1
|
Phagocytosis depends on TRPV2-mediated calcium influx and requires TRPV2 in lipids rafts: alteration in macrophages from patients with cystic fibrosis. Sci Rep 2018. [PMID: 29523858 PMCID: PMC5844937 DOI: 10.1038/s41598-018-22558-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Whereas many phagocytosis steps involve ionic fluxes, the underlying ion channels remain poorly defined. As reported in mice, the calcium conducting TRPV2 channel impacts the phagocytic process. Macrophage phagocytosis is critical for defense against pathogens. In cystic fibrosis (CF), macrophages have lost their capacity to act as suppressor cells and thus play a significant role in the initiating stages leading to chronic inflammation/infection. In a previous study, we demonstrated that impaired function of CF macrophages is due to a deficient phagocytosis. The aim of the present study was to investigate TRPV2 role in the phagocytosis capacity of healthy primary human macrophage by studying its activity, its membrane localization and its recruitment in lipid rafts. In primary human macrophages, we showed that P. aeruginosa recruits TRPV2 channels at the cell surface and induced a calcium influx required for bacterial phagocytosis. We presently demonstrate that to be functional and play a role in phagocytosis, TRPV2 might require a preferential localization in lipid rafts. Furthermore, CF macrophage displays a perturbed calcium homeostasis due to a defect in TRPV2. In this context, deregulated TRPV2-signaling in CF macrophages could explain their defective phagocytosis capacity that contribute to the maintenance of chronic infection.
Collapse
|
2
|
Chen H, Chan HC. Amplification of FSH signalling by CFTR and nuclear soluble adenylyl cyclase in the ovary. Clin Exp Pharmacol Physiol 2017; 44 Suppl 1:78-85. [PMID: 28345252 DOI: 10.1111/1440-1681.12756] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 03/14/2017] [Accepted: 03/14/2017] [Indexed: 12/12/2022]
Abstract
The cAMP/PKA pathway is one of the most important signalling pathways widely distributed in most eukaryotic cells. The activation of the canonical cAMP/PKA pathway depends on transmembrane adenylyl cyclase (tmAC). Recently, soluble adenylyl cyclase (sAC), which is activated by HCO3- or Ca2+ , emerges to provide an alternative way to activate cAMP/PKA pathway with the cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-activated Cl- /HCO3- -conducting anion channel, as a key player. This review summarizes new progress in the investigation of the CFTR/HCO3- -dependent sAC signalling and its essential role in various reproductive processes, particularly in ovarian functions. We present the evidence for a CFTR/HCO3- -dependent nuclear sAC signalling cascade that amplifies the FSH-stimulated cAMP/PKA pathway, traditionally thought to involve tmAC, in granulosa for the regulation of oestrogen production and granulosa cell proliferation. The implication of the CFTR/HCO3- /sAC pathway in amplifying other receptor-activated cAMP/PKA signalling in a wide variety of cell types and pathophysiological processes, including aging, is also discussed.
Collapse
Affiliation(s)
- Hui Chen
- Epithelial Cell Biology Research Center, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Sha Tin, NT, Hong Kong SAR, China
| | - Hsiao Chang Chan
- Epithelial Cell Biology Research Center, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Sha Tin, NT, Hong Kong SAR, China
| |
Collapse
|
3
|
Abstract
Drug-like compounds that exert biological activity towards TRP channels are either being used as cell biological tools or further developed into pharmacological lead structures aiming at therapeutic use in diseased states. Although drug-likeliness is not easy to predict, common rules include a relatively low molecular weight, physicochemical constraints, and the absence of known reactive or otherwise toxic groups. Small molecules that exert a biological activity to block, activate, or modulate TRP channels are intensely sought. Such tool compounds may be useful to assign native currents to a certain TRP channel and to validate the channel as a candidate target for future pharmacological intervention. Depending on the TRP channel isotype, these activities have reached different levels, with only few TRP channels modulators already being clinically tested in humans, whereas other compounds only underwent a preliminary validation. For some TRP channels, reliable low molecular weight inhibitors are not yet available. Hence, further efforts need to be undertaken in order to explore the physiological impact and possible therapeutic potential of TRP channel targeting with drug-like compounds.
Collapse
Affiliation(s)
- Michael Schaefer
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Härtelstraße 16-18, 04107, Leipzig, Germany,
| |
Collapse
|
4
|
Abstract
TRPC4 proteins comprise six transmembrane domains, a putative pore-forming region, and an intracellularly located amino- and carboxy-terminus. Among eleven splice variants identified so far, TRPC4α and TRPC4β are the most abundantly expressed and functionally characterized. TRPC4 is expressed in various organs and cell types including the soma and dendrites of numerous types of neurons; the cardiovascular system including endothelial, smooth muscle, and cardiac cells; myometrial and skeletal muscle cells; kidney; and immune cells such as mast cells. Both recombinant and native TRPC4-containing channels differ tremendously in their permeability and other biophysical properties, pharmacological modulation, and mode of activation depending on the cellular environment. They vary from inwardly rectifying store-operated channels with a high Ca(2+) selectivity to non-store-operated channels predominantly carrying Na(+) and activated by Gαq- and/or Gαi-coupled receptors with a complex U-shaped current-voltage relationship. Thus, individual TRPC4-containing channels contribute to agonist-induced Ca(2+) entry directly or indirectly via depolarization and activation of voltage-gated Ca(2+) channels. The differences in channel properties may arise from variations in the composition of the channel complexes, in the specific regulatory pathways in the corresponding cell system, and/or in the expression pattern of interaction partners which comprise other TRPC proteins to form heteromultimeric channels. Additional interaction partners of TRPC4 that can mediate the activity of TRPC4-containing channels include (1) scaffolding proteins (e.g., NHERF) that may mediate interactions with signaling molecules in or in close vicinity to the plasma membrane such as Gα proteins or phospholipase C and with the cytoskeleton, (2) proteins in specific membrane microdomains (e.g., caveolin-1), or (3) proteins on cellular organelles (e.g., Stim1). The diversity of TRPC4-containing channels hampers the development of specific agonists or antagonists, but recently, ML204 was identified as a blocker of both recombinant and endogenous TRPC4-containing channels with an IC50 in the lower micromolar range that lacks activity on most voltage-gated channels and other TRPs except TRPC5 and TRPC3. Lanthanides are specific activators of heterologously expressed TRPC4- and TRPC5-containing channels but can block individual native TRPC4-containing channels. The biological relevance of TRPC4-containing channels was demonstrated by knockdown of TRPC4 expression in numerous native systems including gene expression, cell differentiation and proliferation, formation of myotubes, and axonal regeneration. Studies of TRPC4 single and TRPC compound knockout mice uncovered their role for the regulation of vascular tone, endothelial permeability, gastrointestinal contractility and motility, neurotransmitter release, and social exploratory behavior as well as for excitotoxicity and epileptogenesis. Recently, a single-nucleotide polymorphism (SNP) in the Trpc4 gene was associated with a reduced risk for experience of myocardial infarction.
Collapse
Affiliation(s)
- Marc Freichel
- Pharmakologisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 366, 69120, Heidelberg, Germany,
| | | | | |
Collapse
|
5
|
Vachel L, Norez C, Becq F, Vandebrouck C. Effect of VX-770 (Ivacaftor) and OAG on Ca2+ influx and CFTR activity in G551D and F508del-CFTR expressing cells. J Cyst Fibros 2013; 12:584-91. [DOI: 10.1016/j.jcf.2013.05.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 04/24/2013] [Accepted: 05/02/2013] [Indexed: 12/31/2022]
|
6
|
Norez C, Jayle C, Becq F, Vandebrouck C. Bronchorelaxation of the human bronchi by CFTR activators. Pulm Pharmacol Ther 2013; 27:38-43. [PMID: 23827485 DOI: 10.1016/j.pupt.2013.06.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 06/18/2013] [Accepted: 06/21/2013] [Indexed: 11/19/2022]
Abstract
The airway functions are profoundly affected in many diseases including asthma, COPD and cystic fibrosis (CF). CF the most common lethal autosomal recessive genetic disease is caused by mutations of the CFTR (Cystic Fibrosis transmembrane Conductance Regulator) gene, which normally encodes a multifunctional and integral membrane cAMP regulated and ATP gated Cl(-) channel expressed in airway epithelial cells. Using human lung tissues obtained from patients undergoing surgery for lung cancer, we demonstrated that CFTR participates in bronchorelaxation. Using human bronchial smooth muscle cells (HBSMC), we applied iodide influx assay to analyze the CFTR-dependent ionic transport and immunofluorescence technique to localize CFTR proteins. Moreover, the relaxation was studied in isolated human bronchial segments after pre-contraction with carbachol to determine the implication of CFTR in bronchodilation. We found in HBSMC that the pharmacology and regulation of CFTR is similar to that of its epithelial counterpart both for activation (using forskolin/genistein or a benzo[c]quinolizinium derivative) and for inhibition (CFTR(inh)-172 and GPinh5a). With human bronchial rings, we observed that whatever the compound used including salbutamol, the activation of muscular CFTR leads to a bronchodilation after constriction with carbachol. Altogether, these observations revealed that CFTR in the human airways is expressed in bronchial smooth muscle cells and can be pharmacologically manipulated leading to the hypothesis that this ionic channel could contribute to bronchodilation in human.
Collapse
Affiliation(s)
- Caroline Norez
- Institut de Physiologie et Biologie Cellulaires CNRS FRE3511, Université de Poitiers, Poitiers, France
| | - Christophe Jayle
- Service de chirurgie cardiothoracique, CHU La Milétrie, Poitiers, France
| | - Frédéric Becq
- Institut de Physiologie et Biologie Cellulaires CNRS FRE3511, Université de Poitiers, Poitiers, France
| | - Clarisse Vandebrouck
- Institut de Physiologie et Biologie Cellulaires CNRS FRE3511, Université de Poitiers, Poitiers, France.
| |
Collapse
|
7
|
Transient receptor proteins illuminated: Current views on TRPs and disease. Vet J 2011; 187:153-64. [DOI: 10.1016/j.tvjl.2010.01.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 01/21/2010] [Accepted: 01/25/2010] [Indexed: 11/23/2022]
|
8
|
Abramowitz J, Birnbaumer L. Physiology and pathophysiology of canonical transient receptor potential channels. FASEB J 2009; 23:297-328. [PMID: 18940894 PMCID: PMC2630793 DOI: 10.1096/fj.08-119495] [Citation(s) in RCA: 253] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Accepted: 09/25/2008] [Indexed: 11/11/2022]
Abstract
The existence of a mammalian family of TRPC ion channels, direct homologues of TRP, the visual transduction channel of flies, was discovered during 1995-1996 as a consequence of research into the mechanism by which the stimulation of the receptor-Gq-phospholipase Cbeta signaling pathway leads to sustained increases in intracellular calcium. Mammalian TRPs, TRPCs, turned out to be nonselective, calcium-permeable cation channels, which cause both a collapse of the cell's membrane potential and entry of calcium. The family comprises 7 members and is widely expressed. Many cells and tissues express between 3 and 4 of the 7 TRPCs. Despite their recent discovery, a wealth of information has accumulated, showing that TRPCs have widespread roles in almost all cells studied, including cells from excitable and nonexcitable tissues, such as the nervous and cardiovascular systems, the kidney and the liver, and cells from endothelia, epithelia, and the bone marrow compartment. Disruption of TRPC function is at the root of some familial diseases. More often, TRPCs are contributing risk factors in complex diseases. The present article reviews what has been uncovered about physiological roles of mammalian TRPC channels since the time of their discovery. This analysis reveals TRPCs as major and unsuspected gates of Ca(2+) entry that contribute, depending on context, to activation of transcription factors, apoptosis, vascular contractility, platelet activation, and cardiac hypertrophy, as well as to normal and abnormal cell proliferation. TRPCs emerge as targets for a thus far nonexistent field of pharmacological intervention that may ameliorate complex diseases.
Collapse
Affiliation(s)
- Joel Abramowitz
- Transmembrane Signaling Group, Laboratory of Neurobiology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| | | |
Collapse
|
9
|
Vandebrouck C, Melin P, Norez C, Robert R, Guibert C, Mettey Y, Becq F. Evidence that CFTR is expressed in rat tracheal smooth muscle cells and contributes to bronchodilation. Respir Res 2006; 7:113. [PMID: 16938132 PMCID: PMC1560124 DOI: 10.1186/1465-9921-7-113] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2006] [Accepted: 08/28/2006] [Indexed: 11/29/2022] Open
Abstract
Background The airway functions are profoundly affected in many diseases including asthma, chronic obstructive pulmonary disease (COPD) and cystic fibrosis (CF). CF the most common lethal autosomal recessive genetic disease is caused by mutations of the CFTR gene, which normally encodes a multifunctional and integral membrane protein, the CF transmembrane conductance regulator (CFTR) expressed in airway epithelial cells. Methods To demonstrate that CFTR is also expressed in tracheal smooth muscle cells (TSMC), we used iodide efflux assay to analyse the chloride transports in organ culture of rat TSMC, immunofluorescence study to localize CFTR proteins and isometric contraction measurement on isolated tracheal rings to observe the implication of CFTR in the bronchodilation. Results We characterized three different pathways stimulated by the cAMP agonist forskolin and the isoflavone agent genistein, by the calcium ionophore A23187 and by hypo-osmotic challenge. The pharmacology of the cAMP-dependent iodide efflux was investigated in detail. We demonstrated in rat TSMC that it is remarkably similar to that of the epithelial CFTR, both for activation (using three benzo [c]quinolizinium derivatives) and for inhibition (glibenclamide, DPC and CFTRinh-172). Using rat tracheal rings, we observed that the activation of CFTR by benzoquinolizinium derivatives in TSMC leads to CFTRinh-172-sensitive bronchodilation after constriction with carbachol. An immunolocalisation study confirmed expression of CFTR in tracheal myocytes. Conclusion Altogether, these observations revealed that CFTR in the airways of rat is expressed not only in the epithelial cells but also in tracheal smooth muscle cells leading to the hypothesis that this ionic channel could contribute to bronchodilation.
Collapse
Affiliation(s)
- Clarisse Vandebrouck
- Institut de Physiologie et Biologie Cellulaires CNRS UMR 6187, Université de Poitiers, 40 Avenue du Recteur Pineau 86022 Poitiers, Cedex, France
| | - Patricia Melin
- Institut de Physiologie et Biologie Cellulaires CNRS UMR 6187, Université de Poitiers, 40 Avenue du Recteur Pineau 86022 Poitiers, Cedex, France
| | - Caroline Norez
- Institut de Physiologie et Biologie Cellulaires CNRS UMR 6187, Université de Poitiers, 40 Avenue du Recteur Pineau 86022 Poitiers, Cedex, France
| | - Renaud Robert
- Institut de Physiologie et Biologie Cellulaires CNRS UMR 6187, Université de Poitiers, 40 Avenue du Recteur Pineau 86022 Poitiers, Cedex, France
| | - Christelle Guibert
- Laboratoire de Physiologie Cellulaire Respiratoire INSERM 0356 Université Victor Segalen Bordeaux2, 146, rue Léo Saignat, 33076 Bordeaux, Cedex, France
| | - Yvette Mettey
- Institut de Physiologie et Biologie Cellulaires CNRS UMR 6187, Université de Poitiers, 40 Avenue du Recteur Pineau 86022 Poitiers, Cedex, France
| | - Frédéric Becq
- Institut de Physiologie et Biologie Cellulaires CNRS UMR 6187, Université de Poitiers, 40 Avenue du Recteur Pineau 86022 Poitiers, Cedex, France
| |
Collapse
|
10
|
Plant TD, Schaefer M. Receptor-operated cation channels formed by TRPC4 and TRPC5. Naunyn Schmiedebergs Arch Pharmacol 2005; 371:266-76. [PMID: 15902430 DOI: 10.1007/s00210-005-1055-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
TRPC4 and TRPC5 form cation channels that contribute to phospholipase C-dependent Ca(2+) entry following stimulation of G-protein-coupled receptors or receptor tyrosine kinases. Surprisingly, in different studies, TRPC4 and TRPC5 have been shown to form either store-operated channels with a relatively high Ca(2+) permeability, or nonselective cation channels activated independently of store depletion. In this review, we summarize and discuss data on the regulation and permeability properties of TRPC4 and TRPC5, and data on native channels that might be composed of these isoforms.
Collapse
Affiliation(s)
- Tim D Plant
- Institut für Pharmakologie und Toxikologie, FB-Medizin, Philipps-Universität-Marburg, Karl-von-Frisch-Strasse 1, 35033, Marburg, Germany.
| | | |
Collapse
|
11
|
Robert R, Thoreau V, Norez C, Cantereau A, Kitzis A, Mettey Y, Rogier C, Becq F. Regulation of the cystic fibrosis transmembrane conductance regulator channel by beta-adrenergic agonists and vasoactive intestinal peptide in rat smooth muscle cells and its role in vasorelaxation. J Biol Chem 2004; 279:21160-8. [PMID: 15020588 DOI: 10.1074/jbc.m312199200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The signaling events that regulate vascular tone include voltage-dependent Ca(2+) influx and the activities of various ionic channels; which molecular entities are involved and their role are still a matter of debate. Here we show expression of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel in rat aortic smooth muscle cells. Immunoprecipitation and in vitro protein kinase A phosphorylation show the appearance of mature band C of CFTR. An immunohistochemistry study shows CFTR proteins in smooth muscles of aortic rings but not in skeletal muscles. Using the iodide efflux method, a combination of agonists and pharmacological agents was used to dissect the function of CFTR. Agonists of the cAMP pathway, the beta-adrenergic agonist isoproterenol, and the neuropeptide vasoactive intestinal peptide activate CFTR-dependent transport from cells maintained in a high but not low extracellular potassium-rich saline, suggesting that depolarization of smooth muscle is critical to CFTR activation. Smooth muscle CFTR possesses all of the pharmacological attributes of its epithelial homologues: stimulation by the CFTR pharmacological activators MPB-07 (EC(50) = 158 microm) and MPB-91 (EC(50) = 20 microm) and inhibition by glibenclamide and diphenylamine-2-carboxylic acid but not by 5,11,17,23-tetrasulfonato-25,26,27,28-tetramethoxy-calix[4]arene. Contraction measurements on isolated aortic rings were performed to study the contribution of CFTR to vascular tone. With aortic rings (without endothelium) preconstricted by high K(+) saline or by the alpha-adrenergic agonist norepinephrine, CFTR activators produced a concentration-dependent relaxation. These results identify for the first time the expression and function of CFTR in smooth muscle where it plays an unexpected but fundamental role in the autonomic and hormonal regulation of the vascular tone.
Collapse
Affiliation(s)
- Renaud Robert
- Laboratoire des Biomembranes et Signalisation Cellulaire CNRS Unité Mixte de Recherche 6558, Université de Poitiers, 86022 Poitiers, France
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Song X, Zhao Y, Narcisse L, Duffy H, Kress Y, Lee S, Brosnan CF. Canonical transient receptor potential channel 4 (TRPC4) co-localizes with the scaffolding protein ZO-1 in human fetal astrocytes in culture. Glia 2004; 49:418-29. [PMID: 15540229 DOI: 10.1002/glia.20128] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Members of the mammalian transient receptor potential (TRP) family form cation-permeable channels at the plasma membrane implicated in capacitative calcium influx after activation by either second-messenger-mediated pathways or store depletion, or both. This study shows that with the use of RT-PCR, Western blotting, and immunohistochemistry, resting astrocytes express TRPC4 at the cell membrane, particularly at sites of cell-to-cell contact. By confocal imaging and immunoelectron microscopy, we detected co-localization of TRPC4 with the scaffolding protein zonula occludens 1 (ZO-1), and demonstrated that immunoprecipitation with antibodies to ZO-1 brought down TRPC4, and vice-versa. It has been proposed that the targeting of TRPC4 to the cell membrane is dependent on the interaction of the C-terminal TRL motif with PDZ domains. Using transfection of astrocytes with myc-tagged TRPC4 or TRL-motif truncated TRPC4 (deltaTRL), we found that deltaTRL localized predominantly to a juxtanuclear compartment, whereas the wild-type protein showed cell surface distribution. Deletion of the TRL motif also reduced plasma membrane expression as assessed by cell surface biotinylation experiments. Using GST fusion proteins, we found that TRPC4 interacted with the PDZ1 domain of ZO-1 and that this was also dependent on the TRL motif. Thus, our data demonstrate that the PDZ-interacting domain of TRPC4 controls its cell surface localization. These data implicate TRPC4 in the regulation of calcium homeostasis in astrocytes, particularly as part of a signaling complex that forms at junctional sites between astrocytes.
Collapse
Affiliation(s)
- Xianyuan Song
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Watanabe H, Vriens J, Suh SH, Benham CD, Droogmans G, Nilius B. Heat-evoked activation of TRPV4 channels in a HEK293 cell expression system and in native mouse aorta endothelial cells. J Biol Chem 2002; 277:47044-51. [PMID: 12354759 DOI: 10.1074/jbc.m208277200] [Citation(s) in RCA: 514] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have compared activation by heat of TRPV4 channels, heterogeneously expressed in HEK293 cells, and endogenous channels in mouse aorta endothelium (MAEC). Increasing the temperature above 25 degrees C activated currents and increased [Ca(2+)](i) in HEK293 cells transfected with TRPV4 and in MAEC. When compared with activation of TRPV4 currents by the selective ligand 4alphaPDD (alpha-phorbol 12,13-didecanoate), heat-activated currents in both systems showed the typical biophysical properties of currents through TRPV4, including their single channel conductance. Deletion of the three N-terminal ankyrin binding domains of TRPV4 abolished current activation cells by heat in HEK293. In inside-out patches, TRPV4 could not be activated by heat but still responded to the ligand 4alphaPDD. In MAEC, the same channel is activated under identical conditions as in the HEK expression system. Our data indicate that TRPV4 is a functional temperature-sensing channel in native endothelium, that is likely involved in temperature-dependent Ca(2+) signaling. The failure to activate TRPV4 channels by heat in inside-out patches, which responded to 4alphaPDD, may indicate that heat activation depends on the presence of an endogenous ligand, which is missing in inside-out patches.
Collapse
Affiliation(s)
- Hiroyuki Watanabe
- Department of Physiology, Campus Gasthuisberg, KU Leuven, B-3000 Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
14
|
Yazawa K, Ono K, Iijima T. Modulation by mibefradil of the histamine-induced Ca2+ entry in human aortic endothelial cells. JAPANESE JOURNAL OF PHARMACOLOGY 2002; 90:125-30. [PMID: 12419882 DOI: 10.1254/jjp.90.125] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The effect of mibefradil, known as a T- and L-type Ca(2+) channel antagonist, on the histamine-induced Cl(-) current and Ca(2+) entry was investigated in human aortic endothelial cells by the fluorescence measurement of intracellular Ca(2+) concentration ([Ca(2+)](i)) combined with the patch clamp method. Mibefradil (10 micro M) inhibited both the Cl(-) current and Ca(2+) entry in a concentration-dependent manner with an IC(50) value of 4.8 and 2.6 micro M for the Cl(-) current and [Ca(2+)](i), respectively. These values were comparable to those reported for the inhibition of the T-type Ca(2+) channel and other Cl(-) channels. The suppression of Ca(2+) entry is not caused by the inhibition of the Cl(-) current and the resulting depolarization since the inhibition was still observed under the voltage clamp condition. These results suggest that mibefradil is a potent blocker not only for the agonist-induced Cl(-) current but also Ca(2+) entry channels in vascular endothelial cells.
Collapse
Affiliation(s)
- Kazuto Yazawa
- Department of Pharmacology, Akita University School of Medicine, Akita, Japan
| | | | | |
Collapse
|
15
|
Zitt C, Halaszovich CR, Lückhoff A. The TRP family of cation channels: probing and advancing the concepts on receptor-activated calcium entry. Prog Neurobiol 2002; 66:243-64. [PMID: 11960680 DOI: 10.1016/s0301-0082(02)00002-3] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Stimulation of membrane receptors linked to a phospholipase C and the subsequent production of the second messengers diacylglycerol and inositol-1,4,5-trisphosphate (InsP(3)) is a signaling pathway of fundamental importance in eukaryotic cells. Signaling downstream of these initial steps involves mobilization of Ca(2+) from intracellular stores and Ca(2+) influx through the plasma membrane. For this influx, several contrasting mechanisms may be responsible but particular relevance is attributed to the induction of Ca(2+) influx as consequence of depletion of intracellular calcium stores. This phenomenon (frequently named store-operated calcium entry, SOCE), in turn, may be brought about by various signals, including soluble cytosolic factors, interaction of proteins of the endoplasmic reticulum with ion channels in the plasma membrane, and a secretion-like coupling involving translocation of channels to the plasma membrane. Experimental approaches to analyze these mechanisms have been considerably advanced by the discovery of mammalian homologs of the Drosophila cation channel transient receptor potential (TRP). Some members of the TRP family can be expressed to Ca(2+)-permeable channels that enable SOCE; other members form channels activated independently of stores. TRP proteins may be an essential part of endogenous Ca(2+) entry channels but so far expression of most TRP cDNAs has not resulted in restitution of channels found in any mammalian cells, suggesting the requirement for further unknown subunits. A major exception is CaT1, a TRP channel demonstrated to provide Ca(2+)-selective, store-operated currents identical to those characterized in several cell types. Ongoing and future research on TRP channels will be crucial to understand the molecular basis of receptor-mediated Ca(2+) entry, with respect to the structure of the entry channels as well as to the mechanisms of its activation and regulation.
Collapse
Affiliation(s)
- Christof Zitt
- Institut für Physiologie, Universitätsklinikum der RWTH Aachen, Pauwelsstrasse 30, D-52074, Aachen, Germany
| | | | | |
Collapse
|