1
|
Wang X, Yang Q, Haringa C, Wang Z, Chu J, Zhuang Y, Wang G. An industrial perspective on metabolic responses of Penicillium chrysogenum to periodic dissolved oxygen feast-famine cycles in a scale-down system. Biotechnol Bioeng 2024; 121:3076-3098. [PMID: 39382054 DOI: 10.1002/bit.28782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/16/2024] [Accepted: 06/12/2024] [Indexed: 10/10/2024]
Abstract
While traveling through different zones in large-scale bioreactors, microbes are most likely subjected to fluctuating dissolved oxygen (DO) conditions at the timescales of global circulation time. In this study, to mimic industrial-scale spatial DO gradients, we present a scale-down setup based on dynamic feast/famine regime (150 s) that leads to repetitive cycles with rapid changes in DO availability in glucose-limited chemostat cultures of Penicillium chrysogenum. Such DO feast/famine regime induced a stable and repetitive pattern with a reproducible metabolic response in time, and the dynamic response of intracellular metabolites featured specific differences in terms of both coverage and magnitude in comparison to other dynamic conditions, for example, substrate feast/famine cycles. Remarkably, intracellular sugar polyols were considerably increased as the hallmark metabolites along with a dynamic and higher redox state (NADH/NAD+) of the cytosol. Despite the increased availability of NADPH for penicillin production under the oscillatory DO conditions, this positive effect may be counteracted by the decreased ATP supply. Moreover, it is interesting to note that not only the penicillin productivity was reduced under such oscillating DO conditions, but also that of the unrecyclable byproduct ortho-hydroxyphenyl acetic acid and degeneration of penicillin productivity. Furthermore, dynamic flux profiles showed the most pronounced variations in central carbon metabolism, amino acid (AA) metabolism, energy metabolism and fatty acid metabolism upon the DO oscillation. Taken together, the metabolic responses of P. chrysogenum to DO gradients reported here are important for elucidating metabolic regulation mechanisms, improving bioreactor design and scale-up procedures as well as for constructing robust cell strains to cope with heterogenous industrial culture conditions.
Collapse
Affiliation(s)
- Xueting Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology (ECUST), Shanghai, People's Republic of China
| | - Qi Yang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology (ECUST), Shanghai, People's Republic of China
| | - Cees Haringa
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Zejian Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology (ECUST), Shanghai, People's Republic of China
| | - Ju Chu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology (ECUST), Shanghai, People's Republic of China
- Qingdao Innovation Institute of East China University of Science and Technology, Qingdao, People's Republic of China
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology (ECUST), Shanghai, People's Republic of China
- Qingdao Innovation Institute of East China University of Science and Technology, Qingdao, People's Republic of China
| | - Guan Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology (ECUST), Shanghai, People's Republic of China
- Qingdao Innovation Institute of East China University of Science and Technology, Qingdao, People's Republic of China
| |
Collapse
|
2
|
Theorell A, Jadebeck JF, Wiechert W, McFadden J, Nöh K. Rethinking 13C-metabolic flux analysis - The Bayesian way of flux inference. Metab Eng 2024; 83:137-149. [PMID: 38582144 DOI: 10.1016/j.ymben.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 03/22/2024] [Accepted: 03/23/2024] [Indexed: 04/08/2024]
Abstract
Metabolic reaction rates (fluxes) play a crucial role in comprehending cellular phenotypes and are essential in areas such as metabolic engineering, biotechnology, and biomedical research. The state-of-the-art technique for estimating fluxes is metabolic flux analysis using isotopic labelling (13C-MFA), which uses a dataset-model combination to determine the fluxes. Bayesian statistical methods are gaining popularity in the field of life sciences, but the use of 13C-MFA is still dominated by conventional best-fit approaches. The slow take-up of Bayesian approaches is, at least partly, due to the unfamiliarity of Bayesian methods to metabolic engineering researchers. To address this unfamiliarity, we here outline similarities and differences between the two approaches and highlight particular advantages of the Bayesian way of flux analysis. With a real-life example, re-analysing a moderately informative labelling dataset of E. coli, we identify situations in which Bayesian methods are advantageous and more informative, pointing to potential pitfalls of current 13C-MFA evaluation approaches. We propose the use of Bayesian model averaging (BMA) for flux inference as a means of overcoming the problem of model uncertainty through its tendency to assign low probabilities to both, models that are unsupported by data, and models that are overly complex. In this capacity, BMA resembles a tempered Ockham's razor. With the tempered razor as a guide, BMA-based 13C-MFA alleviates the problem of model selection uncertainty and is thereby capable of becoming a game changer for metabolic engineering by uncovering new insights and inspiring novel approaches.
Collapse
Affiliation(s)
- Axel Theorell
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Johann F Jadebeck
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; Computational Systems Biotechnology (AVT.CSB), RWTH Aachen University, 52062 Aachen, Germany
| | - Wolfgang Wiechert
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; Computational Systems Biotechnology (AVT.CSB), RWTH Aachen University, 52062 Aachen, Germany
| | - Johnjoe McFadden
- Department of Microbial and Cellular Sciences, University of Surrey, GU2 7XH Guildford, United Kingdom
| | - Katharina Nöh
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.
| |
Collapse
|
3
|
Wiechert W, Nöh K. Quantitative Metabolic Flux Analysis Based on Isotope Labeling. Metab Eng 2021. [DOI: 10.1002/9783527823468.ch3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
4
|
Zelle E, Pfelzer N, Oldiges M, Koch-Koerfges A, Bott M, Nöh K, Wiechert W. An energetic profile of Corynebacterium glutamicum underpinned by measured biomass yield on ATP. Metab Eng 2021; 65:66-78. [PMID: 33722651 DOI: 10.1016/j.ymben.2021.03.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/17/2021] [Accepted: 03/06/2021] [Indexed: 11/17/2022]
Abstract
The supply and usage of energetic cofactors in metabolism is a central concern for systems metabolic engineering, particularly in case of energy intensive products. One of the most important parameters for systems wide balancing of energetic cofactors is the ATP requirement for biomass formation YATP/Biomass. Despite its fundamental importance, YATP/Biomass values for non-fermentative organisms are still rough estimates deduced from theoretical considerations. For the first time, we present an approach for the experimental determination of YATP/Biomass using comparative 13C metabolic flux analysis (13C MFA) of a wild type strain and an ATP synthase knockout mutant. We show that the energetic profile of a cell can then be deduced from a genome wide stoichiometric model and experimental maintenance data. Particularly, the contributions of substrate level phosphorylation (SLP) and electron transport phosphorylation (ETP) to ATP generation become available which enables the overall energetic efficiency of a cell to be characterized. As a model organism, the industrial platform organism Corynebacterium glutamicum is used. C. glutamicum uses a respiratory type of energy metabolism, implying that ATP can be synthesized either by SLP or by ETP with the membrane-bound F1FO-ATP synthase using the proton motive force (pmf) as driving force. The presence of two terminal oxidases, which differ in their proton translocation efficiency by a factor of three, further complicates energy balancing for this organism. By integration of experimental data and network models, we show that in the wild type SLP and ETP contribute equally to ATP generation. Thus, the role of ETP in respiring bacteria may have been overrated in the past. Remarkably, in the genome wide setting 65% of the pmf is actually not used for ATP synthesis. However, it turns out that, compared to other organisms C. glutamicum still uses its energy budget rather efficiently.
Collapse
Affiliation(s)
- E Zelle
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, D, 52425, Jülich, Germany
| | - N Pfelzer
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, D, 52425, Jülich, Germany
| | - M Oldiges
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, D, 52425, Jülich, Germany
| | - A Koch-Koerfges
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, D, 52425, Jülich, Germany
| | - M Bott
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, D, 52425, Jülich, Germany
| | - K Nöh
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, D, 52425, Jülich, Germany
| | - W Wiechert
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, D, 52425, Jülich, Germany.
| |
Collapse
|
5
|
Impact of Altered Trehalose Metabolism on Physiological Response of Penicillium chrysogenum Chemostat Cultures during Industrially Relevant Rapid Feast/Famine Conditions. Processes (Basel) 2021. [DOI: 10.3390/pr9010118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Due to insufficient mass transfer and mixing issues, cells in the industrial-scale bioreactor are often forced to experience glucose feast/famine cycles, mostly resulting in reduced commercial metrics (titer, yield and productivity). Trehalose cycling has been confirmed as a double-edged sword in the Penicillium chrysogenum strain, which facilitates the maintenance of a metabolically balanced state, but it consumes extra amounts of the ATP responsible for the repeated breakdown and formation of trehalose molecules in response to extracellular glucose perturbations. This loss of ATP would be in competition with the high ATP-demanding penicillin biosynthesis. In this work, the role of trehalose metabolism was further explored under industrially relevant conditions by cultivating a high-yielding Penicillium chrysogenum strain, and the derived trehalose-null strains in the glucose-limited chemostat system where the glucose feast/famine condition was imposed. This dynamic feast/famine regime with a block-wise feed/no feed regime (36 s on, 324 s off) allows one to generate repetitive cycles of moderate changes in glucose availability. The results obtained using quantitative metabolomics and stoichiometric analysis revealed that the intact trehalose metabolism is vitally important for maintaining penicillin production capacity in the Penicillium chrysogenum strain under both steady state and dynamic conditions. Additionally, cells lacking such a key metabolic regulator would become more sensitive to industrially relevant conditions, and are more able to sustain metabolic rearrangements, which manifests in the shrinkage of the central metabolite pool size and the formation of ATP-consuming futile cycles.
Collapse
|
6
|
Kager J, Tuveri A, Ulonska S, Kroll P, Herwig C. Experimental verification and comparison of model predictive, PID and model inversion control in a Penicillium chrysogenum fed-batch process. Process Biochem 2020. [DOI: 10.1016/j.procbio.2019.11.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
7
|
Wang G, Zhao J, Wang X, Wang T, Zhuang Y, Chu J, Zhang S, Noorman HJ. Quantitative metabolomics and metabolic flux analysis reveal impact of altered trehalose metabolism on metabolic phenotypes of Penicillium chrysogenum in aerobic glucose-limited chemostats. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.03.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
8
|
He JZ, Dorion S, Lacroix M, Rivoal J. Sustained substrate cycles between hexose phosphates and free sugars in phosphate-deficient potato (Solanum tuberosum) cell cultures. PLANTA 2019; 249:1319-1336. [PMID: 30627889 DOI: 10.1007/s00425-019-03088-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 01/03/2019] [Indexed: 06/09/2023]
Abstract
Futile cycling between free sugars and hexose phosphates occurring under phosphate deficiency could be involved in the maintenance of a threshold level of free cellular phosphate to preserve respiratory metabolism. We studied the metabolic response of potato cell cultures growing in Pi sufficient (2.5 mM, +Pi) or deficient (125 µM, -Pi) conditions. Under Pi deficiency, cellular growth was severely affected, however -Pi cells were able to maintain a low but steady level of free Pi. We surveyed the activities of 33 primary metabolic enzymes during the course of a 12 days Pi deficiency period. Our results show that many of these enzymes had higher specific activity in -Pi cells. Among these, we found typical markers of Pi deficiency such as phosphoenolpyruvate phosphatase and phosphoenolpyruvate carboxylase as well as enzymes involved in the biosynthesis of organic acids. Intriguingly, several ATP-consuming enzymes such as hexokinase (HK) and phosphofructokinase also displayed increased activity in -Pi condition. For HK, this was associated with an increase in the steady state of a specific HK polypeptide. Quantification of glycolytic intermediates showed a pronounced decrease in phosphate esters under Pi deficiency. Adenylate levels also decreased in -Pi cells, but the Adenylate Energy Charge was not affected by the treatment. To investigate the significance of HK induction under low Pi, [U-14C]-glucose tracer studies were conducted. We found in vivo evidence of futile cycling between pools of hexose phosphates and free sugars under Pi deficiency. Our study suggests that the futile cycling between hexose phosphates and free sugars which is active under +Pi conditions is sustained under Pi deficiency. The possibility that this process represents a metabolic adaptation to Pi deficiency is discussed with respect to Pi homeostasis in Pi-deficient conditions.
Collapse
Affiliation(s)
- Jiang Zhou He
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke est, Montréal, Qc, H1X 2B2, Canada
| | - Sonia Dorion
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke est, Montréal, Qc, H1X 2B2, Canada
| | - Mélanie Lacroix
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke est, Montréal, Qc, H1X 2B2, Canada
| | - Jean Rivoal
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke est, Montréal, Qc, H1X 2B2, Canada.
| |
Collapse
|
9
|
Cheah YE, Young JD. Isotopically nonstationary metabolic flux analysis (INST-MFA): putting theory into practice. Curr Opin Biotechnol 2018. [PMID: 29522915 DOI: 10.1016/j.copbio.2018.02.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Typically, 13C flux analysis relies on assumptions of both metabolic and isotopic steady state. If metabolism is steady but isotope labeling is not allowed to fully equilibrate, isotopically nonstationary metabolic flux analysis (INST-MFA) can be used to estimate fluxes. This requires solution of differential equations that describe the time-dependent labeling of network metabolites, while iteratively adjusting the flux and pool size parameters to match the transient labeling measurements. INST-MFA holds a number of unique advantages over approaches that rely solely upon steady-state isotope enrichments. First, INST-MFA can be applied to estimate fluxes in autotrophic systems, which consume only single-carbon substrates. Second, INST-MFA is ideally suited to systems that label slowly due to the presence of large intermediate pools or pathway bottlenecks. Finally, INST-MFA provides increased measurement sensitivity to estimate reversible exchange fluxes and metabolite pool sizes, which represents a potential framework for integrating metabolomic analysis with 13C flux analysis. This review highlights the unique capabilities of INST-MFA, describes newly available software tools that automate INST-MFA calculations, presents several practical examples of recent INST-MFA applications, and discusses the technical challenges that lie ahead.
Collapse
Affiliation(s)
- Yi Ern Cheah
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, PMB 351604, Nashville, TN 37235-1604, USA
| | - Jamey D Young
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, PMB 351604, Nashville, TN 37235-1604, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University, PMB 351604, Nashville, TN 37235-1604, USA.
| |
Collapse
|
10
|
Karpe AV, Beale DJ, Godhani NB, Morrison PD, Harding IH, Palombo EA. Untargeted Metabolic Profiling of Winery-Derived Biomass Waste Degradation by Penicillium chrysogenum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:10696-704. [PMID: 26611372 DOI: 10.1021/acs.jafc.5b04834] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Winery-derived biomass waste was degraded by Penicillium chrysogenum under solid state fermentation over 8 days in a (2)H2O-supplemented medium. Multivariate statistical analysis of the gas chromatography-mass spectrometry (GC-MS) data resulted in the identification of 94 significant metabolites, within 28 different metabolic pathways. The majority of biomass sugars were utilized by day 4 to yield products such as sugars, fatty acids, isoprenoids, and amino acids. The fungus was observed to metabolize xylose to xylitol, an intermediate of ethanol production. However, enzyme inhibition and autolysis were observed from day 6, indicating 5 days as the optimal time for fermentation. P. chrysogenum displayed metabolism of pentoses (to alcohols) and degraded tannins and lignins, properties that are lacking in other biomass-degrading ascomycetes. Rapid fermentation (3-5 days) may not only increase the pentose metabolizing efficiency but also increase the yield of medicinally important metabolites, such as syringate.
Collapse
Affiliation(s)
- Avinash V Karpe
- Department of Chemistry and Biotechnology, Swinburne University of Technology , P.O. Box 218, Hawthorn, Victoria 3122, Australia
- Land and Water, Commonwealth Scientific and Industrial Research Organization (CSIRO), P.O. Box 2583, Dutton Park, Queensland 4001, Australia
| | - David J Beale
- Land and Water, Commonwealth Scientific and Industrial Research Organization (CSIRO), P.O. Box 2583, Dutton Park, Queensland 4001, Australia
| | - Nainesh B Godhani
- Department of Mechanical and Product Design Engineering, Swinburne University of Technology , P.O. Box 218, Hawthorn, Victoria 3122, Australia
| | - Paul D Morrison
- Australian Centre for Research on Separation Science, School of Applied Sciences, RMIT University , P.O. Box 2547, Melbourne, Victoria 3000, Australia
| | - Ian H Harding
- Department of Chemistry and Biotechnology, Swinburne University of Technology , P.O. Box 218, Hawthorn, Victoria 3122, Australia
| | - Enzo A Palombo
- Department of Chemistry and Biotechnology, Swinburne University of Technology , P.O. Box 218, Hawthorn, Victoria 3122, Australia
| |
Collapse
|
11
|
Allen DK, Bates PD, Tjellström H. Tracking the metabolic pulse of plant lipid production with isotopic labeling and flux analyses: Past, present and future. Prog Lipid Res 2015; 58:97-120. [PMID: 25773881 DOI: 10.1016/j.plipres.2015.02.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 01/30/2015] [Accepted: 02/11/2015] [Indexed: 11/25/2022]
Abstract
Metabolism is comprised of networks of chemical transformations, organized into integrated biochemical pathways that are the basis of cellular operation, and function to sustain life. Metabolism, and thus life, is not static. The rate of metabolites transitioning through biochemical pathways (i.e., flux) determines cellular phenotypes, and is constantly changing in response to genetic or environmental perturbations. Each change evokes a response in metabolic pathway flow, and the quantification of fluxes under varied conditions helps to elucidate major and minor routes, and regulatory aspects of metabolism. To measure fluxes requires experimental methods that assess the movements and transformations of metabolites without creating artifacts. Isotopic labeling fills this role and is a long-standing experimental approach to identify pathways and quantify their metabolic relevance in different tissues or under different conditions. The application of labeling techniques to plant science is however far from reaching it potential. In light of advances in genetics and molecular biology that provide a means to alter metabolism, and given recent improvements in instrumentation, computational tools and available isotopes, the use of isotopic labeling to probe metabolism is becoming more and more powerful. We review the principal analytical methods for isotopic labeling with a focus on seminal studies of pathways and fluxes in lipid metabolism and carbon partitioning through central metabolism. Central carbon metabolic steps are directly linked to lipid production by serving to generate the precursors for fatty acid biosynthesis and lipid assembly. Additionally some of the ideas for labeling techniques that may be most applicable for lipid metabolism in the future were originally developed to investigate other aspects of central metabolism. We conclude by describing recent advances that will play an important future role in quantifying flux and metabolic operation in plant tissues.
Collapse
Affiliation(s)
- Doug K Allen
- United States Department of Agriculture, Agricultural Research Service, 975 North Warson Road, St. Louis, MO 63132, United States; Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132, United States.
| | - Philip D Bates
- Department of Chemistry and Biochemistry, University of Southern Mississippi, Hattiesburg, MS 39406, United States
| | - Henrik Tjellström
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, United States; Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI 48824, United States
| |
Collapse
|
12
|
Niedenführ S, Wiechert W, Nöh K. How to measure metabolic fluxes: a taxonomic guide for (13)C fluxomics. Curr Opin Biotechnol 2014; 34:82-90. [PMID: 25531408 DOI: 10.1016/j.copbio.2014.12.003] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 11/28/2014] [Accepted: 12/01/2014] [Indexed: 12/24/2022]
Abstract
Metabolic reaction rates (fluxes) contribute fundamentally to our understanding of metabolic phenotypes and mechanisms of cellular regulation. Stable isotope-based fluxomics integrates experimental data with biochemical networks and mathematical modeling to 'measure' the in vivo fluxes within an organism that are not directly observable. In recent years, (13)C fluxomics has evolved into a technology with great experimental, analytical, and mathematical diversity. This review aims at establishing a unified taxonomy by means of which the various fluxomics methods can be compared to each other. By linking the developed modeling approaches to recent studies, their challenges and opportunities are put into perspective. The proposed classification serves as a guide for scientific 'travelers' who are striving to resolve research questions with the currently available (13)C fluxomics toolset.
Collapse
Affiliation(s)
| | - Wolfgang Wiechert
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Katharina Nöh
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.
| |
Collapse
|
13
|
Wang G, Tang W, Xia J, Chu J, Noorman H, van Gulik WM. Integration of microbial kinetics and fluid dynamics toward model-driven scale-up of industrial bioprocesses. Eng Life Sci 2014. [DOI: 10.1002/elsc.201400172] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Guan Wang
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Shanghai P. R. China
| | - Wenjun Tang
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Shanghai P. R. China
| | - Jianye Xia
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Shanghai P. R. China
| | - Ju Chu
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Shanghai P. R. China
| | | | - Walter M. van Gulik
- Department of Biotechnology, Kluyver Centre for Genomics of Industrial Fermentation; Delft University of Technology; Delft The Netherlands
| |
Collapse
|
14
|
Jordà J, Rojas HC, Carnicer M, Wahl A, Ferrer P, Albiol J. Quantitative Metabolomics and Instationary 13C-Metabolic Flux Analysis Reveals Impact of Recombinant Protein Production on Trehalose and Energy Metabolism in Pichia pastoris. Metabolites 2014; 4:281-99. [PMID: 24957027 PMCID: PMC4101507 DOI: 10.3390/metabo4020281] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 04/08/2014] [Accepted: 04/23/2014] [Indexed: 11/16/2022] Open
Abstract
Pichia pastoris has been recognized as an effective host for recombinant protein production. In this work, we combine metabolomics and instationary 13C metabolic flux analysis (INST 13C-MFA) using GC-MS and LC-MS/MS to evaluate the potential impact of the production of a Rhizopus oryzae lipase (Rol) on P. pastoris central carbon metabolism. Higher oxygen uptake and CO2 production rates and slightly reduced biomass yield suggest an increased energy demand for the producing strain. This observation is further confirmed by 13C-based metabolic flux analysis. In particular, the flux through the methanol oxidation pathway and the TCA cycle was increased in the Rol-producing strain compared to the reference strain. Next to changes in the flux distribution, significant variations in intracellular metabolite concentrations were observed. Most notably, the pools of trehalose, which is related to cellular stress response, and xylose, which is linked to methanol assimilation, were significantly increased in the recombinant strain.
Collapse
Affiliation(s)
- Joel Jordà
- Department of Chemical Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Catalonia, Spain.
| | - Hugo Cueto Rojas
- Department of Biotechnology, Delft University of Technology, 2628 BC Delft, The Netherlands.
| | - Marc Carnicer
- Department of Chemical Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Catalonia, Spain.
| | - Aljoscha Wahl
- Department of Biotechnology, Delft University of Technology, 2628 BC Delft, The Netherlands.
| | - Pau Ferrer
- Department of Chemical Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Catalonia, Spain.
| | - Joan Albiol
- Department of Chemical Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Catalonia, Spain.
| |
Collapse
|
15
|
de Jonge L, Buijs NAA, Heijnen JJ, van Gulik WM, Abate A, Wahl SA. Flux response of glycolysis and storage metabolism during rapid feast/famine conditions inPenicillium chrysogenumusing dynamic13C labeling. Biotechnol J 2013; 9:372-85. [DOI: 10.1002/biot.201200260] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 09/04/2013] [Accepted: 10/17/2013] [Indexed: 12/29/2022]
|
16
|
Wiechert W, Nöh K. Isotopically non-stationary metabolic flux analysis: complex yet highly informative. Curr Opin Biotechnol 2013; 24:979-86. [DOI: 10.1016/j.copbio.2013.03.024] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 03/28/2013] [Accepted: 03/30/2013] [Indexed: 12/16/2022]
|
17
|
Schmitz K, Peter V, Meinert S, Kornfeld G, Hardiman T, Wiechert W, Noack S. Simultaneous utilization of glucose and gluconate in Penicillium chrysogenum during overflow metabolism. Biotechnol Bioeng 2013; 110:3235-43. [PMID: 23775209 DOI: 10.1002/bit.24974] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 05/30/2013] [Accepted: 06/03/2013] [Indexed: 12/15/2022]
Abstract
The filamentous fungus Penicillium chrysogenum is one of the most important production organism for β-lactam antibiotics, especially penicillin. A specific feature of P. chrysogenum is the formation of gluconate as the primary overflow metabolite under non-limiting growth on glucose. Gluconate can be formed extracellularly by the enzyme glucose oxidase (GOD) that shows high activities under glucose excess conditions. Currently, it is assumed that under these conditions glucose is the preferred carbon substrate for P. chrysogenum and gluconate consumption first starts after glucose becomes limiting. Here, we specifically address this hypothesis by combining batch cultivation experiments on defined glucose media, time-dependent GOD activity measurements, and (13)C-tracer studies. Our data prove that both substrates are metabolized simultaneously independent from the actual glucose concentration and therefore suggest that no distinct mechanism of carbon catabolite repression exists for gluconate in P. chrysogenum. Moreover, gluconate consumption does not interfere with penicillin V production by repression of the penicillin genes. Finally, by following a model-driven approach the specific uptake rates for glucose and gluconate were quantified and found to be significantly higher for gluconate. In summary, our results show that P. chrysogenum metabolizes gluconate directly and at high rates making it an interesting alternative carbon source for production purposes.
Collapse
Affiliation(s)
- Katja Schmitz
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425, Jülich, Germany
| | | | | | | | | | | | | |
Collapse
|
18
|
Jordà J, Suarez C, Carnicer M, ten Pierick A, Heijnen JJ, van Gulik W, Ferrer P, Albiol J, Wahl A. Glucose-methanol co-utilization in Pichia pastoris studied by metabolomics and instationary ¹³C flux analysis. BMC SYSTEMS BIOLOGY 2013; 7:17. [PMID: 23448228 PMCID: PMC3626722 DOI: 10.1186/1752-0509-7-17] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 02/15/2013] [Indexed: 01/06/2023]
Abstract
Background Several studies have shown that the utilization of mixed carbon feeds instead of methanol as sole carbon source is beneficial for protein production with the methylotrophic yeast Pichia pastoris. In particular, growth under mixed feed conditions appears to alleviate the metabolic burden related to stress responses triggered by protein overproduction and secretion. Yet, detailed analysis of the metabolome and fluxome under mixed carbon source metabolizing conditions are missing. To obtain a detailed flux distribution of central carbon metabolism, including the pentose phosphate pathway under methanol-glucose conditions, we have applied metabolomics and instationary 13C flux analysis in chemostat cultivations. Results Instationary 13C-based metabolic flux analysis using GC-MS and LC-MS measurements in time allowed for an accurate mapping of metabolic fluxes of glycolysis, pentose phosphate and methanol assimilation pathways. Compared to previous results from NMR-derived stationary state labelling data (proteinogenic amino acids, METAFoR) more fluxes could be determined with higher accuracy. Furthermore, using a thermodynamic metabolic network analysis the metabolite measurements and metabolic flux directions were validated. Notably, the concentration of several metabolites of the upper glycolysis and pentose phosphate pathway increased under glucose-methanol feeding compared to the reference glucose conditions, indicating a shift in the thermodynamic driving forces. Conversely, the extracellular concentrations of all measured metabolites were lower compared with the corresponding exometabolome of glucose-grown P. pastoris cells. The instationary 13C flux analysis resulted in fluxes comparable to previously obtained from NMR datasets of proteinogenic amino acids, but allowed several additional insights. Specifically, i) in vivo metabolic flux estimations were expanded to a larger metabolic network e.g. by including trehalose recycling, which accounted for about 1.5% of the glucose uptake rate; ii) the reversibility of glycolytic/gluconeogenesis, TCA cycle and pentose phosphate pathways reactions was estimated, revealing a significant gluconeogenic flux from the dihydroxyacetone phosphate/glyceraldehydes phosphate pool to glucose-6P. The origin of this finding could be carbon recycling from the methanol assimilatory pathway to the pentose phosphate pool. Additionally, high exchange fluxes of oxaloacetate with aspartate as well as malate indicated amino acid pool buffering and the activity of the malate/Asp shuttle; iii) the ratio of methanol oxidation vs utilization appeared to be lower (54 vs 79% assimilated methanol directly oxidized to CO2). Conclusions In summary, the application of instationary 13C-based metabolic flux analysis to P. pastoris provides an experimental framework with improved capabilities to explore the regulation of the carbon and energy metabolism of this yeast, particularly for the case of methanol and multicarbon source metabolism.
Collapse
Affiliation(s)
- Joel Jordà
- Department of Chemical Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|