1
|
Perchuk IN, Shelenga TV, Burlyaeva MO. The Effect of Illumination Patterns during Mung Bean Seed Germination on the Metabolite Composition of the Sprouts. PLANTS (BASEL, SWITZERLAND) 2023; 12:3772. [PMID: 37960128 PMCID: PMC10649298 DOI: 10.3390/plants12213772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/26/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023]
Abstract
Mung bean (Vigna radiata (L.) Wilczek) sprouts are popular over the world because of their taste, nutritional value, well-balanced biochemical composition, and other properties beneficial for human health. Germination conditions affect the composition of metabolites in mung bean sprouts, so a detailed study into its variability is required. This article presents the results of a comparison of the metabolite composition in the leaves of mung bean sprouts germinated first in the dark (DS) and then in the light (LS). Gas chromatography with mass spectrometry (GC-MS) made it possible to identify more than 100 compounds representing various groups of phytochemicals. Alcohols, amino acids, and saccharides predominated in the total amount of compounds. The analysis of metabolomic profiles exposed a fairly high intra- and intervarietal variability in the metabolite content. DS and LS differed in the qualitative and quantitative content of the identified compounds. The intravarietal variability was more pronounced in DS than in LS. DS demonstrated higher levels of saccharides, fatty acids, acylglycerols, and phenolic compounds, while amino acids were higher in LS. Changes were recorded in the quantitative content of metabolites participating in the response of plants to stressors-ornithine, proline, GABA, inositol derivatives, etc. The changes were probably induced by the stress experienced by the sprouts when they were transferred from shade to light. The analysis of variance and principal factor analysis showed the statistically significant effect of germination conditions on the content of individual compounds in leaves. The identified features of metabolite variability in mung bean genotypes grown under different conditions will contribute to more accurate selection of an illumination pattern to obtain sprouts with desirable biochemical compositions for use in various diets and products with high nutritional value.
Collapse
Affiliation(s)
- Irina N. Perchuk
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, 42,44, B. Morskaya Street, 190000 Saint-Petersburg, Russia;
| | | | - Marina. O. Burlyaeva
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, 42,44, B. Morskaya Street, 190000 Saint-Petersburg, Russia;
| |
Collapse
|
2
|
Kathuria D, Hamid, Chavan P, Jaiswal AK, Thaku A, Dhiman AK. A Comprehensive Review on Sprouted Seeds Bioactives, the Impact of Novel Processing Techniques and Health Benefits. FOOD REVIEWS INTERNATIONAL 2023. [DOI: 10.1080/87559129.2023.2169453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Deepika Kathuria
- Dairy Chemistry Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Hamid
- Food Technology and Nutrition, Lovely Professional University, Phagwara, India
| | - Prasad Chavan
- Food Technology and Nutrition, Lovely Professional University, Phagwara, India
| | - Amit K. Jaiswal
- School of Food Science and Environmental Health, Technological University Dublin-City Campus, Dublin, Ireland
- Environmental Sustainability and Health Institute (ESHI), Technological University Dublin-City Campus, Dublin, Ireland
| | - Abhimanyu Thaku
- Department of Food Science and Technology, Dr YS Parmar University of Horticulture and Forestry, Solan, India
| | - Anju K. Dhiman
- Department of Food Science and Technology, Dr YS Parmar University of Horticulture and Forestry, Solan, India
| |
Collapse
|
3
|
Singh AK, Singh SV, Kumar R, Kumar S, Senapati S, Pandey AK. Current therapeutic modalities and chemopreventive role of natural products in liver cancer: Progress and promise. World J Hepatol 2023; 15:1-18. [PMID: 36744169 PMCID: PMC9896505 DOI: 10.4254/wjh.v15.i1.1] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/02/2022] [Accepted: 12/21/2022] [Indexed: 01/16/2023] Open
Abstract
Liver cancer is a severe concern for public health officials since the clinical cases are increasing each year, with an estimated 5-year survival rate of 30%-35% after diagnosis. Hepatocellular carcinoma (HCC) constitutes a significant subtype of liver cancer (approximate75%) and is considered primary liver cancer. Treatment for liver cancer mainly depends on the stage of its progression, where surgery including, hepatectomy and liver transplantation, and ablation and radiotherapy are the prime choice. For advanced liver cancer, various drugs and immunotherapy are used as first-line treatment, whereas second-line treatment includes chemotherapeutic drugs from natural and synthetic origins. Sorafenib and lenvatinib are first-line therapies, while regorafenib and ramucirumab are second-line therapy. Various metabolic and signaling pathways such as Notch, JAK/ STAT, Hippo, TGF-β, and Wnt have played a critical role during HCC progression. Dysbiosis has also been implicated in liver cancer. Drug-induced toxicity is a key obstacle in the treatment of liver cancer, necessitating the development of effective and safe medications, with natural compounds such as resveratrol, curcumin, diallyl sulfide, and others emerging as promising anticancer agents. This review highlights the current status of liver cancer research, signaling pathways, therapeutic targets, current treatment strategies and the chemopreventive role of various natural products in managing liver cancer.
Collapse
Affiliation(s)
- Amit Kumar Singh
- Department of Botany, Government Naveen Girls College, Balod (Hemchand Yadav University), Durg, Chattisgarh, India
- Department of Biochemistry, University of Allahabad, Prayagraj 211002, Uttar Pradesh, India
| | - Shiv Vardan Singh
- Department of Biochemistry, University of Allahabad, Prayagraj 211002, Uttar Pradesh, India
| | - Ramesh Kumar
- Department of Biochemistry, University of Allahabad, Prayagraj 211002, Uttar Pradesh, India
- Department of Biochemistry, School of Basic and Applied Sciences, Central University of Punjab, Bathinda 151401, Punjab, India
| | - Shashank Kumar
- Department of Biochemistry, School of Basic and Applied Sciences, Central University of Punjab, Bathinda 151401, Punjab, India
| | - Sabyasachi Senapati
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, Punjab, India
| | - Abhay K Pandey
- Department of Biochemistry, University of Allahabad, Prayagraj 211002, Uttar Pradesh, India.
| |
Collapse
|
4
|
Cheng Y, Xiang N, Cheng X, Chen H, Guo X. Effect of photoperiod on polyphenol biosynthesis and cellular antioxidant capacity in mung bean (Vigna radiata) sprouts. Food Res Int 2022; 159:111626. [DOI: 10.1016/j.foodres.2022.111626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/29/2022] [Accepted: 07/05/2022] [Indexed: 11/04/2022]
|
5
|
A review on metabolites and pharmaceutical potential of food legume crop mung bean ( Vigna radiata L. Wilczek). BIOTECHNOLOGIA 2021; 102:425-435. [PMID: 36605597 PMCID: PMC9642937 DOI: 10.5114/bta.2021.111107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/06/2021] [Accepted: 09/08/2021] [Indexed: 01/09/2023] Open
Abstract
Mung bean or moong or green gram, an important grain legume, is cultivated mainly in Asian countries and other parts of the world as a food crop. It is a highly nutritious grain legume with a high content of easily digestible proteins (20-32%), carbohydrates (53.3-67.1%), lipids (0.71-1.85%), vitamins, minerals, and fiber. It also contains some antinutrients such as tannins, phytic acid, hemagglutinin, polyphenols, and trypsin inhibitors in low concentrations. The sprouting of seeds leads to dynamic changes in metabolites with a decrease in antinutrient content and an increase in the nutritional value. In addition to these nutrients and antinutrients, the plant also contains various other phytochemicals such as alkaloids, flavonoids, saponins, phenols, glycosides, and bioactive peptides, which exhibit an array of pharmaceutically important properties such as anti-inflammatory, antinociceptive, antimicrobial, antioxidant, antidiabetic, lipid metabolism regulation, antihypertensive, antiallergic, and antitumor. Being rich in nutritional value and other phytochemical components, the plant can be explored further for its pharmaceutical properties and used as an efficient food additive in the preparation of different types of dietary supplements or food-derived drugs.
Collapse
|
6
|
Fortification of bioactive components in mung bean grains through germination and evaluation of their cytotoxic activity in colorectal adenocarcinoma cells. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01094-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Mandlik DS, Mandlik SK. An Overview of Hepatocellular Carcinoma with Emphasis on Dietary Products and Herbal Remedies. Nutr Cancer 2021; 74:1549-1567. [PMID: 34396860 DOI: 10.1080/01635581.2021.1965630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The most common principal malignant tumor that accounts for ∼80% of cases of liver cancer across the world is hepatocellular carcinoma (HCC). It is a multifacetedillness that is caused by several risk factors and often progresses in the context of underlying cirrhosis. It is tremendously difficult and essential for the screening of novel therapeutic medications to establish HCC preclinical models that are equivalent to clinical diseases settings, i.e., representing the tumor microenvironment of HCC. In the progress of HCC, numerous molecular cascades have been supposed to play a part. Sorafenib is the only drug permitted by the US Food and Drug Administration for the treatment of HCC. Yet because of the increasing resistance to the drug and its toxicity, clinical treatment methods are not completely adequate. Newer treatment therapy options are essential for the management of HCC in patients. Natural compounds can be afforded by the patients with improved results with less toxicity and fewer side effects, among different methods of liver cancer treatment. The treatment and management of HCC with natural drugs and their phytoconstituents are connected to several paths that can prevent the occurrence and progress of HCC in several ways. The present review summarizes the etiology of HCC, molecular pathways, newer therapeutic approaches, natural dietary products, herbal plants and phytoconstituents for HCC treatment.
Collapse
Affiliation(s)
- Deepa S Mandlik
- Poona College of Pharmacy, Bharati Vidyapeeth, Deemed to be University, Pune, India
| | - Satish K Mandlik
- Poona College of Pharmacy, Bharati Vidyapeeth, Deemed to be University, Pune, India
| |
Collapse
|
8
|
Kumari S, Phogat D, Sehrawat KD, Choudhary R, Rajput VD, Ahlawat J, Karunakaran R, Minkina T, Sehrawat AR. The Effect of Ascophyllum nodosum Extract on the Nutraceutical Antioxidant Potential of Vigna radiata Sprout under Salt Stress. PLANTS (BASEL, SWITZERLAND) 2021; 10:1216. [PMID: 34203887 PMCID: PMC8232706 DOI: 10.3390/plants10061216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 11/30/2022]
Abstract
Mung bean (Vigna radiata L.) sprout is a popular fresh vegetable, tasty and high in antioxidants. To increase yield and quality after the occurrence of both abiotic and biotic stresses, the application of seaweed extracts is of great importance. Hence, this study was conducted to determine the effect of Ascophyllum nodosum extract (ANE) in the presence of salt on the antioxidant potential of V. radiata sprouts. Different concentrations of ANE viz. 0.00, 0.01, 0.05, 0.10, and 0.50% and NaCl 0, 25, 50, 75, and 100 mM alone and in combinations were tested for researching the antioxidant potential of V. radiata sprouts at 0, 24, and 36 h of sprouting. The DPPH free-radical-scavenging activity of sprouts of V. radiata was found to increase with time and peaked at 24 h of treatment. The A. nodosum extract (0.01%) could reverse the ill effect of the low level of salinity posed by up to 25 mM NaCl. The increasing salinity deteriorated the antioxidant activity using ABTS method of sprouts down to 20.45% of the control at 100 mM NaCl. The total phenolic content (TPC), total flavonoid content (TFC), and reducing power of V. radiata sprouts was found to increase till 36 h of sprouting. A slight increase in TPC, TFC and reducing power was observed when seeds were treated with low concentrations of ANE. The elevation in TPC, TFC and reducing power upon treatment with low concentrations of ANE was also noticed in sprouts in saline combinations. Alpha amylase inhibition activity was found to reach a (67.16% ± 0.9) maximum at 24 h of sprouting at a 0.01% concentration of ANE. Tyrosinase inhibition and alpha glucosidase inhibition was 88.0% ± 2.11 and 84.92% ± 1.2 at 36 h of sprouting, respectively, at 0.01% concentration of ANE. A. nodosum extract is natural, environmentally friendly, and safe, and could be used as one of the strategies to decline stress at a low level and enhance the antioxidant activities in V. radiata sprouts, thus increasing its potential to be developed as an antioxidant-based functional food.
Collapse
Affiliation(s)
- Sangeeta Kumari
- Department of Botany, Maharshi Dayanand University, Rohtak 124001, India; (S.K.); (J.A.)
| | | | - Krishnan D. Sehrawat
- Department of Genetics and Plant Breeding, CCS Haryana Agricultural University, Hisar 125004, India;
| | - Ravish Choudhary
- Division of Seed Science and Technology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Vishnu D. Rajput
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia; (V.D.R.); (T.M.)
| | - Jyoti Ahlawat
- Department of Botany, Maharshi Dayanand University, Rohtak 124001, India; (S.K.); (J.A.)
| | - Rohini Karunakaran
- Unit of Biochemistry, Faculty of Medicine, AIMST University, Semeling, Bedong 08100, Kedah, Malaysia;
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia; (V.D.R.); (T.M.)
| | - Anita R. Sehrawat
- Department of Botany, Maharshi Dayanand University, Rohtak 124001, India; (S.K.); (J.A.)
| |
Collapse
|
9
|
Mekkara Nikarthil Sudhakaran S, Bukkan DS. A review on nutritional composition, antinutritional components and health benefits of green gram (Vigna radiata (L.) Wilczek). J Food Biochem 2021; 45:e13743. [PMID: 33934386 DOI: 10.1111/jfbc.13743] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/12/2021] [Accepted: 04/06/2021] [Indexed: 11/29/2022]
Abstract
Green gram is rich in proteins, carbohydrate, dietary fiber, vitamins, and minerals and contains a low amount of fat. Since it is rich in protein, it can be considered as the meat alternative for vegetarians. Besides being a nutritious food, green gram possesses potential health benefits such as antioxidant, anticancerous, anti-inflammatory and hypolipidemic activities. Green gram has prebiotic and nutraceutical properties. It contains an appreciable amount of galactooligosaccharides that are capable of enhancing the growth of beneficial gut microbiota. Different researchers already developed functional foods such as mung bean milk and non-diary probiotic drinks from green gram. It can also be used as a carrier material to deliver probiotic bacteria to the gut. Apart from these applications, green gram is used in cosmetics, land reclamation and incorporated into different foods such as jams, jellies, noodles, etc. Green gram is also a major ingredient used in China's traditional health foods. PRACTICAL APPLICATIONS: Green gram is rich in proteins, carbohydrate, dietary fiber, vitamins, and minerals and contains a low amount of fat. Since it is rich in protein, it can be considered as the meat alternative for vegetarians. Besides being a nutritious food, green gram possesses potential health benefits such as antioxidant, anticancerous, antioxidant, anti-inflammatory and hypolipidemic activities. Green gram has prebiotic and nutraceutical properties. It contains an appreciable amount of oligosaccharides that are capable of enhancing the growth of beneficial gut microbiota. Different researchers already developed functional foods such as mung bean milk and non-diary probiotic drinks from green gram. It can also be used as a carrier material to deliver probiotic bacteria to the gut. Apart from these applications, green gram is used in cosmetics and land reclamation and incorporated into different foods such as jams, jellies, noodles, etc. Green gram is also a major ingredient used in China's traditional health foods.
Collapse
|
10
|
Ultrasound Assisted Extraction of Phenolic Compounds from a Jujube By-Product with Valuable Bioactivities. Processes (Basel) 2020. [DOI: 10.3390/pr8111441] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Jujube plant is a potential source of polyphenols with biological propreties. The purpose of this study was to investigate the application of ultrasound technique for extracting phenolic compounds (TPC) from seeds of Zizyphus lotus under optimization conditions based on response surface methodology. A maximum TPC, total flavonoids content (TFC), and total condensed tannins content (TTC) of 2383.10 ± 0.87 mg GAE/100g, 486.50 ± 0.38 mg QE/100g and 15,787.10 ± 0.10 mg CE/100g, respectively obtained under ethanol concentration 50.16%, sonication temperature 29.01 °C, sonication time 15.94 min and solvent-to-solid ratio 34.10:1 mL/g. The optimized extract was then evaluated for its antioxidant, antiacethylcholinesterase, antihypercholesterolemia, and antiproliferative activities. The results showed that ultrasound method is a green and safe method that can be used to effectively extract TPC from jujube seeds. The biological activity of Zizyphus extract exhibited a very good antioxidant against DPPH (EC50 = 0.39 µg/mL) and FRAP (1670.42 ± 6.5 mg/100 g). Additionally, it possesses acetylcholinesterase (AChE) inhibitory effect (IC50 = 0.93 ± 0.01 mg/mL) and HMGR inhibition (45.41%) using 100 µg/mL. The extract significantly inhibits cell proliferation on the MCF-7 and HepG2 tumor cell lines with an IC50 values of <0.05 and 3 ± 0.55 mg/mL, respectively. Therefore, the ultrasound method can be considered a method for obtaining a significant anticancer activity with respect to the lines and therefore makes it possible to recover a maximum of phenolic compounds in less time with an AChE and HMGR inhibitory activity. Thus, it can be suggested that Zls extract is a promising fruit for the development of supplementary dietary due to its potential behaviour as nutraceutical.
Collapse
|
11
|
Mandlik DS, Mandlik SK. Herbal and Natural Dietary Products: Upcoming Therapeutic Approach for Prevention and Treatment of Hepatocellular Carcinoma. Nutr Cancer 2020; 73:2130-2154. [PMID: 33073617 DOI: 10.1080/01635581.2020.1834591] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The most common tumor linked with elevated death rates is considered the hepatocellular carcinoma (HCC), sometimes called the malignant hepatoma. The initiation and progression of HCC are triggered by multiple factors like long term alcohol consumption, metabolic disorders, fatty liver disease, hepatitis B and C infection, age, and oxidative stress. Sorafenib is the merely US Food and Drug Administration (FDA)-approved drug used to treat HCC. Several treatment methods are available for HCC therapy such as chemotherapy, immunotherapy and adjuvant therapy but they often lead to several side effects. Yet these treatment methods are not entirely adequate due to the increasing resistance to the drug and their toxicity. Many natural products help to prevent and treat HCC. A variety of pathways are associated with the prevention and treatment of HCC with herbal products and their active components. Accumulating research shows that certain natural dietary compounds are possible source of hepatic cancer prevention and treatments, such as black currant, strawberries, plum, grapes, pomegranate, cruciferous crops, tomatoes, French beans, turmeric, garlic, ginger, asparagus, and many more. Such a dietary natural products and their active constituents may prevent the production and advancement of liver cancer in many ways such as guarding against liver carcinogens, improving the effectiveness of chemotherapeutic medications, inhibiting the growth, metastasis of tumor cells, reducing oxidative stress, and chronic inflammation. The present review article represents hepatic carcinoma etiology, role of herbal products, their active constituents, and dietary natural products for the prevention and treatment of HCC along with their possible mechanisms of action.
Collapse
Affiliation(s)
- Deepa S Mandlik
- Department of Pharmacology, Bharat Vidyapeeth (Deemed to be University), Poona College of Pharmacy, Pune, Maharashtra, India
| | - Satish K Mandlik
- Department of Pharmaceutics, Sinhgad College of Pharmacy, Pune, Maharashtra, India
| |
Collapse
|
12
|
Phenolic profiles, antioxidant activities, and antiproliferative activities of different mung bean (Vigna radiata) varieties from Sri Lanka. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100705] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
13
|
Germination Improves the Polyphenolic Profile and Functional Value of Mung Bean ( Vigna radiata L.). Antioxidants (Basel) 2020; 9:antiox9080746. [PMID: 32823688 PMCID: PMC7466151 DOI: 10.3390/antiox9080746] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/08/2020] [Accepted: 08/12/2020] [Indexed: 12/21/2022] Open
Abstract
The use of legumes as functional foods has gained increasing attention for the prevention and treatment of the so called non-communicable diseases that are highly prevalent worldwide. In this regard, biotechnological approaches for the enhancement of legumes' nutritional and functional value have been extensively employed. In the present study, the process of germination increased several parameters of mung bean (Vigna radiata L.) functionality, including extract yield, total phenolic content and in vitro antioxidant capacity. In addition, 3-day-germinated mung bean proved to be an interesting source of dietary essential minerals and exhibited a greater variety of polyphenolic compounds compared to raw mung bean. These properties resulted in enhanced cytoprotective features of the 3-day mung bean extracts against radical oxygen species in human colorectal (HT29) and monocyte (U937) cell lines. Moreover, the antiproliferative effects were tested in different colon cancer cell lines, T84 and drug-resistant HCT-18, as well as in a non-tumor colon CCD-18 line. Altogether, our results demonstrate that the germination process improves the mung bean's nutritional value and its potential as a functional food.
Collapse
|
14
|
Hou D, Yousaf L, Xue Y, Hu J, Wu J, Hu X, Feng N, Shen Q. Mung Bean ( Vigna radiata L.): Bioactive Polyphenols, Polysaccharides, Peptides, and Health Benefits. Nutrients 2019; 11:E1238. [PMID: 31159173 PMCID: PMC6627095 DOI: 10.3390/nu11061238] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 05/25/2019] [Accepted: 05/28/2019] [Indexed: 02/07/2023] Open
Abstract
Mung bean (Vigna radiata L.) is an important pulse consumed all over the world, especially in Asian countries, and has a long history of usage as traditional medicine. It has been known to be an excellent source of protein, dietary fiber, minerals, vitamins, and significant amounts of bioactive compounds, including polyphenols, polysaccharides, and peptides, therefore, becoming a popular functional food in promoting good health. The mung bean has been documented to ameliorate hyperglycemia, hyperlipemia, and hypertension, and prevent cancer and melanogenesis, as well as possess hepatoprotective and immunomodulatory activities. These health benefits derive primarily from the concentration and properties of those active compounds present in the mung bean. Vitexin and isovitexin are identified as the major polyphenols, and peptides containing hydrophobic amino acid residues with small molecular weight show higher bioactivity in the mung bean. Considering the recent surge in interest in the use of grain legumes, we hope this review will provide a blueprint to better utilize the mung bean in food products to improve human nutrition and further encourage advancement in this field.
Collapse
Affiliation(s)
- Dianzhi Hou
- Key Laboratory of Plant Protein and Grain Processing, National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Laraib Yousaf
- Key Laboratory of Plant Protein and Grain Processing, National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Yong Xue
- Key Laboratory of Plant Protein and Grain Processing, National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Jinrong Hu
- Key Laboratory of Plant Protein and Grain Processing, National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Jihong Wu
- Key Laboratory of Plant Protein and Grain Processing, National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Xiaosong Hu
- Key Laboratory of Plant Protein and Grain Processing, National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Naihong Feng
- Institute of Economic Crops, Shanxi Academy of Agricultural Sciences, Fenyang 032200, China.
| | - Qun Shen
- Key Laboratory of Plant Protein and Grain Processing, National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
15
|
Fatima I, Kanwal S, Mahmood T. Natural Products Mediated Targeting of Virally Infected Cancer. Dose Response 2019; 17:1559325818813227. [PMID: 30670935 PMCID: PMC6328957 DOI: 10.1177/1559325818813227] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 10/01/2018] [Accepted: 10/10/2018] [Indexed: 12/18/2022] Open
Abstract
The role of viral infection in developing cancer was determined in the start of 20th century. Until now, 8 different virus-associated cancers have been discovered and most of them progressed in immunosuppressed individuals. The aim of the present study is to look into the benefits of natural products in treating virally infected cancers. The study focuses on bioactive compounds derived from natural sources. Numerous pharmaceutical agents have been identified from plants (vincristine, vinblastine, stilbenes, combretastatin, and silymarin), marine organisms (bryostatins, cephalostatin, ecteinascidins, didemnin, and dolastatin), insects (cantharidin, mastoparan, parectadial, and cecropins), and microorganisms (vancomycin, rhizoxin, ansamitocins, mitomycin, and rapamycin). Beside these, various compounds have been observed from fruits and vegetables which can be utilized in anticancer therapy. These include curcumin in turmeric, resveratrol in red grapes, S-allyl cysteine in allium, allicin in garlic, catechins in green tea, and β-carotene in carrots. The present study addresses various types of virally infected cancers, their mechanism of action, and the role of different cell surface molecules elicited during viral binding and entry into the target cell along with the anticancer drugs derived from natural products by targeting screening of bioactive compounds from natural sources.
Collapse
Affiliation(s)
- Iram Fatima
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Sobia Kanwal
- Department of Zoology, University of Gujrat Sub-campus Rawalpindi, Rawalpindi, Pakistan
| | - Tariq Mahmood
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
16
|
Rao S, Chinkwo KA, Santhakumar AB, Blanchard CL. Inhibitory Effects of Pulse Bioactive Compounds on Cancer Development Pathways. Diseases 2018; 6:diseases6030072. [PMID: 30081504 PMCID: PMC6163461 DOI: 10.3390/diseases6030072] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 07/30/2018] [Accepted: 07/30/2018] [Indexed: 12/13/2022] Open
Abstract
Previous studies suggest that pulses may have the potential to protect against cancer development by inhibiting pathways that result in the development of cancer. These pathways include those that result in inflammation, DNA damage, cell proliferation, and metastasis. Other studies have demonstrated extracts from pulses have the capacity to induce apoptosis specifically in cancer cells. Compounds reported to be responsible for these activities have included phenolic compounds, proteins and short chain fatty acids. The majority of the studies have been undertaken using in vitro cell culture models, however, there are a small number of in vivo studies that support the hypothesis that pulse consumption may inhibit cancer development. This review highlights the potential benefit of a diet rich in pulse bioactive compounds by exploring the anti-cancer properties of its polyphenols, proteins and short chain fatty acids.
Collapse
Affiliation(s)
- Shiwangni Rao
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW 2650, Australia.
- Australian Research Council (ARC) Industrial Transformation Training Centre (ITTC) for Functional Grains, Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2650, Australia.
| | - Kenneth A Chinkwo
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW 2650, Australia.
- Australian Research Council (ARC) Industrial Transformation Training Centre (ITTC) for Functional Grains, Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2650, Australia.
| | - Abishek B Santhakumar
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW 2650, Australia.
- Australian Research Council (ARC) Industrial Transformation Training Centre (ITTC) for Functional Grains, Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2650, Australia.
| | - Christopher L Blanchard
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW 2650, Australia.
- Australian Research Council (ARC) Industrial Transformation Training Centre (ITTC) for Functional Grains, Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2650, Australia.
| |
Collapse
|
17
|
Joghatai M, Barari L, Mousavie Anijdan SH, Elmi MM. The evaluation of radio-sensitivity of mung bean proteins aqueous extract on MCF-7, hela and fibroblast cell line. Int J Radiat Biol 2018; 94:478-487. [PMID: 29482484 DOI: 10.1080/09553002.2018.1446226] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
PURPOSE Breast cancer is one of the most common malignant tumors in women all over the world. Many of these women resist the common treatments. Therefore, it is important to find new products to increase the efficacy of the treatment process. Legume beans, with their various pharmacological properties, can be regarded as a sensitizer when they are combined with radiation. The present study strove to survey the radio-sensitivity effect of proteins isolated from mung bean aqueous extract on the human breast adenocarcinoma cell line (MCF-7), human cervical cancer cells (Hela) and the human dermal fibroblast cell line. MATERIALS AND METHODS The mung bean aqueous extract was partially purified by ammonium sulfate. At first, various concentrations of the extracts were used to evaluate the inhibitory activity by MTT cell proliferation assay. RESULTS The results showed that MCF-7 cells and Hela cells were inhibited by an IC50 value of less than 250 and 411 µg/ml, respectively, but it proved to have a proliferation effect on the fibroblast cells. Then, the cells were incubated with 250 µg/ml extract and exposed to 2, 4, and 6 Gy of X-ray radiation. The percentage of the cell survival was investigated through MTT and the clonogenic assay. Apoptosis was measured using acridine orange/ethidium bromide staining. The results demonstrated that the treated MCF-7 cells and Hela cells had significant radio-sensitivity compared with the results of the control group in radiation dose manner in all MTT, clonogenic, and apoptosis assays. In contrast, the treated fibroblast showed a protective effect against radiation. CONCLUSION The results suggest that mung bean proteins have the capacity to be regarded as a radio-sensitizer for breast cancer. Our results also indicated that it could be worth to investigate on mung bean proteins further and they should be tested in animal models for being treated in radiotherapy.
Collapse
Affiliation(s)
- Mahnaz Joghatai
- a Department of Medical Physics, Radiobiology and Protection , Babol University of Medical Sciences , Babol , Iran
| | - Ladan Barari
- b Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences , Babol , Iran
| | | | - Maryam Mitra Elmi
- b Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences , Babol , Iran.,c Deparment of Medical Physics , Health Research Institute, Babol University of Medical Sciences , Babol , Iran
| |
Collapse
|
18
|
A critical review on phytochemical profile and health promoting effects of mung bean ( Vigna radiata ). FOOD SCIENCE AND HUMAN WELLNESS 2018. [DOI: 10.1016/j.fshw.2017.11.002] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
19
|
Abstract
Substitutions in thiophene structure give rise to new derivatives with different biological and pharmacological activities. The present study investigated the cytotoxicity activity of some thiophene derivatives in breast cancer cells maintained in two-dimensional (2D) or in three-dimensional (3D) culture and evaluated the anticancer mechanism of these compounds. Cytotoxicity assays were performed against untransformed cells and against breast cancer cell MCF-7. Apoptosis analysis and in-vitro migration assay were also performed to evaluate the mechanism of induction of cell death. All thiophene derivatives reduced the cell viability in breast cancer cells, showing cytotoxic activity (IC50<30 µmol/l), and SB-200 compound showed the best selectivity index in MCF-7 cells compared with doxorubicin in 2D culture. All thiophene derivatives significantly induced G0/G1 phase cell cycle arrest. However, only SB-83 treatment was effective against motility of MCF-7 cells in 2D culture (P=0.0059). The SB-200 derivative treatment induced an increased proportion of acridine orange/Hoechst double-stained cells (35.35 vs. 3.14%, P=0.0002) compared with nontreated cells, with apoptosis morphological alterations independent of caspase 7 activation (P>0.05). MCF-7 cells became less responsive to SB-200 and to doxorubicin in 3D culture compared with cells in 2D culture (higher IC50 values); however, SB-200 showed a better cytotoxic effect compared with doxorubicin in 3D culture. Therefore, the current study provides an insight into anticancer potential of thiophene derivatives, and further studies should be conducted to understand the mechanism by which thiophene derivatives act on cancer cells.
Collapse
|
20
|
In Vivo and In Vitro Toxicity Evaluation of Hydroethanolic Extract of Kalanchoe brasiliensis (Crassulaceae) Leaves. J Toxicol 2018; 2018:6849765. [PMID: 29593788 PMCID: PMC5822915 DOI: 10.1155/2018/6849765] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 12/19/2017] [Indexed: 01/16/2023] Open
Abstract
The species Kalanchoe brasiliensis, known as "Saião," has anti-inflammatory, antimicrobial, and antihistamine activities. It also has the quercetin and kaempferol flavonoids, which exert their therapeutic activities. With extensive popular use besides the defined therapeutical properties, the study of possible side effects is indispensable. The objective of this study is to evaluate the toxicity in vitro and in vivo from the hydroethanolic extract of the leaves of K. brasiliensis. The action of the extract (concentrations from 0.1 to 1000 uL/100 uL) in normal and tumor cells was evaluated using the MTT method. Acute toxicity and subchronic toxicity were evaluated in mice with doses of 250 to 1000 mg/kg orally, following recognized protocols. The in vitro results indicated cytotoxic activity for 3T3 cell line (normal) and 786-0 (kidney carcinoma), showing the activity to be concentration-dependent, reaching 92.23% cell inhibition. In vivo, the extract showed no significant toxicity; only liver changes related to acute toxicity and some signs of liver damage, combining biochemical and histological data. In general, the extract showed low or no toxicity, introducing itself as safe for use with promising therapeutic potential.
Collapse
|
21
|
Dushimemaria F, Preez CID, Mumbengegwi DR. RANDOMIZED ANTICANCER AND CYTOTOXICITY ACTIVITIES OF GUIBOURTIA COLEOSPERMA AND DIOSPYROS CHAMAETHAMNUS. AFRICAN JOURNAL OF TRADITIONAL, COMPLEMENTARY, AND ALTERNATIVE MEDICINES 2017. [PMID: 28638861 PMCID: PMC5471456 DOI: 10.21010/ajtcam.v14i4.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Plants have consistently proven to be a reliable and yet not fully explored source of medicines. In light of this, there is a constant demand for new treatment regimens for cancer. Namibia has a rich diversity of plant species of over 4300 with 17 % of them being endemic to Namibia. Plants growing in Namibia's diverse climatic zones produce many secondary metabolites as part of adaptation to their environment. This article focused on the screening of such phytochemicals and their cytotoxic and anticancer properties in vitro. Two Namibian plants Diospyros chamaethamnus and Guibourtia coleosperma were randomly selected for this purpose. MATERIALS AND METHODS The plants were screened for the presence of coumarins, alkaloids, flavonoids, anthraquinones, steroids and terpenoids using thin layer chromatography. Anticancer screening was performed on a panel of three cancer cell lines, while cytotoxicity was determined using a human fibroblast cell line, both using the SRB method. RESULTS Alkaloids, anthraquinones, flavonoids and steroids were detected in both organic and aqueous extracts of the two plants. The organic plant extracts had a greater anti-proliferative effect on the cancer cell lines than the aqueous extracts; the D. chamaethamnus organic root extract was the most potent with an IC50 of 16.08, 29.12 and 24.67 µg/mL against TK10, UACC62 and MCF7 cells, respectively. Furthermore, cytotoxicity analysis revealed the non-toxic nature of the extracts, except for the organic root extract of D. chamaethamnus that showed significant cytotoxicity (IC50 13.03 µg/mL). CONCLUSION D. chamaethamnus is a potential candidate for the development of a plant based cancer treatment. The study showed the value of random screening in drug discovery from plants for pharmacological activity that is unrelated to their ethnomedicinal uses.
Collapse
Affiliation(s)
- Florence Dushimemaria
- Science, Technology & Innovation Division, Multidisciplinary Research Centre, University of Namibia, Private Bag 13301, 340 Mandume Ndemufayo Avenue, Pionierspark. Windhoek, Namibia
| | - C Iwanette Du Preez
- Science, Technology & Innovation Division, Multidisciplinary Research Centre, University of Namibia, Private Bag 13301, 340 Mandume Ndemufayo Avenue, Pionierspark. Windhoek, Namibia
| | - Davis R Mumbengegwi
- Science, Technology & Innovation Division, Multidisciplinary Research Centre, University of Namibia, Private Bag 13301, 340 Mandume Ndemufayo Avenue, Pionierspark. Windhoek, Namibia
| |
Collapse
|
22
|
Hashiguchi A, Hitachi K, Zhu W, Tian J, Tsuchida K, Komatsu S. Mung bean (Vigna radiata (L.)) coat extract modulates macrophage functions to enhance antigen presentation: A proteomic study. J Proteomics 2017; 161:26-37. [PMID: 28373035 DOI: 10.1016/j.jprot.2017.03.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 03/14/2017] [Accepted: 03/29/2017] [Indexed: 12/27/2022]
Abstract
The immunomodulatory effect of mung bean is mainly attributed to antioxidant properties of flavonoids; however, the precise machinery for biological effect on animal cells remains uncertain. To understand the physiological change produced by mung bean consumption, proteomic and metabolomic techniques were used. In vitro assay confirmed the importance of synergistic interaction among multiple flavonoids by IL-6 expression. Proteomic analysis detected that the abundance of 190 proteins was changed in lipopolysaccharide-stimulated RAW264.7 cells by treatment with coat extract. Pathway mapping revealed that a range of proteins were regulated including an interferon-responsive antiviral enzyme (2'-5'-oligoadenylate synthetase), antigen processing factors (immunoglobulin heavy chain-binding protein and protein disulfide-isomerase), and proteins related to proteasomal degradation. Major histocompatibility complex pathway was activated. These results suggest that mung bean consumption enhances immune response toward a Th2-promoting polarization. BIOLOGICAL SIGNIFICANCE This study highlighted the immunomodulation of RAW264.7 cells in response to treatment with mung bean seed coat extract, using gel-free proteomic technique. The mechanism of immunomodulation by mung bean has not been described until today except for a report which identified HMGB1 suppression as a pathway underlying the protective effect against sepsis. This study suggested that the mung bean is involved in the regulation of antigen processing and presentation, and thus shifts immune response from acute febrile illness to specific/systemic and long-lasting immunity to protect the host.
Collapse
Affiliation(s)
- Akiko Hashiguchi
- Department of Medicine, University of Tsukuba, Tsukuba 305-8577, Japan.
| | - Keisuke Hitachi
- Division for Therapies Against Intractable Diseases, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| | - Wei Zhu
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Jingkui Tian
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Kunihiro Tsuchida
- Division for Therapies Against Intractable Diseases, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| | - Setsuko Komatsu
- National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan.
| |
Collapse
|
23
|
Molecular mechanisms responsible for programmed cell death-inducing attributes of terpenes from Mesua ferrea stem bark towards human colorectal carcinoma HCT 116 cells. J Appl Biomed 2017. [DOI: 10.1016/j.jab.2016.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
24
|
Özşen Ö, Kıran İ, Dağ İ, Atlı Ö, Çiftçi GA, Demirci F. Biotransformation of abietic acid by fungi and biological evaluation of its metabolites. Process Biochem 2017. [DOI: 10.1016/j.procbio.2016.09.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
25
|
Gan RY, Wang MF, Lui WY, Wu K, Corke H. Dynamic changes in phytochemical composition and antioxidant capacity in green and black mung bean (Vigna radiata
) sprouts. Int J Food Sci Technol 2016. [DOI: 10.1111/ijfs.13185] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ren-You Gan
- Department of Food Science and Engineering; Shanghai Jiao Tong University; Shanghai 200240 China
- School of Biological Sciences; The University of Hong Kong; Pokfulam Road Hong Kong China
| | - Ming-Fu Wang
- School of Biological Sciences; The University of Hong Kong; Pokfulam Road Hong Kong China
| | - Wing-Yee Lui
- School of Biological Sciences; The University of Hong Kong; Pokfulam Road Hong Kong China
| | - Kao Wu
- Glyn O. Phillips Hydrocolloid Research Centre; Hubei University of Technology; Wuhan 430068 China
| | - Harold Corke
- Department of Food Science and Engineering; Shanghai Jiao Tong University; Shanghai 200240 China
- School of Biological Sciences; The University of Hong Kong; Pokfulam Road Hong Kong China
| |
Collapse
|
26
|
Nguyen MNT, Ho-Huynh TD. Selective cytotoxicity of a Vietnamese traditional formula, Nam Dia long, against MCF-7 cells by synergistic effects. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 16:220. [PMID: 27421261 PMCID: PMC4947304 DOI: 10.1186/s12906-016-1212-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 06/29/2016] [Indexed: 11/10/2022]
Abstract
BACKGROUND Nam Dia Long (NDL) is a Vietnamese traditional formula used for the treatment of some chronic diseases, including cancers, but which lacks evidence-based support. We investigated the selective cytotoxicity of NDL on some tumor cell lines and possible interactions among its ingredients leading to the overall activity. METHODS Crude aqueous extracts of NDL, its ingredients including Vigna radiata (L.) Wilczek, Vigna unguiculata (L.) Walp. subsp. unguiculata, Sauropus androgynous (L.) Merr and different ingredient combinations were used for the treatment of MCF-7, Hep G2, NCI-H460 cells and normal fibroblasts. The IC50 of NDL on tumor and normal cells were determined by sulforhodamine B (SRB) assay and used to calculate a selectivity index (SI). Apoptosis induction activity of NDL was determined by acridine orange - ethidium bromide (AO-EB) staining, genomic DNA and cell cycle analysis. The combination index (CI) reflecting the types of interactions among ingredients was calculated based on the median-effect principle. Real-time cell growth monitoring by the xCELLigence system was used to determine the kinetic profile of the treated MCF-7 cells. RESULTS NDL exerted cytotoxicity on all tumor and normal cells, with the highest effect on MCF-7 cells. SI values for MCF-7, Hep G2 and NCI-H460 were 6.45, 1.61 and 1.29, respectively, indicating a high selective cytotoxicity of NDL toward MCF-7 cells. Profiles of cell death differed for MCF-7 cells and fibroblasts suggesting different mechanism of action of NDL toward these two cell types. The cytotoxicity of NDL against MCF-7 cells was due to apoptosis induction. NDL caused a cell cycle non-phase-specific effect on MCF-7 cells. CI indicated synergistic interactions among the ingredients leading to the overall activity of the complete formula. The real-time monitoring of MCF-7 cells growth after being treated with NDL and three-component combinations suggested that the presence of all ingredients was needed to reach the full cytotoxic activity. The growth kinetic profile of MCF-7 cells treated with different combinations also indicated a synergistic effect of all ingredients. CONCLUSION NDL exhibited selective cytotoxicity toward MCF-7 cells. This effect probably resulted from synergistic interactions among the NDL ingredients. NDL should be explored for breast cancer treatment.
Collapse
|
27
|
Gan RY, Lui WY, Chan CL, Corke H. Hot Air Drying Induces Browning and Enhances Phenolic Content and Antioxidant Capacity in Mung Bean (Vigna radiataL.) Sprouts. J FOOD PROCESS PRES 2016. [DOI: 10.1111/jfpp.12846] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ren-You Gan
- School of Biological Sciences; The University of Hong Kong; Pokfulam Road Hong Kong China
| | - Wing-Yee Lui
- School of Biological Sciences; The University of Hong Kong; Pokfulam Road Hong Kong China
| | - Chak-Lun Chan
- School of Biological Sciences; The University of Hong Kong; Pokfulam Road Hong Kong China
| | - Harold Corke
- School of Biological Sciences; The University of Hong Kong; Pokfulam Road Hong Kong China
- Glyn O. Phillips Hydrocolloid Research Centre; Hubei University of Technology; Wuhan China
| |
Collapse
|
28
|
Zhou Y, Li Y, Zhou T, Zheng J, Li S, Li HB. Dietary Natural Products for Prevention and Treatment of Liver Cancer. Nutrients 2016; 8:156. [PMID: 26978396 PMCID: PMC4808884 DOI: 10.3390/nu8030156] [Citation(s) in RCA: 185] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 02/22/2016] [Accepted: 03/01/2016] [Indexed: 02/06/2023] Open
Abstract
Liver cancer is the most common malignancy of the digestive system with high death rate. Accumulating evidences suggests that many dietary natural products are potential sources for prevention and treatment of liver cancer, such as grapes, black currant, plum, pomegranate, cruciferous vegetables, French beans, tomatoes, asparagus, garlic, turmeric, ginger, soy, rice bran, and some edible macro-fungi. These dietary natural products and their active components could affect the development and progression of liver cancer in various ways, such as inhibiting tumor cell growth and metastasis, protecting against liver carcinogens, immunomodulating and enhancing effects of chemotherapeutic drugs. This review summarizes the potential prevention and treatment activities of dietary natural products and their major bioactive constituents on liver cancer, and discusses possible mechanisms of action.
Collapse
Affiliation(s)
- Yue Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Ya Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Tong Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Jie Zheng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Sha Li
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China.
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
- South China Sea Bioresource Exploitation and Utilization Collaborative Innovation Center, Sun Yat-Sen University, Guangzhou 510006, China.
| |
Collapse
|
29
|
Al-Harbi SA, Bashandy MS, Al-Saidi HM, Emara AAA, Mousa TAA. Synthesis, spectroscopic properties, molecular docking, anti-colon cancer and anti-microbial studies of some novel metal complexes for 2-amino-4-phenylthiazole derivative. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 145:425-439. [PMID: 25796013 DOI: 10.1016/j.saa.2015.03.054] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 02/06/2015] [Accepted: 03/02/2015] [Indexed: 06/04/2023]
Abstract
This article describes the synthesis of novel bidentate Schiff base (H2L) from condensation of 2-amino-4-phenylthiazole (APT) with 4,6-diacetylresorcinol (DAR) in the molar ratio 2:1. We studied interaction of ligand (H2L) with transition metal ions such as Cr(III), Fe(III), Cu(II), Zn(II) and Cd(II). The ligand (H2L) has two bidentate sets of (N-O) units which can coordinate with two metal ions to afford novel binuclear metal complexes. The directions of coordinate bonds are from nitrogen atoms of azomethine groups and oxygen atoms of the phenolic groups. Structures of the newly synthesized complexes were confirmed by elemental analysis, IR, UV, (1)H NMR, ESR, TGA and mass spectral data. All of the newly synthesized complexes were evaluated for their antibacterial and anti-fungal activities. They were also evaluated for their in vitro anticancer activity against human colon carcinoma cells (HCT-116) and mammalian cells of African green monkey kidney (VERO). The Cu(II) complex with selectivity index (S.I.)=21.26 exhibited better activity than methotrexate (MTX) as a reference drug with S.I. value=13.30, while Zn(II) complex with S.I. value=10.24 was found to be nearly as active as MTX. Molecular docking studies further helped in understanding the mode of action of the compounds through their various interactions with active sites of dihydrofolate reductase (DHFR) enzyme. The observed activity of Fe(III) and Cu(II) complexes gave rise to the conclusion that they might exert their action through inhibition of the DHFR enzyme.
Collapse
Affiliation(s)
- Sami A Al-Harbi
- Department of Chemistry, University College in Al-Jamoum, Umm Al-Qura University, 21955 Makkah, Saudi Arabia
| | - Mahmoud S Bashandy
- Department of Chemistry, University College in Al-Jamoum, Umm Al-Qura University, 21955 Makkah, Saudi Arabia; Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, 11884 Cairo, Egypt
| | - Hammed M Al-Saidi
- Department of Chemistry, University College in Al-Jamoum, Umm Al-Qura University, 21955 Makkah, Saudi Arabia
| | - Adel A A Emara
- Department of Chemistry, University College in Al-Jamoum, Umm Al-Qura University, 21955 Makkah, Saudi Arabia; Department of Chemistry, Faculty of Education, Ain Shams University, Roxy, 11711 Cairo, Egypt.
| | - Tarek A A Mousa
- Deparment of Biology, Faculty of Science, King Abdel-Aziz University (North Jeddah), 21589 Jeddah, Saudi Arabia
| |
Collapse
|
30
|
Apoptosis Induction by Polygonum minus is related to antioxidant capacity, alterations in expression of apoptotic-related genes, and S-phase cell cycle arrest in HepG2 cell line. BIOMED RESEARCH INTERNATIONAL 2014; 2014:539607. [PMID: 24955361 PMCID: PMC4052882 DOI: 10.1155/2014/539607] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 04/10/2014] [Indexed: 01/27/2023]
Abstract
Polygonum minus (Polygonaceae) is a medicinal herb distributed throughout eastern Asia. The present study investigated antiproliferative effect of P. minus and its possible mechanisms. Four extracts (petroleum ether, methanol, ethyl acetate, and water) were prepared by cold maceration. Extracts were subjected to phytochemical screening, antioxidant, and antiproliferative assays; the most bioactive was fractionated using vacuum liquid chromatography into seven fractions (F1–F7). Antioxidant activity was measured via total phenolic content (TPC), 2,2-diphenyl-1-picrylhydrazyl (DPPH), and ferric reducing antioxidant power (FRAP) assays. Antiproliferative activity was evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Most active fraction was tested for apoptosis induction and cell cycle arrest in HepG2 cells using flow cytometry and confocal microscopy. Apoptotic-related gene expression was studied by RT-PCR. Ethyl acetate extract was bioactive in initial assays. Its fraction, F7, exhibited highest antioxidant capacity (TPC; 113.16 ± 6.2 mg GAE/g extract, DPPH; EC50: 30.5 ± 3.2 μg/mL, FRAP; 1169 ± 20.3 μmol Fe (II)/mg extract) and selective antiproliferative effect (IC50: 25.75 ± 1.5 μg/mL). F7 induced apoptosis in concentration- and time-dependent manner and caused cell cycle arrest at S-phase. Upregulation of proapoptotic genes (Bax, p53, and caspase-3) and downregulation of antiapoptotic gene, Bcl-2, were observed. In conclusion, F7 was antiproliferative to HepG2 cells by inducing apoptosis, cell cycle arrest, and via antioxidative effects.
Collapse
|
31
|
In Vivo Immunomodulation and Lipid Peroxidation Activities Contributed to Chemoprevention Effects of Fermented Mung Bean against Breast Cancer. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:708464. [PMID: 23710232 PMCID: PMC3654717 DOI: 10.1155/2013/708464] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 04/02/2013] [Indexed: 12/13/2022]
Abstract
Mung bean has been reported to have antioxidant, cytotoxic, and immunomodulatory effects in vitro. Fermented products are reported to have enhanced immunomodulation and cancer chemopreventive effects. In this study, fermented mung bean treatments in vivo were studied by monitoring tumor development, spleen immunity, serum cytokine (interleukin 2 and interferon gamma) levels, and spleen/tumor antioxidant levels after injection with low and high risk 4T1 breast cancer cells. Pretreatment with fermented mung bean was associated with delayed tumor formation in low risk mice. Furthermore, this treatment was connected with higher serum anticancer cytokine levels, spleen T cell populations, splenocyte cytotoxicity, and spleen/tumor antioxidant levels. Histopathological evaluation of fermented mung bean treated tumor revealed lower event of mitotic division. On the other hand, antioxidant and nitric oxide levels that were significantly increased in the untreated mice were inhibited in the fermented mung bean treated groups. These results suggested that fermented mung bean has potential cancer chemoprevention effects through the stimulation of immunity, lipid peroxidation, and anti-inflammation.
Collapse
|