1
|
Markina E, Andreeva E, Buravkova L. Stromal Lineage Precursors from Rodent Femur and Tibia Bone Marrows after Hindlimb Unloading: Functional Ex Vivo Analysis. Int J Mol Sci 2023; 24:ijms24108594. [PMID: 37239936 DOI: 10.3390/ijms24108594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/28/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Rodent hindlimb unloading (HU) model was developed to elucidate responses/mechanisms of adverse consequences of space weightlessness. Multipotent mesenchymal stromal cells (MMSCs) were isolated from rat femur and tibia bone marrows and examined ex vivo after 2 weeks of HU and subsequent 2 weeks of restoration of load (HU + RL). In both bones, decrease of fibroblast colony forming units (CFU-f) after HU with restoration after HU + RL detected. In CFU-f and MMSCs, levels of spontaneous/induced osteocommitment were similar. MMSCs from tibia initially had greater spontaneous mineralization of extracellular matrix but were less sensitive to osteoinduction. There was no recovery of initial levels of mineralization in MMSCs from both bones during HU + RL. After HU, most bone-related genes were downregulated in tibia or femur MMSCs. After HU + RL, the initial level of transcription was restored in femur, while downregulation persisted in tibia MMSCs. Therefore, HU provoked a decrease of osteogenic activity of BM stromal precursors at transcriptomic and functional levels. Despite unidirectionality of changes, the negative effects of HU were more pronounced in stromal precursors from distal limb-tibia. These observations appear to be on demand for elucidation of mechanisms of skeletal disorders in astronauts in prospect of long-term space missions.
Collapse
Affiliation(s)
- Elena Markina
- Institute of Biomedical Problems, Russian Academy of Sciences, 123007 Moscow, Russia
| | - Elena Andreeva
- Institute of Biomedical Problems, Russian Academy of Sciences, 123007 Moscow, Russia
| | - Ludmila Buravkova
- Institute of Biomedical Problems, Russian Academy of Sciences, 123007 Moscow, Russia
| |
Collapse
|
2
|
Osteocytic Pericellular Matrix (PCM): Accelerated Degradation under In Vivo Loading and Unloading Conditions Using a Novel Imaging Approach. Genes (Basel) 2021; 13:genes13010072. [PMID: 35052411 PMCID: PMC8775093 DOI: 10.3390/genes13010072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/20/2021] [Accepted: 12/24/2021] [Indexed: 01/03/2023] Open
Abstract
The proteoglycan-containing pericellular matrix (PCM) controls both the biophysical and biochemical microenvironment of osteocytes, which are the most abundant cells embedded and dispersed in bones. As a molecular sieve, osteocytic PCMs not only regulate mass transport to and from osteocytes but also act as sensors of external mechanical environments. The turnover of osteocytic PCM remains largely unknown due to technical challenges. Here, we report a novel imaging technique based on metabolic labeling and “click-chemistry,” which labels de novo PCM as “halos” surrounding osteocytes in vitro and in vivo. We then tested the method and showed different labeling patterns in young vs. old bones. Further “pulse-chase” experiments revealed dramatic difference in the “half-life” of PCM of cultured osteocytes (~70 h) and that of osteocytes in vivo (~75 d). When mice were subjected to either 3-week hindlimb unloading or 7-week tibial loading (5.1 N, 4 Hz, 3 d/week), PCM half-life was shortened (~20 d) and degradation accelerated. Matrix metallopeptidase MMP-14 was elevated in mechanically loaded osteocytes, which may contribute to PCM degradation. This study provides a detailed procedure that enables semi-quantitative study of the osteocytic PCM remodeling in vivo and in vitro.
Collapse
|
3
|
Markina EA, Alekseeva OY, Andreeva ER, Buravkova LB. Short-Term Reloading After Prolonged Unloading Ensures Restoration of Stromal but Not Hematopoietic Precursor Activity in Tibia Bone Marrow of C57Bl/6N Mice. Stem Cells Dev 2021; 30:1228-1240. [PMID: 34714129 DOI: 10.1089/scd.2021.0111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Bone and muscle tissues are mostly susceptible to different kinds of hypodynamia, including real and simulated microgravity (sμg). To evaluate the effect of sμg on bone marrow (BM), male C57Bl/6N mice were divided into three groups: vivarium control (VC), 30-day hindlimb suspension (HS), and subsequent 12-h short-term support reloading (RL). The effects on BM total mononucleated cells (MNCs) as well as stromal and hematopoietic progenitors from murine tibia were studied. The number of BM MNCs, immunophenotype, proliferation, colony-forming units (CFUs), differentiation and secretory activity of hematopoietic and stromal BM cells were determined. HS led to a twofold decrease in MNCs, alteration of surface molecule expression profiles, suppression of proliferative activity of BM cells, and change of soluble mediators' levels. The stromal compartment was characterized by a decrease of CFU of fibroblasts and suppression of spontaneous osteo-commitment after HS. Among the hematopoietic precursors, a decrease in the total number of CFUs was found mainly at the expense of suppression of CFU-GM and CFU-GEMM. After RL, restoration of the stromal precursor's functional activity to control levels and overabundance of paracrine mediator's production were detected, whereas the complete recovery of hematopoietic precursor's activity did not occur. These data demonstrate the fast functional reaction of the stromal compartment on restoration of loading support.
Collapse
Affiliation(s)
- Elena A Markina
- Cell Physiology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russian Federation
| | - Olga Y Alekseeva
- Cell Physiology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russian Federation
| | - Elena R Andreeva
- Cell Physiology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russian Federation
| | - Ludmila B Buravkova
- Cell Physiology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
4
|
Transcriptional responses of skeletal stem/progenitor cells to hindlimb unloading and recovery correlate with localized but not systemic multi-systems impacts. NPJ Microgravity 2021; 7:49. [PMID: 34836964 PMCID: PMC8626488 DOI: 10.1038/s41526-021-00178-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 10/27/2021] [Indexed: 12/12/2022] Open
Abstract
Disuse osteoporosis (DO) results from mechanical unloading of weight-bearing bones and causes structural changes that compromise skeletal integrity, leading to increased fracture risk. Although bone loss in DO results from imbalances in osteoblast vs. osteoclast activity, its effects on skeletal stem/progenitor cells (SSCs) is indeterminate. We modeled DO in mice by 8 and 14 weeks of hindlimb unloading (HU) or 8 weeks of unloading followed by 8 weeks of recovery (HUR) and monitored impacts on animal physiology and behavior, metabolism, marrow adipose tissue (MAT) volume, bone density and micro-architecture, and bone marrow (BM) leptin and tyrosine hydroxylase (TH) protein expression, and correlated multi-systems impacts of HU and HUR with the transcript profiles of Lin-LEPR+ SSCs and mesenchymal stem cells (MSCs) purified from BM. Using this integrative approach, we demonstrate that prolonged HU induces muscle atrophy, progressive bone loss, and MAT accumulation that paralleled increases in BM but not systemic leptin levels, which remained low in lipodystrophic HU mice. HU also induced SSC quiescence and downregulated bone anabolic and neurogenic pathways, which paralleled increases in BM TH expression, but had minimal impacts on MSCs, indicating a lack of HU memory in culture-expanded populations. Although most impacts of HU were reversed by HUR, trabecular micro-architecture remained compromised and time-resolved changes in the SSC transcriptome identified various signaling pathways implicated in bone formation that were unresponsive to HUR. These findings indicate that HU-induced alterations to the SSC transcriptome that persist after reloading may contribute to poor bone recovery.
Collapse
|
5
|
Durand M, Collombet JM, Frasca S, Sarilar V, Lataillade JJ, Le Bousse-Kerdilès MC, Holy X. Separate and combined effects of hypobaric hypoxia and hindlimb suspension on skeletal homeostasis and hematopoiesis in mice. HYPOXIA 2019; 7:41-52. [PMID: 31440522 PMCID: PMC6667353 DOI: 10.2147/hp.s195827] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 02/15/2019] [Indexed: 12/14/2022]
Abstract
Purpose Bone marrow response to an organismal stress is made by orchestrating the interplay between hematopoietic stem/progenitor cells (HSPCs) and mesenchymal stromal cells (MSCs). Neither the cellular nor the molecular factors that regulate this process are fully understood, especially since this mechanism probably varies depending on the type of stress. Herein, we explored the differentiation and fate of MSCs and HSPCs in mice challenged with a hematopoietic stress or a mechanical stress applied separately or in combination. Methods Mice were subjected to 4 days of hypobaric hypoxia (hematopoietic challenge) and/or 7 days of hindlimb suspension (stromal challenge) and then sacrificed for blood and bone collection. Using hematological measurements, colony-forming unit assays, bone histomorphometry and array-based multiplex ELISA analysis, we evaluated challenge influences on both MSC and HSPC mobilization, differentiation (osteoblasts, osteoclasts, and mature blood cells) and fate. Results We found that hypoxia leads to HSPC mobilization and that an imbalance between bone formation and bone resorption accounts for this mobilization. Whilst suspension is also associated with an imbalance between bone formation and bone resorption, it does not induce HSPC mobilization. Then, we revealed cellular interactions by combining hematopoietic and stromal challenges together in mice. We showed that the hypoxia-driven HSPC mobilization is moderated by suspension. Moreover, when applied in a hypoxic environment, suspension offsets bone imbalance. We identified stroma cell-derived factors MIP-1α, HGF and SDF-1 as potent molecular key players sustaining interactions between hindlimb suspension and hypobaric hypoxia. Conclusion Taken together, our data highlight the benefit of combining different types of stress to better understand the interplay between MSCs and HSPCs.
Collapse
Affiliation(s)
- Marjorie Durand
- Department of Medical and Surgical Assistance to the Armed Forces, French Forces Biomedical Research Institute (IRBA), Brétigny sur Orge, Cedex 91223, France
| | - Jean-Marc Collombet
- Department of Medical and Surgical Assistance to the Armed Forces, French Forces Biomedical Research Institute (IRBA), Brétigny sur Orge, Cedex 91223, France
| | - Sophie Frasca
- Department of Medical and Surgical Assistance to the Armed Forces, French Forces Biomedical Research Institute (IRBA), Brétigny sur Orge, Cedex 91223, France
| | - Véronique Sarilar
- Department of Platforms & Technological Research, French Armed Forces Biomedical Research Institute (IRBA), Brétigny sur Orge, Cedex, 91223, France
| | - Jean-Jacques Lataillade
- Department of Medical and Surgical Assistance to the Armed Forces, French Forces Biomedical Research Institute (IRBA), Brétigny sur Orge, Cedex 91223, France.,Unit for Research Development, Armed Forces Blood Transfusion Center, Clamart, Cedex 92141, France
| | | | - Xavier Holy
- Department of Platforms & Technological Research, French Armed Forces Biomedical Research Institute (IRBA), Brétigny sur Orge, Cedex, 91223, France
| |
Collapse
|
6
|
Markina EA, Andrianova IV, Shtemberg AS, Buravkova LB. Effect of 30-Day Hindlimb Unloading and Hypergravity on Bone Marrow Stromal Progenitors in C57Bl/6N Mice. Bull Exp Biol Med 2018; 166:130-134. [DOI: 10.1007/s10517-018-4301-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Indexed: 11/30/2022]
|
7
|
Responses to spaceflight of mouse mandibular bone and teeth. Arch Oral Biol 2018; 93:163-176. [DOI: 10.1016/j.archoralbio.2018.06.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 06/05/2018] [Accepted: 06/06/2018] [Indexed: 12/13/2022]
|
8
|
Mesenchymal Stem Cells: Cell Fate Decision to Osteoblast or Adipocyte and Application in Osteoporosis Treatment. Int J Mol Sci 2018; 19:ijms19020360. [PMID: 29370110 PMCID: PMC5855582 DOI: 10.3390/ijms19020360] [Citation(s) in RCA: 272] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 01/13/2018] [Accepted: 01/22/2018] [Indexed: 12/11/2022] Open
Abstract
Osteoporosis is a progressive skeletal disease characterized by decreased bone mass and degraded bone microstructure, which leads to increased bone fragility and risks of bone fracture. Osteoporosis is generally age related and has become a major disease of the world. Uncovering the molecular mechanisms underlying osteoporosis and developing effective prevention and therapy methods has great significance for human health. Mesenchymal stem cells (MSCs) are multipotent cells capable of differentiating into osteoblasts, adipocytes, or chondrocytes, and have become the favorite source of cell-based therapy. Evidence shows that during osteoporosis, a shift of the cell differentiation of MSCs to adipocytes rather than osteoblasts partly contributes to osteoporosis. Thus, uncovering the molecular mechanisms of the osteoblast or adipocyte differentiation of MSCs will provide more understanding of MSCs and perhaps new methods of osteoporosis treatment. The MSCs have been applied to both preclinical and clinical studies in osteoporosis treatment. Here, we review the recent advances in understanding the molecular mechanisms regulating osteoblast differentiation and adipocyte differentiation of MSCs and highlight the therapeutic application studies of MSCs in osteoporosis treatment. This will provide researchers with new insights into the development and treatment of osteoporosis.
Collapse
|
9
|
Mahl C, Egea V, Megens RTA, Pitsch T, Santovito D, Weber C, Ries C. RECK (reversion-inducing cysteine-rich protein with Kazal motifs) regulates migration, differentiation and Wnt/β-catenin signaling in human mesenchymal stem cells. Cell Mol Life Sci 2016; 73:1489-501. [PMID: 26459448 PMCID: PMC11108374 DOI: 10.1007/s00018-015-2054-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 08/31/2015] [Accepted: 09/28/2015] [Indexed: 12/12/2022]
Abstract
The membrane-anchored glycoprotein RECK (reversion-inducing cysteine-rich protein with Kazal motifs) inhibits expression and activity of certain matrix metalloproteinases (MMPs), thereby suppressing tumor cell metastasis. However, RECK's role in physiological cell function is largely unknown. Human mesenchymal stem cells (hMSCs) are able to differentiate into various cell types and represent promising tools in multiple clinical applications including the regeneration of injured tissues by endogenous or transplanted hMSCs. RNA interference of RECK in hMSCs revealed that endogenous RECK suppresses the transcription and biosynthesis of tissue inhibitor of metalloproteinases (TIMP)-2 but does not influence the expression of MMP-2, MMP-9, membrane type (MT)1-MMP and TIMP-1 in these cells. Knockdown of RECK in hMSCs promoted monolayer regeneration and chemotactic migration of hMSCs, as demonstrated by scratch wound and chemotaxis assay analyses. Moreover, expression of endogenous RECK was upregulated upon osteogenic differentiation and diminished after adipogenic differentiation of hMSCs. RECK depletion in hMSCs reduced their capacity to differentiate into the osteogenic lineage whereas adipogenesis was increased, demonstrating that RECK functions as a master switch between both pathways. Furthermore, knockdown of RECK in hMSCs attenuated the Wnt/β-catenin signaling pathway as indicated by reduced stability and impaired transcriptional activity of β-catenin. The latter was determined by analysis of the β-catenin target genes Dickkopf1 (DKK1), axis inhibition protein 2 (AXIN2), runt-related transcription factor 2 (RUNX2) and a luciferase-based β-catenin-activated reporter (BAR) assay. Our findings demonstrate that RECK is a regulator of hMSC functions suggesting that modulation of RECK may improve the development of hMSC-based therapeutical approaches in regenerative medicine.
Collapse
Affiliation(s)
- Christian Mahl
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University of Munich, Pettenkoferstrasse 9b, 80336, Munich, Germany
| | - Virginia Egea
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University of Munich, Pettenkoferstrasse 9b, 80336, Munich, Germany
| | - Remco T A Megens
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University of Munich, Pettenkoferstrasse 9b, 80336, Munich, Germany
- Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Thomas Pitsch
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University of Munich, Pettenkoferstrasse 9b, 80336, Munich, Germany
| | - Donato Santovito
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University of Munich, Pettenkoferstrasse 9b, 80336, Munich, Germany
| | - Christian Weber
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University of Munich, Pettenkoferstrasse 9b, 80336, Munich, Germany
- Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
- German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
| | - Christian Ries
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University of Munich, Pettenkoferstrasse 9b, 80336, Munich, Germany.
| |
Collapse
|
10
|
Canciani B, Ruggiu A, Giuliani A, Panetta D, Marozzi K, Tripodi M, Salvadori PA, Cilli M, Ohira Y, Cancedda R, Tavella S. Effects of long time exposure to simulated micro- and hypergravity on skeletal architecture. J Mech Behav Biomed Mater 2015; 51:1-12. [DOI: 10.1016/j.jmbbm.2015.06.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 06/12/2015] [Accepted: 06/13/2015] [Indexed: 01/18/2023]
|
11
|
Sun X, Yang K, Wang C, Cao S, Merritt M, Hu Y, Xu X. Paradoxical response to mechanical unloading in bone loss, microarchitecture, and bone turnover markers. Int J Med Sci 2015; 12:270-9. [PMID: 25798053 PMCID: PMC4366632 DOI: 10.7150/ijms.11078] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 01/27/2015] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Sclerostin, encoded by the SOST gene, has been implicated in the response to mechanical loading in bone. Some studies demonstrated that unloading leads to up-regulated SOST expression, which may induce bone loss. PURPOSE Most reported studies regarding the changes caused by mechanical unloading were only based on a single site. Considering that the longitudinal bone growth leads to cells of different age with different sensitivity to unloading, we hypothesized that bone turnover in response to unloading is site specific. METHODS We established a disuse rat model by sciatic neurectomy in tibia. In various regions at two time-points, we evaluated the bone mass and microarchitecture in surgically-operated rats and control rats by micro-Computed Tomography (micro-CT) and histology, sclerostin/SOST by immunohistochemistry, enzyme-linked immunosorbent assay (ELISA), and quantitative reverse transcription polymerase chain reaction (qPCR), tartrate resistant acid phosphatase 5b (TRAP 5b) by ELISA and TRAP staining, and other bone markers by ELISA. RESULTS Micro-CT and histological analysis confirmed bone volume in the disuse rats was significantly decreased compared with those in the time-matched control rats, and microarchitecture also changed 2 and 8 weeks after surgery. Compared with the control groups, SOST mRNA expression in the diaphysis was down-regulated at both week 2 and 8. On the contrary, the percentage of sclerostin-positive osteocytes showed an up-regulated response in the 5 - 6 mm region away from the growth plate, while in the 2.5 - 3.5 mm region, the percentage was no significant difference. Nevertheless, in 0.5 - 1.5 mm region, the percentage of sclerostin-positive osteocytes decreased after 8 weeks, consistent with serum SOST level. Besides, the results of TRAP also suggested that the expression in response to unloading may be opposite in different sites or system. CONCLUSION Our data indicated that unloading-induced changes in bone turnover are probably site specific. This implies a more complex response pattern to unloading and unpredictable therapeutics which target SOST or TRAP 5b.
Collapse
Affiliation(s)
- Xiaodi Sun
- 1. School of Stomatology, Shandong University, Wenhuaxi Road 44-1, Jinan 250012, China. ; 3. Shandong Provincial Key Laboratory of Oral Biomedicine, Jinan, China
| | - Kaiyun Yang
- 2. Institute of Dental Medicine, Qilu Hospital, Shandong University, Wenhuaxi Road 107, Jinan 250012, China
| | - Chune Wang
- 2. Institute of Dental Medicine, Qilu Hospital, Shandong University, Wenhuaxi Road 107, Jinan 250012, China
| | - Sensen Cao
- 2. Institute of Dental Medicine, Qilu Hospital, Shandong University, Wenhuaxi Road 107, Jinan 250012, China
| | - Mackenzie Merritt
- 4. Department of Biology, Faculty of Science, University of Waterloo, 200 University Ave W, Waterloo, Ontario, Canada, N2L 3G1
| | - Yingwei Hu
- 2. Institute of Dental Medicine, Qilu Hospital, Shandong University, Wenhuaxi Road 107, Jinan 250012, China
| | - Xin Xu
- 1. School of Stomatology, Shandong University, Wenhuaxi Road 44-1, Jinan 250012, China. ; 3. Shandong Provincial Key Laboratory of Oral Biomedicine, Jinan, China
| |
Collapse
|
12
|
Ruggiu A, Cancedda R. Bone mechanobiology, gravity and tissue engineering: effects and insights. J Tissue Eng Regen Med 2014; 9:1339-51. [PMID: 25052837 DOI: 10.1002/term.1942] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 05/23/2014] [Accepted: 05/27/2014] [Indexed: 01/10/2023]
Abstract
Bone homeostasis strongly depends on fine tuned mechanosensitive regulation signals from environmental forces into biochemical responses. Similar to the ageing process, during spaceflights an altered mechanotransduction occurs as a result of the effects of bone unloading, eventually leading to loss of functional tissue. Although spaceflights represent the best environment to investigate near-zero gravity effects, there are major limitations for setting up experimental analysis. A more feasible approach to analyse the effects of reduced mechanostimulation on the bone is represented by the 'simulated microgravity' experiments based on: (1) in vitro studies, involving cell cultures studies and the use of bioreactors with tissue engineering approaches; (2) in vivo studies, based on animal models; and (3) direct analysis on human beings, as in the case of the bed rest tests. At present, advanced tissue engineering methods allow investigators to recreate bone microenvironment in vitro for mechanobiology studies. This group and others have generated tissue 'organoids' to mimic in vitro the in vivo bone environment and to study the alteration cells can go through when subjected to unloading. Understanding the molecular mechanisms underlying the bone tissue response to mechanostimuli will help developing new strategies to prevent loss of tissue caused by altered mechanotransduction, as well as identifying new approaches for the treatment of diseases via drug testing. This review focuses on the effects of reduced gravity on bone mechanobiology by providing the up-to-date and state of the art on the available data by drawing a parallel with the suitable tissue engineering systems.
Collapse
Affiliation(s)
- Alessandra Ruggiu
- University of Genova, Department of Experimental Medicine, Genova, Italy
| | - Ranieri Cancedda
- University of Genova, Department of Experimental Medicine & IRCCS AOU San Martino-IST, National Institute for Cancer Research, Genova, Italy
| |
Collapse
|
13
|
Villalvilla A, Gomez R, Roman-Blas JA, Largo R, Herrero-Beaumont G. SDF-1 signaling: a promising target in rheumatic diseases. Expert Opin Ther Targets 2014; 18:1077-87. [DOI: 10.1517/14728222.2014.930440] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
14
|
Durand M, Collombet JM, Frasca S, Begot L, Lataillade JJ, Le Bousse-Kerdilès MC, Holy X. In vivo hypobaric hypoxia performed during the remodeling process accelerates bone healing in mice. Stem Cells Transl Med 2014; 3:958-68. [PMID: 24944208 DOI: 10.5966/sctm.2013-0209] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
We investigated the effects of respiratory hypobaric hypoxia on femoral bone-defect repair in mice because hypoxia is believed to influence both mesenchymal stromal cell (MSC) and hematopoietic stem cell mobilization, a process involved in the bone-healing mechanism. To mimic conditions of non-weight-bearing limb immobilization in patients suffering from bone trauma, our hypoxic mouse model was further subjected to hind-limb unloading. A hole was drilled in the right femur of adult male C57/BL6J mice. Four days after surgery, mice were subjected to hind-limb unloading for 1 week. Seven days after surgery, mice were either housed for 4 days in a hypobaric room (FiO2 at 10%) or kept under normoxic conditions. Unsuspended control mice were housed in either hypobaric or normoxic conditions. Animals were sacrificed on postsurgery day 11 to allow for collection of both contralateral and lesioned femurs, blood, and spleen. As assessed by microtomography, delayed hypoxia enhanced bone-healing efficiency by increasing the closing of the cortical defect and the newly synthesized bone volume in the cavity by +55% and +35%, respectively. Proteome analysis and histomorphometric data suggested that bone-repair improvement likely results from the acceleration of the natural bone-healing process rather than from extended mobilization of MSC-derived osteoprogenitors. Hind-limb unloading had hardly any effect beyond delayed hypoxia-enhanced bone-healing efficiency.
Collapse
Affiliation(s)
- Marjorie Durand
- Département Soutien Médico-Chirugical des Forces, Institut de Recherche Biomédicale des Armées (IRBA), Brétigny-sur-Orge, France; Centre de Transfusion Sanguine des Armées, Service de Recherche, Clamart, France; INSERM U972, Hôpital Paul Brousse, Villejuif, France
| | - Jean-Marc Collombet
- Département Soutien Médico-Chirugical des Forces, Institut de Recherche Biomédicale des Armées (IRBA), Brétigny-sur-Orge, France; Centre de Transfusion Sanguine des Armées, Service de Recherche, Clamart, France; INSERM U972, Hôpital Paul Brousse, Villejuif, France
| | - Sophie Frasca
- Département Soutien Médico-Chirugical des Forces, Institut de Recherche Biomédicale des Armées (IRBA), Brétigny-sur-Orge, France; Centre de Transfusion Sanguine des Armées, Service de Recherche, Clamart, France; INSERM U972, Hôpital Paul Brousse, Villejuif, France
| | - Laurent Begot
- Département Soutien Médico-Chirugical des Forces, Institut de Recherche Biomédicale des Armées (IRBA), Brétigny-sur-Orge, France; Centre de Transfusion Sanguine des Armées, Service de Recherche, Clamart, France; INSERM U972, Hôpital Paul Brousse, Villejuif, France
| | - Jean-Jacques Lataillade
- Département Soutien Médico-Chirugical des Forces, Institut de Recherche Biomédicale des Armées (IRBA), Brétigny-sur-Orge, France; Centre de Transfusion Sanguine des Armées, Service de Recherche, Clamart, France; INSERM U972, Hôpital Paul Brousse, Villejuif, France
| | - Marie-Caroline Le Bousse-Kerdilès
- Département Soutien Médico-Chirugical des Forces, Institut de Recherche Biomédicale des Armées (IRBA), Brétigny-sur-Orge, France; Centre de Transfusion Sanguine des Armées, Service de Recherche, Clamart, France; INSERM U972, Hôpital Paul Brousse, Villejuif, France
| | - Xavier Holy
- Département Soutien Médico-Chirugical des Forces, Institut de Recherche Biomédicale des Armées (IRBA), Brétigny-sur-Orge, France; Centre de Transfusion Sanguine des Armées, Service de Recherche, Clamart, France; INSERM U972, Hôpital Paul Brousse, Villejuif, France
| |
Collapse
|
15
|
Ida-Yonemochi H, Nakatomi M, Ohshima H. Establishment of in vitro culture system for evaluating dentin–pulp complex regeneration with special reference to the differentiation capacity of BrdU label-retaining dental pulp cells. Histochem Cell Biol 2014; 142:323-33. [DOI: 10.1007/s00418-014-1200-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2014] [Indexed: 12/15/2022]
|
16
|
Snelling S, Rout R, Davidson R, Clark I, Carr A, Hulley P, Price A. A gene expression study of normal and damaged cartilage in anteromedial gonarthrosis, a phenotype of osteoarthritis. Osteoarthritis Cartilage 2014; 22:334-43. [PMID: 24361742 PMCID: PMC3988961 DOI: 10.1016/j.joca.2013.12.009] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Revised: 11/27/2013] [Accepted: 12/10/2013] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To identify osteoarthritis (OA) relevant genes and pathways in damaged and undamaged cartilage isolated from the knees of patients with anteromedial gonarthrosis (AMG) - a specific form of knee OA. DESIGN Cartilage was obtained from nine patients undergoing unicompartmental knee replacement (UKR) for AMG. AMG provides a spatial representation of OA progression; showing a reproducible and histologically validated pattern of cartilage destruction such that damaged and undamaged cartilage from within the same knee can be consistently isolated and examined. Gene expression was analysed by microarray and validated using real-time PCR. RESULTS Damaged and undamaged cartilage showed distinct gene expression profiles. 754 genes showed significant up- or down-regulation (non-False discovery rate (FDR) P < 0.05) with enrichment for genes involved in cell signalling, Extracellular Matrix (ECM) and inflammatory response. A number of genes previously unreported in OA showed strongly altered expression including RARRES3, ADAMTSL2 and DUSP10. Confirmation of genes previously identified as modulated in OA was also obtained e.g., SFRP3, MMP3 and IGF1. CONCLUSIONS This is the first study to examine a common and consistent phenotype of OA to allow direct comparison of damaged and undamaged cartilage from within the same joint compartment. We have identified specific gene expression profiles in damaged and undamaged cartilage and have determined relevant genes and pathways in OA progression. Importantly this work also highlights the necessity for phenotypic and microanatomical characterization of cartilage in future studies of OA pathogenesis and therapeutic development.
Collapse
Affiliation(s)
- S. Snelling
- The Botnar Research Centre, University of Oxford, UK,Address correspondence and reprint requests to: S. Snelling. The Botnar Research Centre, University of Oxford, UK.
| | - R. Rout
- The Botnar Research Centre, University of Oxford, UK
| | - R. Davidson
- Biomedical Research Unit, University of East Anglia, UK
| | - I. Clark
- Biomedical Research Unit, University of East Anglia, UK
| | - A. Carr
- The Botnar Research Centre, University of Oxford, UK
| | - P.A. Hulley
- The Botnar Research Centre, University of Oxford, UK
| | - A.J. Price
- The Botnar Research Centre, University of Oxford, UK
| |
Collapse
|
17
|
Zahoor M, Cha PH, Min DS, Choi KY. Indirubin-3'-oxime reverses bone loss in ovariectomized and hindlimb-unloaded mice via activation of the Wnt/β-catenin signaling. J Bone Miner Res 2014; 29:1196-205. [PMID: 24243753 DOI: 10.1002/jbmr.2147] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 11/05/2013] [Accepted: 11/12/2013] [Indexed: 12/14/2022]
Abstract
Osteoporosis is a major global health issue in elderly people. Because Wnt/β-catenin signaling plays a key role in bone homeostasis, we screened activators of this pathway through cell-based screening, and investigated indirubin-3'-oxime (I3O), one of the positive compounds known to inhibit GSK3β, as a potential anti-osteoporotic agent. Here, we show that I3O activated Wnt/β-catenin signaling via inhibition of the interaction of GSK3β with β-catenin, and induced osteoblast differentiation in vitro and increased calvarial bone thickness ex vivo. Intraperitoneal injection of I3O increased bone mass and improved microarchitecture in normal mice and reversed bone loss in an ovariectomized mouse model of age-related osteoporosis. I3O also increased thickness and area of cortical bone, indicating improved bone strength. Enhanced bone mass and strength correlated with activated Wnt/β-catenin signaling, as shown by histological analyses of both trabecular and cortical bones. I3O also restored mass and density of bone in hindlimb-unloaded mice compared with control, suspended mice, demonstrating bone-restoration effects of I3O in non-aged-related osteoporosis as well. Overall, I3O, a pharmacologically active small molecule, could be a potential therapeutic agent for the treatment and prevention of osteoporosis.
Collapse
Affiliation(s)
- Muhammad Zahoor
- Translational Research Center for Protein Function Control, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea; Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | | | | | | |
Collapse
|
18
|
SHANG PENG, ZHANG JIAN, QIAN AIRONG, LI JINGBAO, MENG RUI, DI SHENGMENG, HU LIFANG, GU ZHONGZE. BONE CELLS UNDER MICROGRAVITY. J MECH MED BIOL 2013. [DOI: 10.1142/s021951941340006x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Weightlessness environment (also microgravity) during the exploration of space is the major condition which must be faced by astronauts. One of the most serious adverse effects on astronauts is the weightlessness-induced bone loss due to the unbalanced bone remodeling. Bone remodeling of human beings has evolved during billions of years to make bone tissue adapt to the gravitational field of Earth (1g) and maintain skeleton structure to meet mechanical loading on Earth. However, under weightlessness environment the skeleton system no longer functions against the pull of gravity, so there is no necessity to keep bone strong enough to support the body's weight. Therefore, the balance of bone remodeling is disrupted and bone loss occurs, which is extremely deleterious to an astronaut's health during long-term spaceflight. Bone remodeling is mainly orchestrated by bone mesenchymal stem cells, osteoblasts, osteocytes, and osteoclasts. Here, we review how these bone cells respond to microgravity environment.
Collapse
Affiliation(s)
- PENG SHANG
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, P. R. China
- The State Key Laboratory of Bioelectonics, Southeast University, 210096, P. R. China
| | - JIAN ZHANG
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, P. R. China
| | - AIRONG QIAN
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, P. R. China
| | - JINGBAO LI
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, P. R. China
| | - RUI MENG
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, P. R. China
| | - SHENGMENG DI
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, P. R. China
| | - LIFANG HU
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, P. R. China
| | - ZHONGZE GU
- The State Key Laboratory of Bioelectonics, Southeast University, 210096, P. R. China
| |
Collapse
|
19
|
Gershovich PM, Gershovich YG, Buravkova LB. Molecular genetic features of human mesenchymal stem cells after their osteogenic differentiation under the conditions of microgravity. ACTA ACUST UNITED AC 2013. [DOI: 10.1134/s036211971305006x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Hu M, Yeh R, Lien M, Teeratananon M, Agarwal K, Qin YX. Dynamic Fluid Flow Mechanical Stimulation Modulates Bone Marrow Mesenchymal Stem Cells. Bone Res 2013; 1:98-104. [PMID: 26273495 DOI: 10.4248/br201301007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 01/24/2013] [Indexed: 11/10/2022] Open
Abstract
Osteoblasts are derived from mesenchymal stem cells (MSCs), which initiate and regulate bone formation. New strategies for osteoporosis treatments have aimed to control the fate of MSCs. While functional disuse decreases MSC growth and osteogenic potentials, mechanical signals enhance MSC quantity and bias their differentiation toward osteoblastogenesis. Through a non-invasive dynamic hydraulic stimulation (DHS), we have found that DHS can mitigate trabecular bone loss in a functional disuse model via rat hindlimb suspension (HLS). To further elucidate the downstream cellular effect of DHS and its potential mechanism underlying the bone quality enhancement, a longitudinal in vivo study was designed to evaluate the MSC populations in response to DHS over 3, 7, 14, and 21 days. Five-month old female Sprague Dawley rats were divided into three groups for each time point: age-matched control, HLS, and HLS+DHS. DHS was delivered to the right mid-tibiae with a daily "10 min on-5 min off-10 min on" loading regime for five days/week. At each sacrifice time point, bone marrow MSCs of the stimulated and control tibiae were isolated through specific cell surface markers and quantified by flow cytometry analysis. A strong time-dependent manner of bone marrow MSC induction was observed in response to DHS, which peaked on day 14. After 21 days, this effect of DHS was diminished. This study indicates that the MSC pool is positively influenced by the mechanical signals driven by DHS. Coinciding with our previous findings of mitigation of disuse bone loss, DHS induced changes in MSC number may bias the differentiation of the MSC population towards osteoblastogenesis, thereby promoting bone formation under disuse conditions. This study provides insights into the mechanism of time-sensitive MSC induction in response to mechanical loading, and for the optimal design of osteoporosis treatments.
Collapse
Affiliation(s)
- Minyi Hu
- Department of Biomedical Engineering, Stony Brook University, Stony Brook , NY 11794-5281, USA
| | - Robbin Yeh
- Department of Biomedical Engineering, Stony Brook University, Stony Brook , NY 11794-5281, USA
| | - Michelle Lien
- Department of Biomedical Engineering, Stony Brook University, Stony Brook , NY 11794-5281, USA
| | - Morgan Teeratananon
- Department of Biomedical Engineering, Stony Brook University, Stony Brook , NY 11794-5281, USA
| | - Kunal Agarwal
- Department of Biomedical Engineering, Stony Brook University, Stony Brook , NY 11794-5281, USA
| | - Yi-Xian Qin
- Department of Biomedical Engineering, Stony Brook University, Stony Brook , NY 11794-5281, USA
| |
Collapse
|
21
|
Lilja HE, Morrison WA, Han XL, Palmer J, Taylor C, Tee R, Möller A, Thompson EW, Abberton KM. An adipoinductive role of inflammation in adipose tissue engineering: key factors in the early development of engineered soft tissues. Stem Cells Dev 2013; 22:1602-13. [PMID: 23231040 DOI: 10.1089/scd.2012.0451] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Tissue engineering and cell implantation therapies are gaining popularity because of their potential to repair and regenerate tissues and organs. To investigate the role of inflammatory cytokines in new tissue development in engineered tissues, we have characterized the nature and timing of cell populations forming new adipose tissue in a mouse tissue engineering chamber (TEC) and characterized the gene and protein expression of cytokines in the newly developing tissues. EGFP-labeled bone marrow transplant mice and MacGreen mice were implanted with TEC for periods ranging from 0.5 days to 6 weeks. Tissues were collected at various time points and assessed for cytokine expression through ELISA and mRNA analysis or labeled for specific cell populations in the TEC. Macrophage-derived factors, such as monocyte chemotactic protein-1 (MCP-1), appear to induce adipogenesis by recruiting macrophages and bone marrow-derived precursor cells to the TEC at early time points, with a second wave of nonbone marrow-derived progenitors. Gene expression analysis suggests that TNFα, LCN-2, and Interleukin 1β are important in early stages of neo-adipogenesis. Increasing platelet-derived growth factor and vascular endothelial cell growth factor expression at early time points correlates with preadipocyte proliferation and induction of angiogenesis. This study provides new information about key elements that are involved in early development of new adipose tissue.
Collapse
Affiliation(s)
- Heidi E Lilja
- Department of Surgery, Helsinki University Central Hospital, Helsinki, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Määttä JA, Büki KG, Gu G, Alanne MH, Vääräniemi J, Liljenbäck H, Poutanen M, Härkönen P, Väänänen K. Inactivation of estrogen receptor α in bone‐forming cells induces bone loss in female mice. FASEB J 2012; 27:478-88. [DOI: 10.1096/fj.12-213587] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Jorma A. Määttä
- Department of Cell Biology and AnatomyUniversity of TurkuTurkuFinland
- Turku Center for Disease ModelingUniversity of TurkuTurkuFinland
| | - Kalman G. Büki
- Department of Cell Biology and AnatomyUniversity of TurkuTurkuFinland
| | - Guoliang Gu
- Department of Cell Biology and AnatomyUniversity of TurkuTurkuFinland
| | - Maria H. Alanne
- Department of Cell Biology and AnatomyUniversity of TurkuTurkuFinland
| | - Jukka Vääräniemi
- Department of Cell Biology and AnatomyUniversity of TurkuTurkuFinland
| | - Heidi Liljenbäck
- Turku Center for Disease ModelingUniversity of TurkuTurkuFinland
- Department of PhysiologyUniversity of TurkuTurkuFinland
| | - Matti Poutanen
- Turku Center for Disease ModelingUniversity of TurkuTurkuFinland
- Department of PhysiologyUniversity of TurkuTurkuFinland
| | - Pirkko Härkönen
- Department of Cell Biology and AnatomyUniversity of TurkuTurkuFinland
| | - Kalervo Väänänen
- Department of Cell Biology and AnatomyUniversity of TurkuTurkuFinland
| |
Collapse
|