1
|
Xu S, Guo R, Li PZ, Li K, Yan Y, Chen J, Wang G, Brand-Saberi B, Yang X, Cheng X. Dexamethasone interferes with osteoblasts formation during osteogenesis through altering IGF-1-mediated angiogenesis. J Cell Physiol 2019; 234:15167-15181. [PMID: 30671960 DOI: 10.1002/jcp.28157] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 01/02/2019] [Indexed: 01/24/2023]
Abstract
Dexamethasone (Dex), a synthetic glucocorticoid (GC) with long-lasting treatment effects, has been proved to exert a modulatory effect on osteoblast proliferation and differentiation during embryonic osteogenesis. However, it is still controversial if Dex exposure influences endochondral ossification and the underlying mechanism. In this study, chick embryos in vivo and preosteoblast cell cultures in vitro were utilized to investigate the effects of Dex on osteoblast formation and differentiation during the skeletal development. We first demonstrated that Dex exposure could shorten the long bones of 17-day chick embryos in vivo, and also downregulated the expressions of osteogenesis-related genes. Next, we established that Dex exposure inhibited the proliferation and viability of preosteoblasts-MC3TC-E1 cells, and the addition of insulin-like growth factor 1 (IGF-1) could dramatically rescue these negative effects. On the basis of remarkable changes in the rescue experiments, we next verified the important role of angiogenesis in osteogenesis by culturing isolated embryonic phalanges in Dulbecco's modified Eagle's medium culture or on the chick chorioallantoic membrane (CAM). Then, we transplanted MC3T3-E1 cell masses onto the CAM. The data showed that Dex exposure reduced the vessel density within the developed cell mass, concomitantly with the downregulation of IGF-1 pathway. We verified that the inhibition of blood vessel formation caused by Dex could be rescued by IGF-1 treatment using the CAM angiogenesis model. Eventually, we demonstrated that the shortened length of the phalanges in the presence of Dex could be reversed by IGF-1 addition. In summary, these findings suggested that the inhibition of Igf-1 signal caused by Dex exposure exerts a detrimental impact on the formation of osteoblasts and angiogenesis, which consequently shortens long bones during osteogenesis.
Collapse
Affiliation(s)
- Shengsong Xu
- Department of Histology and Embryology, Joint Laboratory for Embryonic Development & Prenatal Medicine, Medical College, Jinan University, Guangzhou, China.,Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou, China
| | - Rui Guo
- Department of Histology and Embryology, Joint Laboratory for Embryonic Development & Prenatal Medicine, Medical College, Jinan University, Guangzhou, China.,Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou, China
| | - Pei-Zhi Li
- Department of Histology and Embryology, Joint Laboratory for Embryonic Development & Prenatal Medicine, Medical College, Jinan University, Guangzhou, China.,Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou, China
| | - Ke Li
- Department of Histology and Embryology, Joint Laboratory for Embryonic Development & Prenatal Medicine, Medical College, Jinan University, Guangzhou, China.,Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou, China
| | - Yu Yan
- Department of Histology and Embryology, Joint Laboratory for Embryonic Development & Prenatal Medicine, Medical College, Jinan University, Guangzhou, China.,Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou, China
| | - Jianlong Chen
- Department of Histology and Embryology, Joint Laboratory for Embryonic Development & Prenatal Medicine, Medical College, Jinan University, Guangzhou, China.,Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou, China
| | - Guang Wang
- Department of Histology and Embryology, Joint Laboratory for Embryonic Development & Prenatal Medicine, Medical College, Jinan University, Guangzhou, China.,Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou, China
| | - Beate Brand-Saberi
- Department of Anatomy and Molecular Embryology, Ruhr-University Bochum, Bochum, Germany
| | - Xuesong Yang
- Department of Histology and Embryology, Joint Laboratory for Embryonic Development & Prenatal Medicine, Medical College, Jinan University, Guangzhou, China.,Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou, China
| | - Xin Cheng
- Department of Histology and Embryology, Joint Laboratory for Embryonic Development & Prenatal Medicine, Medical College, Jinan University, Guangzhou, China.,Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou, China
| |
Collapse
|
2
|
Zhang DD, Wu YF, Chen WX, Xu Y, Liu SY, Luo HH, Jiang GM, Wu Y, Hu P. C-type natriuretic peptide attenuates renal osteodystrophy through inhibition of FGF-23/MAPK signaling. Exp Mol Med 2019; 51:1-18. [PMID: 31263178 PMCID: PMC6802631 DOI: 10.1038/s12276-019-0265-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 01/27/2019] [Accepted: 02/26/2019] [Indexed: 01/19/2023] Open
Abstract
Renal osteodystrophy (ROD) occurs as early as chronic kidney disease (CKD) stage 2 and seems ubiquitous in almost all pediatric patients with CKD stage 5. Fibroblast growth factor (FGF)-23, a bone-derived endocrine regulator of phosphate homeostasis, is overexpressed in CKD and disturbs osteoblast differentiation and matrix mineralization. In contrast, C-type natriuretic peptide (CNP) acts as a potent positive regulator of bone growth. In the present study, we infused CNP into uremic rats and observed whether CNP could attenuate ROD through the inhibition of FGF-23 cascades. In uremic rats, CNP administration significantly alleviated renal dysfunction, calcium phosphate metabolic disorders, hypovitaminosis D, secondary hyperparathyroidism, the decrease in bone turnover markers and retarded bone pathological progression. More importantly, within FGF-23/mitogen-activated protein kinase (MAPK) signaling, the fibroblast growth factor receptor-1, Klotho and alternative (STAT-1/phospho-STAT-1) elements were upregulated by CNP, whereas FGF-23, RAF-1/phospho-RAF-1, and downstream (ERK/phospho-ERK and P38/phospho-P38) elements were paradoxically underexpressed in bone tissue. Therefore, CNP exerts a therapeutic effect on ROD through inhibition of FGF-23/MAPK signaling at the RAF-1 level.
Collapse
Affiliation(s)
- Dong Dong Zhang
- Department of Pediatrics, the First Affiliated Hospital of Anhui Medical University, No. 218 Ji-Xi Road, 230022, Hefei, China
| | - Yang Fang Wu
- Department of Pediatrics, the First Affiliated Hospital of Anhui Medical University, No. 218 Ji-Xi Road, 230022, Hefei, China
| | - Wei Xia Chen
- Department of Pediatrics, the First Affiliated Hospital of Anhui Medical University, No. 218 Ji-Xi Road, 230022, Hefei, China
| | - Yao Xu
- Department of Pediatrics, the First Affiliated Hospital of Anhui Medical University, No. 218 Ji-Xi Road, 230022, Hefei, China
| | - Si Yan Liu
- Department of Pediatrics, the First Affiliated Hospital of Anhui Medical University, No. 218 Ji-Xi Road, 230022, Hefei, China
| | - Huang Huang Luo
- Department of Pediatrics, the First Affiliated Hospital of Anhui Medical University, No. 218 Ji-Xi Road, 230022, Hefei, China
| | - Guang Mei Jiang
- Department of Pediatrics, the First Affiliated Hospital of Anhui Medical University, No. 218 Ji-Xi Road, 230022, Hefei, China
| | - Yue Wu
- Department of Pediatrics, the First Affiliated Hospital of Anhui Medical University, No. 218 Ji-Xi Road, 230022, Hefei, China
| | - Peng Hu
- Department of Pediatrics, the First Affiliated Hospital of Anhui Medical University, No. 218 Ji-Xi Road, 230022, Hefei, China.
| |
Collapse
|
3
|
Shi Q, Qian Z, Liu D, Sun J, Xu J, Guo X. Maintaining the Phenotype Stability of Chondrocytes Derived from MSCs by C-Type Natriuretic Peptide. Front Physiol 2017; 8:143. [PMID: 28337152 PMCID: PMC5340764 DOI: 10.3389/fphys.2017.00143] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 02/23/2017] [Indexed: 12/18/2022] Open
Abstract
Mesenchymal stem cells (MSCs) play a critical role in cartilage tissue engineering. However, MSCs-derived chondrocytes or cartilage tissues are not stable and easily lose the cellular and cartilage phenotype during long-term culture in vitro or implantation in vivo. As a result, chondrocytes phenotypic instability can contribute to accelerated ossification. Thus, it is a big challenge to maintain their correct phenotype for engineering hyaline cartilage. As one member of the natriuretic peptide family, C-type natriuretic peptide (CNP) is found to correlate with the development of the cartilage, affect the chondrocytes proliferation and differentiation. Besides, based on its biological effects on protection of extracellular matrix of cartilage and inhibition of mineralization, we hypothesize that CNP may contribute to the stability of chondrocyte phenotype of MSCs-derived chondrocytes.
Collapse
Affiliation(s)
- Quan Shi
- Department of Stomatology, Chinese People's Liberation Army General HospitalBeijing, China; Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical SciencesBeijing, China
| | - Zhiyong Qian
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical SciencesBeijing, China; School of Biological Science and Medical Engineering, Beihang UniversityBeijing, China
| | - Donghua Liu
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences Beijing, China
| | - Jie Sun
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical SciencesBeijing, China; Stomatology Center, General Hospital of Armed Police ForcesBeijing, China
| | - Juan Xu
- Department of Stomatology, Chinese People's Liberation Army General Hospital Beijing, China
| | - Ximin Guo
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences Beijing, China
| |
Collapse
|
4
|
Ueda Y, Yasoda A, Yamashita Y, Kanai Y, Hirota K, Yamauchi I, Kondo E, Sakane Y, Yamanaka S, Nakao K, Fujii T, Inagaki N. C-type natriuretic peptide restores impaired skeletal growth in a murine model of glucocorticoid-induced growth retardation. Bone 2016; 92:157-167. [PMID: 27594049 DOI: 10.1016/j.bone.2016.08.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 08/17/2016] [Accepted: 08/31/2016] [Indexed: 01/27/2023]
Abstract
Glucocorticoids are widely used for treating autoimmune conditions or inflammatory disorders. Long-term use of glucocorticoids causes impaired skeletal growth, a serious side effect when they are used in children. We have previously demonstrated that C-type natriuretic peptide (CNP) is a potent stimulator of endochondral bone growth. In this study, we investigated the effect of CNP on impaired bone growth caused by glucocorticoids by using a transgenic mouse model with an increased circulating CNP level. Daily administration of a high dose of dexamethasone (DEX) to 4-week-old male wild-type mice for 4weeks significantly shortened their naso-anal length, which was restored completely in DEX-treated CNP transgenic mice. Impaired growth of the long bones and vertebrae by DEX was restored to a large extent in the CNP transgenic background, with recovery in the narrowed growth plate by increased cell volume, whereas the decreased proliferation and increased apoptosis of the growth plate chondrocytes were unaffected. Trabecular bone volume was not changed by DEX treatment, but decreased significantly in a CNP transgenic background. In young male rats, the administration of high doses of DEX greatly decreased N-terminal proCNP concentrations, a marker of CNP production. In organ culture experiments using fetal wild-type murine tibias, longitudinal growth of tibial explants was inhibited by DEX but reversed by CNP. These findings now warrant further study of the therapeutic potency of CNP in glucocorticoid-induced bone growth impairment.
Collapse
Affiliation(s)
- Yohei Ueda
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, 606-8507 Kyoto, Japan.
| | - Akihiro Yasoda
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, 606-8507 Kyoto, Japan.
| | - Yui Yamashita
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, 606-8507 Kyoto, Japan.
| | - Yugo Kanai
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, 606-8507 Kyoto, Japan.
| | - Keisho Hirota
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, 606-8507 Kyoto, Japan.
| | - Ichiro Yamauchi
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, 606-8507 Kyoto, Japan.
| | - Eri Kondo
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, 606-8507 Kyoto, Japan.
| | - Yoriko Sakane
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, 606-8507 Kyoto, Japan.
| | - Shigeki Yamanaka
- Department of Maxillofacial Surgery, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, 606-8507 Kyoto, Japan.
| | - Kazumasa Nakao
- Department of Maxillofacial Surgery, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, 606-8507 Kyoto, Japan.
| | - Toshihito Fujii
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, 606-8507 Kyoto, Japan.
| | - Nobuya Inagaki
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, 606-8507 Kyoto, Japan.
| |
Collapse
|
5
|
Parathyroid hormone 1-34 reduces dexamethasone-induced terminal differentiation in human articular chondrocytes. Toxicology 2016; 368-369:116-128. [PMID: 27608943 DOI: 10.1016/j.tox.2016.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 09/04/2016] [Indexed: 11/24/2022]
Abstract
Intra-articular injection of dexamethasone (Dex) is occasionally used to relieve pain and inflammation in osteoarthritis (OA) patients. Dex induces terminal differentiation of chondrogenic mesenchymal stem cells in vitro and causes impaired longitudinal skeletal growth in vivo. Parathyroid hormone 1-34 (PTH 1-34) has been shown to reverse terminal differentiation of osteoarthritic articular chondrocytes. We hypothesized that Dex induces terminal differentiation of articular chondrocytes and that this effect can be mitigated by PTH 1-34 treatment. We tested the effect of Dex on terminal differentiation in human articular chondrocytes and further tested if PTH 1-34 reverses the effects. We found that Dex treatment downregulated chondrogenic-induced expressions of SOX-9, collagen type IIa1 (Col2a1), and aggrecan and reduced synthesis of cartilaginous matrix (Col2a1 and sulfated glycosaminoglycan) synthesis. Dex treatment upregulated chondrocyte hypertrophic markers of collagen type X and alkaline phosphatase at mRNA and protein levels, and it increased the cell size of articular chondrocytes and induced cell death. These results indicated that Dex induces terminal differentiation of articular chondrocytes. To test whether PTH 1-34 treatment reverses Dex-induced terminal differentiation of articular chondrocytes, PTH 1-34 was co-administered with Dex. Results showed that PTH 1-34 treatment reversed both changes of chondrogenic and hypertrophic markers in chondrocytes induced by Dex. PTH 1-34 also decreased Dex-induced cell death. PTH 1-34 treatment reduces Dex-induced terminal differentiation and apoptosis of articular chondrocytes, and PTH 1-34 treatment may protect articular cartilage from further damage when received Dex administration.
Collapse
|
6
|
Cheng X, Chen JL, Ma ZL, Zhang ZL, Lv S, Mai DM, Liu JJ, Chuai M, Lee KKH, Wan C, Yang X. Biphasic influence of dexamethasone exposure on embryonic vertebrate skeleton development. Toxicol Appl Pharmacol 2014; 281:19-29. [DOI: 10.1016/j.taap.2014.09.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 08/31/2014] [Accepted: 09/26/2014] [Indexed: 12/26/2022]
|
7
|
Prickett TCR, Wellby M, Barrell GK, Richards AM, Espiner EA. Differential response of C-type natriuretic peptide to estrogen and dexamethasone in adult bone. Steroids 2014; 87:1-5. [PMID: 24880122 DOI: 10.1016/j.steroids.2014.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 03/14/2014] [Accepted: 05/16/2014] [Indexed: 10/25/2022]
Abstract
C-type natriuretic peptide (CNP) is crucial in promoting endochondral bone growth in mammals including humans but whether this paracrine hormone participates in maintaining bone integrity in the mature skeleton is unknown. Accordingly we studied changes in plasma and bone tissue CNP in anoestrus adult ewes receiving short term anabolic (estrogen) or catabolic (dexamethasone) treatment for 7days. CNP and the aminoterminal fragment of the CNP prohormone (NTproCNP) were measured in plasma and extracts of cancellous bone excised from vertebral, iliac, tibial and marrow tissues. Concentrations of CNP peptides were much higher in vertebral and iliac extracts than those of tibial or marrow. Both plasma CNP and NTproCNP increased rapidly after estrogen followed by a later rise in bone alkaline phosphatase. Vertebral and iliac (but not tibial or marrow) CNP peptide content were significantly increased by estrogen. Consistent with a skeletal source, plasma NTproCNP was significantly associated with vertebral tissue CNP. In contrast, bone tissue CNP peptide content was unaffected by dexamethasone despite suppression of plasma CNP peptides and bone alkaline phosphatase. We postulate that increases in trabecular bone CNP reflect new endosteal bone formation in these estrogen responsive tissues whereas reduced plasma CNP peptides after dexamethasone, without change in cancellous bone content, reflects reductions in cortical bone turnover.
Collapse
Affiliation(s)
- Timothy C R Prickett
- Department of Medicine, Christchurch School of Medicine and Health Sciences, Christchurch, New Zealand.
| | - Martin Wellby
- Faculty of Agriculture and Life Sciences, Lincoln University, Canterbury, New Zealand
| | - Graham K Barrell
- Faculty of Agriculture and Life Sciences, Lincoln University, Canterbury, New Zealand
| | - A Mark Richards
- Department of Medicine, Christchurch School of Medicine and Health Sciences, Christchurch, New Zealand
| | - Eric A Espiner
- Department of Medicine, Christchurch School of Medicine and Health Sciences, Christchurch, New Zealand
| |
Collapse
|
8
|
Transcriptional Regulation of cGMP-Dependent Protein Kinase II (cGK-II) in Chondrocytes. Biosci Biotechnol Biochem 2014; 74:44-9. [DOI: 10.1271/bbb.90529] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
9
|
Biomechanical signals and the C-type natriuretic peptide counteract catabolic activities induced by IL-1β in chondrocyte/agarose constructs. Arthritis Res Ther 2011; 13:R145. [PMID: 21914170 PMCID: PMC3308073 DOI: 10.1186/ar3459] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 08/02/2011] [Accepted: 09/13/2011] [Indexed: 11/10/2022] Open
Abstract
Introduction The present study examined the effect of C-type natriuretic peptide (CNP) on the anabolic and catabolic activities in chondrocyte/agarose constructs subjected to dynamic compression. Methods Constructs were cultured under free-swelling conditions or subjected to dynamic compression with low (0.1 to 100 pM) or high concentrations (1 to 1,000 nM) of CNP, interleukin-1β (IL-1β), and/or KT-5823 (inhibits cyclic GMP-dependent protein kinase II (PKGII)). Anabolic and catabolic activities were assessed as follows: nitric oxide (NO) and prostaglandin E2 (PGE2) release, and [3H]-thymidine and 35SO4 incorporation were quantified by using biochemical assays. Gene expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), aggrecan, and collagen type II were assessed with real-time quantitative PCR (qPCR). Two-way ANOVA and the post hoc Bonferroni-corrected t tests were used to examine data. Results CNP reduced NO and PGE2 release and partially restored [3H]-thymidine and 35SO4 incorporation in constructs cultured with IL-1β. The response was dependent on the concentration of CNP, such that 100 pM increased [3H]-thymidine incorporation (P < 0.001). This is in contrast to 35SO4 incorporation, which was enhanced with 100 or 1000 nM CNP in the presence and absence of IL-1β (P < 0.001). Stimulation by both dynamic compression and CNP and/or the PKGII inhibitor further reduced NO and PGE2 release and restored [3H]-thymidine and 35SO4 incorporation. In the presence and absence of IL-1β, the magnitude of stimulation for [3H]-thymidine and 35SO4 incorporation by dynamic compression was dependent on the concentration of CNP and the response was inhibited with the PKGII inhibitor. In addition, stimulation by CNP and/or dynamic compression reduced IL-1β-induced iNOS and COX-2 expression and restored aggrecan and collagen type II expression. The catabolic response was not further influenced with the PKGII inhibitor in IL-1β-treated constructs. Conclusions Treatment with CNP and dynamic compression increased anabolic activities and blocked catabolic effects induced by IL-1β. The anabolic response was PKGII mediated and raises important questions about the molecular mechanisms of CNP with mechanical signals in cartilage. Therapeutic agents like CNP could be administered in conjunction with controlled exercise therapy to slow the OA disease progression and to repair damaged cartilage. The findings from this research provide the potential for developing novel agents to slow the pathophysiologic mechanisms and to treat OA in the young and old.
Collapse
|
10
|
Sellitti DF, Koles N, Mendonça MC. Regulation of C-type natriuretic peptide expression. Peptides 2011; 32:1964-71. [PMID: 21816187 DOI: 10.1016/j.peptides.2011.07.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 07/15/2011] [Accepted: 07/15/2011] [Indexed: 01/17/2023]
Abstract
C-type natriuretic peptide (CNP) is a member of the small family of natriuretic peptides that also includes atrial natriuretic peptide (ANP) and brain, or B-type natriuretic peptide (BNP). Unlike them, it performs its major functions in an autocrine or paracrine manner. Those functions, mediated through binding to the membrane guanylyl cyclase natriuretic peptide receptor B (NPR-B), or by signaling through the non-enzyme natriuretic peptide receptor C (NPR-C), include the regulation of endochondral ossification, reproduction, nervous system development, and the maintenance of cardiovascular health. To date, the regulation of CNP gene expression has not received the attention that has been paid to regulation of the ANP and BNP genes. CNP expression in vitro is regulated by TGF-β and receptor tyrosine kinase growth factors in a cell/tissue-specific and sometimes species-specific manner. Expression of CNP in vivo is altered in diseased organs and tissues, including atherosclerotic vessels, and the myocardium of failing hearts. Analysis of the human CNP gene has led to the identification of a number of regulatory sites in the proximal promoter, including a GC-rich region approximately 50 base pairs downstream of the Tata box, and shown to be a binding site for several putative regulatory proteins, including transforming growth factor clone 22 domain 1 (TSC22D1) and a serine threonine kinase (STK16). The purpose of this review is to summarize the current literature on the regulation of CNP expression, emphasizing in particular the putative regulatory elements in the CNP gene and the potential DNA-binding proteins that associate with them.
Collapse
Affiliation(s)
- Donald F Sellitti
- Department of Medicine, Division of Endocrinology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4799, USA.
| | | | | |
Collapse
|
11
|
Teixeira CC, Agoston H, Beier F. Nitric oxide, C-type natriuretic peptide and cGMP as regulators of endochondral ossification. Dev Biol 2008; 319:171-8. [PMID: 18514181 PMCID: PMC2526053 DOI: 10.1016/j.ydbio.2008.04.031] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2007] [Revised: 04/20/2008] [Accepted: 04/24/2008] [Indexed: 12/25/2022]
Abstract
Coordinated proliferation and differentiation of growth plate chondrocytes is required for endochondral bone growth, but the mechanisms and pathways that control these processes are not completely understood. Recent data demonstrate important roles for nitric oxide (NO) and C-type natriuretic peptide (CNP) in the regulation of cartilage development. Both NO and CNP stimulate the synthesis of cGMP and thus the activation of common downstream pathways. One of these downstream mediators, cGMP-dependent kinase II (cGKII), has itself been shown to be essential for normal endochondral bone formation. This review summarizes our knowledge of the roles and mechanisms of NO, CNP and cGKII signaling in cartilage and endochondral bone development.
Collapse
Affiliation(s)
- Cristina C Teixeira
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY 10010, USA.
| | | | | |
Collapse
|
12
|
Expression profiling of Dexamethasone-treated primary chondrocytes identifies targets of glucocorticoid signalling in endochondral bone development. BMC Genomics 2007; 8:205. [PMID: 17603917 PMCID: PMC1929075 DOI: 10.1186/1471-2164-8-205] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2007] [Accepted: 07/01/2007] [Indexed: 01/27/2023] Open
Abstract
Background Glucocorticoids (GCs) are widely used anti-inflammatory drugs. While useful in clinical practice, patients taking GCs often suffer from skeletal side effects including growth retardation in children and adolescents, and decreased bone quality in adults. On a physiological level, GCs have been implicated in the regulation of chondrogenesis and osteoblast differentiation, as well as maintaining homeostasis in cartilage and bone. We identified the glucocorticoid receptor (GR) as a potential regulator of chondrocyte hypertrophy in a microarray screen of primary limb bud mesenchyme micromass cultures. Some targets of GC regulation in chondrogenesis are known, but the global effects of pharmacological GC doses on chondrocyte gene expression have not been comprehensively evaluated. Results This study systematically identifies a spectrum of GC target genes in embryonic growth plate chondrocytes treated with a synthetic GR agonist, dexamethasone (DEX), at 6 and 24 hrs. Conventional analysis of this data set and gene set enrichment analysis (GSEA) was performed. Transcripts associated with metabolism were enriched in the DEX condition along with extracellular matrix genes. In contrast, a subset of growth factors and cytokines were negatively correlated with DEX treatment. Comparing DEX-induced gene expression data to developmental changes in gene expression in micromass cultures revealed an additional layer of complexity in which DEX maintains the expression of certain chondrocyte marker genes while inhibiting factors that promote vascularization and ultimately ossification of the cartilaginous template. Conclusion Together, these results provide insight into the mechanisms and major molecular classes functioning downstream of DEX in primary chondrocytes. In addition, comparison of our data with microarray studies of DEX treatment in other cell types demonstrated that the majority of DEX effects are tissue-specific. This study provides novel insights into the effects of pharmacological GC on chondrocyte gene transcription and establishes the foundation for subsequent functional studies.
Collapse
|