1
|
Romero EL, Morilla MJ. Ether lipids from archaeas in nano-drug delivery and vaccination. Int J Pharm 2023; 634:122632. [PMID: 36690132 DOI: 10.1016/j.ijpharm.2023.122632] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/26/2022] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
Archaea are microorganisms more closely related to eukaryotes than bacteria. Almost 50 years after being defined as a new domain of life on earth, new species continue to be discovered and their phylogeny organized. The study of the relationship between their genetics and metabolism and some of their extreme habitats has even positioned them as a model of extraterrestrial life forms. Archaea, however, are deeply connected to the life of our planet: they can be found in arid, acidic, warm areas; on most of the earth's surface, which is cold (below 5 °C), playing a prominent role in the cycles of organic materials on a global scale and they are even part of our microbiota. The constituent materials of these microorganisms differ radically from those produced by eukaryotes and bacteria, and the nanoparticles that can be manufactured using their ether lipids as building blocks exhibit unique properties that are of interest in nanomedicine. Here, we present for the first time a complete overview of the pre-clinical applications of nanomedicines based on ether archaea lipids, focused on drug delivery and adjuvancy over the last 25 years, along with a discussion on their pros, cons and their future industrial implementation.
Collapse
Affiliation(s)
- Eder Lilia Romero
- Nanomedicines Research and Development Centre (NARD), Science and Technology Department, National University of Quilmes, Roque Sáenz Peña 352, Bernal, Buenos Aires, Argentina.
| | - Maria Jose Morilla
- Nanomedicines Research and Development Centre (NARD), Science and Technology Department, National University of Quilmes, Roque Sáenz Peña 352, Bernal, Buenos Aires, Argentina
| |
Collapse
|
2
|
Photodynamic Therapy with Nebulized Nanocurcumin on A549 Cells, Model Vessels, Macrophages and Beyond. Pharmaceutics 2022; 14:pharmaceutics14122637. [PMID: 36559132 PMCID: PMC9781346 DOI: 10.3390/pharmaceutics14122637] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
This study aimed to determine the damage mechanisms caused by naturally targeted nanoarchaeosomes made of diether lipids from Halorubrum tebenquichense loaded with curcumin (CUR, nATC), which mediated photodynamic therapy (PDT) on A549 cells and on THP-1-macrophages, two cell types found in airway cancers. The effect of nATC- PDT on vessels modeled with a chicken embryo chorioallantoic membrane (CAM), after dropping the formulations on its surface covered with mucins, was also determined. nATCs are known to efficiently trap CUR for at least six months, constituting easy-to-prepare, stable formulations suitable for nebulization. CUR instead, is easily released from carriers such as liposomes made of ordinary phospholipids and cholesterol after a few weeks. Irradiated at 9 J/cm2, nATC (made of archaeolipids: Tween 80: CUR at 1:0.4:0.04 w:w, size 180 ± 40 nm, ζ potential -24 mV, 150 μg CUR/15 mg lipids/mL) was phototoxic (3.7 ± 0.5 μM IC50), on A549 cells after 24 h. The irradiation reduced mitochondrial membrane potential (ΔΨm), ATP levels and lysosomal functionalism, and caused early apoptotic death and late necrosis of A549 cells upon 24 h. nATC induced higher extra and intracellular reactive oxygen species (ROS) than free CUR. nATC-PDT impaired the migration of A549 cells in a wound healing assay, reduced the expression of CD204 in THP-1 macrophages, and induced the highest levels of IL-6 and IL-8, suggesting a switch of macrophage phenotype from pro-tumoral M2 to antitumoral M1. Moreover, nATC reduced the matrix metalloproteinases (MMP), -2 and -9 secretion, by A549 cells with independence of irradiation. Finally, remarkably, upon irradiation at 9 J/cm2 on the superficial vasculature of a CAM covered with mucins, nATC caused the vessels to collapse after 8 h, with no harm on non-irradiated zones. Overall, these results suggest that nebulized nATC blue light-mediated PDT may be selectively deleterious on superficial tumors submerged under a thick mucin layer.
Collapse
|
3
|
Caimi AT, Ramirez C, Perez AP, Romero EL, Morilla MJ. In vitro anti-melanoma activity of imiquimod in ultradeformable nanovesicles. Drug Dev Ind Pharm 2022; 48:657-666. [PMID: 36445155 DOI: 10.1080/03639045.2022.2153861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND The wide spectrum of antitumoral mechanisms of imiquimod (IMQ), made it a good candidate for topical therapy of melanoma. However, physicochemical properties make IMQ formulation a difficult task. Solubility and skin penetration of IMQ are increased when loaded into ultradeformable nanovesicles. OBJECTIVE Survey the in vitro anti-melanoma activity of IMQ loaded into two types of ultradeformable nanovesicles: archaeosomes (UDA-IMQ) (containing sn-2,3 ether-linked phytanyl saturated archaeolipids extracted from Halorubrum tebenquichense) and liposomes lacking archaeolipids (UDL-IMQ). METHODS We prepared and structurally characterized UDA-IMQ and UDL-IMQ. Cytotoxicity was determined on human melanoma cells (SK-Mel-28) and keratinocytes (HaCaT cells) by MTT assay and LDH release. The cellular uptake was determined by flow cytometry. Apoptosis/necrosis induction was determined by fluorescence microscopy after double staining with YO-PRO-1® and propidium iodide. RESULTS Neither IMQ nor IMQ-nanovesicles reduced the viability of HaCaT cells; but UDL-IMQ (371 nm, -24 mV ζ potential, 31 µg IMQ/mg lipids) and UDA-IMQ (216 nm, -32 mV ζ potential, 61 µg IMQ/mg lipids) showed time and concentration-dependent cytotoxicity on SK-Mel-28 that resulted between 4 and 33 folds higher than free IMQ, respectively. While both UDA-IMQ and UDL-IMQ retained 60% of IMQ against dilution, UDA-IMQ uptaken by SK-Mel-28 cells was nine-fold higher than UDL-IMQ. UDL-IMQ induced early apoptosis, but UDA-IMQ induced both apoptosis and necrosis on SK-Mel-28 cells. CONCLUSIONS UDA-IMQ was innocuous to keratinocytes but was highly uptaken and induced apoptosis and necrosis on melanoma cells, being a candidate for future investigations as adjuvant topical anti-melanoma therapy.
Collapse
Affiliation(s)
- Ayelen Tatiana Caimi
- Nanomedicine Research & Development Center, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
| | - Cecilia Ramirez
- Nanomedicine Research & Development Center, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
| | - Ana Paula Perez
- Nanomedicine Research & Development Center, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
| | - Eder Lilia Romero
- Nanomedicine Research & Development Center, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
| | - Maria Jose Morilla
- Nanomedicine Research & Development Center, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
| |
Collapse
|
4
|
Charó N, Jerez H, Tatti S, Romero EL, Schattner M. The Anti-Inflammatory Effect of Nanoarchaeosomes on Human Endothelial Cells. Pharmaceutics 2022; 14:736. [PMID: 35456570 PMCID: PMC9027062 DOI: 10.3390/pharmaceutics14040736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/17/2022] [Accepted: 03/24/2022] [Indexed: 01/14/2023] Open
Abstract
Archaebacterias are considered a unique source of novel biomaterials of interest for nanomedicine. In this perspective, the effects of nanoarchaeosomes (ARC), which are nanovesicles prepared from polar lipids extracted from the extreme halophilic Halorubrum tebenquinchense, on human umbilical vein endothelial cells (HUVEC) were investigated in physiological and under inflammatory static conditions. Upon incubation, ARC (170 nm mean size, -41 mV ζ) did not affect viability, cell proliferation, and expression of intercellular adhesion molecule-1 (ICAM-1) and E-selectin under basal conditions, but reduced expression of both molecules and secretion of IL-6 induced by lypopolysaccharide (LPS), Pam3CSK4 or Escherichia coli. Such effects were not observed with TNF-α or IL-1β stimulation. Interestingly, ARC significantly decreased basal levels of von Willebrand factor (vWF) and levels induced by all stimuli. None of these parameters was altered by liposomes of hydrogenated phosphatidylcholine and cholesterol of comparable size and concentration. Only ARC were endocytosed by HUVEC and reduced mRNA expression of ICAM-1 and vWF via NF-ĸB and ERK1/2 in LPS-stimulated cells. This is the first report of the anti-inflammatory effect of ARC on endothelial cells and our data suggest that its future use in vascular disease may hopefully be of particular interest.
Collapse
Affiliation(s)
- Nancy Charó
- Laboratory of Experimental Thrombosis and Immunobiology of Inflammation, Institute of Experimental Medicine, CONICET-National Academy of Medicine, Pacheco de Melo 3081, Buenos Aires 1425, Argentina;
| | - Horacio Jerez
- Center for Research and Development in Nanomedicines (CIDEN), National University of Quilmes, Roque Saenz Peña, Bernal 1876, Argentina;
| | - Silvio Tatti
- Department of Obstetrics and Gynecology, Clinical Hospital, Av. Córdoba 2351, Buenos Aires 1120, Argentina;
| | - Eder Lilia Romero
- Center for Research and Development in Nanomedicines (CIDEN), National University of Quilmes, Roque Saenz Peña, Bernal 1876, Argentina;
| | - Mirta Schattner
- Laboratory of Experimental Thrombosis and Immunobiology of Inflammation, Institute of Experimental Medicine, CONICET-National Academy of Medicine, Pacheco de Melo 3081, Buenos Aires 1425, Argentina;
| |
Collapse
|
5
|
Reparation of an Inflamed Air-Liquid Interface Cultured A549 Cells with Nebulized Nanocurcumin. Pharmaceutics 2021; 13:pharmaceutics13091331. [PMID: 34575407 PMCID: PMC8466083 DOI: 10.3390/pharmaceutics13091331] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/15/2021] [Accepted: 08/20/2021] [Indexed: 12/29/2022] Open
Abstract
The anti-inflammatory, antifibrotic and antimicrobial activities of curcumin (CUR) are missed because of its low solubility in aqueous media, low bioavailability, and structural lability upon oral intake. Soft nanoparticles such as nanoliposomes are not efficient as CUR carriers, since crystalline CUR is expelled from them to physiological media. Nanostructures to efficiently trap and increase the aqueous solubility of CUR are needed to improve both oral or nebulized delivery of CUR. Here we showed that SRA1 targeted nanoarchaeosomes (nATC) [1:0.4 w:w:0.04] archaeolipids, tween 80 and CUR, 155 ± 16 nm sized of −20.7 ± 3.3 z potential, retained 0.22 mg CUR ± 0.09 per 12.9 mg lipids ± 4.0 (~600 μM CUR) in front to dilution, storage, and nebulization. Raman and fluorescence spectra and SAXS patterns were compatible with a mixture of enol and keto CUR tautomers trapped within the depths of nATC bilayer. Between 20 and 5 µg CUR/mL, nATC was endocytosed by THP1 and A549 liquid–liquid monolayers without noticeable cytotoxicity. Five micrograms of CUR/mL nATC nebulized on an inflamed air–liquid interface of A549 cells increased TEER, normalized the permeation of LY, and decreased il6, tnfα, and il8 levels. Overall, these results suggest the modified pharmacodynamics of CUR in nATC is useful for epithelia repair upon inflammatory damage, deserving further deeper exploration, particularly related to its targeting ability.
Collapse
|
6
|
Hoi KK, Bada Juarez JF, Judge PJ, Yen HY, Wu D, Vinals J, Taylor GF, Watts A, Robinson CV. Detergent-free Lipodisq Nanoparticles Facilitate High-Resolution Mass Spectrometry of Folded Integral Membrane Proteins. NANO LETTERS 2021; 21:2824-2831. [PMID: 33787280 PMCID: PMC8050825 DOI: 10.1021/acs.nanolett.0c04911] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/04/2021] [Indexed: 05/04/2023]
Abstract
Integral membrane proteins pose considerable challenges to mass spectrometry (MS) owing to the complexity and diversity of the components in their native environment. Here, we use native MS to study the post-translational maturation of bacteriorhodopsin (bR) and archaerhodopsin-3 (AR3), using both octyl-glucoside detergent micelles and lipid-based nanoparticles. A lower collision energy was required to obtain well-resolved spectra for proteins in styrene-maleic acid copolymer (SMA) Lipodisqs than in membrane scaffold protein (MSP) Nanodiscs. By comparing spectra of membrane proteins prepared using the different membrane mimetics, we found that SMA may favor selective solubilization of correctly folded proteins and better preserve native lipid interactions than other membrane mimetics. Our spectra reveal the correlation between the post-translation modifications (PTMs), lipid-interactions, and protein-folding states of bR, providing insights into the process of maturation of the photoreceptor proteins.
Collapse
Affiliation(s)
- Kin Kuan Hoi
- Department
of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Juan Francisco Bada Juarez
- Department
of Biochemistry, Biomembrane Structure Unit, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Peter J. Judge
- Department
of Biochemistry, Biomembrane Structure Unit, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Hsin-Yung Yen
- Department
of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
- OMass
Therapeutics, The Schrödinger
Building, Oxford Science Park, Oxford OX4
4GE, United Kingdom
| | - Di Wu
- Department
of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Javier Vinals
- Department
of Biochemistry, Biomembrane Structure Unit, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Garrick F. Taylor
- Department
of Biochemistry, Biomembrane Structure Unit, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Anthony Watts
- Department
of Biochemistry, Biomembrane Structure Unit, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Carol V. Robinson
- Department
of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| |
Collapse
|
7
|
Macrophage apoptosis using alendronate in targeted nanoarchaeosomes. Eur J Pharm Biopharm 2021; 160:42-54. [PMID: 33440242 DOI: 10.1016/j.ejpb.2021.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/30/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022]
Abstract
Nanoarchaeosomes are non-hydrolysable nanovesicles made of archaeolipids, naturally functionalised with ligand for scavenger receptor class 1. We hypothesized that nitrogenate bisphosphonate alendronate (ALN) loaded nanoarchaeosomes (nanoarchaeosomes(ALN)) may constitute more efficient macrophage targeted apoptotic inducers than ALN loaded nanoliposomes (nanoliposomes (ALN)). To that aim, ALN was loaded in cholesterol containing (nanoARC-chol(ALN)) or not (nanoARC(ALN)) nanoarchaeosomes. Nanoarchaeosomes(ALN) (220-320 nm sized, ~ -40 mV ξ potential, 38-50 μg ALN/mg lipid ratio) displayed higher structural stability than nanoliposomes(ALN) of matching size and ξ potential, retaining most of ALN against a 1/200 folds dilution. The cytotoxicity of nanoARC(ALN) on J774A.1 cells, resulted > 30 folds higher than free ALN and nanoliposomes(ALN) and was reduced by cholesterol in nanoARC-chol(ALN). Devoid of ALN, nanoARC-chol was non-cytotoxic, exhibited pronounced anti-inflammatory activity on J774.1 cells, strongly reducing reactive oxygen species (ROS) and IL-6 induced by LPS. Nanoarchaeosomes bilayer extensively interacted with serum proteins but resulted refractory to phospholipases. Upon J774A.1 cells uptake, nanoarchaeosomes induced cytoplasmic acid vesicles, reduced the mitochondrial membrane potential by 20-40 % without consuming ATP neither damaging lysosomes and increasing pERK. Refractory to chemoenzymatic attacks, either void or drug loaded, nanoarchaeosomes induced either anti-inflammation or macrophages apoptosis, constituting promising targeted nanovesicles for multiple therapeutic purposes.
Collapse
|
8
|
Parra FL, Frank FM, Alliani BF, Romero EL, Petray PB. Imiquimod-loaded nanoarchaeosomes as a promising immunotherapy against Trypanosoma cruzi infection. Colloids Surf B Biointerfaces 2020; 189:110850. [PMID: 32058257 DOI: 10.1016/j.colsurfb.2020.110850] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 01/18/2020] [Accepted: 02/05/2020] [Indexed: 10/25/2022]
Abstract
The purpose of this study was to evaluate the efficacy of imiquimod-containing nanovesicles prepared with lipids extracted from the hyperhalophile archaebacterium Halorubrum tebenquichense (nanoARC-IMQ) to induce protection against Trypanosoma cruzi infection. The therapeutic efficacy of archaeolipid nanovesicles was assessed in an experimental murine model of acute infection with T. cruzi. The administration of nanoARQ-IMQ prevented mortality as compared to infected untreated animals, reduced parasitemia levels and diminished myocardial and musculoskeletal lesions in mice infected with a lethal strain of T. cruzi. Our findings suggest that the immunotherapy with nanoARC-IMQ has potential to limit the progression of Chagas disease.
Collapse
Affiliation(s)
- Federico L Parra
- Nanomedicine Research & Development Center, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
| | - Fernanda M Frank
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Instituto de Microbiología y Parasitología Médica (CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Bruno F Alliani
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Instituto de Microbiología y Parasitología Médica (CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Eder L Romero
- Nanomedicine Research & Development Center, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina.
| | - Patricia B Petray
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Instituto de Microbiología y Parasitología Médica (CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
9
|
Altube MJ, Martínez MMB, Malheiros B, Maffía PC, Barbosa LRS, Morilla MJ, Romero EL. Fast Biofilm Penetration and Anti-PAO1 Activity of Nebulized Azithromycin in Nanoarchaeosomes. Mol Pharm 2019; 17:70-83. [DOI: 10.1021/acs.molpharmaceut.9b00721] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Maria Julia Altube
- Nanomedicine Research and Development Centre, Science and Technology Department, National University of Quilmes, 1876 Bernal, Buenos Aires, Argentina
| | - Melina M. B. Martínez
- Laboratorio de Microbiología Molecular, Instituto de Microbiología Básica y Aplicada, Universidad Nacional de Quilmes, 1876 Bernal, Buenos Aires, Argentina
| | - Barbara Malheiros
- Institute of Physics, University of São Paulo (USP), 05508-900 São Paulo, Brazil
| | - Paulo C. Maffía
- Laboratorio de Microbiología Molecular, Instituto de Microbiología Básica y Aplicada, Universidad Nacional de Quilmes, 1876 Bernal, Buenos Aires, Argentina
| | | | - Maria Jose Morilla
- Nanomedicine Research and Development Centre, Science and Technology Department, National University of Quilmes, 1876 Bernal, Buenos Aires, Argentina
| | - Eder Lilia Romero
- Nanomedicine Research and Development Centre, Science and Technology Department, National University of Quilmes, 1876 Bernal, Buenos Aires, Argentina
| |
Collapse
|
10
|
Perez AP, Perez N, Lozano CMS, Altube MJ, de Farias MA, Portugal RV, Buzzola F, Morilla MJ, Romero EL. The anti MRSA biofilm activity of Thymus vulgaris essential oil in nanovesicles. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 57:339-351. [PMID: 30826631 DOI: 10.1016/j.phymed.2018.12.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/15/2018] [Accepted: 12/20/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Thymus vulgaris essential oil (T) could be an alternative to classical antibiotics against bacterial biofilms, which show increased tolerance to antibiotics and host defence systems and contribute to the persistence of chronic bacterial infections. HYPOTHESIS A nanovesicular formulation of T may chemically protect the structure and relative composition of its multiple components, potentially improving its antibacterial and antibiofilm activity. STUDY DESIGN We prepared and structurally characterized T in two types of nanovesicles: nanoliposomes (L80-T) made of Soybean phosphatidylcholine (SPC) and Polysorbate 80 (P80) [SPC:P80:T 1:0.75:0.3 w:w], and nanoarchaeosomes (A80-T) made of SPC, P80 and total polar archaeolipids (TPA) extracted from archaebacteria Halorubrum tebenquichense [SPC:TPA:P80:T 0.5:0.50.75:0.7 w:w]. We determined the macrophage cytotoxicity and the antibacterial activity against Staphylococcus aureus ATCC 25,923 and four MRSA clinical strains. RESULTS L80-T (Z potential -4.1 ± 0.6 mV, ∼ 115 nm, ∼ 22 mg/ml T) and A80-T (Z potential -6.6 ± 1.5 mV, ∼ 130 nm, ∼ 42 mg/ml T) were colloidally and chemically stable, maintaining size, PDI, Z potential and T concentration for at least 90 days. While MIC90 of L80-T was > 4 mg/ml T, MIC90 of A80-T was 2 mg/ml T for all S. aureus strains. The antibiofilm formation activity was maximal for A80-T, while L80-T did not inhibit biofilm formation compared to untreated control. A80-T significantly decreased the biomass of preformed biofilms of S. aureus ATCC 25,923 strain and of 3 of the 4 clinical MRSA isolates at 4 mg/ml T. It was found that the viability of J774A.1 macrophages was decreased significantly upon 24 h incubation with A80-T, L80-T and T emulsion at 0.4 mg/ml T. These results show that from 0.4 mg/ml T, a value lower than MIC90 and the one displaying antibiofilm activity, with independence of its formulation, T significantly decreased the macrophages viability. CONCLUSION Overall, because of its lower MIC90 against planktonic bacteria, higher antibiofilm formation capacity and stability during storage, A80-T resulted better antibacterial agent than T emulsion and L80-T. These results open new avenues to explode the A80-T antimicrobial intracellular activity.
Collapse
Affiliation(s)
- Ana Paula Perez
- Nanomedicine Research and Development Centre, Science and Technology Department, National University of Quilmes, Bernal, Buenos Aires, Argentina
| | - Noelia Perez
- Nanomedicine Research and Development Centre, Science and Technology Department, National University of Quilmes, Bernal, Buenos Aires, Argentina
| | - Carlos Mauricio Suligoy Lozano
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM-CONICET), Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Maria Julia Altube
- Nanomedicine Research and Development Centre, Science and Technology Department, National University of Quilmes, Bernal, Buenos Aires, Argentina
| | | | | | - Fernanda Buzzola
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM-CONICET), Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Jose Morilla
- Nanomedicine Research and Development Centre, Science and Technology Department, National University of Quilmes, Bernal, Buenos Aires, Argentina
| | - Eder Lilia Romero
- Nanomedicine Research and Development Centre, Science and Technology Department, National University of Quilmes, Bernal, Buenos Aires, Argentina.
| |
Collapse
|
11
|
The Biogeography of Great Salt Lake Halophilic Archaea: Testing the Hypothesis of Avian Mechanical Carriers. DIVERSITY 2018. [DOI: 10.3390/d10040124] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Halophilic archaea inhabit hypersaline ecosystems globally, and genetically similar strains have been found in locales that are geographically isolated from one another. We sought to test the hypothesis that small salt crystals harboring halophilic archaea could be carried on bird feathers and that bird migration is a driving force of these distributions. In this study, we discovered that the American White Pelicans (AWPE) at Great Salt Lake soak in the hypersaline brine and accumulate salt crystals (halite) on their feathers. We cultured halophilic archaea from AWPE feathers and halite crystals. The microorganisms isolated from the lakeshore crystals were restricted to two genera: Halorubrum and Haloarcula, however, archaea from the feathers were strictly Haloarcula. We compared partial DNA sequence of the 16S rRNA gene from our cultivars with that of similar strains in the GenBank database. To understand the biogeography of genetically similar halophilic archaea, we studied the geographical locations of the sampling sites of the closest-matched species. An analysis of the environmental factors of each site pointed to salinity as the most important factor for selection. The geography of the sites was consistent with the location of the sub-tropical jet stream where birds typically migrate, supporting the avian dispersal hypothesis.
Collapse
|
12
|
Caimi AT, Altube MJ, de Farias MA, Portugal RV, Perez AP, Romero EL, Morilla MJ. Novel imiquimod nanovesicles for topical vaccination. Colloids Surf B Biointerfaces 2018; 174:536-543. [PMID: 30500742 DOI: 10.1016/j.colsurfb.2018.11.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/10/2018] [Accepted: 11/13/2018] [Indexed: 12/21/2022]
Abstract
Development of needle and pain free noninvasive immunization procedures is a top priority for public health agencies. In this work the topical adjuvant activity of the immunomodulator imiquimod (IMQ) carried by ultradeformable archaeosomes (UDA2) (nanovesicles containing sn-2,3 ether linked phytanyl saturated archaeolipids) was surveyed and compared with that of ultradeformable liposomes lacking archaeolipids (UDL2) and free IMQ, using the model antigen ovalbumin and a seasonal influenza vaccine in Balb/c mice. UDA2 (250 ± 94 nm, -26 ± 4 mV Z potential) induced higher IMQ accumulation in human skin and higher production of TNF-α and IL-6 by macrophages and keratinocytes than free IMQ and UDL2. Mixed with ovalbumin, UDA2 was more efficient at generating cellular response, as measured by an increase in serum IgG2a and INF-γ production by splenocytes, compared with free IMQ and UDL2. Moreover, mixed with a seasonal influenza vaccine UDA2 produced same IgG titers and IgG2a/IgG1 isotypes ratio (≈1) than the subcutaneously administered influenza vaccine. Topical UDA2 however, induced highest stimulation index and INF-γ levels by splenocytes. UDA2 might be a promising adjuvant for topical immunization, since it produced cell-biased systemic response with ≈ 13-fold lower IMQ dose than the delivered as the commercial IMQ cream, Aldara.
Collapse
Affiliation(s)
- Ayelen Tatiana Caimi
- Nanomedicine Research & Development Center, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Saenz Peña 352, Bernal, B1876BXD, Argentina
| | - Maria Julia Altube
- Nanomedicine Research & Development Center, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Saenz Peña 352, Bernal, B1876BXD, Argentina
| | - Marcelo Alexandre de Farias
- Brazilian Nanotechnology National Laboratory, CNPEM, Caixa Postal 6192, CEP 13.083-970, Campinas, São Paulo, Brazil
| | - Rodrigo Villares Portugal
- Brazilian Nanotechnology National Laboratory, CNPEM, Caixa Postal 6192, CEP 13.083-970, Campinas, São Paulo, Brazil
| | - Ana Paula Perez
- Nanomedicine Research & Development Center, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Saenz Peña 352, Bernal, B1876BXD, Argentina
| | - Eder Lilia Romero
- Nanomedicine Research & Development Center, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Saenz Peña 352, Bernal, B1876BXD, Argentina
| | - Maria Jose Morilla
- Nanomedicine Research & Development Center, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Saenz Peña 352, Bernal, B1876BXD, Argentina.
| |
Collapse
|
13
|
Altube MJ, Cutro A, Bakas L, Morilla MJ, Disalvo EA, Romero EL. Nebulizing novel multifunctional nanovesicles: the impact of macrophage-targeted-pH-sensitive archaeosomes on a pulmonary surfactant. J Mater Chem B 2017; 5:8083-8095. [PMID: 32264647 DOI: 10.1039/c7tb01694h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In this study, a NE-U22 vibrating mesh Omron nebulizer was used to deliver the Lissamine™ rhodamine B 1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine triethylammonium salt (Rh-PE) and 8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt (HPTS)/p-xylene-bis-pyridinium bromide (DPX) double-labelled macrophage-targeted pH-sensitive archaeosomes (ApH, 174 ± 48 nm, -30 ± 13 mV unilamellar nanovesicles made of dioleoyl-sn-glycero-3-phosphoethanolamine: [total polar archaeolipids from the hyperhalophile archaebacteria Halorubrum tebenquichense]: cholesteryl hemisuccinate 4.2 : 2.8 : 3 w : w : w) to J774A.1 cells covered by a Prosurf pulmonary surfactant (PS) monolayer at or below the equilibrium surface pressure πe. The uptake and cytoplasmic drug release from ApH were assessed by flow cytometry of Rh-PE and HPTS fluorescence, respectively. Despite being soft matter, nanovesicles are submitted to the dismantling interactions of shear stress of nebulization and contact with the surfactant barrier, and at least a fraction of nebulized ApH was found to be stable enough to execute higher cytoplasmic delivery than archaeolipid-lacking vesicles. Nebulized ApH increased the PS tensioactivity to just below πe, which was beyond the physiological range; this finding indicated that changes in lung surfactant function induced by nebulized nanovesicles were less likely to occur in vivo. The cytoplasmic delivery from ApH slightly decreased across monolayers at πe; this suggested that nanovesicles crossed the PS in a fashion inversely related to monolayer compression. Laurdan generalized polarization and fluorescence anisotropy were used to reveal that nanovesicles neither depleted B and C proteins of the PS nor increased the fluidity of the PS. Together with the feasibility of the cytoplasmic drug delivery upon nebulization, our results suggest that ApH are structurally unique nanovesicles that would not induce biophysical changes leading to PS inactivation and open the door to deeper future translational studies.
Collapse
Affiliation(s)
- Maria Julia Altube
- Nanomedicine Research Program-2, Science and Technology Department, National University of Quilmes, Bernal, Buenos Aires, Argentina.
| | | | | | | | | | | |
Collapse
|
14
|
Amoozegar MA, Siroosi M, Atashgahi S, Smidt H, Ventosa A. Systematics of haloarchaea and biotechnological potential of their hydrolytic enzymes. MICROBIOLOGY-SGM 2017; 163:623-645. [PMID: 28548036 DOI: 10.1099/mic.0.000463] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Halophilic archaea, also referred to as haloarchaea, dominate hypersaline environments. To survive under such extreme conditions, haloarchaea and their enzymes have evolved to function optimally in environments with high salt concentrations and, sometimes, with extreme pH and temperatures. These features make haloarchaea attractive sources of a wide variety of biotechnological products, such as hydrolytic enzymes, with numerous potential applications in biotechnology. The unique trait of haloarchaeal enzymes, haloenzymes, to sustain activity under hypersaline conditions has extended the range of already-available biocatalysts and industrial processes in which high salt concentrations inhibit the activity of regular enzymes. In addition to their halostable properties, haloenzymes can also withstand other conditions such as extreme pH and temperature. In spite of these benefits, the industrial potential of these natural catalysts remains largely unexplored, with only a few characterized extracellular hydrolases. Because of the applied impact of haloarchaea and their specific ability to live in the presence of high salt concentrations, studies on their systematics have intensified in recent years, identifying many new genera and species. This review summarizes the current status of the haloarchaeal genera and species, and discusses the properties of haloenzymes and their potential industrial applications.
Collapse
Affiliation(s)
- Mohammad Ali Amoozegar
- Extremophiles Laboratory, Department of Microbiology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Maryam Siroosi
- Extremophiles Laboratory, Department of Microbiology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Siavash Atashgahi
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Antonio Ventosa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| |
Collapse
|
15
|
Higa LH, Jerez HE, de Farias MA, Portugal RV, Romero EL, Morilla MJ. Ultra-small solid archaeolipid nanoparticles for active targeting to macrophages of the inflamed mucosa. Nanomedicine (Lond) 2017; 12:1165-1175. [DOI: 10.2217/nnm-2016-0437] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Aim: Develop nanoparticulate agents for oral targeted delivery of dexamethasone (Dex) to macrophages of inflamed mucosa. Materials & methods: Solid archaeolipid nanoparticles (SAN-Dex) (compritol/Halorubrum tebenquichense polar archaeolipids/soybean phosphatidylcholine/Tween-80 4; 0.9; 0.3; 3% w/w) loaded with Dex were prepared. Their mucopenetration, stability under digestion and in vitro anti-inflammatory activity, were determined. Results: Ultra-small SAN-Dex strongly reduced the levels of TNF-α, IL-6 and IL-12 on J774A1 cells stimulated with lipopolysaccharides as compared with free Dex or loaded in ordinary solid lipid nanoparticles-Dex. After in vitro digestion, the anti-inflammatory activity of SAN-Dex was retained, while that of solid lipid nanoparticles-Dex was lost. Conclusion: Because of their structural and pharmacodynamic features, SAN-Dex may be suitable for oral targeted delivery to inflamed mucosa.
Collapse
Affiliation(s)
- Leticia Herminia Higa
- Nanomedicine Research Program, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Saenz Peña 352, Bernal, B1876BXD, Argentina
| | - Horacio Emanuel Jerez
- Nanomedicine Research Program, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Saenz Peña 352, Bernal, B1876BXD, Argentina
| | - Marcelo Alexandre de Farias
- Brazilian Nanotechnology National Laboratory, CNPEM, Caixa Postal 6192, CEP 13.083–970, Campinas, São Paulo, Brazil
| | - Rodrigo Villares Portugal
- Brazilian Nanotechnology National Laboratory, CNPEM, Caixa Postal 6192, CEP 13.083–970, Campinas, São Paulo, Brazil
| | - Eder Lilia Romero
- Nanomedicine Research Program, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Saenz Peña 352, Bernal, B1876BXD, Argentina
| | - Maria Jose Morilla
- Nanomedicine Research Program, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Saenz Peña 352, Bernal, B1876BXD, Argentina
| |
Collapse
|
16
|
Altube MJ, Selzer SM, de Farias MA, Portugal RV, Morilla MJ, Romero EL. Surviving nebulization-induced stress: dexamethasone in pH-sensitive archaeosomes. Nanomedicine (Lond) 2016; 11:2103-17. [DOI: 10.2217/nnm-2016-0165] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aim: To increase the subcellular delivery of dexamethasone phosphate (DP) and stability to nebulization stress, pH-sensitive nanoliposomes (LpH) exhibiting archaeolipids, acting as ligands for scavenger receptors (pH-sensitive archaeosomes [ApH]), were prepared. Materials & methods: The anti-inflammatory effect of 0.18 mg DP/mg total lipid, 100–150 nm DP-containing ApH (dioleylphosphatidylethanolamine: Halorubrum tebenquichense total polar archaeolipids:cholesteryl hemisuccinate 4.2:2.8:3 w:w) was tested on different cell lines. Size and HPTS retention of ApH and conventional LpH (dioleylphosphatidylethanolamine:cholesteryl hemisuccinate 7:3 w:w) before and after nebulization were determined. Results & conclusion: DP-ApH suppressed IL-6 and TNF-α on phagocytic cells. Nebulized after 6-month storage, LpH increased size and completely lost its HPTS while ApH3 conserved size and polydispersity, fully retaining its original HPTS content.
Collapse
Affiliation(s)
- Maria Julia Altube
- Nanomedicine Research Program, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes. Roque Saenz Peña 352, Bernal B1876BXD, Argentina
| | - Solange Mailen Selzer
- Nanomedicine Research Program, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes. Roque Saenz Peña 352, Bernal B1876BXD, Argentina
| | - Marcelo Alexandre de Farias
- Brazilian Nanotechnology National Laboratory, CNPEM, Caixa Postal 6192, CEP 13.083–970, Campinas, São Paulo, Brazil
| | - Rodrigo Villares Portugal
- Brazilian Nanotechnology National Laboratory, CNPEM, Caixa Postal 6192, CEP 13.083–970, Campinas, São Paulo, Brazil
| | - Maria Jose Morilla
- Nanomedicine Research Program, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes. Roque Saenz Peña 352, Bernal B1876BXD, Argentina
| | - Eder Lilia Romero
- Nanomedicine Research Program, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes. Roque Saenz Peña 352, Bernal B1876BXD, Argentina
| |
Collapse
|
17
|
Higa LH, Arnal L, Vermeulen M, Perez AP, Schilrreff P, Mundiña-Weilenmann C, Yantorno O, Vela ME, Morilla MJ, Romero EL. Ultradeformable Archaeosomes for Needle Free Nanovaccination with Leishmania braziliensis Antigens. PLoS One 2016; 11:e0150185. [PMID: 26934726 PMCID: PMC4774928 DOI: 10.1371/journal.pone.0150185] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 02/10/2016] [Indexed: 12/21/2022] Open
Abstract
Total antigens from Leishmania braziliensis promastigotes, solubilized with sodium cholate (dsLp), were formulated within ultradeformable nanovesicles (dsLp-ultradeformable archaeosomes, (dsLp-UDA), and dsLp-ultradeformable liposomes (dsLp-UDL)) and topically administered to Balb/c mice. Ultradeformable nanovesicles can penetrate the intact stratum corneum up to the viable epidermis, with no aid of classical permeation enhancers that can damage the barrier function of the skin. Briefly, 100 nm unilamellar dsLp-UDA (soybean phosphatidylcholine: Halorubrum tebenquichense total polar lipids (TPL): sodium cholate, 3:3:1 w:w) of -31.45 mV Z potential, containing 4.84 ± 0.53% w/w protein/lipid dsLp, 235 KPa Young modulus were prepared. In vitro, dsLp-UDA was extensively taken up by J774A1 and bone marrow derive cells, and the only that induced an immediate secretion of IL-6, IL-12p40 and TNF-α, followed by IL-1β, by J774A1 cells. Such extensive uptake is a key feature of UDA ascribed to the highly negatively charged archaeolipids of the TPL, which are recognized by a receptor specialized in uptake and not involved in downstream signaling. Despite dsLp alone was also immunostimulatory on J774A1 cells, applied twice a week on consecutive days along 7 weeks on Balb/c mice, it raised no measurable response unless associated to UDL or UDA. The highest systemic response, IgGa2 mediated, 1 log lower than im dsLp Al2O3, was elicited by dsLp-UDA. Such findings suggest that in vivo, UDL and UDA acted as penetration enhancers for dsLp, but only dsLp-UDA, owed to its pronounced uptake by APC, succeeded as topical adjuvants. The actual TPL composition, fully made of sn2,3 ether linked saturated archaeolipids, gives the UDA bilayer resistance against chemical, physical and enzymatic attacks that destroy ordinary phospholipids bilayers. Together, these properties make UDA a promising platform for topical drug targeted delivery and vaccination, that may be of help for countries with a deficient healthcare system.
Collapse
Affiliation(s)
- Leticia H. Higa
- Nanomedicine Research Program, Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes. Roque Saenz Peña 352, Bernal, Argentina B1876BXD
| | - Laura Arnal
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Universidad Nacional de La Plata-CONICET, Sucursal 4 Casilla de Correo 16, 1900 La Plata, Argentina
| | - Mónica Vermeulen
- Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET-UBA, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires. Junin 956, 4° piso, 1113, Buenos Aires, Argentina
| | - Ana Paula Perez
- Nanomedicine Research Program, Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes. Roque Saenz Peña 352, Bernal, Argentina B1876BXD
| | - Priscila Schilrreff
- Nanomedicine Research Program, Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes. Roque Saenz Peña 352, Bernal, Argentina B1876BXD
| | | | - Osvaldo Yantorno
- Facultad de Ciencias Exactas, Centro de Investigación y Desarrollo de Fermentaciones Industriales (CINDEFI), UNLP. 50 No. 227, 1900 La Plata, Argentina
| | - María Elena Vela
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Universidad Nacional de La Plata-CONICET, Sucursal 4 Casilla de Correo 16, 1900 La Plata, Argentina
| | - María José Morilla
- Nanomedicine Research Program, Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes. Roque Saenz Peña 352, Bernal, Argentina B1876BXD
| | - Eder Lilia Romero
- Nanomedicine Research Program, Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes. Roque Saenz Peña 352, Bernal, Argentina B1876BXD
- * E-mail:
| |
Collapse
|
18
|
Morilla MJ, Romero EL. Nanomedicines against Chagas disease: an update on therapeutics, prophylaxis and diagnosis. Nanomedicine (Lond) 2015; 10:465-81. [PMID: 25707979 DOI: 10.2217/nnm.14.185] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Chagas disease is a neglected parasitic infection caused by the protozoan Trypanosoma cruzi. After a mostly clinically silent acute phase, the disease becomes a lifelong chronic condition that can lead to chronic heart failure and thromboembolic phenomena followed by sudden death. Antichagasic treatment is only effective in the acute phase but fails to eradicate the intracellular form of parasites and causes severe toxicity in adults. Although conventional oral benznidazol is not a safe and efficient drug to cure chronic adult patients, current preclinical data is insufficient to envisage if conventional antichagasic treatment could be realistically improved by a nanomedical approach. This review will discuss how nanomedicines could help to improve the performance of therapeutics, vaccines and diagnosis of Chagas disease.
Collapse
Affiliation(s)
- Maria Jose Morilla
- Programa de Nanomedicinas, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Saenz Peña 352, Bernal B1876BXD, Buenos Aires, Argentina
| | | |
Collapse
|
19
|
Kaur G, Garg T, Rath G, Goyal AK. Archaeosomes: an excellent carrier for drug and cell delivery. Drug Deliv 2015; 23:2497-2512. [DOI: 10.3109/10717544.2015.1019653] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Gurmeet Kaur
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| | - Tarun Garg
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| | - Goutam Rath
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| | - Amit K. Goyal
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| |
Collapse
|
20
|
Carrer DC, Higa LH, Tesoriero MVD, Morilla MJ, Roncaglia DI, Romero EL. Structural features of ultradeformable archaeosomes for topical delivery of ovalbumin. Colloids Surf B Biointerfaces 2014; 121:281-9. [DOI: 10.1016/j.colsurfb.2014.05.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 05/03/2014] [Accepted: 05/09/2014] [Indexed: 10/25/2022]
|
21
|
Perez AP, Casasco A, Schilrreff P, Tesoriero MVD, Duempelmann L, Pappalardo JS, Altube MJ, Higa L, Morilla MJ, Petray P, Romero EL. Enhanced photodynamic leishmanicidal activity of hydrophobic zinc phthalocyanine within archaeolipids containing liposomes. Int J Nanomedicine 2014; 9:3335-45. [PMID: 25045264 PMCID: PMC4099200 DOI: 10.2147/ijn.s60543] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In this work, the in vitro anti-Leishmania activity of photodynamic liposomes made of soybean phosphatidylcholine, sodium cholate, total polar archaeolipids (TPAs) extracted from the hyperhalophile archaea Halorubrum tebenquichense and the photosensitizer zinc phthalocyanine (ZnPcAL) was compared to that of ultradeformable photodynamic liposomes lacking TPAs (ZnPcUDLs). We found that while ZnPcUDLs and ZnPcALs (130 nm mean diameter and -35 mV zeta potential) were innocuous against promastigotes, a low concentration (0.01 μM ZnPc and 7.6 μM phospholipids) of ZnPcALs irradiated at a very low-energy density (0.2 J/cm(2)) eliminated L. braziliensis amastigotes from J774 macrophages, without reducing the viability of the host cells. In such conditions, ZnPcALs were harmless for J774 macrophages, HaCaT keratinocytes, and bone marrow-derived dendritic cells. Therefore, topical photodynamic treatment would not likely affect skin-associated lymphoid tissue. ZnPcALs were extensively captured by macrophages, but ZnPcUDLs were not, leading to 2.5-fold increased intracellular delivery of ZnPc than with ZnPcUDLs. Despite mediating low levels of reactive oxygen species, the higher delivery of ZnPc and the multiple (caveolin- and clathrin-dependent plus phagocytic) intracellular pathway followed by ZnPc would have been the reason for the higher antiamastigote activity of ZnPcALs. The leishmanicidal activity of photodynamic liposomal ZnPc was improved by TPA-containing liposomes.
Collapse
Affiliation(s)
- Ana Paula Perez
- Programa de Nanomedicinas, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | - Agustina Casasco
- Servicio de Parasitología y Enfermedad de Chagas, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Priscila Schilrreff
- Programa de Nanomedicinas, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | - Maria Victoria Defain Tesoriero
- Programa de Nanomedicinas, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Buenos Aires, Argentina ; Unidad Operativa Sistemas de Liberación Controlada, Centro de Investigación y Desarrollo en Química, Instituto Nacional de Tecnología Industrial (INTI), Buenos Aires, Argentina
| | - Luc Duempelmann
- Programa de Nanomedicinas, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | - Juan Sebastián Pappalardo
- Virology Institute, Center for Research in Veterinary and Agronomic Sciences, National Institute for Agricultural Technology (INTA), Hurlingham, BA, Argentina
| | - Maria Julia Altube
- Programa de Nanomedicinas, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | - Leticia Higa
- Programa de Nanomedicinas, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | - Maria Jose Morilla
- Programa de Nanomedicinas, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | - Patricia Petray
- Servicio de Parasitología y Enfermedad de Chagas, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Eder L Romero
- Programa de Nanomedicinas, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| |
Collapse
|
22
|
|
23
|
The potent in vitro skin permeation of archaeosome made from lipids extracted of Sulfolobus acidocaldarius. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2013; 2013:782012. [PMID: 24453698 PMCID: PMC3888715 DOI: 10.1155/2013/782012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 09/17/2013] [Accepted: 10/15/2013] [Indexed: 11/18/2022]
Abstract
Archaeosomes are a new generation of liposomes that exhibit higher stabilities under different conditions, such as high temperatures, alkaline or acidic pH, and presence of bile salts in comparison with liposomes, and can be used in biotechnology including drug, gene, and vaccine delivery. The objective of this study was to prepare archaeosomes using lipid extracted from Sulfolobus acidocaldarius and evaluate their physicochemical properties. The lipids were extracted from S. acidocaldarius and assayed by High Performance Thin-Layer Chromatography (HPTLC). Archaeosomes were prepared using film method and methylene blue was used as drug model. They were characterized for their vesicle size and Differential Scanning Calorimetry (DSC) was used to investigate changes in their thermal behavior. The released amount of methylene blue was determined using a dialysis membrane and rat skin. HPTLC analysis of the extracted lipids showed that glycerol ether may be the major lipid with more than 78 percent probability. Results of particle size determination showed a mean size of 158.33 nm and the results of DSC indicated the possible interaction of methylene blue with lipids during the preparation of archaeosome. The addition of cholesterol significantly improved the encapsulation of methylene blue in the archaeosome so that the encapsulation efficiency was 61.66 ± 2.88%. The result of in vitro skin permeation showed that methylene blue could pass through skin model according to Peppas model and there was about 41.66% release after 6 h, whereas no release was observed through dialysis membrane. According to the results of the study, it is concluded that archaeosome may be successfully used as drug delivery system.
Collapse
|
24
|
Napotnik T, Valant J, Gmajner D, Passamonti S, Miklavčič D, Ulrih NP. Cytotoxicity and uptake of archaeosomes prepared from Aeropyrum pernix lipids. Hum Exp Toxicol 2013; 32:950-9. [DOI: 10.1177/0960327113477875] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Archaeon Aeropyrum pernix K1 is an obligate aerobic hyperthermophilic organism with C25,25-archeol membrane lipids with head groups containing inositol. Interactions of archaeosomes, liposomes prepared from lipids of A. pernix, with mammalian cells in vitro were studied. In vitro cytotoxicity was tested on five different cell lines: rodent mouse melanoma cells (B16-F1) and Chinese hamster ovary (CHO) cells, and three human cell lines—epithelial colorectal adenocarcinoma cells (CACO-2), liver hepatocellular carcinoma cell line (Hep G2) and endothelial umbilical vein cell line (EA.hy926). Archaeosomes were nontoxic to human Hep G2, CACO-2 and mildly toxic to rodent CHO and B16-F1 cells but showed strong cytotoxic effect on EA.hy926 cells. Confocal microscopy revealed that archaeosomes are taken up by endocytosis. The uptake of archaeosomes and the release of loaded calcein are more prominent in EA.hy926 cells, which is in line with high toxicity toward these cells. The mechanisms of uptake, release and action in these cells as well as in vivo functioning have to be further studied for possible targeted drug delivery.
Collapse
Affiliation(s)
- T.B. Napotnik
- Department of Biomedical Engineering, Faculty of Electrical Engineering, University of Ljubljana, Tržaška, Ljubljana, Slovenia
| | - J. Valant
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva, Ljubljana, Slovenia
| | - D. Gmajner
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva, Ljubljana, Slovenia
| | - S. Passamonti
- Department of Life Sciences, University of Trieste, Via L. Giorgeri, Trieste, Italy
| | - D. Miklavčič
- Department of Biomedical Engineering, Faculty of Electrical Engineering, University of Ljubljana, Tržaška, Ljubljana, Slovenia
| | - N. P. Ulrih
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva, Ljubljana, Slovenia
| |
Collapse
|
25
|
Alavi SE, Mansouri H, Esfahani MKM, Movahedi F, Akbarzadeh A, Chiani M. Archaeosome: as new drug carrier for delivery of Paclitaxel to breast cancer. Indian J Clin Biochem 2013; 29:150-3. [PMID: 24757295 DOI: 10.1007/s12291-013-0305-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 01/24/2013] [Indexed: 01/25/2023]
Abstract
In the present study, paclitaxel was archaeosomed to reduce side effects and improve its therapeutic index. Carriers have made a big evolution in treatment of many diseases in recent years. Lipid carriers are of special importance among carriers. Archaeosome is one of the lipid carriers. Paclitaxel is one of the drugs used to treat breast cancer which has some unwanted side effects despite its therapeutic effects. Archaeosomes were extracted from methanogenic archi bacteria and synthesized with a certain ratio of paclitaxel in PBS. The mean diameter of archaeosomal paclitaxel was measured by Zeta sizer instrument, Drug releasing of archaeosomal paclitaxel was examined within 26 h which results showed that the most drug releasing occurs during first 3 h. The cytotoxicity effect of archaeosomal paclitaxel on breast cancer's cell line was evaluated by MTT assay which results showed that the cytotoxicity effect of archaeosomal paclitaxel on breast cancer's cell line is more than that of the standard paclitaxel formulation. The results indicated that new drug delivery of paclitaxel using archaeosome, increases the therapeutic index of the drug.
Collapse
Affiliation(s)
- Seyed Ebrahim Alavi
- Department of Chemical Engineering, Lamerd Branch, Islamic Azad University, Lamerd, Iran ; Pilot Biotechnology Department, Pasteur Institute of Iran, No 358, 12 Farvardin Street, Jomhoori Avenue, 13169-43551 Tehran, Iran
| | - Hamidreza Mansouri
- Department of Chemical Engineering, Lamerd Branch, Islamic Azad University, Lamerd, Iran
| | - Maedeh Koohi Moftakhari Esfahani
- Department of Chemical Engineering, Lamerd Branch, Islamic Azad University, Lamerd, Iran ; Pilot Biotechnology Department, Pasteur Institute of Iran, No 358, 12 Farvardin Street, Jomhoori Avenue, 13169-43551 Tehran, Iran
| | - Fatemeh Movahedi
- Department of Chemical Engineering, Lamerd Branch, Islamic Azad University, Lamerd, Iran ; Pilot Biotechnology Department, Pasteur Institute of Iran, No 358, 12 Farvardin Street, Jomhoori Avenue, 13169-43551 Tehran, Iran
| | - Azim Akbarzadeh
- Pilot Biotechnology Department, Pasteur Institute of Iran, No 358, 12 Farvardin Street, Jomhoori Avenue, 13169-43551 Tehran, Iran
| | - Mohsen Chiani
- Pilot Biotechnology Department, Pasteur Institute of Iran, No 358, 12 Farvardin Street, Jomhoori Avenue, 13169-43551 Tehran, Iran
| |
Collapse
|
26
|
Higa LH, Corral RS, Morilla MJ, Romero EL, Petray PB. Archaeosomes display immunoadjuvant potential for a vaccine against Chagas disease. Hum Vaccin Immunother 2013; 9:409-12. [PMID: 23291939 DOI: 10.4161/hv.22780] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Archaeosomes (ARC), vesicles made from lipids extracted from Archaea, display strong adjuvant properties. In this study, we evaluated the ability of the highly stable ARC formulated from total polar lipids of a new Halorubrum tebenquichense strain found in Argentinean Patagonia, to act as adjuvant for soluble parasite antigens in developing prophylactic vaccine against the intracellular protozoan T. cruzi, the etiologic agent of Chagas disease. We demonstrated for the first time that C3H/HeN mice subcutaneously immunized with trypanosomal antigens entrapped in these ARC (ARC-TcAg) rapidly developed higher levels of circulating T. cruzi antibodies than those measured in the sera from animals receiving the antigen alone. Enhanced humoral responses elicited by ARC-TcAg presented a dominant IgG2a antibody isotype, usually associated with Th1-type immunity and resistance against T. cruzi. More importantly, ARC-TcAg-vaccinated mice displayed reduced parasitemia during early infection and were protected against an otherwise lethal challenge with the virulent Tulahuén strain of the parasite. Our findings suggest that, as an adjuvant, H. tebenquichense-derived ARC may hold great potential to develop a safe and helpful vaccine against this relevant human pathogen.
Collapse
Affiliation(s)
- Leticia H Higa
- Programa de Nanomedicinas; Departamento de Ciencia y Tecnología; Universidad Nacional de Quilmes; Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
27
|
Sharma S, Hinds LA. Formulation and delivery of vaccines: Ongoing challenges for animal management. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2012; 4:258-66. [PMID: 23248557 PMCID: PMC3523519 DOI: 10.4103/0975-7406.103231] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2011] [Revised: 12/30/2011] [Accepted: 03/24/2012] [Indexed: 11/09/2022] Open
Abstract
Development of a commercially successful animal vaccine is not only influenced by various immunological factors, such as type of antigen but also by formulation and delivery aspects. The latter includes the need for a vector or specific delivery system, the choice of route of administration and the nature of the target animal population and their habitat. This review describes the formulation and delivery aspects of various types of antigens such as killed microorganisms, proteins and nucleic acids for the development of efficacious and safe animal vaccines. It also focuses on the challenges associated with the different approaches that might be required for formulating and delivering species specific vaccines, particularly if their intended use is for improved animal management with respect to disease and/or reproductive control.
Collapse
Affiliation(s)
- Sameer Sharma
- Commonwealth Scientific and Industrial Research Organisation, Division of Ecosystem Sciences, GPO Box 1700, Canberra, ACT 2601, Australia
| | | |
Collapse
|
28
|
Higa LH, Schilrreff P, Perez AP, Iriarte MA, Roncaglia DI, Morilla MJ, Romero EL. Ultradeformable archaeosomes as new topical adjuvants. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2012; 8:1319-28. [DOI: 10.1016/j.nano.2012.02.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 01/22/2012] [Accepted: 02/13/2012] [Indexed: 11/30/2022]
|
29
|
Kumar D, Sharma D, Singh G, Singh M, Rathore MS. Lipoidal soft hybrid biocarriers of supramolecular construction for drug delivery. ISRN PHARMACEUTICS 2012. [PMID: 22888455 DOI: 10.5402/2012/474830]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Lipid-based innovations have achieved new heights during the last few years as an essential component of drug development. The current challenge of drug delivery is liberation of drug agents at the right time in a safe and reproducible manner to a specific target site. A number of novel drug delivery systems has emerged encompassing various routes of administration, to achieve controlled and targeted drug delivery. Microparticulate lipoidal vesicular system represents a unique technology platform suitable for the oral and systemic administration of a wide variety of molecules with important therapeutic biological activities, including drugs, genes, and vaccine antigens. The success of liposomes as drug carriers has been reflected in a number of liposome-based formulations, which are commercially available or are currently undergoing clinical trials. Also, novel lipid carrier-mediated vesicular systems are originated. This paper has focused on the lipid-based supramolecular vesicular carriers that are used in various drug delivery and drug targeting systems.
Collapse
Affiliation(s)
- Dinesh Kumar
- Department of Pharmaceutics, CT Institute of Pharmaceutical Sciences, Jalandhar 144020, India
| | | | | | | | | |
Collapse
|
30
|
Kumar D, Sharma D, Singh G, Singh M, Rathore MS. Lipoidal soft hybrid biocarriers of supramolecular construction for drug delivery. ISRN PHARMACEUTICS 2012; 2012:474830. [PMID: 22888455 PMCID: PMC3409530 DOI: 10.5402/2012/474830] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 05/03/2012] [Indexed: 12/04/2022]
Abstract
Lipid-based innovations have achieved new heights during the last few years as an essential component of drug development. The current challenge of drug delivery is liberation of drug agents at the right time in a safe and reproducible manner to a specific target site. A number of novel drug delivery systems has emerged encompassing various routes of administration, to achieve controlled and targeted drug delivery. Microparticulate lipoidal vesicular system represents a unique technology platform suitable for the oral and systemic administration of a wide variety of molecules with important therapeutic biological activities, including drugs, genes, and vaccine antigens. The success of liposomes as drug carriers has been reflected in a number of liposome-based formulations, which are commercially available or are currently undergoing clinical trials. Also, novel lipid carrier-mediated vesicular systems are originated. This paper has focused on the lipid-based supramolecular vesicular carriers that are used in various drug delivery and drug targeting systems.
Collapse
Affiliation(s)
- Dinesh Kumar
- Department of Pharmaceutics, CT Institute of Pharmaceutical Sciences, Jalandhar 144020, India
| | | | | | | | | |
Collapse
|