scale (PANSS), 36-Item Short Form-36 (SF-36), and Five Facet Mindfulness Questionnaire (FFMQ). Primary outcomes measured PANSS reduction rates for total score, positive symptoms, and hallucinations/delusions items. Secondary outcomes assessed PANSS, SF-36, and FFMQ scores for psychotic symptoms, health-related QoL, and mindfulness skills, respectively. RESULTS In the primary outcome, iMI significantly improved the reduction rates of PANSS total score, positive symptoms, and hallucination/delusion items compared with GRP at both the third and eighth months. Treatment response rates (≥25% reduction) for these measures significantly increased in the iMI group at the eighth month. Concerning secondary outcomes, iMI significantly reduced PANSS total score and hallucination/delusion items, while increasing scores in physical activity and mindfulness skills at both the third and eighth months compared with GRP. These effects were more pronounced with an 8-month intervention compared with a 3-month intervention. CONCLUSIONS An iMI benefits patients with TRHDs by reducing persistent hallucinations/delusions and enhancing health-related QoL. Longer iMI duration yields superior treatment outcomes.
Collapse
Affiliation(s)
- Ting Xue
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China
| | - Jialing Sheng
- The First Minzheng Mental Health Center, Shanghai, China
| | - Hui Gao
- The First Minzheng Mental Health Center, Shanghai, China
| | - Yan Gu
- The First Minzheng Mental Health Center, Shanghai, China
| | - Jingjing Dai
- The First Minzheng Mental Health Center, Shanghai, China
| | - Xianghong Yang
- The First Minzheng Mental Health Center, Shanghai, China
| | - Hong Peng
- The First Minzheng Mental Health Center, Shanghai, China
| | - Hongrui Gao
- The First Minzheng Mental Health Center, Shanghai, China
| | - Ruping Lu
- The First Minzheng Mental Health Center, Shanghai, China
| | - Yi Shen
- The First Minzheng Mental Health Center, Shanghai, China
| | - Li Wang
- The First Minzheng Mental Health Center, Shanghai, China
| | - Lijun Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China
| | - Yuan Shi
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China
| | - Zezhi Li
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Donghong Cui
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China
- Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
6
|
Independent vector analysis for common subspace analysis: Application to multi-subject fMRI data yields meaningful subgroups of schizophrenia. Neuroimage 2020; 216:116872. [PMID: 32353485 DOI: 10.1016/j.neuroimage.2020.116872] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 04/13/2020] [Accepted: 04/21/2020] [Indexed: 11/22/2022] Open
Abstract
The extraction of common and distinct biomedical signatures among different populations allows for a more detailed study of the group-specific as well as distinct information of different populations. A number of subspace analysis algorithms have been developed and successfully applied to data fusion, however they are limited to joint analysis of only a couple of datasets. Since subspace analysis is very promising for analysis of multi-subject medical imaging data as well, we focus on this problem and propose a new method based on independent vector analysis (IVA) for common subspace extraction (IVA-CS) for multi-subject data analysis. IVA-CS leverages the strength of IVA in identification of a complete subspace structure across multiple datasets along with an efficient solution that uses only second-order statistics. We propose a subset analysis approach within IVA-CS to mitigate issues in estimation in IVA due to high dimensionality, both in terms of components estimated and the number of datasets. We introduce a scheme to determine a desirable size for the subset that is high enough to exploit the dependence across datasets and is not affected by the high dimensionality issue. We demonstrate the success of IVA-CS in extracting complex subset structures and apply the method to analysis of functional magnetic resonance imaging data from 179 subjects and show that it successfully identifies shared and complementary brain patterns from patients with schizophrenia (SZ) and healthy controls group. Two components with linked resting-state networks are identified to be unique to the SZ group providing evidence of functional dysconnectivity. IVA-CS also identifies subgroups of SZs that show significant differences in terms of their brain networks and clinical symptoms.
Collapse
|
7
|
Vanes LD, Mouchlianitis E, Patel K, Barry E, Wong K, Thomas M, Szentgyorgyi T, Joyce D, Shergill S. Neural correlates of positive and negative symptoms through the illness course: an fMRI study in early psychosis and chronic schizophrenia. Sci Rep 2019; 9:14444. [PMID: 31595009 PMCID: PMC6783468 DOI: 10.1038/s41598-019-51023-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 09/23/2019] [Indexed: 12/14/2022] Open
Abstract
Psychotic illness is associated with cognitive control deficits and abnormal recruitment of neural circuits subserving cognitive control. It is unclear to what extent this dysfunction underlies the development and/or maintenance of positive and negative symptoms typically observed in schizophrenia. In this study we compared fMRI activation on a standard Stroop task and its relationship with positive and negative symptoms in early psychosis (EP, N = 88) and chronic schizophrenia (CHR-SZ, N = 38) patients. CHR-SZ patients showed reduced frontal, striatal, and parietal activation across incongruent and congruent trials compared to EP patients. Higher positive symptom severity was associated with reduced activation across both trial types in supplementary motor area (SMA), middle temporal gyrus and cerebellum in EP, but not CHR-SZ patients. Higher negative symptom severity was associated with reduced cerebellar activation in EP, but not in CHR-SZ patients. A negative correlation between negative symptoms and activation in SMA and precentral gyrus was observed in EP patients and in CHR-SZ patients. The results suggest that the neural substrate of positive symptoms changes with illness chronicity, and that cognitive control related neural circuits may be most relevant in the initial development phase of positive symptoms. These findings also highlight a changing role for the cerebellum in the development and later maintenance of both positive and negative symptoms.
Collapse
Affiliation(s)
- Lucy D Vanes
- Wellcome Centre for Human Neuroimaging, University College London, 12 Queen Square, London, WC1N 3AR, United Kingdom.
| | - Elias Mouchlianitis
- Institute of Psychiatry, Psychology and Neuroscience, de Crespigny Park, London, SE5 8AF, United Kingdom
| | - Krisna Patel
- Institute of Psychiatry, Psychology and Neuroscience, de Crespigny Park, London, SE5 8AF, United Kingdom
| | - Erica Barry
- Institute Department of Clinical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | - Katie Wong
- Institute of Psychiatry, Psychology and Neuroscience, de Crespigny Park, London, SE5 8AF, United Kingdom
| | - Megan Thomas
- Institute of Psychiatry, Psychology and Neuroscience, de Crespigny Park, London, SE5 8AF, United Kingdom
| | - Timea Szentgyorgyi
- Institute of Psychiatry, Psychology and Neuroscience, de Crespigny Park, London, SE5 8AF, United Kingdom
| | - Dan Joyce
- Institute of Psychiatry, Psychology and Neuroscience, de Crespigny Park, London, SE5 8AF, United Kingdom
| | - Sukhwinder Shergill
- Institute of Psychiatry, Psychology and Neuroscience, de Crespigny Park, London, SE5 8AF, United Kingdom
| |
Collapse
|
8
|
Niznikiewicz MA. Neurobiological approaches to the study of clinical and genetic high risk for developing psychosis. Psychiatry Res 2019; 277:17-22. [PMID: 30926150 DOI: 10.1016/j.psychres.2019.02.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/04/2019] [Accepted: 02/04/2019] [Indexed: 01/12/2023]
Abstract
Research on neurobiological impairments in clinical and genetic high risk for developing psychosis individuals (CHR) has identified several brain abnormalities that impact both brain structure and function. The current review will discuss research examining brain abnormalities in clinical and genetic high risk for psychosis using magnetic resonance imaging (MRI) focusing on structural brain abnormalities, diffusion tensor imaging (DTI) focusing on the integrity of white matter tracks, functional MRI focusing on functional brain abnormalities, and EEG and event related potential (ERP) methodologies focusing on indices of cognitive dysfunction in CHR. Studies conducted across these different methodologies sought to identify brain regions and brain processes that would distinguish between those high risk individuals who converted to psychosis versus those who did not. In addition, in some of the studies, the distinction was made between individuals who converted to psychosis, those who did not, and those individuals who remained clinically symptomatic while not converting to psychosis. The brain regions most often identified as abnormal in this subject group were the brain areas often found abnormal in schizophrenia, including frontal and temporal regions. Similarly, several cognitive processes often found to be abnormal in schizophrenia have been also found impaired in CHR.
Collapse
Affiliation(s)
- Margaret A Niznikiewicz
- Harvard Medical School and Veterans Administration Boston, Healthcare System, United States.
| |
Collapse
|
9
|
Trait paranoia shapes inter-subject synchrony in brain activity during an ambiguous social narrative. Nat Commun 2018; 9:2043. [PMID: 29795116 PMCID: PMC5966466 DOI: 10.1038/s41467-018-04387-2] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 04/26/2018] [Indexed: 01/21/2023] Open
Abstract
Individuals often interpret the same event in different ways. How do personality traits modulate brain activity evoked by a complex stimulus? Here we report results from a naturalistic paradigm designed to draw out both neural and behavioral variation along a specific dimension of interest, namely paranoia. Participants listen to a narrative during functional MRI describing an ambiguous social scenario, written such that some individuals would find it highly suspicious, while others less so. Using inter-subject correlation analysis, we identify several brain areas that are differentially synchronized during listening between participants with high and low trait-level paranoia, including theory-of-mind regions. Follow-up analyses indicate that these regions are more active to mentalizing events in high-paranoia individuals. Analyzing participants’ speech as they freely recall the narrative reveals semantic and syntactic features that also scale with paranoia. Results indicate that a personality trait can act as an intrinsic “prime,” yielding different neural and behavioral responses to the same stimulus across individuals. Reactions to the same event can vary vastly based on multiple factors. Here the authors show that people with high trait-level paranoia process ambiguous information in a narrative differently and this can be attributed to greater activity in mentalizing brain regions during the moments of ambiguity.
Collapse
|
10
|
Shaffer JJ, Peterson MJ, McMahon MA, Bizzell J, Calhoun V, van Erp TGM, Ford JM, Lauriello J, Lim KO, Manoach DS, McEwen SC, Mathalon DH, O'Leary D, Potkin SG, Preda A, Turner J, Voyvodic J, Wible CG, Belger A. Neural Correlates of Schizophrenia Negative Symptoms: Distinct Subtypes Impact Dissociable Brain Circuits. MOLECULAR NEUROPSYCHIATRY 2015; 1:191-200. [PMID: 27606313 DOI: 10.1159/000440979] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 09/09/2015] [Indexed: 11/19/2022]
Abstract
BACKGROUND The negative symptoms of schizophrenia include deficits in emotional expression and motivation. These deficits are stable over the course of illness and respond poorly to current medications. Previous studies have focused on negative symptoms as a single category; however, individual symptoms might be related to separate neurological disturbances. We analyzed data from the Functional Biomedical Informatics Research Network dataset to explore the relationship between individual negative symptoms and functional brain activity during an auditory oddball task. METHODS Functional magnetic resonance imaging was conducted on 89 schizophrenia patients and 106 healthy controls during a two-tone auditory oddball task. Blood oxygenation level-dependent (BOLD) signal during the target tone was correlated with severity of five negative symptom domains from the Scale for the Assessment of Negative Symptoms. RESULTS The severity of alogia, avolition/apathy and anhedonia/asociality was negatively correlated with BOLD activity in distinct sets of brain regions associated with processing of the target tone, including basal ganglia, thalamus, insular cortex, prefrontal cortex, posterior cingulate and parietal cortex. CONCLUSIONS Individual symptoms were related to different patterns of functional activation during the oddball task, suggesting that individual symptoms might arise from distinct neural mechanisms. This work has potential to inform interventions that target these symptom-related neural disruptions.
Collapse
Affiliation(s)
- Joseph J Shaffer
- Department of Psychiatry, University of North Carolina, Chapel Hill, N.C., USA
| | - Michael J Peterson
- Department of Psychiatry, University of North Carolina, Chapel Hill, N.C., USA
| | - Mary Agnes McMahon
- Colorado Clinical and Translational Sciences Institute, University of Colorado, Denver, Colo., USA
| | - Joshua Bizzell
- Department of Psychiatry, University of North Carolina, Chapel Hill, N.C., USA; Duke/University of North Carolina Brain Imaging and Analysis Center, Durham, N.C., USA
| | - Vince Calhoun
- The Mind Research Network, University of New Mexico, Albuquerque, N. Mex., USA; Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, N. Mex., USA
| | - Theo G M van Erp
- Departments of Psychiatry and Human Behavior, University of California Irvine, Irvine, Calif., USA
| | - Judith M Ford
- Department of Psychiatry, University of California San Francisco, San Francisco, Calif., USA
| | - John Lauriello
- Department of Psychiatry, University of Missouri, Columbia, Mo., USA
| | - Kelvin O Lim
- Department of Psychiatry, University of Minnesota, Minneapolis, Minn., USA
| | - Dara S Manoach
- Department of Psychiatry, Massachusetts General Hospital, Charlestown, Mass., USA
| | - Sarah C McEwen
- Department of Psychology, University of California Los Angeles, Los Angeles, Calif., USA
| | - Daniel H Mathalon
- Department of Psychiatry, University of California San Francisco, San Francisco, Calif., USA
| | - Daniel O'Leary
- Department of Neuroscience, University of Iowa, Iowa City, Iowa, USA
| | - Steven G Potkin
- Departments of Psychiatry, University of California Irvine, Irvine, Calif., USA; Department of Psychiatry, University of California San Francisco, San Francisco, Calif., USA
| | - Adrian Preda
- Departments of Psychiatry, University of California Irvine, Irvine, Calif., USA
| | - Jessica Turner
- Department of Psychology, Georgia State University, Atlanta, Ga., USA
| | - Jim Voyvodic
- Duke/University of North Carolina Brain Imaging and Analysis Center, Durham, N.C., USA
| | - Cynthia G Wible
- Department of Psychiatry, Harvard Medical School, Boston, Mass., USA; Department of Psychiatry, VA Medical Center Brockton, Brockton, Mass., USA
| | - Aysenil Belger
- Department of Psychiatry, University of North Carolina, Chapel Hill, N.C., USA; Duke/University of North Carolina Brain Imaging and Analysis Center, Durham, N.C., USA
| |
Collapse
|
11
|
Shin YI, Foerster Á, Nitsche MA. Reprint of: Transcranial direct current stimulation (tDCS) – Application in neuropsychology. Neuropsychologia 2015; 74:74-95. [DOI: 10.1016/j.neuropsychologia.2015.06.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 01/29/2015] [Accepted: 02/02/2015] [Indexed: 01/07/2023]
|
12
|
Phillips JR, Hewedi DH, Eissa AM, Moustafa AA. The cerebellum and psychiatric disorders. Front Public Health 2015; 3:66. [PMID: 26000269 PMCID: PMC4419550 DOI: 10.3389/fpubh.2015.00066] [Citation(s) in RCA: 222] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 04/07/2015] [Indexed: 01/05/2023] Open
Abstract
The cerebellum has been considered for a long time to play a role solely in motor coordination. However, studies over the past two decades have shown that the cerebellum also plays a key role in many motor, cognitive, and emotional processes. In addition, studies have also shown that the cerebellum is implicated in many psychiatric disorders including attention deficit hyperactivity disorder, autism spectrum disorders, schizophrenia, bipolar disorder, major depressive disorder, and anxiety disorders. In this review, we discuss existing studies reporting cerebellar dysfunction in various psychiatric disorders. We will also discuss future directions for studies linking the cerebellum to psychiatric disorders.
Collapse
Affiliation(s)
- Joseph R. Phillips
- School of Social Sciences and Psychology, University of Western Sydney, Sydney, NSW, Australia
| | - Doaa H. Hewedi
- Psychogeriatric Research Center, Institute of Psychiatry, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Abeer M. Eissa
- Psychogeriatric Research Center, Institute of Psychiatry, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Ahmed A. Moustafa
- School of Social Sciences and Psychology, University of Western Sydney, Sydney, NSW, Australia
- Marcs Institute for Brain and Behaviour, University of Western Sydney, Sydney, NSW, Australia
- Department of Veterans Affairs, New Jersey Health Care System, East Orange, NJ, USA
| |
Collapse
|
13
|
Transcranial direct current stimulation (tDCS) – Application in neuropsychology. Neuropsychologia 2015; 69:154-75. [DOI: 10.1016/j.neuropsychologia.2015.02.002] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 01/29/2015] [Accepted: 02/02/2015] [Indexed: 12/21/2022]
|
14
|
Sumich A, Castro A, Kumari V. N100 and N200, but not P300, amplitudes predict paranoia/suspiciousness in the general population. PERSONALITY AND INDIVIDUAL DIFFERENCES 2014. [DOI: 10.1016/j.paid.2014.01.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Rapp AM, Steinhäuser AE. Functional MRI of sentence-level language comprehension in schizophrenia: a coordinate-based analysis. Schizophr Res 2013; 150:107-13. [PMID: 23911258 DOI: 10.1016/j.schres.2013.07.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 06/18/2013] [Accepted: 07/06/2013] [Indexed: 11/18/2022]
Abstract
Numerous authors have hypothesised that abnormal pathways for language play a key role in the pathophysiology of schizophrenia, a notion that is supported by structural imaging and post-mortem findings especially in patients with thought disorder and auditory verbal hallucinations. Recently, an increasing number of functional magnetic resonance imaging (fMRI) investigations addressed language comprehension schizophrenia. We present a systematic review of the fMRI-studies on sentence- and text-level language comprehension in schizophrenia. 13 studies met the inclusion criteria. Additional studies specifically addressed language lateralization. Coordinates for differential contrasts for healthy controls>patients reported in these studies indicate that the left fronto-temporal language network is altered in schizophrenia. 33 out of the 51 reported coordinates are located in the left hemisphere. Overactivation in schizophrenia extends into premotor areas and is about equally divided among the left and right hemispheres. Several negative studies indicate heterogeneity within schizophrenia, which could possibly be related to the severity of thought disorder or auditory verbal hallucinations of patients. Activation changes related to thought disorder within schizophrenia (n=4 studies) include the inferior frontal and superior temporal gyri and are moderately lateralized to the left hemisphere. Although current fMRI literature is still insufficient to draw decisive conclusions, results point towards functionally altered pathways for language in schizophrenia. This notion is also plausible from the viewpoint of psychopathology especially since hallmark symptoms of the disease, thought disorder, auditory verbal hallucinations and alogia, are expressed in terms of language or represent abnormalities of language function.
Collapse
Affiliation(s)
- Alexander M Rapp
- Department of Psychiatry, University of Tübingen, Calwerstrasse 14, 72076 Tübingen, Germany.
| | | |
Collapse
|
16
|
Paranoid thinking, suspicion, and risk for aggression: a neurodevelopmental perspective. Dev Psychopathol 2012; 24:1031-46. [PMID: 22781870 DOI: 10.1017/s0954579412000521] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This article represents an effort to extend our understanding of paranoia or suspicion and its development by integrating findings across clinical, developmental, and neuroscience literatures. We first define "paranoia" or paranoid thought and examine its prevalence across typically and atypically developing individuals and theoretical perspectives regarding its development and maintenance. We then briefly summarize current ideas regarding the neural correlates of adaptive, appropriately trusting interpersonal perception, social cognition, and behavior across development. Our focus shifts subsequently to examining in normative and atypical developmental contexts the neural correlates of several component cognitive processes thought to contribute to paranoid thinking: (a) attention bias for threat, (b) jumping to conclusions biases, and (c) hostile intent attribution biases. Where possible, we also present data regarding independent links between these cognitive processes and aggressive behavior. By examining data regarding the behavioral and neural correlates of varied cognitive processes that are likely components of a paranoid thinking style, we hope to advance both theoretical and empirical research in this domain.
Collapse
|
17
|
Santos RMRD, Sanchez TG, Bento RF, Lucia MCSD. Auditory hallucinations in tinnitus patients: Emotional relationships and depression. Int Arch Otorhinolaryngol 2012; 16:322-7. [PMID: 25991952 PMCID: PMC4399702 DOI: 10.7162/s1809-97772012000300004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 01/09/2012] [Indexed: 11/04/2022] Open
Abstract
INTRODUCTION Over the last few years, our Tinnitus Research Group has identified an increasing number of patients with tinnitus who also complained of repeated perception of complex sounds, such as music and voices. Such hallucinatory phenomena motivated us to study their possible relation to the patients' psyches. AIMS To assess whether hallucinatory phenomena were related to the patients' psychosis and/or depression, and clarify their content and function in the patients' psyches. METHOD Ten subjects (8 women; mean age = 65.7 years) were selected by otolaryngologists and evaluated by the same psychologists through semi-structured interviews, the Hamilton Depression Rating Scale, and psychoanalysis interviews. RESULTS We found no association between auditory hallucinations and psychosis; instead, this phenomenon was associated with depressive aspects. The patients' discourse revealed that hallucinatory phenomena played unconscious roles in their emotional life. In all cases, there was a remarkable and strong tendency to recall/repeat unpleasant facts/situations, which tended to exacerbate the distress caused by the tinnitus and hallucinatory phenomena and worsen depressive aspects. CONCLUSIONS There is an important relationship between tinnitus, hallucinatory phenomena, and depression based on persistent recall of facts/situations leading to psychic distress. The knowledge of such findings represents a further step towards the need to adapt the treatment of this particular subgroup of tinnitus patients through interdisciplinary teamwork. Prospective.
Collapse
|
18
|
Solowij N, Yücel M, Respondek C, Whittle S, Lindsay E, Pantelis C, Lubman DI. Cerebellar white-matter changes in cannabis users with and without schizophrenia. Psychol Med 2011; 41:2349-2359. [PMID: 21466751 DOI: 10.1017/s003329171100050x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND The cerebellum is rich in cannabinoid receptors and implicated in the neuropathology of schizophrenia. Long-term cannabis use is associated with functional and structural brain changes similar to those evident in schizophrenia, yet its impact on cerebellar structure has not been determined. We examined cerebellar grey and white matter in cannabis users with and without schizophrenia. METHOD Seventeen patients with schizophrenia and 31 healthy controls were recruited; 48% of the healthy group and 47% of the patients were long-term heavy cannabis users (mean 19.7 and 17.9 years near daily use respectively). Cerebellar measures were extracted from structural 3-T magnetic resonance imaging (MRI) scans using semi-automated methods, and examined using analysis of covariance (ANCOVA) and correlational analyses. RESULTS Cerebellar white-matter volume was reduced in cannabis users with and without schizophrenia compared to healthy non-users, by 29.7% and 23.9% respectively, and by 17.7% in patients without cannabis use. Healthy cannabis users did not differ in white-matter volume from either of the schizophrenia groups. There were no group differences in cerebellar grey matter or total volumes. Total cerebellar volume decreased as a function of duration of cannabis use in the healthy users. Psychotic symptoms and illness duration correlated with cerebellar measures differentially between patients with and without cannabis use. CONCLUSIONS Long-term heavy cannabis use in healthy individuals is associated with smaller cerebellar white-matter volume similar to that observed in schizophrenia. Reduced volumes were even more pronounced in patients with schizophrenia who use cannabis. Cannabis use may alter the course of brain maturational processes associated with schizophrenia.
Collapse
Affiliation(s)
- N Solowij
- School of Psychology, University of Wollongong, Australia.
| | | | | | | | | | | | | |
Collapse
|
19
|
Chakirova G, Whalley HC, Thomson PA, Hennah W, Moorhead TWJ, Welch KA, Giles S, Hall J, Johnstone EC, Lawrie SM, Porteous DJ, Brown VJ, McIntosh AM. The effects of DISC1 risk variants on brain activation in controls, patients with bipolar disorder and patients with schizophrenia. Psychiatry Res 2011; 192:20-8. [PMID: 21376542 DOI: 10.1016/j.pscychresns.2011.01.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 11/12/2010] [Accepted: 01/13/2011] [Indexed: 01/15/2023]
Abstract
Three risk variants (rs1538979, rs821577, and rs821633) in the Disrupted-in-Schizophrenia-1 (DISC1) gene have previously been associated with both schizophrenia and bipolar disorder in a recent collaborative analysis of European cohorts. In this study we examined the effects of these risk variants on brain activation during functional magnetic resonance imaging (fMRI) of the Hayling Sentence Completion Task (HSCT) in healthy volunteers (n=33), patients with schizophrenia (n=20) and patients with bipolar disorder (n=36). In the healthy controls the risk associated allele carriers of SNPs rs1538979 and rs821633 demonstrated decreased activation of the cuneus. Moreover, there was an effect of SNP rs1538979 in the pre/postcentral gyrus with decreased activation in healthy controls and increased activation in patients with schizophrenia. In the bipolar group there was decreased activation in the risk carriers of SNP rs821633 in the inferior parietal lobule and left cingulate cortex. Clusters in the precentral gyrus, left middle temporal gyrus and left cerebellum were found to be significant on examining the group × genotype interactions. These findings may provide a better understanding of the neural effects of DISC1 variants and on the pathophysiology of schizophrenia and bipolar disorder.
Collapse
|
20
|
Koziol LF, Budding DE, Chidekel D. Adaptation, expertise, and giftedness: towards an understanding of cortical, subcortical, and cerebellar network contributions. THE CEREBELLUM 2011; 9:499-529. [PMID: 20680539 DOI: 10.1007/s12311-010-0192-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Current cortico-centric models of cognition lack a cohesive neuroanatomic framework that sufficiently considers overlapping levels of function, from "pathological" through "normal" to "gifted" or exceptional ability. While most cognitive theories presume an evolutionary context, few actively consider the process of adaptation, including concepts of neurodevelopment. Further, the frequent co-occurrence of "gifted" and "pathological" function is difficult to explain from a cortico-centric point of view. This comprehensive review paper proposes a framework that includes the brain's vertical organization and considers "giftedness" from an evolutionary and neurodevelopmental vantage point. We begin by discussing the current cortico-centric model of cognition and its relationship to intelligence. We then review an integrated, dual-tiered model of cognition that better explains the process of adaptation by simultaneously allowing for both stimulus-based processing and higher-order cognitive control. We consider the role of the basal ganglia within this model, particularly in relation to reward circuitry and instrumental learning. We review the important role of white matter tracts in relation to speed of adaptation and development of behavioral mastery. We examine the cerebellum's critical role in behavioral refinement and in cognitive and behavioral automation, particularly in relation to expertise and giftedness. We conclude this integrated model of brain function by considering the savant syndrome, which we believe is best understood within the context of a dual-tiered model of cognition that allows for automaticity in adaptation as well as higher-order executive control.
Collapse
|
21
|
Keshavan MS, DeLisi LE, Seidman LJ. Early and broadly defined psychosis risk mental states. Schizophr Res 2011; 126:1-10. [PMID: 21123033 PMCID: PMC3388534 DOI: 10.1016/j.schres.2010.10.006] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 09/29/2010] [Accepted: 10/04/2010] [Indexed: 11/28/2022]
Abstract
Current definitions of the prodromal (or at-risk mental state) phase of schizophrenia include attenuated and/or transient psychotic symptoms as well as a combination of different risk indicators and a recent significant deterioration in global functioning. Data accumulated to date suggest rates of conversion to frank psychosis within two years in 25 to 40% of cases supporting the validity of these criteria. However, at this late phase of illness, functional deterioration is often already pronounced, highlighting the need for earlier identification. Moreover, negative symptoms and social impairments, cognitive deficits, other non-psychotic psychopathology and/or functional decline and non-specific biological indicators, often can be detected well before the at-risk mental state as currently defined; indicating that a broad characterization of an earlier stage may be possible. Identifying specific criteria to define this group of individuals, starting from the framework of familial high-risk, can help define a broader group of people, including earlier at-risk mental states, for future research. The hope is that this research will help facilitate intervention at earlier stages that may in turn minimize functional deterioration, and delay, attenuate or even prevent transition to psychosis. The disadvantages as well as the potential benefits of this approach are discussed.
Collapse
Affiliation(s)
- Matcheri S Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA.
| | | | | |
Collapse
|
22
|
Turan T, Beşirli A, Asdemir A, Özsoy S, Eşel E. Manic episode associated with mega cisterna magna. Psychiatry Investig 2010; 7:305-7. [PMID: 21253417 PMCID: PMC3022320 DOI: 10.4306/pi.2010.7.4.305] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 08/18/2010] [Accepted: 09/07/2010] [Indexed: 12/04/2022] Open
Abstract
Mega cisterna magna is a part of "Dandy-Walker Complex" and it is characterized by the enlargement of the cisterna magna, morphologically intact vermis and cerebellar hemispheres. We report a case of manic attack in a 23-year-old man with mega cisterna magna. The patient was treated with quetiapine 1,000 mg/day and sodium valproate 1,500 mg/day and the symptoms were ameliorated within 2.5 months. In this case, mega cisterna magna and manic symptoms may be found together coincidentally or any cerebellar dysfunction due to mega cisterna magna may cause or contribute to the appearance of affective symptoms. To our knowledge, this is the first case reporting manic attack with psychotic symptoms associated with mega cisterna magna. This report suggests that any lesion in the cerebellum might contribute to the occurrences of some affective and psychotic symptoms seen in bipolar disorder.
Collapse
Affiliation(s)
- Tayfun Turan
- Department of Psychiatry, Erciyes University Medical School, Kayseri, Turkey
| | - Aslı Beşirli
- Department of Psychiatry, Erciyes University Medical School, Kayseri, Turkey
| | - Akif Asdemir
- Department of Psychiatry, Erciyes University Medical School, Kayseri, Turkey
| | - Saliha Özsoy
- Department of Psychiatry, Erciyes University Medical School, Kayseri, Turkey
| | - Ertuğrul Eşel
- Department of Psychiatry, Erciyes University Medical School, Kayseri, Turkey
| |
Collapse
|
23
|
Peters BD, Blaas J, de Haan L. Diffusion tensor imaging in the early phase of schizophrenia: what have we learned? J Psychiatr Res 2010; 44:993-1004. [PMID: 20554292 DOI: 10.1016/j.jpsychires.2010.05.003] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 04/13/2010] [Accepted: 05/05/2010] [Indexed: 01/08/2023]
Abstract
The dysconnectivity model suggests that disturbed integration of neural communication is central to schizophrenia. The integrity of macro-structural brain circuits can be examined with diffusion tensor imaging (DTI), an MRI application sensitive to microstructural abnormalities of brain white matter. DTI studies in first-episode schizophrenia patients and individuals at high-risk of psychosis can provide insight into the role of structural dysconnectivity in the liability, onset and early course of psychosis. This review discusses (i) views on the role of white matter abnormalities in schizophrenia, (ii) DTI and its application in schizophrenia, (iii) DTI findings in first-episode patients and subjects at high-risk of psychosis; their timing, anatomical location and early course, (iv) the hypothesized underlying pathological substrate and possible causes of DTI white matter alterations, including effects of adolescent cannabis use, and (v) some methodological issues and future recommendations. In summary, there is evidence that DTI abnormalities convey a liability for psychosis and additional abnormalities occur around onset of psychosis. However, findings in first-episode patients are less robust than in chronic patients, and progression of disturbances may occur in the early course of poor-outcome patients. In addition, acceleration of the normal aging process may occur. Adolescent cannabis use has specific effects on DTI measures. An unresolved issue is the underlying pathology of DTI abnormalities, and combining DTI with other MRI indices can provide more insight. More research is needed on which genetic and environmental factors play a role in the variability of current results.
Collapse
Affiliation(s)
- Bart D Peters
- Rivierduinen, Langevelderweg 27, 2211 AB Noordwijkerhout, The Netherlands.
| | | | | |
Collapse
|
24
|
Baig BJ, Whalley HC, Hall J, McIntosh AM, Job DE, Cunningham-Owens DG, Johnstone EC, Lawrie SM. Functional magnetic resonance imaging of BDNF val66met polymorphism in unmedicated subjects at high genetic risk of schizophrenia performing a verbal memory task. Psychiatry Res 2010; 183:195-201. [PMID: 20708907 DOI: 10.1016/j.pscychresns.2010.06.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 04/28/2010] [Accepted: 06/22/2010] [Indexed: 12/31/2022]
Abstract
Multiple strands of evidence suggest a role for Brain Derived Neurotrophic Factor (BDNF) in the pathophysiology of schizophrenia. It is not yet clear, however, how BDNF may contribute to altered brain function seen in the disorder, or in those at high genetic risk. The current study examines functional imaging correlates of the BDNF val66met polymorphism in a population at high genetic risk of schizophrenia. Subjects at high genetic risk for the disorder (n=58) provided both BDNF genotyping and fMRI data while performing a verbal memory task. During encoding, participants were presented with a word and asked to make a 'living'/'non-living' classification. During retrieval, individuals were requested to make an 'old'/'new' word classification. For encoding, we report decreased activation of the inferior occipital cortex and a trend in the cingulate cortex in Val homozygote individuals relative to Met carriers. For retrieval, we report decreases in activation in the prefrontal, cingulate cortex and bilateral posterior parietal regions in Val homozygote individuals versus Met carriers. These findings add to previous evidence suggesting that genetic variation in the BDNF gene modulates prefrontal and limbic functioning and suggests that it may contribute to differences in brain function seen in those at high risk of the disorder.
Collapse
Affiliation(s)
- Benjamin J Baig
- Division of Psychiatry, University of Edinburgh, Kennedy Tower, Royal Edinburgh Hospital, Morningside Park, Edinburgh, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Bloemen OJN, de Koning MB, Schmitz N, Nieman DH, Becker HE, de Haan L, Dingemans P, Linszen DH, van Amelsvoort TAMJ. White-matter markers for psychosis in a prospective ultra-high-risk cohort. Psychol Med 2010; 40:1297-1304. [PMID: 19895720 DOI: 10.1017/s0033291709991711] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Subjects at 'ultra high risk' (UHR) for developing psychosis have differences in white matter (WM) compared with healthy controls. WM integrity has not yet been investigated in UHR subjects in relation to the development of subsequent psychosis. Hence, we investigated a prospective cohort of UHR subjects comparing whole brain fractional anisotropy (FA) of those later developing psychosis (UHR-P) to those who did not (UHR-NP). METHOD We recruited 37 subjects fulfilling UHR criteria and 10 healthy controls. Baseline 3 Tesla magnetic resonance imaging (MRI) scans and Positive and Negative Syndrome Scale (PANSS) ratings were obtained. UHR subjects were assessed at 9, 18 and 24 months for development of frank psychosis. We compared baseline FA of UHR-P to controls and UHR-NP subjects. Furthermore, we related clinical data to MRI outcome in the patient population. RESULTS Of the 37 UHR subjects, 10 had transition to psychosis. UHR-P subjects showed significantly lower FA values than control subjects in medial frontal lobes bilaterally. UHR-P subjects had lower FA values than UHR-NP subjects, lateral to the right putamen and in the left superior temporal lobe. UHR-P subjects showed higher FA values, compared with UHR-NP, in the left medial temporal lobe. In UHR-P, positive PANSS negatively correlated to FA in the left middle temporal lobe. In the total UHR group positive PANSS negatively correlated to FA in the right superior temporal lobe. CONCLUSIONS UHR subjects who later develop psychosis have differences in WM integrity, compared with UHR subjects who do not develop psychosis and to healthy controls, in brain areas associated with schizophrenia.
Collapse
Affiliation(s)
- O J N Bloemen
- Department of Psychiatry, Academic Medical Centre, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Gountouna VE, Job DE, McIntosh AM, Moorhead TWJ, Lymer GKL, Whalley HC, Hall J, Waiter GD, Brennan D, McGonigle DJ, Ahearn TS, Cavanagh J, Condon B, Hadley DM, Marshall I, Murray AD, Steele JD, Wardlaw JM, Lawrie SM. Functional Magnetic Resonance Imaging (fMRI) reproducibility and variance components across visits and scanning sites with a finger tapping task. Neuroimage 2010; 49:552-60. [PMID: 19631757 DOI: 10.1016/j.neuroimage.2009.07.026] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Revised: 07/10/2009] [Accepted: 07/13/2009] [Indexed: 11/23/2022] Open
Abstract
Multicentre MRI studies offer great potential to increase study power and flexibility, but it is not yet clear how reproducible the results from multiple centres may be. Here we present results from the multicentre study 'CaliBrain', examining the reproducibility of fMRI data within and between three sites. Fourteen subjects were scanned twice on three 1.5 T GE scanners using an identical scanning protocol. We present data from a motor task with three conditions, sequential and random finger tapping and rest. Similar activation maps were obtained for each site and visit; brain areas consistently activated during the task included the premotor, primary motor and supplementary motor areas, the striatum and cerebellum. Reproducibility was evaluated within and between sites by comparing the extent and spatial agreement of activation maps at both the subject and group levels. The results were within the range previously reported for similar tasks on single scanners and both measures were found to be comparable within and between sites, with between site reproducibility similar to the within site measures. A variance components analysis was used to examine the effects of site, subject and visit. The contributions of site and visit were small and reproducibility was similar between and within sites, whereas the variance between subjects, and unexplained variance was large. These findings suggest that we can have confidence in combined results from multicentre fMRI studies, at least when a consistent protocol is followed on similar machines in all participating scanning sites and care is taken to select homogeneous subject groups.
Collapse
|
27
|
Whalley HC, McKirdy J, Romaniuk L, Sussmann J, Johnstone EC, Wan HI, McIntosh AM, Lawrie SM, Hall J. Functional imaging of emotional memory in bipolar disorder and schizophrenia. Bipolar Disord 2009; 11:840-56. [PMID: 19922553 DOI: 10.1111/j.1399-5618.2009.00768.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVES Although in current diagnostic criteria there exists a distinction between bipolar disorder and schizophrenia, many patients manifest features of both disorders, and it is unclear which aspects, if any, confer diagnostic specificity. In the present study, we investigate whether there are differences in medial temporal lobe (MTL) activation in bipolar disorder and schizophrenia. We also investigate associations between activation levels and symptom severity across the disorders. METHODS Functional magnetic resonance imaging scans were conducted on 14 healthy controls, 14 patients with bipolar disorder, and 15 patients with schizophrenia undergoing an emotional memory paradigm. RESULTS All groups demonstrated the expected pattern of behavioural responses during encoding and retrieval, and there were no significant group differences in performance. Robust MTL activation was seen in all three groups during viewing of emotional scenes, which correlated significantly with recognition memory for emotional stimuli. The bipolar group demonstrated relatively greater increases in activation for emotional versus neutral scenes in the left hippocampus than both controls and patients with schizophrenia. There was a significant positive correlation between mania scores and activation in the anterior cingulate, and a significant negative correlation between depression scores and activation in the dorsolateral prefrontal cortex. CONCLUSION These results provide evidence that there are distinct patterns of activation in the MTL during an emotional memory task in bipolar disorder and schizophrenia. They also demonstrate that different mood states are associated with different neurobiological responses to emotion across the patient groups.
Collapse
Affiliation(s)
- Heather C Whalley
- Division of Psychiatry, School of Molecular and Clinical Medicine, University of Edinburgh, Edinburgh, Scotland, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Sanz JH, Karlsgodt KH, Bearden CE, van Erp TGM, Nandy RR, Ventura J, Nuechterlein K, Cannon TD. Symptomatic and functional correlates of regional brain physiology during working memory processing in patients with recent onset schizophrenia. Psychiatry Res 2009; 173:177-82. [PMID: 19692211 PMCID: PMC2734873 DOI: 10.1016/j.pscychresns.2009.02.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Revised: 01/09/2009] [Accepted: 02/21/2009] [Indexed: 01/13/2023]
Abstract
Patients with schizophrenia show altered patterns of functional activation during working memory processing; specifically, high-performing patients appear to hyper-activate and low-performing patients appear to hypo-activate when compared with controls. It remains unclear how these individual differences in neurophysiological activation relate to the clinical presentation of the syndrome. In this functional magnetic resonance imaging (fMRI) study, the relationship is examined using partial least squares (PLS), a multivariate statistical technique that selects underlying latent variables based on the covariance between two sets of variables, in this case, clinical variables and regional fMRI activations during a verbal working memory task. The PLS analysis extracted two latent variables, and the significance of these associations was confirmed through permutation. Lower levels of activation during task performance across frontal and parietal regions of interest in the left hemisphere were found to covary with poorer role functioning and greater severity of negative and disorganized symptoms, while lower activation in right frontal and subcortical regions of interest was found to covary with better social functioning and fewer positive symptoms. These results suggest that appropriately lateralized patterns of functional activation during working memory processing are related to the severity of negative and disorganized symptoms and to the level of role and social functioning in schizophrenia.
Collapse
Affiliation(s)
- Jacqueline H Sanz
- Department of Psychology, University of California Los Angeles, Los Angeles, CA 90095, United States.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Whalley HC, Gountouna VE, Hall J, McIntosh AM, Simonotto E, Job DE, Owens DGC, Johnstone EC, Lawrie SM. fMRI changes over time and reproducibility in unmedicated subjects at high genetic risk of schizophrenia. Psychol Med 2009; 39:1189-1199. [PMID: 19105855 DOI: 10.1017/s0033291708004923] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Functional brain abnormalities have been repeatedly demonstrated in schizophrenia but there is little data concerning their progression. For such studies to have credibility it is first important to establish the reproducibility of functional imaging techniques. The current study aimed to examine these factors in healthy controls and in unmedicated subjects at high genetic risk of the disorder: (i) to examine the reproducibility of task-related activation patterns, (ii) to determine if there were any progressive functional changes in high-risk subjects versus controls reflecting inheritance of the schizophrenic trait, and (iii) to examine changes over time in relation to fluctuating positive psychotic symptoms (i.e. state effects). METHOD Subjects were scanned performing the Hayling sentence completion test on two occasions 18 months apart. Changes in activation were examined in controls and high-risk subjects (n=16, n=63). Reproducibility was assessed for controls and high-risk subjects who remained asymptomatic at both time points (n=16, n=32). RESULTS Intra-class correlation values indicated good agreement between scanning sessions. No significant differences over time were seen between the high-risk and control group; however, comparison of high-risk subjects who developed symptoms versus those who remained asymptomatic revealed activation increases in the left middle temporal gyrus (p=0.026). CONCLUSIONS The current results suggest that functional changes over time occur in the lateral temporal cortex as high genetic risk subjects become symptomatic, further, they indicate the usefulness of functional imaging tools for investigating progressive changes associated with state and trait effects in schizophrenia.
Collapse
Affiliation(s)
- H C Whalley
- Division of Psychiatry, School of Molecular and Clinical Medicine, University of Edinburgh, Edinburgh, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Toal F, Bloemen OJN, Deeley Q, Tunstall N, Daly EM, Page L, Brammer MJ, Murphy KC, Murphy DGM. Psychosis and autism: magnetic resonance imaging study of brain anatomy. Br J Psychiatry 2009; 194:418-25. [PMID: 19407271 DOI: 10.1192/bjp.bp.107.049007] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Autism-spectrum disorder is increasingly recognised, with recent studies estimating that 1% of children in South London are affected. However, the biology of comorbid mental health problems in people with autism-spectrum disorder is poorly understood. AIMS To investigate the brain anatomy of people with autism-spectrum disorder with and without psychosis. METHOD We used in vivo magnetic resonance imaging and compared 30 adults with autism-spectrum disorder (14 with a history psychosis) and 16 healthy controls. RESULTS Compared with controls both autism-spectrum disorder groups had significantly less grey matter bilaterally in the temporal lobes and the cerebellum. In contrast, they had increased grey matter in striatal regions. However, those with psychosis also had a significant reduction in grey matter content of frontal and occipital regions. Contrary to our expectation, within autism-spectrum disorder, comparisons revealed that psychosis was associated with a reduction in grey matter of the right insular cortex and bilaterally in the cerebellum extending into the fusiform gyrus and the lingual gyrus. CONCLUSIONS The presence of neurodevelopmental abnormalities normally associated with autism-spectrum disorder might represent an alternative 'entry-point' into a final common pathway of psychosis.
Collapse
Affiliation(s)
- Fiona Toal
- Department of Psychiatry, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Kelly MP, Stein JM, Vecsey CG, Favilla C, Yang X, Bizily SF, Esposito MF, Wand G, Kanes SJ, Abel T. Developmental etiology for neuroanatomical and cognitive deficits in mice overexpressing Galphas, a G-protein subunit genetically linked to schizophrenia. Mol Psychiatry 2009; 14:398-415, 347. [PMID: 19030002 PMCID: PMC3312743 DOI: 10.1038/mp.2008.124] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Revised: 10/24/2008] [Accepted: 10/27/2008] [Indexed: 01/31/2023]
Abstract
Schizophrenia is a widespread psychiatric disorder, affecting 1% of people. Despite this high prevalence, schizophrenia is not well treated because of its enigmatic developmental origin. We explore here the developmental etiology of endophenotypes associated with schizophrenia using a regulated transgenic approach in mice. Recently, a polymorphism that increases mRNA levels of the G-protein subunit Galphas was genetically linked to schizophrenia. Here we show that regulated overexpression of Galphas mRNA in forebrain neurons of mice is sufficient to cause a number of schizophrenia-related phenotypes, as measured in adult mice, including sensorimotor gating deficits (prepulse inhibition of acoustic startle, PPI) that are reversed by haloperidol or the phosphodiesterase inhibitor rolipram, psychomotor agitation (hyperlocomotion), hippocampus-dependent learning and memory retrieval impairments (hidden water maze, contextual fear conditioning), and enlarged ventricles. Interestingly, overexpression of Galphas during development plays a significant role in some (PPI, spatial learning and memory and neuroanatomical deficits) but not all of these adulthood phenotypes. Pharmacological and biochemical studies suggest the Galphas-induced behavioral deficits correlate with compensatory decreases in hippocampal and cortical cyclic AMP (cAMP) levels. These decreases in cAMP may lead to reduced activation of the guanine exchange factor Epac (also known as RapGEF 3/4) as stimulation of Epac with the select agonist 8-pCPT-2'-O-Me-cAMP increases PPI and improves memory in C57BL/6J mice. Thus, we suggest that the developmental impact of a given biochemical insult, such as increased Galphas expression, is phenotype specific and that Epac may prove to be a novel therapeutic target for the treatment of both developmentally regulated and non-developmentally regulated symptoms associated with schizophrenia.
Collapse
MESH Headings
- Acetylcysteine/agonists
- Acetylcysteine/analogs & derivatives
- Acetylcysteine/antagonists & inhibitors
- Acoustic Stimulation
- Age Factors
- Analysis of Variance
- Animals
- Animals, Newborn
- Antipsychotic Agents/therapeutic use
- Behavior, Animal
- Brain/metabolism
- Brain/pathology
- Cognition Disorders/drug therapy
- Cognition Disorders/etiology
- Cognition Disorders/genetics
- Cognition Disorders/pathology
- Conditioning, Psychological/drug effects
- Conditioning, Psychological/physiology
- Cyclic AMP/analogs & derivatives
- Cyclic AMP/metabolism
- Cyclic AMP/pharmacology
- Disease Models, Animal
- Erythromycin/agonists
- Erythromycin/analogs & derivatives
- Erythromycin/antagonists & inhibitors
- Exploratory Behavior/drug effects
- Exploratory Behavior/physiology
- Fear/drug effects
- Female
- GTP-Binding Protein alpha Subunits, Gs/genetics
- Gene Expression Regulation, Developmental/drug effects
- Gene Expression Regulation, Developmental/genetics
- Haloperidol/therapeutic use
- Male
- Maze Learning/drug effects
- Maze Learning/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Phosphodiesterase Inhibitors/pharmacology
- Psychophysics
- Reflex, Startle/genetics
- Rolipram/pharmacology
- Time Factors
Collapse
Affiliation(s)
- M P Kelly
- Department of Biology, University of Pennsylvania, Monmouth Junction, NJ 08852, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Freitas C, Fregni F, Pascual-Leone A. Meta-analysis of the effects of repetitive transcranial magnetic stimulation (rTMS) on negative and positive symptoms in schizophrenia. Schizophr Res 2009; 108:11-24. [PMID: 19138833 PMCID: PMC2748189 DOI: 10.1016/j.schres.2008.11.027] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Revised: 11/25/2008] [Accepted: 11/26/2008] [Indexed: 11/26/2022]
Abstract
BACKGROUND A growing body of evidence suggests that repetitive transcranial magnetic stimulation (rTMS) can alleviate negative and positive symptoms of refractory schizophrenia. However, trials to date have been small and results are mixed. METHODS We performed meta-analyses of all prospective studies of the therapeutic application of rTMS in refractory schizophrenia assessing the effects of high-frequency rTMS to the left dorsolateral prefrontal cortex (DLPFC) to treat negative symptoms, and low-frequency rTMS to the left temporo-parietal cortex (TPC) to treat auditory hallucinations (AH) and overall positive symptoms. RESULTS When analyzing controlled (active arms) and uncontrolled studies together, the effect sizes showed significant and moderate effects of rTMS on negative and positive symptoms (based on PANSS-N or SANS, and PANSS-P or SAPS, respectively). However, the analysis for the sham-controlled studies revealed a small non-significant effect size for negative (0.27, p=0.417) and for positive symptoms (0.17, p=0.129). When specifically analyzing AH (based on AHRS, HCS or SAH), the effect size for the sham-controlled studies was large and significant (1.04; p=0.002). CONCLUSIONS These meta-analyses support the need for further controlled, larger trials to assess the clinical efficacy of rTMS on negative and positive symptoms of schizophrenia, while suggesting the need for exploration for alternative stimulation protocols.
Collapse
Affiliation(s)
- Catarina Freitas
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Felipe Fregni
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Alvaro Pascual-Leone
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| |
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW Schizophrenia is a severe mental disorder with substantial genetic vulnerability. This review discusses recent neuroimaging studies reporting on impairment in brain functioning relevant to language processing in individuals with schizophrenia and those who are at a genetic risk for its development. RECENT FINDINGS Studies have shown that schizophrenia is associated with deficits in language function, as well as structural and functional abnormalities in brain regions that are involved with language perception and processing. Individuals who are at genetic high risk for schizophrenia also have structural and functional deficits in brain pathways for language processing. These studies consistently suggest that the normal pattern of left hemisphere dominance of language processing is significantly disturbed. SUMMARY This review suggests that future studies should examine the underlying mechanism for producing this disturbance in language processing and that prospective studies should be carried out that aim to follow individuals over time to determine whether these anomalies eventually lead to clinical symptoms of schizophrenia.
Collapse
|
34
|
Chittiprol S, Venkatasubramanian G, Neelakantachar N, Allha N, Shetty KT, Gangadhar BN. Beta2-microglobulin abnormalities in antipsychotic-naïve schizophrenia: evidence for immune pathogenesis. Brain Behav Immun 2009; 23:189-92. [PMID: 18801425 DOI: 10.1016/j.bbi.2008.08.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2008] [Revised: 08/15/2008] [Accepted: 08/26/2008] [Indexed: 10/21/2022] Open
Abstract
Studies examining immune dysfunction in schizophrenia have reported decreased type-1 T-helper cell specific immunity (Th1) and increased type-2 T-helper cell specific immunity (Th2) and related abnormalities in inflammatory system. Beta2-Microglobulin (beta2M) influences the development of dendritic cells, which play a significant role in regulating the differentiation of naive CD4+ T cells into Th1 or Th2 lineages. The present study examined serum beta2M in antipsychotic-naïve schizophrenia patients (n=43) in comparison with age, sex, handedness and socioeconomic status matched healthy controls (n=43). Serum beta2M was significantly higher in schizophrenia patients (1692.6+/-354.4 ng/mL) than healthy controls (1409.6+/-246.9 ng/mL) (t=4.3; p<0.0001). There was a significant positive correlation between beta2M level and total psychopathology score (r=0.32; p=0.035). These novel observations suggest that beta2M abnormalities might have a potential association with the pathogenesis of schizophrenia.
Collapse
Affiliation(s)
- Seetharamaiah Chittiprol
- Department of Neurochemistry, National Institute of Mental Health and Neurosciences, Bangalore 560029, India
| | | | | | | | | | | |
Collapse
|
35
|
Lawrie SM, McIntosh AM, Hall J, Owens DGC, Johnstone EC. Brain structure and function changes during the development of schizophrenia: the evidence from studies of subjects at increased genetic risk. Schizophr Bull 2008; 34:330-40. [PMID: 18227083 PMCID: PMC2632417 DOI: 10.1093/schbul/sbm158] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
This article reviews the evidence for changes in the structure and function of the brain in subjects at high risk of schizophrenia for genetic reasons during the genesis of the disorder. We first highlight the structural and functional abnormalities in schizophrenia and whether any similar or lesser abnormalities are apparent in unaffected relatives. There is good evidence for subtle abnormalities of hippocampal and ventricle volume in relatives that are not as marked as the deficits in schizophrenia. In addition, the functional imaging literature suggests that prefrontal cortex function may deteriorate in those at risk who go on to develop the disorder. We then review the findings from longitudinal imaging studies of those at high risk, particularly the Edinburgh High-Risk Study, which report gray matter density reductions in medial and lateral temporal lobe because people develop schizophrenia, as well as functional abnormalities which precede onset. We conclude by quoting our own and others' imaging studies of the associations of genetic and other risk factors for schizophrenia, including stressful life events and cannabis use, which provide mechanistic examples of how these changes may be brought about. Overall, the literature supports the view that there are measurable changes in brain structure and function during the genesis of the disorder, which provide opportunities for early detection and intervention.
Collapse
Affiliation(s)
- Stephen M Lawrie
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh EH10 5HF, Scotland, UK.
| | | | | | | | | |
Collapse
|