1
|
Zhong X, Wei Q, Tiwari A, Wang Q, Tan Y, Chen R, Yan Y, Cox NJ, Li B. A Genetics-guided Integrative Framework for Drug Repurposing: Identifying Anti-hypertensive Drug Telmisartan for Type 2 Diabetes. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.03.22.25324223. [PMID: 40166562 PMCID: PMC11957187 DOI: 10.1101/2025.03.22.25324223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Drug development is a long and costly process, and repurposing existing drugs for use toward a different disease or condition may serve as a cost-effective alternative. As drug targets with genetic support have a doubled success rate, genetics-informed drug repurposing holds promise in translating genetic findings into therapeutics. In this study, we developed a Genetics Informed Network-based Drug Repurposing via in silico Perturbation (GIN-DRIP) framework and applied the framework to repurpose drugs for type-2 diabetes (T2D). In GIN-DRIP for T2D, it integrates multi-level omics data to translate T2D GWAS signals into a genetics-informed network that simultaneously encodes gene importance scores and a directional effect (up/down) of risk genes for T2D; it then bases on the GIN to perform signature matching with drug perturbation experiments to identify drugs that can counteract the effect of T2D risk alleles. With this approach, we identified 3 high-confidence FDA-approved candidate drugs for T2D, and validated telmisartan, an anti-hypertensive drug, in our EHR data with over 3 million patients. We found that telmisartan users were associated with a reduced incidence of T2D compared to users of other anti-hypertensive drugs and non-users, supporting the therapeutic potential of telmisartan for T2D. Our framework can be applied to other diseases for translating GWAS findings to aid drug repurposing for complex diseases.
Collapse
Affiliation(s)
- Xue Zhong
- Division of Genetic Medicine, Department of Medicine, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN
| | - Qiang Wei
- Department of Molecular Physiology and Biophysics, Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN
| | - Anshul Tiwari
- Department of Molecular Physiology and Biophysics, Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN
| | - Quan Wang
- Department of Molecular Physiology and Biophysics, Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN
| | - Yuting Tan
- Department of Molecular Physiology and Biophysics, Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN
| | - Rui Chen
- Department of Molecular Physiology and Biophysics, Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN
| | - Yan Yan
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN
| | - Nancy J Cox
- Division of Genetic Medicine, Department of Medicine, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN
| | - Bingshan Li
- Department of Molecular Physiology and Biophysics, Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN
| |
Collapse
|
2
|
Majethia GN, Haq W, Balendiran GK. A facile synthesis of 2-(4-((4-chlorophenyl)(hydroxy)methyl) phenoxy)-2-methylpropanoic acid: Metabolite of anti-hyperlipidemic drug Fenofibrate. RESULTS IN CHEMISTRY 2024; 7:101282. [PMID: 39086552 PMCID: PMC11290303 DOI: 10.1016/j.rechem.2023.101282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024] Open
Abstract
Synthesis and characterization of drug metabolites has emerged as an important area of research in consideration to the significant contribution of studies on metabolites in drug research. The present work comprises synthesis of 2-(4-((4-chlorophenyl)(hydroxy)methyl) phenoxy)-2-methylpropanoic acid, a metabolite of anti-hyperlipidemic drug fenofibrate. The desired compound was prepared by two different synthetic routes. The ketone group of fenofibric acid was reduced using sodium borohydride in one route whereas the hydrolysis of isopropyl ester of the reduced fenofibrate was achieved by the mild alkaline hydrolysis in the other path. Both the ways of synthesis furnished the desired compound in excellent yield and purity. The new synthetic congener was characterized by spectroscopic methods.
Collapse
Affiliation(s)
- Greesha N Majethia
- Department of Chemistry, Youngstown State University, One University Plaza, Youngstown, OH, USA
| | - Wahajul Haq
- Department of Chemistry, Youngstown State University, One University Plaza, Youngstown, OH, USA
| | | |
Collapse
|
3
|
Tsui L, Chen L, Ye P, Xu S, Wu SJ, Chen SCI, Xie W. Adverse drug reactions of non-statin antihyperlipidaemic drugs in China from 1989 to 2019: a national database analysis. BMJ Open 2023; 13:e068915. [PMID: 37253501 PMCID: PMC10254877 DOI: 10.1136/bmjopen-2022-068915] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 05/15/2023] [Indexed: 06/01/2023] Open
Abstract
OBJECTIVE This study aims to understand the adverse drug reactions (ADRs) for non-statin antihyperlipidaemic drugs included in the China Anti-hyperlipidemic Drug Database. DESIGN An approach of Chinese national database analysis was employed to screen clinical trials involving non-statin antihyperlipidaemic drugs from 1989 to 2019. SETTING The database was provided by the China National Medical Products Administration Information Centre. PARTICIPANTS In total, 117 clinical studies with 8800 patients were selected from 2650 clinical trials of the Anti-hyperlipidemic Drug Database. INTERVENTIONS The non-statin antihyperlipidaemic drugs were divided into three groups: (1) fibrates (fenofibrate, gemfibrozil, bezafibrate, etofylline clofibrate); (2) nicotinic acid and derivatives (niacin, acipimox) and (3) others (probucol, cholestyramine). RESULTS The results of this study show that first, gastrointestinal symptoms were the most common reactions (6.975%), which account for approximately 50% of the reported cases with ADRs. Second, cholestyramine (16.418%) and gemfibrozil (13.158%) were the most common gastrointestinal side effect-causing non-statin antihyperlipidaemic drugs, which account for one-third of the population. Third, niacin (7.879%) and gemfibrozil (5.000%) were the most likely cause of liver disease symptoms. Finally, niacin (10.909%) and acipimox (18.847%) were the major non-statin antihyperlipidaemic drugs with skin symptoms. CONCLUSION This study revealed that gastrointestinal symptoms were the most common ADRs of fibrates, probucol and cholestyramine in the Chinese population. For nicotinic acid and derivatives, the ADRs of skin symptoms were the most common in China.
Collapse
Affiliation(s)
- Leo Tsui
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Liwei Chen
- School of Pharmacy and Medical Technology, Putian University, Putian, Fujian, China
| | - Peiying Ye
- School of Pharmacy and Medical Technology, Putian University, Putian, Fujian, China
| | - Shiling Xu
- School of Pharmacy and Medical Technology, Putian University, Putian, Fujian, China
| | - Si-Jia Wu
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | | | - Wei Xie
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|
4
|
Nakamura A, Kagaya Y, Saito H, Kanazawa M, Sato K, Miura M, Kondo M, Endo H. Efficacy and Safety of Pemafibrate Versus Bezafibrate to Treat Patients with Hypertriglyceridemia: A Randomized Crossover Study. J Atheroscler Thromb 2023; 30:443-454. [PMID: 35768226 PMCID: PMC10164592 DOI: 10.5551/jat.63659] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/29/2022] [Indexed: 11/11/2022] Open
Abstract
AIM Pemafibrate is a highly selective agonist for peroxisome proliferator-activated receptor (PPAR)-α, a key regulator of lipid and glucose metabolism. We compared the efficacy and safety of pemafibrate with those of bezafibrate, a nonselective PPAR-α agonist. METHODS In this randomized crossover study, 60 patients with hypertriglyceridemia (fasting triglyceride [TG] ≥ 150 mg/dL) were treated with pemafibrate of 0.2 mg/day or bezafibrate of 400 mg/day for 24 weeks. The primary endpoint was percent change (%Change) from baseline in TG levels, while the secondary endpoints were %Change in high-density lipoprotein cholesterol (HDL-C) and apolipoprotein A-I (Apo A-I) levels. RESULTS The %Change in TG and Apo A-I levels was significantly greater with pemafibrate than with bezafibrate (-46.1% vs. -34.7%, p<0.001; 9.2% vs. 5.7%, p =0.018, respectively). %Change in HDL-C levels was not significantly different between the two treatments. %Change in liver enzyme levels was markedly decreased with pemafibrate than with bezafibrate. Creatinine levels significantly increased in both treatments; however, its %Change was significantly lower with pemafibrate than with bezafibrate (5.72% vs. 15.5%, p<0.001). The incidence of adverse events (AEs) or serious AEs did not differ between the two treatments; however, the number of patients with elevated creatinine levels (≥ 0.5 mg/dL and/or 25% from baseline) was significantly higher in the bezafibrate group than in the pemafibrate group (14/60 vs. 3/60, p =0.004) [corrected]. CONCLUSION Compared with bezafibrate, pemafibrate is more effective in decreasing TG levels and increasing Apo A-I levels and is safer regarding liver and renal function.
Collapse
Affiliation(s)
- Akihiro Nakamura
- Department of Cardiology, Iwate Prefectural Central Hospital, Morioka, Japan
| | - Yuta Kagaya
- Department of Cardiology, Iwate Prefectural Central Hospital, Morioka, Japan
| | - Hiroki Saito
- Department of Cardiology, Iwate Prefectural Central Hospital, Morioka, Japan
| | - Masanori Kanazawa
- Department of Cardiology, Iwate Prefectural Central Hospital, Morioka, Japan
| | - Kenjiro Sato
- Department of Cardiology, Iwate Prefectural Central Hospital, Morioka, Japan
| | - Masanobu Miura
- Department of Cardiology, Iwate Prefectural Central Hospital, Morioka, Japan
| | - Masateru Kondo
- Department of Cardiology, Iwate Prefectural Central Hospital, Morioka, Japan
| | - Hideaki Endo
- Department of Cardiology, Iwate Prefectural Central Hospital, Morioka, Japan
| |
Collapse
|
5
|
Przybycień P, Gąsior-Perczak D, Placha W. Cannabinoids and PPAR Ligands: The Future in Treatment of Polycystic Ovary Syndrome Women with Obesity and Reduced Fertility. Cells 2022; 11:cells11162569. [PMID: 36010645 PMCID: PMC9406585 DOI: 10.3390/cells11162569] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/13/2022] [Accepted: 08/17/2022] [Indexed: 11/21/2022] Open
Abstract
Cannabinoids (CBs) are used to treat chronic pain, chemotherapy-induced nausea and vomiting, and multiple sclerosis spasticity. Recently, the medicinal use of CBs has attracted increasing interest as a new therapeutic in many diseases. Data indicate a correlation between CBs and PPARs via diverse mechanisms. Both the endocannabinoid system (ECS) and peroxisome proliferator-activated receptors (PPARs) may play a significant role in PCOS and PCOS related disorders, especially in disturbances of glucose-lipid metabolism as well as in obesity and fertility. Taking into consideration the ubiquity of PCOS in the human population, it seems indispensable to search for new potential therapeutic targets for this condition. The aim of this review is to examine the relationship between metabolic disturbances and obesity in PCOS pathology. We discuss current and future therapeutic interventions for PCOS and related disorders, with emphasis on the metabolic pathways related to PCOS pathophysiology. The link between the ECS and PPARs is a promising new target for PCOS, and we examine this relationship in depth.
Collapse
Affiliation(s)
- Piotr Przybycień
- Chair of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, 31-034 Krakow, Poland
- Endocrinology Clinic, Holycross Cancer Centre, 25-734 Kielce, Poland
| | - Danuta Gąsior-Perczak
- Endocrinology Clinic, Holycross Cancer Centre, 25-734 Kielce, Poland
- Collegium Medicum, Jan Kochanowski University, 25-317 Kielce, Poland
| | - Wojciech Placha
- Chair of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, 31-034 Krakow, Poland
- Correspondence: ; Tel.: +48-12-422-74-00
| |
Collapse
|
6
|
Bhattacharjee J, Borra VJ, Salem ESB, Zhang C, Murakami K, Gill RK, Kim A, Kim JK, Salazar-Gonzalez RM, Warren M, Kohli R, Nakamura T. Hepatic Ago2 Regulates PPARα for Oxidative Metabolism Linked to Glycemic Control in Obesity and Post Bariatric Surgery. Endocrinology 2021; 162:bqab007. [PMID: 33567453 PMCID: PMC7875175 DOI: 10.1210/endocr/bqab007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Indexed: 12/15/2022]
Abstract
Argonaute 2 (Ago2) is the main component of the RNA-induced silencing complex. We recently showed that liver-specific Ago2-deficiency in mice (L-Ago2 knockout [KO] mice) enhances mitochondrial oxidation and alleviates obesity-associated pathophysiology. However, the precise mechanisms behind the role of hepatic Ago2 in regulating the mitochondrial oxidation associated with glucose metabolism are still unclear. Here, we show that hepatic Ago2 regulates the function of peroxisome proliferator-activated receptor α (PPARα) for oxidative metabolism. In both genetically and diet-induced severe obese conditions, L-Ago2 KO mice developed obesity and hepatic steatosis but exhibited improved glucose metabolism accompanied by lowered expression levels of pathologic microRNAs (miRNAs), including miR-802, miR-103/107, and miR-152, and enhanced expression of PPARα and its target genes regulating oxidative metabolism in the liver. We then investigated the role of hepatic Ago2 in the outcomes of vertical sleeve gastrectomy (VSG) in which PPARα plays a crucial role in a drastic transcription reprogram associated with improved glycemia post VSG. Whereas VSG reduced body weight and improved fatty liver in wild-type mice, these effects were not observed in hepatic Ago2-deficient mice. Conversely, glucose metabolism was improved in a hepatic Ago2-dependent manner post VSG. Treating Ago2-deficient primary hepatocytes with WY-14643, a PPARα agonist, showed that Ago2-deficiency enhances sensitivity to WY-14643 and increases expression of PPARα target genes and mitochondrial oxidation. Our findings suggest that hepatic Ago2 function is intrinsically associated with PPARα that links Ago2-mediated RNA silencing with mitochondrial functions for oxidation and obesity-associated pathophysiology.
Collapse
Affiliation(s)
- Jashdeep Bhattacharjee
- Division of Gastroenterology, Hepatology and Nutrition, Children’s Hospital Los Angeles, Los Angeles, California, USA
| | - Vishnupriya J Borra
- Division of Endocrinology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Esam S B Salem
- Division of Endocrinology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pharmacology and Systems Physiology, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Cai Zhang
- Division of Endocrinology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Kazutoshi Murakami
- Division of Endocrinology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Rupinder K Gill
- Division of Endocrinology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Ahlee Kim
- Division of Endocrinology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - James K Kim
- Division of Endocrinology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Rosa-Maria Salazar-Gonzalez
- Division of Gastroenterology, Hepatology and Nutrition, Children’s Hospital Los Angeles, Los Angeles, California, USA
| | - Mikako Warren
- Division of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, California, USA
| | - Rohit Kohli
- Division of Gastroenterology, Hepatology and Nutrition, Children’s Hospital Los Angeles, Los Angeles, California, USA
| | - Takahisa Nakamura
- Division of Endocrinology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Department of Metabolic Bioregulation, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan
| |
Collapse
|
7
|
Gilvary C, Elkhader J, Madhukar N, Henchcliffe C, Goncalves MD, Elemento O. A machine learning and network framework to discover new indications for small molecules. PLoS Comput Biol 2020; 16:e1008098. [PMID: 32764756 PMCID: PMC7437923 DOI: 10.1371/journal.pcbi.1008098] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 08/19/2020] [Accepted: 06/27/2020] [Indexed: 12/25/2022] Open
Abstract
Drug repurposing, identifying novel indications for drugs, bypasses common drug development pitfalls to ultimately deliver therapies to patients faster. However, most repurposing discoveries have been led by anecdotal observations (e.g. Viagra) or experimental-based repurposing screens, which are costly, time-consuming, and imprecise. Recently, more systematic computational approaches have been proposed, however these rely on utilizing the information from the diseases a drug is already approved to treat. This inherently limits the algorithms, making them unusable for investigational molecules. Here, we present a computational approach to drug repurposing, CATNIP, that requires only biological and chemical information of a molecule. CATNIP is trained with 2,576 diverse small molecules and uses 16 different drug similarity features, such as structural, target, or pathway based similarity. This model obtains significant predictive power (AUC = 0.841). Using our model, we created a repurposing network to identify broad scale repurposing opportunities between drug types. By exploiting this network, we identified literature-supported repurposing candidates, such as the use of systemic hormonal preparations for the treatment of respiratory illnesses. Furthermore, we demonstrated that we can use our approach to identify novel uses for defined drug classes. We found that adrenergic uptake inhibitors, specifically amitriptyline and trimipramine, could be potential therapies for Parkinson's disease. Additionally, using CATNIP, we predicted the kinase inhibitor, vandetanib, as a possible treatment for Type 2 Diabetes. Overall, this systematic approach to drug repurposing lays the groundwork to streamline future drug development efforts.
Collapse
Affiliation(s)
- Coryandar Gilvary
- HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Dept. of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, United States of America
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, New York, United States of America
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York, United States of America
- Tri-Institutional Training Program in Computational Biology and Medicine, New York, New York, United States of America
| | - Jamal Elkhader
- HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Dept. of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, United States of America
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, New York, United States of America
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York, United States of America
- Tri-Institutional Training Program in Computational Biology and Medicine, New York, New York, United States of America
| | - Neel Madhukar
- OneThree Biotech, New York, New York, United States of America
| | - Claire Henchcliffe
- Department of Neurology, Weill Cornell Medicine, New York, New York, United States of America
| | - Marcus D. Goncalves
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York, United States of America
- Division of Endocrinology, Department of Medicine, Weill Cornell Medicine, New York, New York, United States of America
| | - Olivier Elemento
- HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Dept. of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, United States of America
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, New York, United States of America
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York, United States of America
- Tri-Institutional Training Program in Computational Biology and Medicine, New York, New York, United States of America
- OneThree Biotech, New York, New York, United States of America
- WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
8
|
Garlid AO, Schaffer CT, Kim J, Bhatt H, Guevara-Gonzalez V, Ping P. TAZ encodes tafazzin, a transacylase essential for cardiolipin formation and central to the etiology of Barth syndrome. Gene 2019; 726:144148. [PMID: 31647997 DOI: 10.1016/j.gene.2019.144148] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 09/12/2019] [Accepted: 09/27/2019] [Indexed: 12/31/2022]
Abstract
Tafazzin, which is encoded by the TAZ gene, catalyzes transacylation to form mature cardiolipin and shows preference for the transfer of a linoleic acid (LA) group from phosphatidylcholine (PC) to monolysocardiolipin (MLCL) with influence from mitochondrial membrane curvature. The protein contains domains and motifs involved in targeting, anchoring, and an active site for transacylase activity. Tafazzin activity affects many aspects of mitochondrial structure and function, including that of the electron transport chain, fission-fusion, as well as apoptotic signaling. TAZ mutations are implicated in Barth syndrome, an underdiagnosed and devastating disease that primarily affects male pediatric patients with a broad spectrum of disease pathologies that impact the cardiovascular, neuromuscular, metabolic, and hematologic systems.
Collapse
Affiliation(s)
- Anders O Garlid
- Cardiovascular Data Science Training Program at UCLA, University of California at Los Angeles, CA 90095, USA; Department of Physiology, University of California at Los Angeles, CA 90095, USA.
| | - Calvin T Schaffer
- Cardiovascular Data Science Training Program at UCLA, University of California at Los Angeles, CA 90095, USA; Department of Physiology, University of California at Los Angeles, CA 90095, USA
| | - Jaewoo Kim
- Cardiovascular Data Science Training Program at UCLA, University of California at Los Angeles, CA 90095, USA; Department of Physiology, University of California at Los Angeles, CA 90095, USA
| | - Hirsh Bhatt
- Cardiovascular Data Science Training Program at UCLA, University of California at Los Angeles, CA 90095, USA; Department of Physiology, University of California at Los Angeles, CA 90095, USA
| | - Vladimir Guevara-Gonzalez
- Cardiovascular Data Science Training Program at UCLA, University of California at Los Angeles, CA 90095, USA; Department of Mathematics, University of California at Los Angeles, CA 90095, USA
| | - Peipei Ping
- Cardiovascular Data Science Training Program at UCLA, University of California at Los Angeles, CA 90095, USA; Department of Physiology, University of California at Los Angeles, CA 90095, USA; Department of Medicine/Cardiology, University of California at Los Angeles, CA 90095, USA; Department of Bioinformatics, University of California at Los Angeles, CA 90095, USA; Scalable Analytics Institute (ScAi), University of California at Los Angeles, CA 90095, USA.
| |
Collapse
|
9
|
Yamaguchi T, Shirai K, Nagayama D, Nakamura S, Oka R, Tanaka S, Watanabe Y, Imamura H, Sato Y, Kawana H, Ohira M, Saiki A, Shimizu N, Tatsuno I. Bezafibrate Ameliorates Arterial Stiffness Assessed by Cardio-Ankle Vascular Index in Hypertriglyceridemic Patients with Type 2 Diabetes Mellitus. J Atheroscler Thromb 2018; 26:659-669. [PMID: 30584220 PMCID: PMC6629745 DOI: 10.5551/jat.45799] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
AIM Cardio-ankle vascular index (CAVI) reflects arterial stiffness and has been established as a useful surrogate marker of atherosclerosis. Contrary to the abundant data indicating slower progression of atherosclerosis with statins, studies on fibrates remain scarce. The aim of this study was thus to clarify the effect of bezafibrate on CAVI as well as on oxidative stress. METHODS A randomized, open-label, controlled study was performed. 66 hypertriglyceridemic patients with type 2 diabetes were assigned to two groups: bezafibrate (400 mg/day) group and eicosapentaenoic acid (EPA 1.8 g/day) group. Patients were administered the respective treatment for 12 weeks. CAVI, glycolipid metabolic parameters, and diacron-reactive oxygen metabolites (d-ROMs) were evaluated before and after the study period. RESULTS Serum triglycerides (TG), remnant-like particle cholesterol (RLP-C), fasting plasma glucose, HbA1c and d-ROMs decreased, while HDL-cholesterol increased significantly in the bezafibrate group but did not change in the EPA group. The decreases in TG, RLP-C, HbA1c and d-ROMs were significantly greater in the bezafibrate group than in the EPA group. CAVI decreased significantly only in the bezafibrate group and the decrease was significantly greater in bezafibrate group than in EPA group. Simple regression analysis showed no significant relationship between the change in CAVI and changes in other variables. Multivariate logistic regression analysis identified high baseline CAVI, low HDL-cholesterol level, and bezafibrate administration as significant independent predictors of CAVI decrease. CONCLUSION Bezafibrate treatment ameliorates arterial stiffness accompanied by improvement of glycolipid metabolism and oxidative stress. These effects potentially have important beneficial health consequences in hypertriglyceridemic patients with type 2 diabetes.
Collapse
Affiliation(s)
- Takashi Yamaguchi
- Center of Diabetes, Endocrinology and Metabolism, Toho University, Sakura Medical Center
| | | | | | - Shoko Nakamura
- Center of Diabetes, Endocrinology and Metabolism, Toho University, Sakura Medical Center
| | - Rena Oka
- Center of Diabetes, Endocrinology and Metabolism, Toho University, Sakura Medical Center
| | - Sho Tanaka
- Center of Diabetes, Endocrinology and Metabolism, Toho University, Sakura Medical Center
| | - Yasuhiro Watanabe
- Center of Diabetes, Endocrinology and Metabolism, Toho University, Sakura Medical Center
| | - Haruki Imamura
- Center of Diabetes, Endocrinology and Metabolism, Toho University, Sakura Medical Center
| | - Yuta Sato
- Center of Diabetes, Endocrinology and Metabolism, Toho University, Sakura Medical Center
| | - Hidetoshi Kawana
- Center of Diabetes, Endocrinology and Metabolism, Toho University, Sakura Medical Center
| | - Masahiro Ohira
- Center of Diabetes, Endocrinology and Metabolism, Toho University, Sakura Medical Center
| | - Atsuhito Saiki
- Center of Diabetes, Endocrinology and Metabolism, Toho University, Sakura Medical Center
| | - Naomi Shimizu
- Center of Diabetes, Endocrinology and Metabolism, Toho University, Sakura Medical Center
| | - Ichiro Tatsuno
- Center of Diabetes, Endocrinology and Metabolism, Toho University, Sakura Medical Center
| |
Collapse
|
10
|
Okopień B, Bułdak Ł, Bołdys A. Benefits and risks of the treatment with fibrates––a comprehensive summary. Expert Rev Clin Pharmacol 2018; 11:1099-1112. [DOI: 10.1080/17512433.2018.1537780] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Bogusław Okopień
- Department of Internal Medicine and Clinical Pharmacology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Łukasz Bułdak
- Department of Internal Medicine and Clinical Pharmacology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Aleksandra Bołdys
- Department of Internal Medicine and Clinical Pharmacology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
11
|
Abstract
This review is motivated by the need to question dogma that has not yielded significant improvements in outcomes of Type 2 Diabetes treatment: that insulin resistance is the driver of ß-Cell failure and resulting hyperglycemia. We highlight the fact that hyperlipidemia, insulin resistance, and hyperinsulinemia all precede overt diabetes diagnosis and can each induce the other when tested experimentally. New research highlights the importance of high levels of circulating insulin as both a driver of weight gain and insulin resistance. Data from our lab and others document that several nutrients and environmental toxins can stimulate insulin secretion at non-stimulatory glucose in the absence of insulin resistance. This occurs either by direct action on the ß-Cell or by shifting its sensitivity to known secretagogues. We raise the next logical question of whether ß-Cell dysfunction in Type 2 Diabetes is due to impaired function, defined as failure, or if chronic overstimulation of the ß-Cell that exceeds its capacity to synthesize and secrete insulin, defined as abuse, is the main abnormality in Type 2 Diabetes. These questions are important as they have direct implications for how to best prevent and treat Type 2 Diabetes.
Collapse
Affiliation(s)
- Karel Erion
- Division of Endocrinology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Barbara E Corkey
- Evans Department of Medicine, Obesity Research Center, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
12
|
An HJ, Lee B, Kim DH, Lee EK, Chung KW, Park MH, Jeong HO, Kim SM, Moon KM, Kim YR, Kim SJ, Yun HY, Chun P, Yu BP, Moon HR, Chung HY. Physiological characterization of a novel PPAR pan agonist, 2-(4-(5,6-methylenedioxybenzo[d]thiazol-2-yl)-2-methylphenoxy)-2-methylpropanoic acid (MHY2013). Oncotarget 2017; 8:16912-16924. [PMID: 28129657 PMCID: PMC5370010 DOI: 10.18632/oncotarget.14818] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 12/27/2016] [Indexed: 02/03/2023] Open
Abstract
Recently, agonists targeting multiple peroxisome proliferator-activated receptors (PPARs) have been developed to improve metabolic disorders and minimize the side effects of selective PPAR agonists such as weight gain and dyslipidemia. We newly synthesized six 2-methyl-2-(o-tolyloxy)propanoic acid derivatives based on the structure of a well-known PPAR pan agonist, bezafibrate. Of six compounds, MHY2013 was screened as the strongest activator of three PPAR subtypes based on protein docking simulation and luciferase assays. When treated orally in db/db mice, MHY2013 ameliorated obesity-induced insulin resistance, dyslipidemia, and hepatic steatosis without changes of the body weight and levels of liver and kidney injury markers. MHY2013 decreased the serum triglyceride and fatty acid levels, which is associated with an increase in fatty acid oxidation signaling in the liver and thermogenic signaling on white adipose tissue, respectively. Furthermore, MHY2013 markedly increased serum levels of insulin-sensitizing hormones including fibroblast growth factor 21 (FGF21) and adiponectin. In conclusion, this study suggests that, MHY2013 is a novel PPAR pan agonist that improves obesity-induced insulin resistance, dyslipidemia and hepatic steatosis and elevates insulin-sensitizing hormones in the blood.
Collapse
Affiliation(s)
- Hye Jin An
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea.,Molecular Inflammation Research Center for Aging Intervention (MRCA), Pusan National University, Busan 46241, Republic of Korea
| | - Bonggi Lee
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea.,Molecular Inflammation Research Center for Aging Intervention (MRCA), Pusan National University, Busan 46241, Republic of Korea.,Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu 41062, Republic of Korea
| | - Dae Hyun Kim
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea.,Molecular Inflammation Research Center for Aging Intervention (MRCA), Pusan National University, Busan 46241, Republic of Korea
| | - Eun Kyeong Lee
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea.,Molecular Inflammation Research Center for Aging Intervention (MRCA), Pusan National University, Busan 46241, Republic of Korea
| | - Ki Wung Chung
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea.,Molecular Inflammation Research Center for Aging Intervention (MRCA), Pusan National University, Busan 46241, Republic of Korea
| | - Min Hi Park
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea.,Molecular Inflammation Research Center for Aging Intervention (MRCA), Pusan National University, Busan 46241, Republic of Korea
| | - Hyoung Oh Jeong
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea.,Molecular Inflammation Research Center for Aging Intervention (MRCA), Pusan National University, Busan 46241, Republic of Korea
| | - Seong Min Kim
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea.,Molecular Inflammation Research Center for Aging Intervention (MRCA), Pusan National University, Busan 46241, Republic of Korea
| | - Kyoung Mi Moon
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea.,Molecular Inflammation Research Center for Aging Intervention (MRCA), Pusan National University, Busan 46241, Republic of Korea
| | - Ye Ra Kim
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea.,Molecular Inflammation Research Center for Aging Intervention (MRCA), Pusan National University, Busan 46241, Republic of Korea
| | - Seong Jin Kim
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea.,Molecular Inflammation Research Center for Aging Intervention (MRCA), Pusan National University, Busan 46241, Republic of Korea
| | - Hwi Young Yun
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea.,Molecular Inflammation Research Center for Aging Intervention (MRCA), Pusan National University, Busan 46241, Republic of Korea
| | - Pusoon Chun
- College of Pharmacy, Inje University, Gyeongsangnam-do 50834, Republic of Korea
| | - Byung Pal Yu
- Department of Physiology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA
| | - Hyung Ryong Moon
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea.,Molecular Inflammation Research Center for Aging Intervention (MRCA), Pusan National University, Busan 46241, Republic of Korea
| | - Hae Young Chung
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea.,Molecular Inflammation Research Center for Aging Intervention (MRCA), Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
13
|
Abstract
Non-alcoholic fatty liver disease (NAFLD) is associated with obesity, insulin resistance, type 2 diabetes and cardiovascular disease and can be considered the hepatic manifestation of the metabolic syndrome. NAFLD represents a spectrum of disease, from the relatively benign simple steatosis to the more serious non-alcoholic steatohepatitis, which can progress to liver cirrhosis, hepatocellular carcinoma and end-stage liver failure, necessitating liver transplantation. Although the increasing prevalence of NAFLD in developed countries has substantial implications for public health, many of the precise mechanisms accounting for the development and progression of NAFLD are unclear. The environment in early life is an important determinant of cardiovascular disease risk in later life and studies suggest this also extends to NAFLD. Here we review data from animal models and human studies which suggest that fetal and early life exposure to maternal under- and overnutrition, excess glucocorticoids and environmental pollutants may confer an increased susceptibility to NAFLD development and progression in offspring and that such effects may be sex-specific. We also consider studies aimed at identifying potential dietary and pharmacological interventions aimed at reducing this risk. We suggest that further human epidemiological studies are needed to ensure that data from animal models are relevant to human health.
Collapse
|
14
|
|
15
|
Hirose T, Teramoto T, Abe K, Taneyama T. Determinants of Bezafibrate-induced Improvements in LDL Cholesterol in Dyslipidemic Patients with Diabetes. J Atheroscler Thromb 2015; 22:676-84. [PMID: 25752494 DOI: 10.5551/jat.27425] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
AIM Our previous "J-BENEFIT (Japan BEzafibrate cliNical EFfectIveness and Tolerability)" study demonstrated that bezafibrate improves blood lipid profiles and glucose control in dyslipidemic patients with diabetes. However, bezafibrate did not significantly improve low-density lipoprotein cholesterol (LDL-C), although some patients showed decreases while others showed increases in the LDL-C levels. Therefore, a subgroup analysis of the J-BENEFIT study was conducted to identify factors influencing the bezafibrate-induced changes in the LDL-C levels. METHODS Of the 3,316 patients in the J-BENEFIT study, 2,116 not treated with other lipid-lowering drugs were enrolled in the current study, and the effects of 24-week treatment with bezafibrate on the LDL-C levels were analyzed. A reduction in the LDL-C level of ≥ 25% occurred in 253 patients, and a logistic-regression analysis was used to identify factors associated with this improvement. RESULTS Among the 2,116 overall patients, bezafibrate treatment significantly increased the LDL-C levels from 123.9±36.7 to 125.7±31.3 mg/dL. The subanalysis showed that the treatment responses varied according to the baseline LDL-C level, with significant decreases in the ≥ 160 and ≥ 140-<160 mg/dL groups, no significant decrease in the ≥ 120-<140 mg/dL group and a significant increase in the <120 mg/dL group. A multivariate logistic-regression analysis of the data for the patients with an LDL-C of ≥ 25% identified a female sex, the use of anti-hypertensive and hypoglycemic agents and a high baseline LDL-C level to be significant determinants of the LDL-C response to bezafibrate. CONCLUSIONS Our results showed that treatment with bezafibrate improves the LDL-C levels and lipid profiles in dyslipidemic diabetic patients, especially women, subjects co-treated with anti-hypertensive or hypoglycemic agents and those with high baseline LDL-C levels.
Collapse
Affiliation(s)
- Takahisa Hirose
- Division of Diabetes, Metabolism, and Endocrinology, Department of Medicine, Toho University School of Medicine
| | | | | | | | | |
Collapse
|
16
|
Kobayashi J. How Does Bezafibrate Affect the Plasma LDL Cholesterol Levels? J Atheroscler Thromb 2015; 22:658-9. [DOI: 10.5551/jat.ed007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
17
|
Tenenbaum A, Klempfner R, Fisman EZ. Hypertriglyceridemia: a too long unfairly neglected major cardiovascular risk factor. Cardiovasc Diabetol 2014; 13:159. [PMID: 25471221 PMCID: PMC4264548 DOI: 10.1186/s12933-014-0159-y] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 11/25/2014] [Indexed: 12/27/2022] Open
Abstract
The existence of an independent association between elevated triglyceride (TG) levels, cardiovascular (CV) risk and mortality has been largely controversial. The main difficulty in isolating the effect of hypertriglyceridemia on CV risk is the fact that elevated triglyceride levels are commonly associated with concomitant changes in high density lipoprotein (HDL), low density lipoprotein (LDL) and other lipoproteins. As a result of this problem and in disregard of the real biological role of TG, its significance as a plausible therapeutic target was unfoundedly underestimated for many years. However, taking epidemiological data together, both moderate and severe hypertriglyceridaemia are associated with a substantially increased long term total mortality and CV risk. Plasma TG levels partially reflect the concentration of the triglyceride-carrying lipoproteins (TRL): very low density lipoprotein (VLDL), chylomicrons and their remnants. Furthermore, hypertriglyceridemia commonly leads to reduction in HDL and increase in atherogenic small dense LDL levels. TG may also stimulate atherogenesis by mechanisms, such excessive free fatty acids (FFA) release, production of proinflammatory cytokines, fibrinogen, coagulation factors and impairment of fibrinolysis. Genetic studies strongly support hypertriglyceridemia and high concentrations of TRL as causal risk factors for CV disease. The most common forms of hypertriglyceridemia are related to overweight and sedentary life style, which in turn lead to insulin resistance, metabolic syndrome (MS) and type 2 diabetes mellitus (T2DM). Intensive lifestyle therapy is the main initial treatment of hypertriglyceridemia. Statins are a cornerstone of the modern lipids-modifying therapy. If the primary goal is to lower TG levels, fibrates (bezafibrate and fenofibrate for monotherapy, and in combination with statin; gemfibrozil only for monotherapy) could be the preferable drugs. Also ezetimibe has mild positive effects in lowering TG. Initial experience with en ezetimibe/fibrates combination seems promising. The recently released IMPROVE-IT Trial is the first to prove that adding a non-statin drug (ezetimibe) to a statin lowers the risk of future CV events. In conclusion, the classical clinical paradigm of lipids-modifying treatment should be changed and high TG should be recognized as an important target for therapy in their own right. Hypertriglyceridemia should be treated.
Collapse
Affiliation(s)
- Alexander Tenenbaum
- Cardiac Rehabilitation Institute, Sheba Medical Center, 52621, Tel-Hashomer, Israel. .,Sackler Faculty of Medicine, Tel-Aviv University, 69978, Tel-Aviv, Israel. .,Cardiovascular Diabetology Research Foundation, 58484, Holon, Israel.
| | - Robert Klempfner
- Cardiac Rehabilitation Institute, Sheba Medical Center, 52621, Tel-Hashomer, Israel. .,Sackler Faculty of Medicine, Tel-Aviv University, 69978, Tel-Aviv, Israel.
| | - Enrique Z Fisman
- Sackler Faculty of Medicine, Tel-Aviv University, 69978, Tel-Aviv, Israel. .,Cardiovascular Diabetology Research Foundation, 58484, Holon, Israel.
| |
Collapse
|
18
|
Lipid-lowering Therapies, Glucose Control and Incident Diabetes: Evidence, Mechanisms and Clinical Implications. Cardiovasc Drugs Ther 2014; 28:361-77. [DOI: 10.1007/s10557-014-6534-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
19
|
Aoyama-Sasabe S, Xin X, Taniguchi A, Nakai Y, Mitsui R, Tsuji H, Yabe D, Yasuda K, Kurose T, Inagaki N, Seino Y, Fukushima M. Relationship and factors responsible for regulating fasting and post-challenge plasma glucose levels in the early stage development of type 2 diabetes mellitus. J Diabetes Investig 2014; 5:663-70. [PMID: 25422766 PMCID: PMC4234229 DOI: 10.1111/jdi.12239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 12/11/2013] [Accepted: 01/05/2014] [Indexed: 01/10/2023] Open
Abstract
AIMS/INTRODUCTION Elevation of 2-h plasma glucose (2-h PG) levels keeps step with fasting plasma glucose (FPG) levels elevation, but some individuals show dominant elevation of 2-h PG and others FPG. We analyzed dependent and independent relationships between 2-h PG and FPG, and investigated the factors regulating 2-h PG and FPG. MATERIALS AND METHODS In 1,657 Japanese participants who underwent a 75-g oral glucose tolerance test at the initial examination for a medical check-up, we carried out simple linear regression analysis between 2-h PG and FPG levels on the three patterns of independent variables. We divided the participants into two subgroups: the 2-h PG-side group and the FPG-side from the regression line, and examined the relationships between 2-h PG-FPG and factors responsible for elevation of plasma glucose levels. RESULTS There was a significant positive correlation between 2-h PG and FPG levels. The regression line of both 2-h PG and FPG as independent variables was in accordance with the regression line of 2-h PG as an independent variable and FPG as a dependent variable. In 2-h PG-side group, age was the independent factor affecting 2-h PG in addition to insulinogenic index and insulin sensitivity index (ISI composite). In the FPG-side group, triglyceride was the independent factor affecting FPG in addition to insulinogenic index and ISI composite. CONCLUSIONS Two-hour PG was an independent predictor of FPG. In addition to the importance of decreased insulin secretion and insulin sensitivity, age was the strong factor to elevate 2-h PG levels in the 2-h PG-side group and triglyceride was the strong factor to elevate FPG levels in the FPG-side group in the early stage of development of type 2 diabetes.
Collapse
Affiliation(s)
- Sae Aoyama-Sasabe
- Division of Clinical Nutrition and Internal Medicine, Department of Nutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University Okayama, Japan
| | - Xin Xin
- Department of Systems Engineering, Faculty of Computer Science and Systems Engineering, Okayama Prefectural University Okayama, Japan
| | - Ataru Taniguchi
- Division of Diabetes and Endocrinology, Kyoto Preventive Medical Center Kyoto, Japan
| | | | - Rie Mitsui
- Center for Preventive Medicine, St. Luke's International Hospital Tokyo, Japan
| | - Hideaki Tsuji
- Department of Nutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University Okayama, Japan
| | - Daisuke Yabe
- Division of Diabetes, Clinical Nutrition and Endocrinology, Kansai Electric Power Hospital Osaka, Japan
| | - Koichiro Yasuda
- Department of Diabetes and Endocrinology, Saiseikai Noe Hospital Osaka, Japan
| | - Takeshi Kurose
- Division of Diabetes, Clinical Nutrition and Endocrinology, Kansai Electric Power Hospital Osaka, Japan
| | - Nobuya Inagaki
- Department of Diabetes and Clinical Nutrition, Graduate School of Medicine, Kyoto University Kyoto, Japan
| | - Yutaka Seino
- Division of Diabetes, Clinical Nutrition and Endocrinology, Kansai Electric Power Hospital Osaka, Japan
| | - Mitsuo Fukushima
- Division of Clinical Nutrition and Internal Medicine, Department of Nutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University Okayama, Japan
| |
Collapse
|
20
|
Ohno Y, Miyoshi T, Noda Y, Oe H, Toh N, Nakamura K, Kohno K, Morita H, Ito H. Bezafibrate improves postprandial hypertriglyceridemia and associated endothelial dysfunction in patients with metabolic syndrome: a randomized crossover study. Cardiovasc Diabetol 2014; 13:71. [PMID: 24708775 PMCID: PMC4108061 DOI: 10.1186/1475-2840-13-71] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 04/02/2014] [Indexed: 12/12/2022] Open
Abstract
Background Postprandial elevation of triglyceride-rich lipoproteins impairs endothelial function, which can initiate atherosclerosis. We investigated the effects of bezafibrate on postprandial endothelial dysfunction and lipid profiles in patients with metabolic syndrome. Methods Ten patients with metabolic syndrome were treated with 400 mg/day bezafibrate or untreated for 4 weeks in a randomized crossover study. Brachial artery flow-mediated dilation (FMD) and lipid profiles were assessed during fasting and after consumption of a standardized snack. Serum triglyceride and cholesterol contents of lipoprotein fractions were analyzed by high-performance liquid chromatography. Results Postprandial FMD decreased significantly and reached its lowest value 4 h after the cookie test in both the bezafibrate and control groups, but the relative change in FMD from baseline to minimum in the bezafibrate group was significantly smaller than that in the control group (-29.0 ± 5.9 vs. -42.9 ± 6.2 %, p = 0.04). Bezafibrate significantly suppressed postprandial elevation of triglyceride (incremental area under the curve (AUC): 544 ± 65 vs. 1158 ± 283 mg h/dl, p = 0.02) and remnant lipoprotein cholesterol (incremental AUC: 27.9 ± 3.5 vs. 72.3 ± 14.1 mg h/dl, p < 0.01). High-performance liquid chromatography analysis revealed that postprandial triglyceride content of the chylomicron and very low-density lipoprotein fractions was significantly lower in the bezafibrate group than in the control group (p < 0.05). Conclusion Bezafibrate significantly decreased postprandial endothelial dysfunction, and elevations of both exogenous and endogenous triglycerides in patients with metabolic syndrome, suggesting that bezafibrate may have vascular protective effects in these patients. Clinical trial registration Unique Identifiers: UMIN000012557
Collapse
Affiliation(s)
| | - Toru Miyoshi
- Department of Cardiovascular Therapeutics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama 700-8558, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Goyal P, Igel LI, LaScalea K, Borden WB. Cardiometabolic Impact of Non-Statin Lipid Lowering Therapies. Curr Atheroscler Rep 2014; 16:390. [DOI: 10.1007/s11883-013-0390-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
22
|
Klempfner R, Goldenberg I, Fisman EZ, Matetzky S, Amit U, Shemesh J, Tenenbaum A. Comparison of statin alone versus bezafibrate and statin combination in patients with diabetes mellitus and acute coronary syndrome. Am J Cardiol 2014; 113:12-6. [PMID: 24157192 DOI: 10.1016/j.amjcard.2013.08.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 08/14/2013] [Accepted: 08/14/2013] [Indexed: 11/30/2022]
Abstract
Acute coronary syndromes (ACS) in patients with diabetes mellitus (DM) are associated with a high risk for major adverse cardiovascular events (MACEs) despite statin treatment. The impact of combined bezafibrate and statin therapy in patients with DM and ACS has not been specifically investigated. The aim of this study was to evaluate the association of combined therapy with 30-day MACEs in patients with DM participating in the nationwide Acute Coronary Syndrome Israeli Surveys (ACSIS). The study population comprised 3,063 patients with DM from the ACSIS 2000, 2002, 2004, 2006, 2008, and 2010 enrollment waves who were alive at discharge and received statins. Of these, 225 (7.3%) received on discharge combined bezafibrate and statin therapy, and 2,838 (92.7%) were treated with statins alone. MACEs were defined as a composite measure of death, recurrent myocardial infarction, recurrent ischemia, stent thrombosis, ischemic stroke, and urgent revascularization. The development of 30-day MACEs was recorded in 8% patients receiving combination therapy and 14.2% of those receiving statins alone (p = 0.01). Crude 1-year mortality and 30-day rehospitalization rates were also significantly lower in patients receiving combination therapy: 4.0% versus 8.1% (p = 0.03) and 13.3% versus 21.6% (p = 0.003), respectively. Multivariate analysis identified combined therapy as an independent predictor of reduced risk for 30-day MACEs, with an odds ratio of 0.56 (95% confidence interval 0.34 to 0.92), corresponding to a 44% relative risk reduction. In conclusion, a significantly lower risk for 30-day MACEs was observed in statin-treated patients with DM who also received bezafibrate after ACS. Signals regarding improvement of 30-day rehospitalization and 1-year mortality rates emerged as well.
Collapse
Affiliation(s)
- Robert Klempfner
- Cardiac Rehabilitation Institute, Chaim Sheba Medical Center, Tel-Hashomer, Israel, affiliated with the Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Leviev Heart Institute, Chaim Sheba Medical Center, Tel-Hashomer, Israel, affiliated with the Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Israeli Society for the Prevention of Heart Attacks, Chaim Sheba Medical Center, Tel-Hashomer, Israel, affiliated with the Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Ilan Goldenberg
- Cardiac Rehabilitation Institute, Chaim Sheba Medical Center, Tel-Hashomer, Israel, affiliated with the Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Leviev Heart Institute, Chaim Sheba Medical Center, Tel-Hashomer, Israel, affiliated with the Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Israeli Society for the Prevention of Heart Attacks, Chaim Sheba Medical Center, Tel-Hashomer, Israel, affiliated with the Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | | | - Shlomi Matetzky
- Leviev Heart Institute, Chaim Sheba Medical Center, Tel-Hashomer, Israel, affiliated with the Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Israeli Society for the Prevention of Heart Attacks, Chaim Sheba Medical Center, Tel-Hashomer, Israel, affiliated with the Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Uri Amit
- Israeli Society for the Prevention of Heart Attacks, Chaim Sheba Medical Center, Tel-Hashomer, Israel, affiliated with the Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Joseph Shemesh
- Cardiac Rehabilitation Institute, Chaim Sheba Medical Center, Tel-Hashomer, Israel, affiliated with the Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Alexander Tenenbaum
- Cardiac Rehabilitation Institute, Chaim Sheba Medical Center, Tel-Hashomer, Israel, affiliated with the Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Leviev Heart Institute, Chaim Sheba Medical Center, Tel-Hashomer, Israel, affiliated with the Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Israeli Society for the Prevention of Heart Attacks, Chaim Sheba Medical Center, Tel-Hashomer, Israel, affiliated with the Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Cardiovascular Diabetology Research Foundation, Holon, Israel.
| |
Collapse
|
23
|
Shiochi H, Ohkura T, Fujioka Y, Sumi K, Yamamoto N, Nakanishi R, Matsuzawa K, Izawa S, Ohkura H, Inoue K, Ueta E, Kato M, Taniguchi SI, Yamamoto K. Bezafibrate improves insulin resistance evaluated using the glucose clamp technique in patients with type 2 diabetes mellitus: a small-scale clinical study. Diabetol Metab Syndr 2014; 6:113. [PMID: 25360162 PMCID: PMC4213459 DOI: 10.1186/1758-5996-6-113] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 10/09/2014] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Bezafibrate is mainly used to treat hypertriglyceridemia. Studies have reported that bezafibrate also improves type 2 diabetes mellitus, but the mechanism has not been fully elucidated. We performed euglycemic hyperinsulinemic clamps (glucose clamp) and meal tolerance tests (MTT) to examine the effects of bezafibrate on insulin resistance in patients with type 2 diabetes mellitus. METHODS Twelve Japanese patients with type 2 diabetes mellitus and dyslipidemia (mean age: 59.5 years; fasting plasma glucose: 7.95 mmol/L; hemoglobin A1c [HbA1c]: 7.3%; body mass index: 26.5 kg/m(2)) underwent a glucose clamp and MTT before and after 12 weeks of treatment with 400 mg/day bezafibrate. The glucose infusion rate was measured during the glucose clamp. The patients took a test meal (460 kcal) in the MTT. Plasma glucose and immunoreactive insulin levels were measured at 0 (fasting), 30, 60, 120, and 180 min. Serum C-peptide immunoreactivity, serum lipids, and liver function markers were also measured during the MTT. RESULTS Bezafibrate significantly increased the mean glucose infusion rate from 5.78 ± 1.94 to 6.78 ± 2.52 mg/kg/min (p < 0.05). HbA1c improved from 7.30 ± 0.55% to 7.02 ± 0.52% (p < 0.05). In the MTT, fasting plasma glucose decreased from 7.95 ± 1.15 to 6.98 ± 1.07 mmol/L (p < 0.05). The area under the plasma glucose curve from 0 to 180 min decreased significantly from 29.48 ± 5.07 to 27.12 ± 3.98 mmol/h/L (p < 0.05), whereas immunoreactive insulin was unchanged. Furthermore, bezafibrate also significantly improved serum lipids, with decreases in triglyceride levels from 1.84 ± 0.88 to 1.14 ± 0.41 mmol/L (p < 0.05), low-density lipoprotein cholesterol levels from 3.56 ± 0.83 to 2.92 ± 0.55 mmol/L (p < 0.05), and remnant-like particle cholesterol levels decreased from 0.25 ± 0.16 to 0.14 ± 0.06 mmol/L (p < 0.05), and increases in high-density lipoprotein cholesterol levels from 1.50 ± 0.24 to 1.66 ± 0.29 mmol/L (p < 0.05). CONCLUSIONS Bezafibrate improved glucose intolerance and peripheral insulin resistance in these Japanese patients with type 2 diabetes mellitus and dyslipidemia. Therefore, bezafibrate could be used to treat insulin resistance in patients with type 2 diabetes mellitus and dyslipidemia. TRIAL REGISTRATION University Hospital Medical Information Network (UMIN) Clinical Trials Registry, UMIN000012462.
Collapse
Affiliation(s)
- Hideki Shiochi
- />Division of Cardiovascular Medicine, Endocrinology and Metabolism, Department of Molecular Medicine and Therapeutics, Tottori University Faculty of Medicine, Nishi-chou 36-1, Yonago, Tottori, 683-8504 Japan
| | - Tsuyoshi Ohkura
- />Division of Cardiovascular Medicine, Endocrinology and Metabolism, Department of Molecular Medicine and Therapeutics, Tottori University Faculty of Medicine, Nishi-chou 36-1, Yonago, Tottori, 683-8504 Japan
| | - Yohei Fujioka
- />Division of Cardiovascular Medicine, Endocrinology and Metabolism, Department of Molecular Medicine and Therapeutics, Tottori University Faculty of Medicine, Nishi-chou 36-1, Yonago, Tottori, 683-8504 Japan
| | - Keisuke Sumi
- />Division of Cardiovascular Medicine, Endocrinology and Metabolism, Department of Molecular Medicine and Therapeutics, Tottori University Faculty of Medicine, Nishi-chou 36-1, Yonago, Tottori, 683-8504 Japan
| | - Naoya Yamamoto
- />Division of Cardiovascular Medicine, Endocrinology and Metabolism, Department of Molecular Medicine and Therapeutics, Tottori University Faculty of Medicine, Nishi-chou 36-1, Yonago, Tottori, 683-8504 Japan
| | - Risa Nakanishi
- />Division of Cardiovascular Medicine, Endocrinology and Metabolism, Department of Molecular Medicine and Therapeutics, Tottori University Faculty of Medicine, Nishi-chou 36-1, Yonago, Tottori, 683-8504 Japan
| | - Kazuhiko Matsuzawa
- />Department of Regional Medicine, Tottori University Faculty of Medicine, Yonago, Tottori, 683-8504 Japan
| | - Schoichiro Izawa
- />Division of Cardiovascular Medicine, Endocrinology and Metabolism, Department of Molecular Medicine and Therapeutics, Tottori University Faculty of Medicine, Nishi-chou 36-1, Yonago, Tottori, 683-8504 Japan
| | - Hiroko Ohkura
- />Department of Regional Medicine, Tottori University Faculty of Medicine, Yonago, Tottori, 683-8504 Japan
| | - Kazuoki Inoue
- />Department of Regional Medicine, Tottori University Faculty of Medicine, Yonago, Tottori, 683-8504 Japan
| | - Etsuko Ueta
- />School of Health Science, Tottori University Faculty of Medicine, Yonago, Tottori, 683-8504 Japan
| | - Masahiko Kato
- />Division of Cardiovascular Medicine, Endocrinology and Metabolism, Department of Molecular Medicine and Therapeutics, Tottori University Faculty of Medicine, Nishi-chou 36-1, Yonago, Tottori, 683-8504 Japan
| | - Shin-ichi Taniguchi
- />Department of Regional Medicine, Tottori University Faculty of Medicine, Yonago, Tottori, 683-8504 Japan
| | - Kazuhiro Yamamoto
- />Division of Cardiovascular Medicine, Endocrinology and Metabolism, Department of Molecular Medicine and Therapeutics, Tottori University Faculty of Medicine, Nishi-chou 36-1, Yonago, Tottori, 683-8504 Japan
| |
Collapse
|
24
|
Teramoto T, Abe K, Taneyama T. Safety and efficacy of long-term combination therapy with bezafibrate and ezetimibe in patients with dyslipidemia in the prospective, observational J-COMPATIBLE study. Cardiovasc Diabetol 2013; 12:163. [PMID: 24195788 PMCID: PMC4226247 DOI: 10.1186/1475-2840-12-163] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 10/14/2013] [Indexed: 11/10/2022] Open
Abstract
Background There are numerous reports describing the efficacy of fenofibrate in combination with ezetimibe for treating dyslipidemia. In contrast, a study combining bezafibrate and ezetimibe has not yet been conducted. In this study, we examined the safety, including the risk of gallstone formation, and the efficacy of long-term combination therapy with bezafibrate and ezetimibe for treating dyslipidemia. Methods Dyslipidemic patients treated with 400 mg/day bezafibrate in combination with 10 mg/day ezetimibe for the first time were eligible. We selected 157 institutions in Japan and conducted a 12-month prospective observational study, with patients enrolled on the day they started combination therapy. Safety of the combination was examined in terms of the type, onset, and severity of adverse drug reactions (ADRs). Efficacy was evaluated in terms of the changes in low-density lipoprotein-cholesterol (LDL-C), high-density lipoprotein-cholesterol (HDL-C), triglyceride (TG), and non-HDL cholesterol (non-HDL-C) levels from the start of combination therapy (baseline) to the last observation carried forward (LOCF). Lipid levels were assessed at 1, 3, 6, and 12 months after starting combination therapy. Results We enrolled 665 patients in this observational study. Safety was evaluated in 659, and ADRs occurred in 42 patients (6.4%). The most frequent ADRs were blood creatine phosphokinase increase (1.5%) and myalgia (0.8%). Asymptomatic gallstones were observed in four patients (0.6%). Effectiveness was evaluated in 622 patients. LDL-C, HDL-C, TG, and non-HDL-C levels improved significantly from baseline to LOCF by −17.4%, 8.8%, –40.5%, and −21.6%, respectively (all, p < 0.001). Lipid levels also improved from baseline to each evaluation time-point. Conclusions Bezafibrate in combination with ezetimibe is safe and effective, and is potentially useful for comprehensive management of dyslipidemia.
Collapse
Affiliation(s)
- Tamio Teramoto
- Teikyo Academic Research Center, Teikyo University, 2-11-1, Kaga, Itabashi-ku, Tokyo 173-8606, Japan.
| | | | | |
Collapse
|
25
|
Kones R. Molecular sources of residual cardiovascular risk, clinical signals, and innovative solutions: relationship with subclinical disease, undertreatment, and poor adherence: implications of new evidence upon optimizing cardiovascular patient outcomes. Vasc Health Risk Manag 2013; 9:617-70. [PMID: 24174878 PMCID: PMC3808150 DOI: 10.2147/vhrm.s37119] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Residual risk, the ongoing appreciable risk of major cardiovascular events (MCVE) in statin-treated patients who have achieved evidence-based lipid goals, remains a concern among cardiologists. Factors that contribute to this continuing risk are atherogenic non-low-density lipoprotein (LDL) particles and atherogenic processes unrelated to LDL cholesterol, including other risk factors, the inherent properties of statin drugs, and patient characteristics, ie, genetics and behaviors. In addition, providers, health care systems, the community, public policies, and the environment play a role. Major statin studies suggest an average 28% reduction in LDL cholesterol and a 31% reduction in relative risk, leaving a residual risk of about 69%. Incomplete reductions in risk, and failure to improve conditions that create risk, may result in ongoing progression of atherosclerosis, with new and recurring lesions in original and distant culprit sites, remodeling, arrhythmias, rehospitalizations, invasive procedures, and terminal disability. As a result, identification of additional agents to reduce residual risk, particularly administered together with statin drugs, has been an ongoing quest. The current model of atherosclerosis involves many steps during which disease may progress independently of guideline-defined elevations in LDL cholesterol. Differences in genetic responsiveness to statin therapy, differences in ability of the endothelium to regenerate and repair, and differences in susceptibility to nonlipid risk factors, such as tobacco smoking, hypertension, and molecular changes associated with obesity and diabetes, may all create residual risk. A large number of inflammatory and metabolic processes may also provide eventual therapeutic targets to lower residual risk. Classically, epidemiologic and other evidence suggested that raising high-density lipoprotein (HDL) cholesterol would be cardioprotective. When LDL cholesterol is aggressively lowered to targets, low HDL cholesterol levels are still inversely related to MCVE. The efflux capacity, or ability to relocate cholesterol out of macrophages, is believed to be a major antiatherogenic mechanism responsible for reduction in MCVE mediated in part by healthy HDL. HDL cholesterol is a complex molecule with antioxidative, anti-inflammatory, anti-thrombotic, antiplatelet, and vasodilatory properties, among which is protection of LDL from oxidation. HDL-associated paraoxonase-1 has a major effect on endothelial function. Further, HDL promotes endothelial repair and progenitor cell health, and supports production of nitric oxide. HDL from patients with cardiovascular disease, diabetes, and autoimmune disease may fail to protect or even become proinflammatory or pro-oxidant. Mendelian randomization and other clinical studies in which raising HDL cholesterol has not been beneficial suggest that high plasma levels do not necessarily reduce cardiovascular risk. These data, coupled with extensive preclinical information about the functional heterogeneity of HDL, challenge the "HDL hypothesis", ie, raising HDL cholesterol per se will reduce MCVE. After the equivocal AIM-HIGH (Atherothrombosis Intervention in Metabolic Syndrome With Low HDL/High Triglycerides: Impact on Global Health Outcomes) study and withdrawal of two major cholesteryl ester transfer protein compounds, one for off-target adverse effects and the other for lack of efficacy, development continues for two other agents, ie, anacetrapib and evacetrapib, both of which lower LDL cholesterol substantially. The negative but controversial HPS2-THRIVE (the Heart Protection Study 2-Treatment of HDL to Reduce the Incidence of Vascular Events) trial casts further doubt on the HDL cholesterol hypothesis. The growing impression that HDL functionality, rather than abundance, is clinically important is supported by experimental evidence highlighting the conditional pleiotropic actions of HDL. Non-HDL cholesterol reflects the cholesterol in all atherogenic particles containing apolipoprotein B, and has outperformed LDL cholesterol as a lipid marker of cardiovascular risk and future mortality. In addition to including a measure of residual risk, the advantages of using non-HDL cholesterol as a primary lipid target are now compelling. Reinterpretation of data from the Treating to New Targets study suggests that better control of smoking, body weight, hypertension, and diabetes will help lower residual risk. Although much improved, control of risk factors other than LDL cholesterol currently remains inadequate due to shortfalls in compliance with guidelines and poor patient adherence. More efficient and greater use of proven simple therapies, such as aspirin, beta-blockers, angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers, combined with statin therapy, may be more fruitful in improving outcomes than using other complex therapies. Comprehensive, intensive, multimechanistic, global, and national programs using primordial, primary, and secondary prevention to lower the total level of cardiovascular risk are necessary.
Collapse
Affiliation(s)
- Richard Kones
- Cardiometabolic Research Institute, Houston, TX, USA
| |
Collapse
|
26
|
Fazio S, Linton MF. Killing two birds with one stone, maybe: CETP inhibition increases both high-density lipoprotein levels and insulin secretion. Circ Res 2013; 113:94-6. [PMID: 23833288 DOI: 10.1161/circresaha.113.301832] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
27
|
Magliano DC, Bargut TCL, de Carvalho SN, Aguila MB, Mandarim-de-Lacerda CA, Souza-Mello V. Peroxisome proliferator-activated receptors-alpha and gamma are targets to treat offspring from maternal diet-induced obesity in mice. PLoS One 2013; 8:e64258. [PMID: 23700465 PMCID: PMC3658968 DOI: 10.1371/journal.pone.0064258] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 04/13/2013] [Indexed: 02/07/2023] Open
Abstract
AIM The aim of the present study was to evaluate whether activation of peroxisome proliferator-activated receptor (PPAR)alpha and PPARgamma by Bezafibrate (BZ) could attenuate hepatic and white adipose tissue (WAT) abnormalities in male offspring from diet-induced obese dams. MATERIALS AND METHODS C57BL/6 female mice were fed a standard chow (SC; 10% lipids) diet or a high-fat (HF; 49% lipids) diet for 8 weeks before mating and during gestation and lactation periods. Male offspring received SC diet at weaning and were subdivided into four groups: SC, SC/BZ, HF and HF/BZ. Treatment with BZ (100 mg/Kg diet) started at 12 weeks of age and was maintained for three weeks. RESULTS The HF diet resulted in an overweight phenotype and an increase in oral glucose intolerance and fasting glucose of dams. The HF offspring showed increased body mass, higher levels of plasmatic and hepatic triglycerides, higher levels of pro-inflammatory and lower levels of anti-inflammatory adipokines, impairment of glucose metabolism, abnormal fat pad mass distribution, higher number of larger adipocytes, hepatic steatosis, higher expression of lipogenic proteins concomitant to decreased expression of PPARalpha and carnitine palmitoyltransferase I (CPT-1) in liver, and diminished expression of PPARgamma and adiponectin in WAT. Treatment with BZ ameliorated the hepatic and WAT abnormalities generated by diet-induced maternal obesity, with improvements observed in the structural, biochemical and molecular characteristics of the animals' livers and epididymal fat. CONCLUSION Diet-induced maternal obesity lead to alterations in metabolism, hepatic lipotoxicity and adverse liver and WAT remodeling in the offspring. Targeting PPAR with Bezafibrate has beneficial effects reducing the alterations, mainly through reduction of WAT inflammatory state through PPARgamma activation and enhanced hepatic beta-oxidation due to increased PPARalpha/PPARgamma ratio in liver.
Collapse
Affiliation(s)
- D'Angelo Carlo Magliano
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Centre, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thereza Cristina Lonzetti Bargut
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Centre, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Simone Nunes de Carvalho
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Centre, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcia Barbosa Aguila
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Centre, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos Alberto Mandarim-de-Lacerda
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Centre, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail:
| | - Vanessa Souza-Mello
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Centre, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
28
|
Tenenbaum A, Fisman EZ. Balanced pan-PPAR activator bezafibrate in combination with statin: comprehensive lipids control and diabetes prevention? Cardiovasc Diabetol 2012; 11:140. [PMID: 23150952 PMCID: PMC3502168 DOI: 10.1186/1475-2840-11-140] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2012] [Accepted: 10/31/2012] [Indexed: 01/11/2023] Open
Abstract
All fibrates are peroxisome proliferators-activated receptors (PPARs)-alpha agonists with ability to decrease triglyceride and increase high density lipoprotein- cholesterol (HDL-C). However, bezafibrate has a unique characteristic profile of action since it activates all three PPAR subtypes (alpha, gamma and delta) at comparable doses. Therefore, bezafibrate operates as a pan-agonist for all three PPAR isoforms. Selective PPAR gamma agonists (thiazolidinediones) are used to treat type 2 diabetes mellitus (T2DM). They improve insulin sensitivity by up-regulating adipogenesis, decreasing free fatty acid levels, and reversing insulin resistance. However, selective PPAR gamma agonists also cause water retention, weight gain, peripheral edema, and congestive heart failure. The expression of PPAR beta/ delta in essentially all cell types and tissues (ubiquitous presence) suggests its potential fundamental role in cellular biology. PPAR beta/ delta effects correlated with enhancement of fatty acid oxidation, energy consumption and adaptive thermogenesis. Together, these data implicate PPAR beta/delta in fuel combustion and suggest that pan-PPAR agonists that include a component of PPAR beta/delta activation might offset some of the weight gain issues seen with selective PPAR gamma agonists, as was demonstrated by bezafibrate studies. Suggestively, on the whole body level all PPARs acting as one orchestra and balanced pan-PPAR activation seems as an especially attractive pharmacological goal. Conceptually, combined PPAR gamma and alpha action can target simultaneously insulin resistance and atherogenic dyslipidemia, whereas PPAR beta/delta properties may prevent the development of overweight. Bezafibrate, as all fibrates, significantly reduced plasma triglycerides and increased HDL-C level (but considerably stronger than other major fibrates). Bezafibrate significantly decreased prevalence of small, dense low density lipoproteins particles, remnants, induced atherosclerotic plaque regression in thoracic and abdominal aorta and improved endothelial function. In addition, bezafibrate has important fibrinogen-related properties and anti-inflammatory effects. In clinical trials bezafibrate was highly effective for cardiovascular risk reduction in patients with metabolic syndrome and atherogenic dyslipidemia. The principal differences between bezafibrate and other fibrates are related to effects on glucose level and insulin resistance. Bezafibrate decreases blood glucose level, HbA1C, insulin resistance and reduces the incidence of T2DM compared to placebo or other fibrates. Currently statins are the cornerstone of the treatment and prevention of cardiovascular diseases related to atherosclerosis. However, despite the increasing use of statins as monotherapy for low density lipoprotein- cholesterol (LDL-C) reduction, a significant residual cardiovascular risk is still presented in patients with atherogenic dyslipidemia and insulin resistance, which is typical for T2DM and metabolic syndrome. Recently, concerns were raised regarding the development of diabetes in statin-treated patients. Combined bezafibrate/statin therapy is more effective in achieving a comprehensive lipid control and residual cardiovascular risk reduction. Based on the beneficial effects of pan-PPAR agonist bezafibrate on glucose metabolism and prevention of new-onset diabetes, one could expect a neutralization of the adverse pro-diabetic effect of statins using the strategy of a combined statin/fibrate therapy.
Collapse
Affiliation(s)
- Alexander Tenenbaum
- Cardiac Rehabilitation Institute, Sheba Medical Center, 52621 Tel-Hashomer, Israel.
| | | |
Collapse
|
29
|
Tenenbaum A, Fisman EZ. Balanced pan-PPAR activator bezafibrate in combination with statin: comprehensive lipids control and diabetes prevention? Cardiovasc Diabetol 2012. [PMID: 23150952 DOI: 10.1186/1475-2840-11-1401475-2840-11-140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
All fibrates are peroxisome proliferators-activated receptors (PPARs)-alpha agonists with ability to decrease triglyceride and increase high density lipoprotein- cholesterol (HDL-C). However, bezafibrate has a unique characteristic profile of action since it activates all three PPAR subtypes (alpha, gamma and delta) at comparable doses. Therefore, bezafibrate operates as a pan-agonist for all three PPAR isoforms. Selective PPAR gamma agonists (thiazolidinediones) are used to treat type 2 diabetes mellitus (T2DM). They improve insulin sensitivity by up-regulating adipogenesis, decreasing free fatty acid levels, and reversing insulin resistance. However, selective PPAR gamma agonists also cause water retention, weight gain, peripheral edema, and congestive heart failure. The expression of PPAR beta/ delta in essentially all cell types and tissues (ubiquitous presence) suggests its potential fundamental role in cellular biology. PPAR beta/ delta effects correlated with enhancement of fatty acid oxidation, energy consumption and adaptive thermogenesis. Together, these data implicate PPAR beta/delta in fuel combustion and suggest that pan-PPAR agonists that include a component of PPAR beta/delta activation might offset some of the weight gain issues seen with selective PPAR gamma agonists, as was demonstrated by bezafibrate studies. Suggestively, on the whole body level all PPARs acting as one orchestra and balanced pan-PPAR activation seems as an especially attractive pharmacological goal. Conceptually, combined PPAR gamma and alpha action can target simultaneously insulin resistance and atherogenic dyslipidemia, whereas PPAR beta/delta properties may prevent the development of overweight. Bezafibrate, as all fibrates, significantly reduced plasma triglycerides and increased HDL-C level (but considerably stronger than other major fibrates). Bezafibrate significantly decreased prevalence of small, dense low density lipoproteins particles, remnants, induced atherosclerotic plaque regression in thoracic and abdominal aorta and improved endothelial function. In addition, bezafibrate has important fibrinogen-related properties and anti-inflammatory effects. In clinical trials bezafibrate was highly effective for cardiovascular risk reduction in patients with metabolic syndrome and atherogenic dyslipidemia. The principal differences between bezafibrate and other fibrates are related to effects on glucose level and insulin resistance. Bezafibrate decreases blood glucose level, HbA1C, insulin resistance and reduces the incidence of T2DM compared to placebo or other fibrates. Currently statins are the cornerstone of the treatment and prevention of cardiovascular diseases related to atherosclerosis. However, despite the increasing use of statins as monotherapy for low density lipoprotein- cholesterol (LDL-C) reduction, a significant residual cardiovascular risk is still presented in patients with atherogenic dyslipidemia and insulin resistance, which is typical for T2DM and metabolic syndrome. Recently, concerns were raised regarding the development of diabetes in statin-treated patients. Combined bezafibrate/statin therapy is more effective in achieving a comprehensive lipid control and residual cardiovascular risk reduction. Based on the beneficial effects of pan-PPAR agonist bezafibrate on glucose metabolism and prevention of new-onset diabetes, one could expect a neutralization of the adverse pro-diabetic effect of statins using the strategy of a combined statin/fibrate therapy.
Collapse
Affiliation(s)
- Alexander Tenenbaum
- Cardiac Rehabilitation Institute, Sheba Medical Center, 52621 Tel-Hashomer, Israel.
| | | |
Collapse
|
30
|
Tenenbaum A, Fisman EZ. Fibrates are an essential part of modern anti-dyslipidemic arsenal: spotlight on atherogenic dyslipidemia and residual risk reduction. Cardiovasc Diabetol 2012; 11:125. [PMID: 23057687 PMCID: PMC3489608 DOI: 10.1186/1475-2840-11-125] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 10/09/2012] [Indexed: 02/06/2023] Open
Abstract
Currently the world faces epidemic of several closely related conditions: obesity, metabolic syndrome and type 2 diabetes (T2DM). The lipid profile of these patients and those with metabolic syndrome is characterized by the concurrent presence of qualitative as well as quantitative lipoprotein abnormalities: low levels of HDL, increased triglycerides, and prevalence of LDL particles that are smaller and denser than normal. This lipid phenotype has been defined as atherogenic dyslipidemia. Overwhelming evidences demonstrate that all components of the atherogenic dyslipidemia are important risk-factors for cardiovascular diseases. Optimal reduction of cardiovascular risk through comprehensive management of atherogenic dyslipidemias basically depends of the presence of efficacious lipid-modulating agents (beyond statin-based reduction of LDL-C). The most important class of medications which can be effectively used nowadays to combat atherogenic dyslipidemias is the fibrates. From a clinical point of view, in all available 5 randomized control trials beneficial effects of major fibrates (gemfibrozil, fenofibrate, bezafibrate) were clearly demonstrated and were highly significant in patients with atherogenic dyslipidemia. In these circumstances, the main determinant of the overall results of the trial is mainly dependent of the number of the included appropriate patients with atherogenic dyslipidemia. In a meta-analysis of dyslipidemic subgroups totaling 4726 patients a significant 35% relative risk reduction in cardiovascular events was observed compared with a non significant 6% reduction in those without dyslipidemia. However, different fibrates may have a somewhat different spectrum of effects. Currently only fenofibrate was investigated and proved to be effective in reducing microvascular complications of diabetes. Bezafibrate reduced the severity of intermittent claudication. Cardinal differences between bezafibrate and other fibrates are related to the effects on glucose metabolism and insulin resistance. Bezafibrate is the only clinically available pan - (alpha, beta, gamma) PPAR balanced activator. Bezafibrate decreases blood glucose level, HbA1C, insulin resistance and reduces the incidence of T2DM compared to placebo or other fibrates. Among major fibrates, bezafibrate appears to have the strongest and fenofibrate the weakest effect on HDL-C. Current therapeutic use of statins as monotherapy is still leaving many patients with atherogenic dyslipidemia at high risk for coronary events because even intensive statin therapy does not eliminate the residual cardiovascular risk associated with low HDL and/or high triglycerides. As compared with statin monotherapy (effective mainly on LDL-C levels and plaque stabilization), the association of a statin with a fibrate will also have a major impact on triglycerides, HDL and LDL particle size. Moreover, in the specific case of bezafibrate one could expect neutralizing of the adverse pro-diabetic effect of statins. Though muscle pain and myositis is an issue in statin/fibrate treatment, adverse interaction appears to occur to a significantly greater extent when gemfibrozil is administered. However, bezafibrate and fenofibrate seems to be safer and better tolerated. Combined fibrate/statin therapy is more effective in achieving a comprehensive lipid control and may lead to additional cardiovascular risk reduction, as could be suggested for fenofibrate following ACCORD Lipid study subgroup analysis and for bezafibrate on the basis of one small randomized study and multiple observational data. Therefore, in appropriate patients with atherogenic dyslipidemia fibrates- either as monotherapy or combined with statins - are consistently associated with reduced risk of cardiovascular events. Fibrates currently constitute an indispensable part of the modern anti-dyslipidemic arsenal for patients with atherogenic dyslipidemia.
Collapse
Affiliation(s)
- Alexander Tenenbaum
- Cardiac Rehabilitation Institute, Sheba Medical Center, Tel-Hashomer, 52621, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
- Cardiovascular Diabetology Research Foundation, Holon 58484, Israel
| | - Enrique Z Fisman
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
- Cardiovascular Diabetology Research Foundation, Holon 58484, Israel
| |
Collapse
|
31
|
Toth PP, Simko RJ, Palli SR, Koselleck D, Quimbo RA, Cziraky MJ. The impact of serum lipids on risk for microangiopathy in patients with type 2 diabetes mellitus. Cardiovasc Diabetol 2012; 11:109. [PMID: 22978715 PMCID: PMC3473235 DOI: 10.1186/1475-2840-11-109] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 08/30/2012] [Indexed: 11/10/2022] Open
Abstract
Background Few large-scale, real-world studies have assessed the relative associations of lipid fractions with diabetic microvascular events. The main objective of this study was to evaluate the association of the lipid profile components, high density lipoprotein cholesterol (HDL-C), low density lipoprotein cholesterol (LDL-C), triglycerides (TG), and non-high density lipoprotein cholesterol (non-HDL-C) with microvascular complications (MVCs) in type 2 diabetes mellitus (T2DM) patients. Methods This observational cohort study queried the HealthCore Integrated Research Database (HIRDSM) for newly-diagnosed (Index Date) 18-64-year-old patients with diabetes mellitus between 01/01/2005-06/30/2010. Inclusion required ≥12 months pre-index continuous health plan eligibility and ≥1 pre-index lipid profile result. Patients with polycystic ovary syndrome and prior MVCs were excluded. Incident complications were defined as the earliest occurrence of diabetic retinopathy, peripheral neuropathy, and/or nephropathy post-index. Cox proportional models and Kaplan-Meier (KM) curves were used to evaluate associations among variables. Results Of the patients (N = 72,267), 50.05 % achieved HDL-C, 64.28 % LDL-C, 59.82 % TG, and 56.79 % non-HDL-C American Diabetes Association goals at baseline. During follow-up (mean, 21.74 months), there were 5.21 microvascular events per 1,000 patient-months. A 1-mg/dL increase in HDL-C was associated with 1 % decrease in any MVC risk (P < .0001), but for LDL-C, TG, and non-HDL-C, 1-mg/dL increase resulted in increases of 0.2 % (P < .0001), 0.1 % (P < 0.001) and 0.3 % (P < 0.001) in MVC risk. Patients achieving HDL-C goals had a 11 % lower risk of MVC versus non-achievers (RR 0.895, [95 % CI, 0.852-0.941], P < .0001). Similarly, TG goal attainment was associated with a lowered risk for any MVC (RR 0.849, [95 % CI, 0.808-0.892], P < .0001). Evaluation of KM survival curves demonstrated no significant difference in the risk of MVCs between patients achieving vs. not achieving LDL-C goals, but did demonstrate a difference in MVC risk between patients achieving vs. not achieving non-HDL-C goals. Conclusion This study demonstrates significant independent associations among lipid fractions and risk for microangiopathy. These findings suggest that attaining established ADA goals for HDL-C, TG, and non-HDL-C may reduce risk for microvascular events among patients with diabetes.
Collapse
Affiliation(s)
- Peter P Toth
- CGH Medical Center, 101 east Miller Rd,, Sterling, IL, 61081, USA.
| | | | | | | | | | | |
Collapse
|