1
|
Ölçücü G, Jaeger K, Krauss U. Magnetizing Biotech-Advances in (In Vivo) Magnetic Enzyme Immobilization. Eng Life Sci 2025; 25:e70000. [PMID: 40083857 PMCID: PMC11904115 DOI: 10.1002/elsc.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/14/2024] [Accepted: 01/05/2025] [Indexed: 03/16/2025] Open
Abstract
Industrial biocatalysis, a multibillion dollar industry, relies on the selectivity and efficacy of enzymes for efficient chemical transformations. However, enzymes, evolutionary adapted to mild biological conditions, often struggle in industrial processes that require harsh reaction conditions, resulting in reduced stability and activity. Enzyme immobilization, which addresses challenges such as enzyme reuse and stability, has therefore become a vital strategy for improving enzyme use in industrial applications. Traditional immobilization techniques rely on the confinement or display of enzymes within/on organic or inorganic supports, while recent advances in synthetic biology have led to the development of solely biological in vivo immobilization methods that streamline enzyme production and immobilization. These methods offer added benefits in terms of sustainability and cost efficiency. In addition, the development and use of multifunctional materials, such as magnetic (nano)materials for enzyme immobilization, has enabled improved separation and purification processes. The combination of both "worlds," opens up new avenues in both (industrial) biocatalysis, fundamental science, and biomedicine. Therefore, in this review, we provide an overview of established and recently emerging methods for the generation of magnetic protein immobilizates, placing a special focus on in vivo immobilization solutions.
Collapse
Affiliation(s)
- Gizem Ölçücü
- Institute of Bio‐ and Geosciences IBG‐1: BiotechnologyForschungszentrum Jülich GmbHJülichGermany
- Institute of Molecular Enzyme TechnologyHeinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbHJülichGermany
| | - Karl‐Erich Jaeger
- Institute of Bio‐ and Geosciences IBG‐1: BiotechnologyForschungszentrum Jülich GmbHJülichGermany
- Institute of Molecular Enzyme TechnologyHeinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbHJülichGermany
| | - Ulrich Krauss
- Institute of Bio‐ and Geosciences IBG‐1: BiotechnologyForschungszentrum Jülich GmbHJülichGermany
- Department of BiochemistryUniversity of BayreuthBayreuthGermany
| |
Collapse
|
2
|
Wei M, Chen W, Dong Y, Gu Y, Wei D, Zhang J, Ren Y. Hypoxia-Inducible Factor-1α-Activated Protein Switch Based on Allosteric Self-Splicing Reduces Nonspecific Cytotoxicity of Pharmaceutical Drugs. Mol Pharm 2024; 21:5335-5347. [PMID: 39213620 DOI: 10.1021/acs.molpharmaceut.4c00921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Protein-based therapeutic agents currently used for targeted tumor therapy exhibit limited penetrability, nonspecific toxicity, and a short circulation half-life. Although targeting cell surface receptors improves cancer selectivity, the receptors are also slightly expressed in normal cells; consequently, the nonspecific toxicity of recombinant protein-based therapeutic agents has not been eliminated. In this study, an allosteric-regulated protein switch was designed that achieved cytoplasmic reorganization of engineered immunotoxins in tumor cells via interactions between allosteric self-splicing elements and cancer markers. It can target the accumulated HIF-1α in hypoxic cancer cells and undergo allosteric activation, and the splicing products were present in hypoxic cancer cells but were absent in normoxic cells, selectively killing tumor cells and reducing nonspecific toxicity to normal cells. The engineered pro-protein provides a platform for targeted therapy of tumors while offering a novel universal strategy for combining the activation of therapeutic functions with specific cancer markers. The allosteric self-splicing element is a powerful tool that significantly reduces the nonspecific cytotoxicity of therapeutic proteins.
Collapse
Affiliation(s)
- Min Wei
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Wenxin Chen
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yuguo Dong
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yiyang Gu
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jian Zhang
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yuhong Ren
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
3
|
Bogdanova YA, Solovyev ID, Baleeva NS, Myasnyanko IN, Gorshkova AA, Gorbachev DA, Gilvanov AR, Goncharuk SA, Goncharuk MV, Mineev KS, Arseniev AS, Bogdanov AM, Savitsky AP, Baranov MS. Fluorescence lifetime multiplexing with fluorogen activating protein FAST variants. Commun Biol 2024; 7:799. [PMID: 38956304 PMCID: PMC11219735 DOI: 10.1038/s42003-024-06501-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 06/24/2024] [Indexed: 07/04/2024] Open
Abstract
In this paper, we propose a fluorescence-lifetime imaging microscopy (FLIM) multiplexing system based on the fluorogen-activating protein FAST. This genetically encoded fluorescent labeling platform employs FAST mutants that activate the same fluorogen but provide different fluorescence lifetimes for each specific protein-dye pair. All the proposed probes with varying lifetimes possess nearly identical and the smallest-in-class size, along with quite similar steady-state optical properties. In live mammalian cells, we target these chemogenetic tags to two intracellular structures simultaneously, where their fluorescence signals are clearly distinguished by FLIM. Due to the unique structure of certain fluorogens under study, their complexes with FAST mutants display a monophasic fluorescence decay, which may facilitate enhanced multiplexing efficiency by reducing signal cross-talks and providing optimal prerequisites for signal separation upon co-localized and/or spatially overlapped labeling.
Collapse
Affiliation(s)
- Yulia A Bogdanova
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - Ilya D Solovyev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071, Moscow, Russia
| | - Nadezhda S Baleeva
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
- Pirogov Russian National Research Medical University, Ostrovitianov 1, Moscow, 117997, Russia
| | - Ivan N Myasnyanko
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
- Pirogov Russian National Research Medical University, Ostrovitianov 1, Moscow, 117997, Russia
| | - Anastasia A Gorshkova
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - Dmitriy A Gorbachev
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - Aidar R Gilvanov
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - Sergey A Goncharuk
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - Marina V Goncharuk
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - Konstantin S Mineev
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
- Goethe University Frankfurt, Frankfurt am Main, 60433, Germany
| | - Alexander S Arseniev
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - Alexey M Bogdanov
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
- Department of Photonics, İzmir Institute of Technology, 35430, İzmir, Turkey
| | - Alexander P Savitsky
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071, Moscow, Russia
| | - Mikhail S Baranov
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997, Moscow, Russia.
- Pirogov Russian National Research Medical University, Ostrovitianov 1, Moscow, 117997, Russia.
- Department of Biology, Lomonosov Moscow State University, Moscow, 119991 Russia, 121205, Moscow, Russia.
| |
Collapse
|
4
|
Baleeva NS, Bogdanova YA, Goncharuk MV, Sokolov AI, Myasnyanko IN, Kublitski VS, Smirnov AY, Gilvanov AR, Goncharuk SA, Mineev KS, Baranov MS. A Combination of Library Screening and Rational Mutagenesis Expands the Available Color Palette of the Smallest Fluorogen-Activating Protein Tag nanoFAST. Int J Mol Sci 2024; 25:3054. [PMID: 38474299 DOI: 10.3390/ijms25053054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
NanoFAST is the smallest fluorogen-activating protein, consisting of only 98 amino acids, used as a genetically encoded fluorescent tag. Previously, only a single fluorogen with an orange color was revealed for this protein. In the present paper, using rational mutagenesis and in vitro screening of fluorogens libraries, we expanded the color palette of this tag. We discovered that E46Q is one of the key substitutions enabling the range of possible fluorogens to be expanded. The introduction of this and several other substitutions has made it possible to use not only orange but also red and green fluorogens with the modified protein.
Collapse
Affiliation(s)
- Nadezhda S Baleeva
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
- Laboratory of Medicinal Substances Chemistry, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Ostrovitianov 1, 117997 Moscow, Russia
| | - Yulia A Bogdanova
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Marina V Goncharuk
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Anatolii I Sokolov
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
- Laboratory of Medicinal Substances Chemistry, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Ostrovitianov 1, 117997 Moscow, Russia
| | - Ivan N Myasnyanko
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
- Laboratory of Medicinal Substances Chemistry, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Ostrovitianov 1, 117997 Moscow, Russia
| | - Vadim S Kublitski
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Alexander Yu Smirnov
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
- Laboratory of Medicinal Substances Chemistry, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Ostrovitianov 1, 117997 Moscow, Russia
| | - Aidar R Gilvanov
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Sergey A Goncharuk
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Konstantin S Mineev
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Mikhail S Baranov
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
- Laboratory of Medicinal Substances Chemistry, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Ostrovitianov 1, 117997 Moscow, Russia
| |
Collapse
|
5
|
Design, Production, and Characterization of Catalytically Active Inclusion Bodies. Methods Mol Biol 2023; 2617:49-74. [PMID: 36656516 DOI: 10.1007/978-1-0716-2930-7_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Catalytically active inclusion bodies (CatIBs) are promising biologically produced enzyme/protein immobilizates for application in biocatalysis, synthetic chemistry, and biomedicine. CatIB formation is commonly induced by fusion of suitable aggregation-inducing tags to a given target protein. Heterologous production of the fusion protein in turn yields CatIBs. This chapter presents the methodology needed to design, produce, and characterize CatIBs.
Collapse
|
6
|
Park KS, Son RG, Kim SH, Abdelhamid MA, Pack SP. Soluble preparation and characterization of tripartite split GFP for In Vitro reconstitution applications. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
7
|
Ölçücü G, Baumer B, Küsters K, Möllenhoff K, Oldiges M, Pietruszka J, Jaeger KE, Krauss U. Catalytically Active Inclusion Bodies─Benchmarking and Application in Flow Chemistry. ACS Synth Biol 2022; 11:1881-1896. [PMID: 35500299 DOI: 10.1021/acssynbio.2c00035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In industries, enzymes are often immobilized to obtain stable preparations that can be utilized in batch and flow processes. In contrast to traditional immobilization methods that rely on carrier binding, various immobilization strategies have been recently presented that enable the simultaneous production and in vivo immobilization of enzymes. Catalytically active inclusion bodies (CatIBs) are a promising example for such in vivo enzyme immobilizates. CatIB formation is commonly induced by fusion of aggregation-inducing tags, and numerous tags, ranging from small synthetic peptides to protein domains or whole proteins, have been successfully used. However, since these systems have been characterized by different groups employing different methods, a direct comparison remains difficult, which prompted us to benchmark different CatIB-formation-inducing tags and fusion strategies. Our study highlights that important CatIB properties like yield, activity, and stability are strongly influenced by tag selection and fusion strategy. Optimization enabled us to obtain alcohol dehydrogenase CatIBs with superior activity and stability, which were subsequently applied for the first time in a flow synthesis approach. Our study highlights the potential of CatIB-based immobilizates, while at the same time demonstrating the robust use of CatIBs in flow chemistry.
Collapse
Affiliation(s)
- Gizem Ölçücü
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH, Wilhelm Johnen Strasse, D-52425 Jülich, Germany
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Wilhelm Johnen Strasse, D-52425 Jülich, Germany
| | - Benedikt Baumer
- Institute of Biorganic Chemistry, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH, Wilhelm Johnen Strasse, D-52425 Jülich, Germany
| | - Kira Küsters
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Wilhelm Johnen Strasse, D-52425 Jülich, Germany
| | - Kathrin Möllenhoff
- Mathematical Institute, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Marco Oldiges
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Wilhelm Johnen Strasse, D-52425 Jülich, Germany
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, D-52074 Aachen, Germany
| | - Jörg Pietruszka
- Institute of Biorganic Chemistry, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH, Wilhelm Johnen Strasse, D-52425 Jülich, Germany
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Wilhelm Johnen Strasse, D-52425 Jülich, Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH, Wilhelm Johnen Strasse, D-52425 Jülich, Germany
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Wilhelm Johnen Strasse, D-52425 Jülich, Germany
| | - Ulrich Krauss
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH, Wilhelm Johnen Strasse, D-52425 Jülich, Germany
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Wilhelm Johnen Strasse, D-52425 Jülich, Germany
| |
Collapse
|
8
|
Dong W, Sun H, Chen Q, Hou L, Chang Y, Luo H. SpyTag/Catcher chemistry induces the formation of active inclusion bodies in E. coli. Int J Biol Macromol 2022; 199:358-371. [PMID: 35031313 DOI: 10.1016/j.ijbiomac.2022.01.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/31/2021] [Accepted: 01/05/2022] [Indexed: 02/09/2023]
Abstract
SpyTag/Catcher chemistry is usually applied to engineer robust enzymes via head-to-tail cyclization using spontaneous intramolecular isopeptide bond formation. However, the SpyTag/Catcher induced intercellular protein assembly in vivo cannot be ignored. It was found that some active inclusion bodies had generated to different proportions in the expression of six SpyTag/Catcher labeled proteins (CatIBs-STCProtein). Some factors that may affect the formation of CatIBs-STCProtein were discussed, and the subunit quantities were found to be strongly positively related to the formation of protein aggregates. Approximately 85.44% of the activity of the octameric protein leucine dehydrogenase (LDH) was expressed in aggregates, while the activity of the monomeric protein green fluorescence protein (GFP) in aggregates was 12.51%. The results indicated that SpyTag/Catcher can be used to form protein aggregates in E. coli. To facilitate the advantages of CatIBs-STCProtein, we took the CatIBs-STCLDH as an example and further chemically cross-linked with glutaraldehyde to obtain novel cross-linked enzyme aggregates (CLEAs-CatIBs-STCLDH). CLEAs-CatIBs-STCLDH had good thermal stability and organic solvents stability, and its activity remained 51.03% after incubation at 60 °C for 100 mins. Moreover, the crosslinked CatIBs-STCLDH also showed superior stability over traditional CLEAs, and its activity remained 98.70% after 10 cycles of catalysis.
Collapse
Affiliation(s)
- Wenge Dong
- Department of Biological Science and Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Hongxu Sun
- Department of Biological Science and Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Qiwei Chen
- Department of Biological Science and Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Liangyu Hou
- Department of Biological Science and Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yanhong Chang
- Department of Environmental Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China.
| | - Hui Luo
- Department of Biological Science and Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
9
|
Chen T, Sun T, Bian Y, Pei Y, Feng F, Chi H, Li Y, Tang X, Sang S, Du C, Chen Y, Chen Y, Sun H. The Design and Optimization of Monomeric Multitarget Peptides for the Treatment of Multifactorial Diseases. J Med Chem 2022; 65:3685-3705. [DOI: 10.1021/acs.jmedchem.1c01456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tingkai Chen
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People’s Republic of China
| | - Tianyu Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People’s Republic of China
| | - Yaoyao Bian
- College of Acupuncture and Massage, College of Regimen and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing 210023, People’s Republic of China
| | - Yuqiong Pei
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People’s Republic of China
| | - Feng Feng
- Food and Pharmaceutical Research Institute, Jiangsu Food and Pharmaceuticals Science College, Huaian 223003, People’s Republic of China
| | - Heng Chi
- Food and Pharmaceutical Research Institute, Jiangsu Food and Pharmaceuticals Science College, Huaian 223003, People’s Republic of China
| | - Yuan Li
- Department of Pharmaceutical Engineering, Jiangsu Food and Pharmaceuticals Science College, Huaian 223005, People’s Republic of China
| | - Xu Tang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People’s Republic of China
| | - Shenghu Sang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People’s Republic of China
| | - Chenxi Du
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People’s Republic of China
| | - Ying Chen
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People’s Republic of China
| | - Yao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People’s Republic of China
| | - Haopeng Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People’s Republic of China
| |
Collapse
|
10
|
Zhang J, Dong W, Ren Y, Wei D. SAC-TRAIL, a novel anticancer fusion protein: expression, purification, and functional characterization. Appl Microbiol Biotechnol 2022; 106:1511-1520. [PMID: 35133472 DOI: 10.1007/s00253-022-11807-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/23/2022] [Accepted: 01/26/2022] [Indexed: 11/27/2022]
Abstract
Recombinant protein pharmaceutical agents have been widely used for cancer treatment. Although tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has broad-spectrum antitumor activity, its clinical applications are limited because most tumor cells eventually develop resistance to TRAIL-induced apoptosis through various pathways. Prostate apoptosis response-4 (Par-4) selectively induces apoptosis in cancer cells after binding to the cell surface receptor, GRP78. In this study, TRAIL was fused with the core domain of Par-4 (SAC) to produce a novel recombinant fusion protein. To obtain solubly expressed fusion protein, a small ubiquitin-related modifier (SUMO) was added to the N-terminus of the target protein. Cytotoxicity assays showed that the purified fusion protein exhibited more significant antitumor activity on cancer cells than that by native TRAIL. The connection order and linker sequence of the fusion proteins were optimized. In vitro cytotoxicity assay showed that the SAC-TRAIL fusion protein, which contained a flexible linker (G4S)3, optimally inhibited the proliferation of cancer cells. Immunofluorescence assays demonstrated that SAC-TRAIL could efficiently and specifically bind to cancer cells. Additionally, circular dichroism assays showed that the secondary structure of the recombinant protein with a flexible linker (G4S)3 has both a lower α-helix and higher random coiling, which facilitates the specific binding of SAC-TRAIL to the receptor. Collectively, these results suggest that the novel recombinant fusion protein SAC-(G4S)3-TRAIL is a potential therapeutic agent for cancer. KEY POINTS: • Improved tumor growth suppression and apoptosis induction potency of SAC-TRAIL. • Enhanced targeting selectivity of SAC-TRAIL in cancer cells. • Lower α-helix and higher random coiling in SAC-TRAIL with flexible linker (G4S)3.
Collapse
Affiliation(s)
- Jian Zhang
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China.
| | - Wanyuan Dong
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Yuhong Ren
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| |
Collapse
|
11
|
Fagbadebo FO, Rothbauer U. Peptide-Tag Specific Nanobodies for Studying Proteins in Live Cells. Methods Mol Biol 2022; 2446:555-579. [PMID: 35157294 DOI: 10.1007/978-1-0716-2075-5_29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Single-domain antibodies such as nanobodies (Nbs) have substantially expanded the possibilities of advanced cellular imaging. In comparison to conventional antibodies, Nbs are characterized by small size, high stability, and solubility in many environments, including the cytoplasm. Nbs can be efficiently functionalized or modified according to the needs of the imaging approach. Target-specific Nbs can be easily converted into genetically encoded fluorescently labeled intrabodies, also known as chromobodies (CBs), which represent powerful tools to study the dynamics of different proteins of interest within living cells. In this context, CBs specific for a short peptide epitope provide a versatile alternative to bypass the limitations observed with larger fluorescent protein fusions and can be readily used to visualize and monitor peptide-tagged proteins for which specific Nbs are not available. Here, we present our novel detection system comprising a 15 amino acid peptide-tag (PepTag) in combination with a peptide-tag specific CB (PepCB). We provide protocols for adding the PepTag to different proteins of interest, reformatting the peptide-specific Nb (PepNb) into a CB for expression in mammalian cells, and establishment of stable cell lines expressing the PepCB for protein interaction assays and compound screenings.
Collapse
Affiliation(s)
- Funmilayo O Fagbadebo
- Pharmaceutical Biotechnology, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Ulrich Rothbauer
- Pharmaceutical Biotechnology, Eberhard Karls University Tuebingen, Tuebingen, Germany.
- Natural and Medical Sciences Institute at the University of Tuebingen, Reutlingen, Germany.
| |
Collapse
|
12
|
Pei X, Wang J, Zheng H, Xiao Q, Wang A, Su W. Catalytically active inclusion bodies (CatIBs) induced by terminally attached self-assembling coiled-coil domains: To enhance the stability of (R)-hydroxynitrile lyase. Enzyme Microb Technol 2021; 153:109915. [PMID: 34670185 DOI: 10.1016/j.enzmictec.2021.109915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/04/2021] [Accepted: 09/07/2021] [Indexed: 11/18/2022]
Abstract
The catalytically-active inclusion bodies (CatIBs) represent a promising strategy for immobilizing enzyme without additional carriers and chemicals, which has aroused great attention in academic and industrial communities. In this work, we discovered two natural parallel right-handed coiled-coil tetramer peptides from PDB database by a structural mining strategy. The two self-assembling peptides, NSPdoT from rotavirus and HVdoT from human Vasodilator-stimulated phosphoprotein, efficiently induced the CatIBs formation of a (R)-Hydroxynitrile lyase from Arabidopsis thaliana (AtHNL) in Escherichia coli cells. This is convenient to simultaneously purify and immobilize the target proteins as biocatalysts. As expected, HVdoT-AtHNL and NSPdoT-AtHNL possessed drastically increased tolerance toward lower pH values, which will be very critical to synthesize cyanohydrins under acidic condition for suppressing the non-enzymatic side reaction. In addition. AtHNL-CatIBs are produced at high yield in host cells as bioactive microparticles, which exhibited high thermal and pH stabilities. Therefore, the CatIBs method represent a promising application for the immobilization of enzymes in the biocatalysis field.
Collapse
Affiliation(s)
- Xiaolin Pei
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China; College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, China.
| | - Jiapao Wang
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, China
| | - Haoteng Zheng
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, China
| | - Qinjie Xiao
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, China
| | - Anming Wang
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, China
| | - Weike Su
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China.
| |
Collapse
|
13
|
Wu X, Zhang C, Xing XH, Yun Z, Zhao L, Wu Q. Construction and characterization of novel bifunctional fusion proteins composed of alcohol dehydrogenase and NADH oxidase with efficient oxidized cofactor regeneration. Biotechnol Appl Biochem 2021; 69:1535-1544. [PMID: 34269481 DOI: 10.1002/bab.2225] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/12/2021] [Indexed: 11/10/2022]
Abstract
To tune the efficiency of oxidized cofactor recycling between alcohol dehydrogenase (ADH) and NADH oxidase (NOX) for the production of aromatic chiral alcohols, we designed and constructed four novel bifunctional fusion proteins composed of thermostable ADH and NOX from Thermococcus kodakarensis KOD1. ADH was linked to the N- or C-terminus of NOX with a typical rigid linker (EAAAK)3 and a flexible linker (GGGGS)3 , respectively. Compared with the parental enzymes, the NOX moieties in the four fusion proteins exhibited higher specific activities (141%-282%), while the ADH moieties exhibited varying levels of specific activity (69%-167%). All fusion proteins showed decreased affinities toward the cofactors, with increased Km values toward NADH (159%-406%) and NAD+ (202%-372%). In the enantioselective oxidation of (RS)-1-phenylethanol coupled with cofactor regeneration, the four fusion proteins displayed different positive and negative effects on the recycling efficiency of the oxidized cofactor. The two fusion proteins composed of NOX at the N-terminus exhibited higher total turnover numbers than the corresponding mixtures of individual enzymes with equal activities, particularly at low cofactor concentrations. These findings suggest high cofactor recycling efficiencies of the fusion proteins with appropriate design and their potential application in the biosynthesis of chiral alcohols.
Collapse
Affiliation(s)
- Xi Wu
- Sub-Institute of Agriculture and Food Standardization, China National Institute of Standardization, Beijing, China
| | - Chong Zhang
- Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Xin-Hui Xing
- Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Zhenyu Yun
- Sub-Institute of Agriculture and Food Standardization, China National Institute of Standardization, Beijing, China
| | - Lin Zhao
- Sub-Institute of Agriculture and Food Standardization, China National Institute of Standardization, Beijing, China
| | - Qi Wu
- Sub-Institute of Agriculture and Food Standardization, China National Institute of Standardization, Beijing, China
| |
Collapse
|
14
|
Bakholdina SI, Stenkova AM, Bystritskaya EP, Sidorin EV, Kim NY, Menchinskaya ES, Gorpenchenko TY, Aminin DL, Shved NA, Solov’eva TF. Studies on the Structure and Properties of Membrane Phospholipase A 1 Inclusion Bodies Formed at Low Growth Temperatures Using GFP Fusion Strategy. Molecules 2021; 26:molecules26133936. [PMID: 34203222 PMCID: PMC8271855 DOI: 10.3390/molecules26133936] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/08/2021] [Accepted: 06/22/2021] [Indexed: 11/23/2022] Open
Abstract
The effect of cultivation temperatures (37, 26, and 18 °C) on the conformational quality of Yersinia pseudotuberculosis phospholipase A1 (PldA) in inclusion bodies (IBs) was studied using green fluorescent protein (GFP) as a folding reporter. GFP was fused to the C-terminus of PldA to form the PldA-GFP chimeric protein. It was found that the maximum level of fluorescence and expression of the chimeric protein is observed in cells grown at 18 °C, while at 37 °C no formation of fluorescently active forms of PldA-GFP occurs. The size, stability in denaturant solutions, and enzymatic and biological activity of PldA-GFP IBs expressed at 18 °C, as well as the secondary structure and arrangement of protein molecules inside the IBs, were studied. Solubilization of the chimeric protein from IBs in urea and SDS is accompanied by its denaturation. The obtained data show the structural heterogeneity of PldA-GFP IBs. It can be assumed that compactly packed, properly folded, proteolytic resistant, and structurally less organized, susceptible to proteolysis polypeptides can coexist in PldA-GFP IBs. The use of GFP as a fusion partner improves the conformational quality of PldA, but negatively affects its enzymatic activity. The PldA-GFP IBs are not toxic to eukaryotic cells and have the property to penetrate neuroblastoma cells. Data presented in the work show that the GFP-marker can be useful not only as target protein folding indicator, but also as a tool for studying the molecular organization of IBs, their morphology, and localization in E. coli, as well as for visualization of IBs interactions with eukaryotic cells.
Collapse
Affiliation(s)
- Svetlana I. Bakholdina
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, Prospekt 100-let Vladivostoku 159, 690022 Vladivostok, Russia; (E.P.B.); (E.V.S.); (N.Y.K.); (E.S.M.); (D.L.A.)
- Correspondence: (S.I.B.); (T.F.S.); Tel.: +7-423-231-11-58 (S.I.B. & T.F.S.); Fax: +7-423-231-40-50 (S.I.B. & T.F.S.)
| | - Anna M. Stenkova
- Department of Medical Biology and Biotechnology, FEFU Campus, School of Biomedicine, Far Eastern Federal University, Russky Island Ajax Bay 10, 690922 Vladivostok, Russia; (A.M.S.); (N.A.S.)
| | - Evgenia P. Bystritskaya
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, Prospekt 100-let Vladivostoku 159, 690022 Vladivostok, Russia; (E.P.B.); (E.V.S.); (N.Y.K.); (E.S.M.); (D.L.A.)
| | - Evgeniy V. Sidorin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, Prospekt 100-let Vladivostoku 159, 690022 Vladivostok, Russia; (E.P.B.); (E.V.S.); (N.Y.K.); (E.S.M.); (D.L.A.)
| | - Natalya Yu. Kim
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, Prospekt 100-let Vladivostoku 159, 690022 Vladivostok, Russia; (E.P.B.); (E.V.S.); (N.Y.K.); (E.S.M.); (D.L.A.)
| | - Ekaterina S. Menchinskaya
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, Prospekt 100-let Vladivostoku 159, 690022 Vladivostok, Russia; (E.P.B.); (E.V.S.); (N.Y.K.); (E.S.M.); (D.L.A.)
| | - Tatiana Yu. Gorpenchenko
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-let Vladivostoku, 159, 690022 Vladivostok, Russia;
| | - Dmitry L. Aminin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, Prospekt 100-let Vladivostoku 159, 690022 Vladivostok, Russia; (E.P.B.); (E.V.S.); (N.Y.K.); (E.S.M.); (D.L.A.)
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, 100, Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan
| | - Nikita A. Shved
- Department of Medical Biology and Biotechnology, FEFU Campus, School of Biomedicine, Far Eastern Federal University, Russky Island Ajax Bay 10, 690922 Vladivostok, Russia; (A.M.S.); (N.A.S.)
| | - Tamara F. Solov’eva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, Prospekt 100-let Vladivostoku 159, 690022 Vladivostok, Russia; (E.P.B.); (E.V.S.); (N.Y.K.); (E.S.M.); (D.L.A.)
- Correspondence: (S.I.B.); (T.F.S.); Tel.: +7-423-231-11-58 (S.I.B. & T.F.S.); Fax: +7-423-231-40-50 (S.I.B. & T.F.S.)
| |
Collapse
|
15
|
Restrepo-Pineda S, Pérez NO, Valdez-Cruz NA, Trujillo-Roldán MA. Thermoinducible expression system for producing recombinant proteins in Escherichia coli: advances and insights. FEMS Microbiol Rev 2021; 45:6223457. [PMID: 33844837 DOI: 10.1093/femsre/fuab023] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 04/09/2021] [Indexed: 12/13/2022] Open
Abstract
Recombinant protein (RP) production from Escherichia coli has been extensively studied to find strategies for increasing product yields. The thermoinducible expression system is commonly employed at the industrial level to produce various RPs which avoids the addition of chemical inducers, thus minimizing contamination risks. Multiple aspects of the molecular origin and biotechnological uses of its regulatory elements (pL/pR promoters and cI857 thermolabile repressor) derived from bacteriophage λ provide knowledge to improve the bioprocesses using this system. Here, we discuss the main aspects of the potential use of the λpL/pR-cI857 thermoinducible system for RP production in E. coli, focusing on the approaches of investigations that have contributed to the advancement of this expression system. Metabolic and physiological changes that occur in the host cells caused by heat stress and by RP overproduction are also described. Therefore, the current scenario and the future applications of systems that use heat to induce RP production is discussed to understand the relationship between the activation of the bacterial heat shock response, RP accumulation, and its possible aggregation to form inclusion bodies.
Collapse
Affiliation(s)
- Sara Restrepo-Pineda
- Unidad de Bioprocesos, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Ciudad de México, México
| | - Néstor O Pérez
- Probiomed S.A. de C.V. Planta Tenancingo, Cruce de Carreteras Acatzingo-Zumpahuacan SN, 52400 Tenancingo, Estado de México, México
| | - Norma A Valdez-Cruz
- Unidad de Bioprocesos, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Ciudad de México, México
| | - Mauricio A Trujillo-Roldán
- Unidad de Bioprocesos, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Ciudad de México, México
| |
Collapse
|
16
|
Montecinos-Franjola F, Bauer BL, Mears JA, Ramachandran R. GFP fluorescence tagging alters dynamin-related protein 1 oligomerization dynamics and creates disassembly-refractory puncta to mediate mitochondrial fission. Sci Rep 2020; 10:14777. [PMID: 32901052 PMCID: PMC7479153 DOI: 10.1038/s41598-020-71655-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/19/2020] [Indexed: 01/22/2023] Open
Abstract
Green fluorescent protein (GFP)-tagging is the prevalent strategy to monitor protein dynamics in living cells. However, the consequences of appending the bulky GFP moiety to the protein of interest are rarely investigated. Here, using a powerful combination of quantitative fluorescence spectroscopic and imaging techniques, we have examined the oligomerization dynamics of the GFP-tagged mitochondrial fission GTPase dynamin-related protein 1 (Drp1) both in vitro and in vivo. We find that GFP-tagged Drp1 exhibits impaired oligomerization equilibria in solution that corresponds to a greatly diminished cooperative GTPase activity in comparison to native Drp1. Consequently, GFP-tagged Drp1 constitutes aberrantly stable, GTP-resistant supramolecular assemblies both in vitro and in vivo, neither of which reflects a more dynamic native Drp1 oligomerization state. Indeed, GFP-tagged Drp1 is detected more frequently per unit length over mitochondria in Drp1-null mouse embryonic fibroblasts (MEFs) compared to wild-type (wt) MEFs, indicating that the drastically reduced GTP turnover restricts oligomer disassembly from the mitochondrial surface relative to mixed oligomers comprising native and GFP-tagged Drp1. Yet, GFP-tagged Drp1 retains the capacity to mediate membrane constriction in vitro and mitochondrial division in vivo. These findings suggest that instead of robust assembly-disassembly dynamics, persistent Drp1 higher-order oligomerization over membranes is sufficient for mitochondrial fission.
Collapse
Affiliation(s)
- Felipe Montecinos-Franjola
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Brianna L Bauer
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Jason A Mears
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.,Center for Mitochondrial Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.,Cleveland Center for Membrane and Structural Biology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Rajesh Ramachandran
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA. .,Cleveland Center for Membrane and Structural Biology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| |
Collapse
|
17
|
Jäger VD, Lamm R, Küsters K, Ölçücü G, Oldiges M, Jaeger KE, Büchs J, Krauss U. Catalytically-active inclusion bodies for biotechnology-general concepts, optimization, and application. Appl Microbiol Biotechnol 2020; 104:7313-7329. [PMID: 32651598 PMCID: PMC7413871 DOI: 10.1007/s00253-020-10760-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/24/2020] [Accepted: 06/29/2020] [Indexed: 12/21/2022]
Abstract
Bacterial inclusion bodies (IBs) have long been considered as inactive, unfolded waste material produced by heterologous overexpression of recombinant genes. In industrial applications, they are occasionally used as an alternative in cases where a protein cannot be expressed in soluble form and in high enough amounts. Then, however, refolding approaches are needed to transform inactive IBs into active soluble protein. While anecdotal reports about IBs themselves showing catalytic functionality/activity (CatIB) are found throughout literature, only recently, the use of protein engineering methods has facilitated the on-demand production of CatIBs. CatIB formation is induced usually by fusing short peptide tags or aggregation-inducing protein domains to a target protein. The resulting proteinaceous particles formed by heterologous expression of the respective genes can be regarded as a biologically produced bionanomaterial or, if enzymes are used as target protein, carrier-free enzyme immobilizates. In the present contribution, we review general concepts important for CatIB production, processing, and application. KEY POINTS: • Catalytically active inclusion bodies (CatIBs) are promising bionanomaterials. • Potential applications in biocatalysis, synthetic chemistry, and biotechnology. • CatIB formation represents a generic approach for enzyme immobilization. • CatIB formation efficiency depends on construct design and expression conditions.
Collapse
Affiliation(s)
- Vera D Jäger
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
- Bioeconomy Science Center (BioSC), c/o Forschungszentrum Jülich, Jülich, 52425, Germany
- Department of Bioproducts and Biosystems, Aalto University, Kemistintie 1, Espoo, 02150, Finland
| | - Robin Lamm
- Bioeconomy Science Center (BioSC), c/o Forschungszentrum Jülich, Jülich, 52425, Germany
- AVT-Chair for Biochemical Engineering, RWTH Aachen University, Aachen, 52074, Germany
| | - Kira Küsters
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, 52425, Germany
- Institute of Biotechnology, RWTH Aachen University, 52074, Aachen, Germany
| | - Gizem Ölçücü
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, 52425, Germany
| | - Marco Oldiges
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, 52425, Germany
- Institute of Biotechnology, RWTH Aachen University, 52074, Aachen, Germany
| | - Karl-Erich Jaeger
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
- Bioeconomy Science Center (BioSC), c/o Forschungszentrum Jülich, Jülich, 52425, Germany
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, 52425, Germany
| | - Jochen Büchs
- Bioeconomy Science Center (BioSC), c/o Forschungszentrum Jülich, Jülich, 52425, Germany
- AVT-Chair for Biochemical Engineering, RWTH Aachen University, Aachen, 52074, Germany
| | - Ulrich Krauss
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.
- Bioeconomy Science Center (BioSC), c/o Forschungszentrum Jülich, Jülich, 52425, Germany.
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, 52425, Germany.
| |
Collapse
|
18
|
Design, Expression, Purification and Characterization of the Recombinant Immunotoxin 4D5 scFv-TRAIL. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-019-09894-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
19
|
Li M, Xu H, Wang J. Optimized functional and structural design of dual-target LMRAP, a bifunctional fusion protein with a 25-amino-acid antitumor peptide and GnRH Fc fragment. Acta Pharm Sin B 2020; 10:262-275. [PMID: 32082972 PMCID: PMC7016293 DOI: 10.1016/j.apsb.2019.10.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 09/19/2019] [Accepted: 09/19/2019] [Indexed: 12/13/2022] Open
Abstract
To develop fusion protein of a GnRH Fc fragment and the integrin targeting AP25 antitumor peptide for GnRH receptor-expressing cancer therapy. The LMRAP fusion protein was constructed. A transwell invasion assay was performed. The gene mRNA and protein levels of GnRHR-I, α5β1, and αvβ3 in different cancer cell lines were assessed. Cell proliferation was measured using a cell counting kit-8. An antagonist assay was performed on GnRH receptors. Anti-tumor activity was evaluated with a mouse xenograft tumor model. Immunohistochemistry (IHC) was applied to detect CD31 and CD34 expressions. Pharmacokinetic characteristics were determined with an indirect competition ELISA. The developed bifunctional fusion protein LMRAP not only inhibited HUVEC invasion, but also inhibited proliferation of GnRHR-I, α5β1, and αvβ3 high expression cancer cells. The IC50 for LMRAP in the GnRH receptor was 6.235 × 10−4 mol/L. LMRAP significantly inhibited human prostate cancer cell line 22RV1 proliferation in vivo and in vitro. LMRAP significantly inhibited CD31 and CD34 expressions. The elimination half-life of the fusion protein LMRAP was 33 h in rats. The fusion protein made of a GnRH Fc fragment and the integrin targeting AP25 peptide retained the bifunctional biological activity of GnRHR blocking, angiogenesis inhibition, prolonged half-life and good tolerance.
Collapse
Affiliation(s)
- Meng Li
- Shenyang Pharmaceutical University, Shenyang 110016, China
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, Beijing 102629, China
| | - Hanmei Xu
- State Key Laboratory of Natural Medicines, Ministry of Education, the Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation of Jiangsu Province, Department of Marine Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Junzhi Wang
- Shenyang Pharmaceutical University, Shenyang 110016, China
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, Beijing 102629, China
- Corresponding author.
| |
Collapse
|
20
|
Ge F, Qiao Q, Zhu L, Li W, Song P, Zhu L, Tao Y, Gui L. Preparation of a tumor-targeted drug-loading material, amphiphilic peptide P10, and analysis of its anti-tumor activity. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2018; 30:3. [PMID: 30569205 DOI: 10.1007/s10856-018-6204-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 12/07/2018] [Indexed: 06/09/2023]
Abstract
A new tumor-targeted drug-loading material, the amphiphilic peptide DGRGGGAAAA (P10) was designed and synthesized, and its self-assembly behavior, drug-loading effects and in vitro characteristics were studied. P10 was synthesized by solid-state synthesis and doxorubicin (DOX) was loaded via dialysis. P10 and DOX were mixed with a mass ratio of 6:1 to form regular round spheres. The interconnection between groups was analyzed spectroscopically and the sphere morphology was studied with SEM and a zeta particle size analyzer. Fluorescence spectroscopy was used to analyze the ability of P10 to form micelles and the efficiency of micelle entrapment, and the drug-loading ratio and drug release characteristics were detected. Finally, the in vitro antitumor activity of P10 was studied with HeLa cells as a model. The results showed that P10's critical micelle concentration (CMC) value and its average grain diameter were approximately 0.045 mg/L and 500 nm. The micelle entrapment ratio and drug-loading ratio were 23.011 ± 2.88 and 10.125 ± 2.62%, respectively, and the in vitro drug-releasing properties of P10 were described by the Zero-order model and the Ritger-Peppas model. Compared with DOX, P10-DOX had a higher tumor cell inhibition ratio and a dose-effect relationship with concentration. When P10-DOX's concentration was 20 μg/mL, the inhibition ratio was 44.17%. The new amphiphilic peptide designed and prepared in this study could be a tumor-targeted drug-loading material with better prospects for application. In this paper, a new tumor-targeted drug-loading material, the amphiphilic peptide DGRGGGAAAA (P10) is designed and synthesized, and its self-assembly behavior, drug-loading effects and in vitro characteristics are studied, providing a theoretical basis and design ideas for further studies and the development of targeted drug-loading materials on tumor cells.
Collapse
Affiliation(s)
- Fei Ge
- Biological and Chemical Engineering College, Anhui Polytechnic University, Beijing Middle Road, Anhui, 241000, Wuhu, China
| | - Qianqian Qiao
- Biological and Chemical Engineering College, Anhui Polytechnic University, Beijing Middle Road, Anhui, 241000, Wuhu, China
| | - Longbao Zhu
- Biological and Chemical Engineering College, Anhui Polytechnic University, Beijing Middle Road, Anhui, 241000, Wuhu, China
| | - Wanzhen Li
- Biological and Chemical Engineering College, Anhui Polytechnic University, Beijing Middle Road, Anhui, 241000, Wuhu, China
| | - Ping Song
- Biological and Chemical Engineering College, Anhui Polytechnic University, Beijing Middle Road, Anhui, 241000, Wuhu, China
| | - Longlong Zhu
- Biological and Chemical Engineering College, Anhui Polytechnic University, Beijing Middle Road, Anhui, 241000, Wuhu, China
| | - Yugui Tao
- Biological and Chemical Engineering College, Anhui Polytechnic University, Beijing Middle Road, Anhui, 241000, Wuhu, China.
| | - Lin Gui
- Department of Microbiology and immunology, Wannan Medical College, No. 22 Wenchang West Road, 241002, Wuhu, China.
| |
Collapse
|
21
|
Koszagova R, Krajcovic T, Palencarova-Talafova K, Patoprsty V, Vikartovska A, Pospiskova K, Safarik I, Nahalka J. Magnetization of active inclusion bodies: comparison with centrifugation in repetitive biotransformations. Microb Cell Fact 2018; 17:139. [PMID: 30176877 PMCID: PMC6122667 DOI: 10.1186/s12934-018-0987-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 08/24/2018] [Indexed: 11/10/2022] Open
Abstract
Background Physiological aggregation of a recombinant enzyme into enzymatically active inclusion bodies could be an excellent strategy to obtain immobilized enzymes for industrial biotransformation processes. However, it is not convenient to recycle “gelatinous masses” of protein inclusion bodies from one reaction cycle to another, as high centrifugation forces are needed in large volumes. The magnetization of inclusion bodies is a smart solution for large-scale applications, enabling an easier separation process using a magnetic field. Results Magnetically modified inclusion bodies of UDP–glucose pyrophosphorylase were recycled 50 times, in comparison, inclusion bodies of the same enzyme were inactivated during ten reaction cycles if they were recycled by centrifugation. Inclusion bodies of sialic acid aldolase also showed good performance and operational stability after the magnetization procedure. Conclusions It is demonstrated here that inclusion bodies can be easily magnetically modified by magnetic iron oxide particles prepared by microwave-assisted synthesis from ferrous sulphate. The magnetic particles stabilize the repetitive use of the inclusion bodies . Electronic supplementary material The online version of this article (10.1186/s12934-018-0987-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Romana Koszagova
- Institute of Chemistry, Centre for Glycomics, Slovak Academy of Sciences, Dubravska Cesta 9, SK-84538, Bratislava, Slovak Republic.,Institute of Chemistry, Centre of Excellence for White-green Biotechnology, Slovak Academy of Sciences, Trieda Andreja Hlinku 2, SK-94976, Nitra, Slovak Republic
| | - Tomas Krajcovic
- Institute of Chemistry, Centre for Glycomics, Slovak Academy of Sciences, Dubravska Cesta 9, SK-84538, Bratislava, Slovak Republic.,Institute of Chemistry, Centre of Excellence for White-green Biotechnology, Slovak Academy of Sciences, Trieda Andreja Hlinku 2, SK-94976, Nitra, Slovak Republic
| | - Klaudia Palencarova-Talafova
- Institute of Chemistry, Centre for Glycomics, Slovak Academy of Sciences, Dubravska Cesta 9, SK-84538, Bratislava, Slovak Republic.,Institute of Chemistry, Centre of Excellence for White-green Biotechnology, Slovak Academy of Sciences, Trieda Andreja Hlinku 2, SK-94976, Nitra, Slovak Republic
| | - Vladimir Patoprsty
- Institute of Chemistry, Centre for Glycomics, Slovak Academy of Sciences, Dubravska Cesta 9, SK-84538, Bratislava, Slovak Republic.,Institute of Chemistry, Centre of Excellence for White-green Biotechnology, Slovak Academy of Sciences, Trieda Andreja Hlinku 2, SK-94976, Nitra, Slovak Republic
| | - Alica Vikartovska
- Institute of Chemistry, Centre for Glycomics, Slovak Academy of Sciences, Dubravska Cesta 9, SK-84538, Bratislava, Slovak Republic.,Institute of Chemistry, Centre of Excellence for White-green Biotechnology, Slovak Academy of Sciences, Trieda Andreja Hlinku 2, SK-94976, Nitra, Slovak Republic
| | - Kristyna Pospiskova
- Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 27, 783 71, Olomouc, Czech Republic
| | - Ivo Safarik
- Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 27, 783 71, Olomouc, Czech Republic.,Department of Nanobiotechnology, Biology Centre, ISB, CAS, Na Sadkach 7, 370 05, Ceske Budejovice, Czech Republic
| | - Jozef Nahalka
- Institute of Chemistry, Centre for Glycomics, Slovak Academy of Sciences, Dubravska Cesta 9, SK-84538, Bratislava, Slovak Republic. .,Institute of Chemistry, Centre of Excellence for White-green Biotechnology, Slovak Academy of Sciences, Trieda Andreja Hlinku 2, SK-94976, Nitra, Slovak Republic.
| |
Collapse
|
22
|
Park AR, Jang SW, Kim JS, Park YG, Koo BS, Lee HC. Efficient recovery of recombinant CRM197 expressed as inclusion bodies in E.coli. PLoS One 2018; 13:e0201060. [PMID: 30021008 PMCID: PMC6051658 DOI: 10.1371/journal.pone.0201060] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 07/06/2018] [Indexed: 01/29/2023] Open
Abstract
CRM197, which retains the same inflammatory and immune-stimulant properties as diphtheria toxin but with reduced toxicity, has been used as a safe carrier in conjugated vaccines. Expression of recombinant CRM197 in E. coli is limited due to formation of inclusion bodies. Soluble expression attempts in Bacillus subtilis, P. fluorescens, Pichia pastoris, and E. coli were partially unsuccessful or did not generate yields sufficient for industrial scale production. Multiple approaches have been attempted to produce CRM197 in E. coli, which has attractive features such as high yield, simplicity, fast growth, etc., including expression of oxidative host, concurrent expression of chaperones, or periplasmic export. Recently, alternative methods for recovery of insoluble proteins expressed in E. coli were reported. Compared to traditional denaturation/refolding, these methods used the non-denaturing solubilization agent, N-lauroylsarkosine to obtain higher recovery yields of native proteins. Based on this work, here, we focused on solubilization of CRM197 from E. coli inclusion bodies. First, CRM197 was expressed as inclusion bodies by high-level expression of recombinant CRM197 in E. coli (126.8 mg/g dcw). Then bioactive CRM197 was isolated from these inclusion bodies with high yield (108.1 mg/g dcw) through solubilization with N-lauroylsarkosine including Triton X-100 and CHAPS, and purified by Ni-affinity chromatography and size-exclusion chromatography. In this study, we present a cost-effective alternative for the production of bioactive CRM197 and compare our recovery yield with yields in other production processes.
Collapse
|
23
|
Hoffmann D, Ebrahimi M, Gerlach D, Salzig D, Czermak P. Reassessment of inclusion body-based production as a versatile opportunity for difficult-to-express recombinant proteins. Crit Rev Biotechnol 2017; 38:729-744. [DOI: 10.1080/07388551.2017.1398134] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Daniel Hoffmann
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
| | - Mehrdad Ebrahimi
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
| | - Doreen Gerlach
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Project group Bioresources, Giessen, Germany
| | - Denise Salzig
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
| | - Peter Czermak
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Project group Bioresources, Giessen, Germany
- Faculty of Biology and Chemistry, Justus Liebig University, Giessen, Germany
- Department of Chemical Engineering, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
24
|
Setrerrahmane S, Yu J, Hao J, Zheng H, Xu H. Novel production method of innovative antiangiogenic and antitumor small peptides in Escherichia coli. Drug Des Devel Ther 2017; 11:3207-3220. [PMID: 29184391 PMCID: PMC5685134 DOI: 10.2147/dddt.s136957] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Developing innovative drugs with potent efficacy, specificity, and high safety remains an ongoing task in antitumor therapy development. In the last few years, peptide drugs have become attractive agents in cancer therapy. HM-3, mainly with antiangiogenic effect, and AP25, with an additional antiproliferative effect, are two peptides designed in our laboratory targeting αvβ3 and α5β1 integrins, respectively. The low molecular weight of the two peptides renders their recombinant expression very difficult, and the complicated structure of AP25 makes its chemical synthesis restricted, which presents a big challenge for its development. METHODS Bifunctional peptides designed by the ligation of HM-3 and AP25, using linkers with different flexibility, were prepared using recombinant DNA technology in Escherichia coli. The fusion peptides were expressed in a modified auto-induction medium based on a mixture of glucose, glycerol, and lactose as carbon substrates and NH4+ as nitrogen source without any amino acid or other elements. Subsequently, the antiangiogenic, antiproliferative, and cell adhesion assays were conducted to evaluate the bioactivity of the two fusion peptides. RESULTS The peptides were successfully expressed in a soluble form without any induction, which allows the culture to reach higher cell density before protein expression occurs. Human umbilical vein endothelial cell migration assay and chick embryo chorioallantoic membrane assay showed, at low doses, a significantly increased antiangiogenic effect (>75%) of the purified products compared with the single molecules. Meanwhile, MTT assay confirmed their enhanced antitumor activity against gastric cancer cell line MGC-803; however, no significant effect was observed on hepatoma HepG2 cells and no cytotoxicity on normal human lens epithelial cell SRA01/04 and human epithelial esophageal cells. CONCLUSION Bifunctional molecules with antiangiogenic and antiproliferative effects were obtained by using this technique, which presents an alternative for small peptide production, instead of the conventional chemical method. The increased molecular weight facilitates the peptide expression with a simultaneous improvement in their stability and biological activity.
Collapse
Affiliation(s)
- Sarra Setrerrahmane
- The Engineering Research Center of Peptide Drug Discovery and Development, China Pharmaceutical University, Nanjing, Jiangsu
| | - Jian Yu
- The Engineering Research Center of Peptide Drug Discovery and Development, China Pharmaceutical University, Nanjing, Jiangsu
| | - Jingchao Hao
- The Engineering Research Center of Peptide Drug Discovery and Development, China Pharmaceutical University, Nanjing, Jiangsu
- College of Pharmacy & the Provincial Key Laboratory of Natural Drug and Pharmacology, Kunming, Yunnan
| | - Heng Zheng
- State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing, Jiangsu, People’s Republic of China
| | - Hanmei Xu
- The Engineering Research Center of Peptide Drug Discovery and Development, China Pharmaceutical University, Nanjing, Jiangsu
- State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing, Jiangsu, People’s Republic of China
| |
Collapse
|
25
|
Wang W, Sun J, Xiao W, Jiang L, Wang R, Fan J. Change of the N-terminal codon bias combined with tRNA supplementation outperforms the selected fusion tags for production of human d-amino acid oxidase as active inclusion bodies. Biotechnol Lett 2017; 39:1733-1740. [DOI: 10.1007/s10529-017-2413-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 08/18/2017] [Indexed: 11/29/2022]
|
26
|
Krauss U, Jäger VD, Diener M, Pohl M, Jaeger KE. Catalytically-active inclusion bodies-Carrier-free protein immobilizates for application in biotechnology and biomedicine. J Biotechnol 2017; 258:136-147. [PMID: 28465211 DOI: 10.1016/j.jbiotec.2017.04.033] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 04/25/2017] [Accepted: 04/26/2017] [Indexed: 02/08/2023]
Abstract
Bacterial inclusion bodies (IBs) consist of unfolded protein aggregates and represent inactive waste products often accumulating during heterologous overexpression of recombinant genes in Escherichia coli. This general misconception has been challenged in recent years by the discovery that IBs, apart from misfolded polypeptides, can also contain substantial amounts of active and thus correctly or native-like folded protein. The corresponding catalytically-active inclusion bodies (CatIBs) can be regarded as a biologically-active sub-micrometer sized biomaterial or naturally-produced carrier-free protein immobilizate. Fusion of polypeptide (protein) tags can induce CatIB formation paving the way towards the wider application of CatIBs in synthetic chemistry, biocatalysis and biomedicine. In the present review we summarize the history of CatIBs, present the molecular-biological tools that are available to induce CatIB formation, and highlight potential lines of application. In the second part findings regarding the formation, architecture, and structure of (Cat)IBs are summarized. Finally, an overview is presented about the available bioinformatic tools that potentially allow for the prediction of aggregation and thus (Cat)IB formation. This review aims at demonstrating the potential of CatIBs for biotechnology and hopefully contributes to a wider acceptance of this promising, yet not widely utilized, protein preparation.
Collapse
Affiliation(s)
- Ulrich Krauss
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine Universität Düsseldorf, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany.
| | - Vera D Jäger
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine Universität Düsseldorf, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
| | - Martin Diener
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine Universität Düsseldorf, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
| | - Martina Pohl
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
| | - Karl-Erich Jaeger
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine Universität Düsseldorf, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany; IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
| |
Collapse
|
27
|
Mukherjee J, Gupta MN. Protein aggregates: Forms, functions and applications. Int J Biol Macromol 2017; 97:778-789. [DOI: 10.1016/j.ijbiomac.2016.11.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 11/02/2016] [Accepted: 11/05/2016] [Indexed: 11/15/2022]
|
28
|
Yeom SJ, Han GH, Kim M, Kwon KK, Fu Y, Kim H, Lee H, Lee DH, Jung H, Lee SG. Controlled Aggregation and Increased Stability of β-Glucuronidase by Cellulose Binding Domain Fusion. PLoS One 2017; 12:e0170398. [PMID: 28099480 PMCID: PMC5242468 DOI: 10.1371/journal.pone.0170398] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 01/04/2017] [Indexed: 11/18/2022] Open
Abstract
Cellulose-binding domains (CBDs) are protein domains with cellulose-binding activity, and some act as leaders in the localization of cellulosomal scaffoldin proteins to the hydrophobic surface of crystalline cellulose. In this study, we found that a CBD fusion enhanced and improved soluble β-glucuronidase (GusA) enzyme properties through the formation of an artificially oligomeric state. First, a soluble CBD fused to the C-terminus of GusA (GusA-CBD) was obtained and characterized. Interestingly, the soluble GusA-CBD showed maximum activity at higher temperatures (65°C) and more acidic pH values (pH 6.0) than free GusA did (60°C and pH 7.5). Moreover, the GusA-CBD enzyme showed higher thermal and pH stabilities than the free GusA enzyme did. Additionally, GusA-CBD showed higher enzymatic activity in the presence of methanol than free GusA did. Evaluation of the protease accessibility of both enzymes revealed that GusA-CBD retained 100% of its activity after 1 h incubation in 0.5 mg/ml protease K, while free GusA completely lost its activity. Simple fusion of CBD as a single domain may be useful for tunable enzyme states to improve enzyme stability in industrial applications.
Collapse
Affiliation(s)
- Soo-Jin Yeom
- Synthetic Biology & Bioengineering Research Center, KRIBB, Yuseong-gu, Daejeon, Korea
| | - Gui Hwan Han
- Synthetic Biology & Bioengineering Research Center, KRIBB, Yuseong-gu, Daejeon, Korea
| | - Moonjung Kim
- Synthetic Biology & Bioengineering Research Center, KRIBB, Yuseong-gu, Daejeon, Korea
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, Korea
| | - Kil Koang Kwon
- Synthetic Biology & Bioengineering Research Center, KRIBB, Yuseong-gu, Daejeon, Korea
| | - Yaoyao Fu
- Synthetic Biology & Bioengineering Research Center, KRIBB, Yuseong-gu, Daejeon, Korea
| | - Haseong Kim
- Synthetic Biology & Bioengineering Research Center, KRIBB, Yuseong-gu, Daejeon, Korea
| | - Hyewon Lee
- Synthetic Biology & Bioengineering Research Center, KRIBB, Yuseong-gu, Daejeon, Korea
| | - Dae-Hee Lee
- Synthetic Biology & Bioengineering Research Center, KRIBB, Yuseong-gu, Daejeon, Korea
- Biosystems & Bioengineering, University of Science & Technology, Yuseong-gu, Daejeon, Korea
| | - Heungchae Jung
- Synthetic Biology & Bioengineering Research Center, KRIBB, Yuseong-gu, Daejeon, Korea
| | - Seung-Goo Lee
- Synthetic Biology & Bioengineering Research Center, KRIBB, Yuseong-gu, Daejeon, Korea
- Biosystems & Bioengineering, University of Science & Technology, Yuseong-gu, Daejeon, Korea
- * E-mail:
| |
Collapse
|
29
|
A study on the effects of linker flexibility on acid phosphatase PhoC-GFP fusion protein using a novel linker library. Enzyme Microb Technol 2016; 83:1-6. [DOI: 10.1016/j.enzmictec.2015.11.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 10/30/2015] [Accepted: 11/08/2015] [Indexed: 12/19/2022]
|
30
|
Li G, Huang Z, Zhang C, Dong BJ, Guo RH, Yue HW, Yan LT, Xing XH. Construction of a linker library with widely controllable flexibility for fusion protein design. Appl Microbiol Biotechnol 2015; 100:215-25. [DOI: 10.1007/s00253-015-6985-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 08/25/2015] [Accepted: 09/04/2015] [Indexed: 10/23/2022]
|
31
|
Wang X, Zhou B, Hu W, Zhao Q, Lin Z. Formation of active inclusion bodies induced by hydrophobic self-assembling peptide GFIL8. Microb Cell Fact 2015; 14:88. [PMID: 26077447 PMCID: PMC4467046 DOI: 10.1186/s12934-015-0270-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 05/08/2015] [Indexed: 11/25/2022] Open
Abstract
Background In the last few decades, several groups have observed that proteins expressed as inclusion bodies (IBs) in bacteria could still be biologically active when terminally fused to an appropriate aggregation-prone partner such as pyruvate oxidase from Paenibacillus polymyxa (PoxB). More recently, we have demonstrated that three amphipathic self-assembling peptides, an alpha helical peptide 18A, a beta-strand peptide ELK16, and a surfactant-like peptide L6KD, have properties that induce target proteins into active IBs. We have developed an efficient protein expression and purification approach for these active IBs by introducing a self-cleavable intein molecule. Results In this study, the self-assembling peptide GFIL8 (GFILGFIL) with only hydrophobic residues was analyzed, and this peptide effectively induced the formation of cytoplasmic IBs in Escherichia coli when terminally attached to lipase A and amadoriase II. The protein aggregates in cells were confirmed by transmission electron microscopy analysis and retained ~50% of their specific activities relative to the native counterparts. We constructed an expression and separation coupled tag (ESCT) by incorporating an intein molecule, the Mxe GyrA intein. Soluble target proteins were successfully released from active IBs upon cleavage of the intein between the GFIL8 tag and the target protein, which was mediated by dithiothreitol. A variant of GFIL8, GFIL16 (GFILGFILGFILGFIL), improved the ESCT scheme by efficiently eliminating interference from the soluble intein-GFIL8 molecule. The yields of target proteins at the laboratory scale were 3.0–7.5 μg/mg wet cell pellet, which is comparable to the yields from similar ESCT constructs using 18A, ELK16, or the elastin-like peptide tag scheme. Conclusions The all-hydrophobic self-assembling peptide GFIL8 induced the formation of active IBs in E. coli when terminally attached to target proteins. GFIL8 and its variant GFIL16 can act as a “pull-down” tag to produce purified soluble proteins with reasonable quantity and purity from active aggregates. Owing to the structural simplicity, strong hydrophobicity, and high aggregating efficiency, these peptides can be further explored for enzyme production and immobilization.
Collapse
Affiliation(s)
- Xu Wang
- Department of Chemical Engineering, Tsinghua University, One Tsinghua Garden Road, Beijing, 100084, China.
| | - Bihong Zhou
- Department of Chemical Engineering, Tsinghua University, One Tsinghua Garden Road, Beijing, 100084, China.
| | - Weike Hu
- Department of Chemical Engineering, Tsinghua University, One Tsinghua Garden Road, Beijing, 100084, China.
| | - Qing Zhao
- Department of Chemical Engineering, Tsinghua University, One Tsinghua Garden Road, Beijing, 100084, China.
| | - Zhanglin Lin
- Department of Chemical Engineering, Tsinghua University, One Tsinghua Garden Road, Beijing, 100084, China.
| |
Collapse
|
32
|
Fan J, Huang L, Sun J, Qiu Y, Zhou J, Shen Y. Strategy for linker selection to enhance refolding and bioactivity of VAS-TRAIL fusion protein based on inclusion body conformation and activity. J Biotechnol 2015; 209:16-22. [PMID: 26072465 DOI: 10.1016/j.jbiotec.2015.06.383] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 06/06/2015] [Indexed: 11/25/2022]
Abstract
A bifunctional fusion protein, VAS-TRAIL, was designed for superior therapeutic efficacy by combining anti-angiogenesis activity with tumor-selective apoptosis activity. The protein was expressed as inclusion body (IB) in Escherichia coli. To enhance refolding yield and bioactivity, four fusions were constructed with different linkers (no linker, flexible linker, rigid linker, and helix-forming linker). A novel linker selection strategy based on IB conformational quality and activity was applied to predict the suitable linker. The conformational quality and activity of VAS-TRAIL IBs were analyzed by ATR-FTIR and cytotoxicity assay, respectively. Results demonstrated that aggregated VRT (fusion with rigid linker) contained the highest native-like β structure content and retained part of the expected activity, namely, cytotoxicity activity on tumor cells. This finding suggested that the rigid linker was the most suitable candidate. Further results of in vitro refolding and subsequent circular dichroism and activity assay of four refolded fusions were significantly correlated with the predictions. Refolding of VRT yielded more soluble proteins containing the expected secondary structure and the highest bioactivity compared with that of other fusions. Our research may offer an efficient method for the high-throughput design of aggregated-prone therapeutic fusion protein.
Collapse
Affiliation(s)
- Jiying Fan
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai 200237, China
| | - Liying Huang
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai 200237, China
| | - Jing Sun
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai 200237, China
| | - Yi Qiu
- Shanghai Gebaide Biotechnical Co., Ltd., Shanghai 201403, China
| | - Jinsong Zhou
- Shanghai Gebaide Biotechnical Co., Ltd., Shanghai 201403, China
| | - Yaling Shen
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
33
|
Singh A, Upadhyay V, Upadhyay AK, Singh SM, Panda AK. Protein recovery from inclusion bodies of Escherichia coli using mild solubilization process. Microb Cell Fact 2015; 14:41. [PMID: 25889252 PMCID: PMC4379949 DOI: 10.1186/s12934-015-0222-8] [Citation(s) in RCA: 299] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/06/2015] [Indexed: 11/13/2022] Open
Abstract
Formation of inclusion bodies in bacterial hosts poses a major challenge for large scale recovery of bioactive proteins. The process of obtaining bioactive protein from inclusion bodies is labor intensive and the yields of recombinant protein are often low. Here we review the developments in the field that are targeted at improving the yield, as well as quality of the recombinant protein by optimizing the individual steps of the process, especially solubilization of the inclusion bodies and refolding of the solubilized protein. Mild solubilization methods have been discussed which are based on the understanding of the fact that protein molecules in inclusion body aggregates have native-like structure. These methods solubilize the inclusion body aggregates while preserving the native-like protein structure. Subsequent protein refolding and purification results in high recovery of bioactive protein. Other parameters which influence the overall recovery of bioactive protein from inclusion bodies have also been discussed. A schematic model describing the utility of mild solubilization methods for high throughput recovery of bioactive protein has also been presented.
Collapse
Affiliation(s)
- Anupam Singh
- Product Development Cell, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Vaibhav Upadhyay
- Product Development Cell, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Arun Kumar Upadhyay
- Product Development Cell, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Surinder Mohan Singh
- Product Development Cell, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Amulya Kumar Panda
- Product Development Cell, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
34
|
A variant of green fluorescent protein exclusively deposited to active intracellular inclusion bodies. Microb Cell Fact 2014; 13:68. [PMID: 24885571 PMCID: PMC4049505 DOI: 10.1186/1475-2859-13-68] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 05/11/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Inclusion bodies (IBs) were generally considered to be inactive protein deposits and did not hold any attractive values in biotechnological applications. Recently, some IBs of recombinant proteins were confirmed to show their functional properties such as enzyme activities, fluorescence, etc. Such biologically active IBs are not commonly formed, but they have great potentials in the fields of biocatalysis, material science and nanotechnology. RESULTS In this study, we characterized the IBs of DL4, a deletion variant of green fluorescent protein which forms active intracellular aggregates. The DL4 proteins expressed in Escherichia coli were exclusively deposited to IBs, and the IBs were estimated to be mostly composed of active proteins. The spectral properties and quantum yield of the DL4 variant in the active IBs were almost same with those of its native protein. Refolding and stability studies revealed that the deletion mutation in DL4 didn't affect the folding efficiency of the protein, but destabilized its structure. Analyses specific for amyloid-like structures informed that the inner architecture of DL4 IBs might be amorphous rather than well-organized. The diameter of fluorescent DL4 IBs could be decreased up to 100-200 nm by reducing the expression time of the protein in vivo. CONCLUSIONS To our knowledge, DL4 is the first GFP variant that folds correctly but aggregates exclusively in vivo without any self-aggregating/assembling tags. The fluorescent DL4 IBs have potentials to be used as fluorescent biomaterials. This study also suggests that biologically active IBs can be achieved through engineering a target protein itself.
Collapse
|
35
|
Seras-Franzoso J, Peebo K, García-Fruitós E, Vázquez E, Rinas U, Villaverde A. Improving protein delivery of fibroblast growth factor-2 from bacterial inclusion bodies used as cell culture substrates. Acta Biomater 2014; 10:1354-9. [PMID: 24361427 DOI: 10.1016/j.actbio.2013.12.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 11/13/2013] [Accepted: 12/11/2013] [Indexed: 10/25/2022]
Abstract
Bacterial inclusion bodies (IBs) have recently been used to generate biocompatible cell culture interfaces, with diverse effects on cultured cells such as cell adhesion enhancement, stimulation of cell growth or induction of mesenchymal stem cell differentiation. Additionally, novel applications of IBs as sustained protein delivery systems with potential applications in regenerative medicine have been successfully explored. In this scenario, with IBs gaining significance in the biomedical field, the fine tuning of this functional biomaterial is crucial. In this work, the effect of temperature on fibroblast growth factor-2 (FGF-2) IB production and performance has been evaluated. FGF-2 was overexpressed in Escherichia coli at 25 and 37 °C, producing IBs with differences in size, particle structure and biological activity. Cell culture topographies made with FGF-2 IBs biofabricated at 25 °C showed higher levels of biological activity as well as a looser supramolecular structure, enabling a higher protein release from the particles. In addition, the controlled use of FGF-2 protein particles enabled the generation of functional topographies with multiple biological activities being effective on diverse cell types.
Collapse
|