1
|
Parnas M, McLane-Svoboda AK, Cox E, McLane-Svoboda SB, Sanchez SW, Farnum A, Tundo A, Lefevre N, Miller S, Neeb E, Contag CH, Saha D. Precision detection of select human lung cancer biomarkers and cell lines using honeybee olfactory neural circuitry as a novel gas sensor. Biosens Bioelectron 2024; 261:116466. [PMID: 38850736 DOI: 10.1016/j.bios.2024.116466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 05/24/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
Human breath contains biomarkers (odorants) that can be targeted for early disease detection. It is well known that honeybees have a keen sense of smell and can detect a wide variety of odors at low concentrations. Here, we employ honeybee olfactory neuronal circuitry to classify human lung cancer volatile biomarkers at different concentrations and their mixtures at concentration ranges relevant to biomarkers in human breath from parts-per-billion to parts-per-trillion. We also validated this brain-based sensing technology by detecting human non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC) cell lines using the 'smell' of the cell cultures. Different lung cancer biomarkers evoked distinct spiking response dynamics in the honeybee antennal lobe neurons indicating that those neurons encoded biomarker-specific information. By investigating lung cancer biomarker-evoked population neuronal responses from the honeybee antennal lobe, we classified individual human lung cancer biomarkers successfully (88% success rate). When we mixed six lung cancer biomarkers at different concentrations to create 'synthetic lung cancer' vs. 'synthetic healthy' human breath, honeybee population neuronal responses were able to classify those complex breath mixtures reliably with exceedingly high accuracy (93-100% success rate with a leave-one-trial-out classification method). Finally, we employed this sensor to detect human NSCLC and SCLC cell lines and we demonstrated that honeybee brain olfactory neurons could distinguish between lung cancer vs. healthy cell lines and could differentiate between different NSCLC and SCLC cell lines successfully (82% classification success rate). These results indicate that the honeybee olfactory system can be used as a sensitive biological gas sensor to detect human lung cancer.
Collapse
Affiliation(s)
- Michael Parnas
- Department of Biomedical Engineering and the Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Autumn K McLane-Svoboda
- Department of Biomedical Engineering and the Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Elyssa Cox
- Department of Biomedical Engineering and the Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Summer B McLane-Svoboda
- Department of Biomedical Engineering and the Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Simon W Sanchez
- Department of Biomedical Engineering and the Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Alexander Farnum
- Department of Biomedical Engineering and the Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Anthony Tundo
- Department of Biomedical Engineering and the Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Noël Lefevre
- Department of Biomedical Engineering and the Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Sydney Miller
- Department of Biomedical Engineering and the Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Emily Neeb
- Department of Biomedical Engineering and the Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Christopher H Contag
- Department of Biomedical Engineering and the Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA; Department of Microbiology, Genetics & Immunology, Michigan State University, East Lansing, MI, USA
| | - Debajit Saha
- Department of Biomedical Engineering and the Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA; Neuroscience Program, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
2
|
Rosser TG, Turner MA, Reynolds JC, Martin NRW, Lindley MR. Stimulated C2C12 Myotube Headspace Volatile Organic Compound Analysis. Molecules 2024; 29:4527. [PMID: 39407458 PMCID: PMC11477781 DOI: 10.3390/molecules29194527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/06/2024] [Accepted: 09/17/2024] [Indexed: 10/20/2024] Open
Abstract
Understanding exercise metabolism and the relationship with volatile organic compounds (VOCs) holds potential in both health care and sports performance. Exercise metabolism can be investigated using whole body exercise testing (in vivo) or through the culture and subsequent electrical pulse stimulation (EPS) of myotubes (in vitro). This research investigates the novel headspace (HS) analysis of EPS skeletal muscle myotubes. An in vitro system was built to investigate the effect of EPS on the volatile constituents in the HS above EPS skeletal muscle. The C2C12 immortalised cell line was chosen. EPS was applied to the system to induce myotube contraction. The in vitro system was applied to the analysis of VOCs using thermal desorption (TD) sampling. Samples were collected under four conditions: environmental samples (enviro), acellular media HS samples (blank), skeletal muscle myotubes without stimulation HS samples (baseline) and EPS of skeletal muscle myotube HS samples (stim). TD sampling combined with gas-chromatography mass spectrometry (GC-MS) detected two compounds that, after multivariate and univariate statistical analysis, were identified as changing due to EPS (p < 0.05). These compounds were tentatively assigned as 1,4-Dioxane-2,5-dione, 3,6-dimethyl- and 1-pentene. The former is a known lactide and the latter has been reported as a marker of oxidative stress. Further research should focus on improvements to the EPS system, including the use of more relevant cell lines, quantification of myotube contractions, and the application of targeted analysis, metabolic assays and media analysis.
Collapse
Affiliation(s)
- Tomos G. Rosser
- School of Sport Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK (N.R.W.M.)
| | - Matthew A. Turner
- Department of Chemistry, School of Sciences, Loughborough University, Loughborough LE11 3TU, UK; (M.A.T.); (J.C.R.)
| | - James C. Reynolds
- Department of Chemistry, School of Sciences, Loughborough University, Loughborough LE11 3TU, UK; (M.A.T.); (J.C.R.)
| | - Neil R. W. Martin
- School of Sport Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK (N.R.W.M.)
| | - Martin R. Lindley
- School of Health Sciences, University of New South Wales, Sydney 2050, Australia
| |
Collapse
|
3
|
Golfinopoulou R, Hatziagapiou K, Mavrikou S, Kintzios S. Unveiling Colorectal Cancer Biomarkers: Harnessing Biosensor Technology for Volatile Organic Compound Detection. SENSORS (BASEL, SWITZERLAND) 2024; 24:4712. [PMID: 39066110 PMCID: PMC11281049 DOI: 10.3390/s24144712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
Conventional screening options for colorectal cancer (CRC) detection are mainly direct visualization and invasive methods including colonoscopy and flexible sigmoidoscopy, which must be performed in a clinical setting and may be linked to adverse effects for some patients. Non-invasive CRC diagnostic tests such as computed tomography colonography and stool tests are either too costly or less reliable than invasive ones. On the other hand, volatile organic compounds (VOCs) are potentially ideal non-invasive biomarkers for CRC detection and monitoring. The present review is a comprehensive presentation of the current state-of-the-art VOC-based CRC diagnostics, with a specific focus on recent advancements in biosensor design and application. Among them, breath-based chromatography pattern analysis and sampling techniques are overviewed, along with nanoparticle-based optical and electrochemical biosensor approaches. Limitations of the currently available technologies are also discussed with an outlook for improvement in combination with big data analytics and advanced instrumentation, as well as expanding the scope and specificity of CRC-related volatile biomarkers.
Collapse
Affiliation(s)
- Rebecca Golfinopoulou
- Laboratory of Cell Technology, Department of Biotechnology, Agricultural University of Athens, EU-CONEXUS European University, 11855 Athens, Greece;
| | - Kyriaki Hatziagapiou
- First Department of Pediatrics, National and Kapodistrian University of Athens, “Aghia Sophia” Children’s Hospital, Thivon 1, 11527 Athens, Greece;
| | - Sophie Mavrikou
- Laboratory of Cell Technology, Department of Biotechnology, Agricultural University of Athens, EU-CONEXUS European University, 11855 Athens, Greece;
- CeBTec, 40 Vatatzi, 11472 Athens, Greece
| | - Spyridon Kintzios
- Laboratory of Cell Technology, Department of Biotechnology, Agricultural University of Athens, EU-CONEXUS European University, 11855 Athens, Greece;
- CeBTec, 40 Vatatzi, 11472 Athens, Greece
| |
Collapse
|
4
|
Issitt T, Reilly M, Sweeney ST, Brackenbury WJ, Redeker KR. GC/MS analysis of hypoxic volatile metabolic markers in the MDA-MB-231 breast cancer cell line. Front Mol Biosci 2023; 10:1178269. [PMID: 37251079 PMCID: PMC10210155 DOI: 10.3389/fmolb.2023.1178269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/24/2023] [Indexed: 05/31/2023] Open
Abstract
Hypoxia in disease describes persistent low oxygen conditions, observed in a range of pathologies, including cancer. In the discovery of biomarkers in biological models, pathophysiological traits present a source of translatable metabolic products for the diagnosis of disease in humans. Part of the metabolome is represented by its volatile, gaseous fraction; the volatilome. Human volatile profiles, such as those found in breath, are able to diagnose disease, however accurate volatile biomarker discovery is required to target reliable biomarkers to develop new diagnostic tools. Using custom chambers to control oxygen levels and facilitate headspace sampling, the MDA-MB-231 breast cancer cell line was exposed to hypoxia (1% oxygen) for 24 h. The maintenance of hypoxic conditions in the system was successfully validated over this time period. Targeted and untargeted gas chromatography mass spectrometry approaches revealed four significantly altered volatile organic compounds when compared to control cells. Three compounds were actively consumed by cells: methyl chloride, acetone and n-Hexane. Cells under hypoxia also produced significant amounts of styrene. This work presents a novel methodology for identification of volatile metabolisms under controlled gas conditions with novel observations of volatile metabolisms by breast cancer cells.
Collapse
Affiliation(s)
- Theo Issitt
- Department of Biology, University of York, York, United Kingdom
- York Biomedical Research Institute, University of York, York, United Kingdom
| | - Matthew Reilly
- Department of Biology, University of York, York, United Kingdom
| | - Sean T. Sweeney
- Department of Biology, University of York, York, United Kingdom
- York Biomedical Research Institute, University of York, York, United Kingdom
| | - William J. Brackenbury
- Department of Biology, University of York, York, United Kingdom
- York Biomedical Research Institute, University of York, York, United Kingdom
| | | |
Collapse
|
5
|
Farnum A, Parnas M, Hoque Apu E, Cox E, Lefevre N, Contag CH, Saha D. Harnessing insect olfactory neural circuits for detecting and discriminating human cancers. Biosens Bioelectron 2023; 219:114814. [PMID: 36327558 DOI: 10.1016/j.bios.2022.114814] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/04/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
Abstract
There is overwhelming evidence that presence of cancer alters cellular metabolic processes, and these changes are manifested in emitted volatile organic compound (VOC) compositions of cancer cells. Here, we take a novel forward engineering approach by developing an insect olfactory neural circuit-based VOC sensor for cancer detection. We obtained oral cancer cell culture VOC-evoked extracellular neural responses from in vivo insect (locust) antennal lobe neurons. We employed biological neural computations of the antennal lobe circuitry for generating spatiotemporal neuronal response templates corresponding to each cell culture VOC mixture, and employed these neuronal templates to distinguish oral cancer cell lines (SAS, Ca9-22, and HSC-3) vs. a non-cancer cell line (HaCaT). Our results demonstrate that three different human oral cancers can be robustly distinguished from each other and from a non-cancer oral cell line. By using high-dimensional population neuronal response analysis and leave-one-trial-out methodology, our approach yielded high classification success for each cell line tested. Our analyses achieved 76-100% success in identifying cell lines by using the population neural response (n = 194) collected for the entire duration of the cell culture study. We also demonstrate this cancer detection technique can distinguish between different types of oral cancers and non-cancer at different time-matched points of growth. This brain-based cancer detection approach is fast as it can differentiate between VOC mixtures within 250 ms of stimulus onset. Our brain-based cancer detection system comprises a novel VOC sensing methodology that incorporates entire biological chemosensory arrays, biological signal transduction, and neuronal computations in a form of a forward-engineered technology for cancer VOC detection.
Collapse
Affiliation(s)
- Alexander Farnum
- Department of Biomedical Engineering and the Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Michael Parnas
- Department of Biomedical Engineering and the Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Ehsanul Hoque Apu
- Department of Biomedical Engineering and the Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA; Division of Hematology and Oncology, Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, MI, 48108, USA
| | - Elyssa Cox
- Department of Biomedical Engineering and the Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Noël Lefevre
- Department of Biomedical Engineering and the Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Christopher H Contag
- Department of Biomedical Engineering and the Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA; Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Debajit Saha
- Department of Biomedical Engineering and the Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
6
|
Chung J, Akter S, Han S, Shin Y, Choi TG, Kang I, Kim SS. Diagnosis by Volatile Organic Compounds in Exhaled Breath in Exhaled Breath from Patients with Gastric and Colorectal Cancers. Int J Mol Sci 2022; 24:129. [PMID: 36613569 PMCID: PMC9820758 DOI: 10.3390/ijms24010129] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
One in three cancer deaths worldwide are caused by gastric and colorectal cancer malignancies. Although the incidence and fatality rates differ significantly from country to country, the rates of these cancers in East Asian nations such as South Korea and Japan have been increasing each year. Above all, the biggest danger of this disease is how challenging it is to recognize in its early stages. Moreover, most patients with these cancers do not present with any disease symptoms before receiving a definitive diagnosis. Currently, volatile organic compounds (VOCs) are being used for the early prediction of several other diseases, and research has been carried out on these applications. Exhaled VOCs from patients possess remarkable potential as novel biomarkers, and their analysis could be transformative in the prevention and early diagnosis of colon and stomach cancers. VOCs have been spotlighted in recent studies due to their ease of use. Diagnosis on the basis of patient VOC analysis takes less time than methods using gas chromatography, and results in the literature demonstrate that it is possible to determine whether a patient has certain diseases by using organic compounds in their breath as indicators. This study describes how VOCs can be used to precisely detect cancers; as more data are accumulated, the accuracy of this method will increase, and it can be applied in more fields.
Collapse
Affiliation(s)
- Jinwook Chung
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Salima Akter
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sunhee Han
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yoonhwa Shin
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Tae Gyu Choi
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Insug Kang
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sung Soo Kim
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
7
|
Cozzolino R, De Giulio B, Martignetti A, Forte G, Dallio M, Romeo M, Scognamiglio F, Ventriglia L, Stocchero M, Federico A. Urinary volatile Organic compounds in non-alcoholic fatty liver disease (NAFLD), type two diabetes mellitus (T2DM) and NAFLD-T2DM coexistence. Metabolomics 2022; 18:98. [PMID: 36441279 DOI: 10.1007/s11306-022-01960-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Accumulating evidence have shown a significant correlation between urinary volatile organic compounds (VOCs) profile and the manifestation of several physiological and pathological states, including liver diseases. Previous studies have investigated the urinary metabolic signature as a non-invasive tool for the early discrimination between non-alcoholic fatty liver (NAFL) and non-alcoholic steatohepatitis (NASH), which nowadays represents one of the most important challenges in this context, feasible only by carrying out liver biopsy. OBJECTIVES The aim of the study was to investigate the differences in the urinary VOCs profiles of non-alcoholic fatty liver disease (NAFLD) patients, diabetes mellitus (T2DM) subjects and NAFLD/T2DM patients. METHODS Headspace solid-phase microextraction (HS-SPME) coupled with gas chromatography-mass spectrometry (GC-MS) was applied to profile the urinary VOCs. Urine samples were analysed both under acid and alkaline conditions, to obtain a range of urinary volatiles with different physicochemical properties. RESULTS Urinary VOCs profiles of 13 NAFLD patients, 13 T2DM subjects and 13 NAFLD/T2DM patients were investigated by multivariate and univariate data analysis techniques which allowed to identify 21 volatiles under alkaline conditions able to describe the NAFLD/T2DM group concerning the other two groups. CONCLUSION Our results suggest that VOCs signatures can improve the knowledge of the pathological condition where NAFLD coexists with T2DM and discovering new features that are not simply the sum of the two diseases. These preliminary findings may be considered as hypothesis-generating, to be clearly confirmed by larger prospective investigations.
Collapse
Affiliation(s)
- Rosaria Cozzolino
- Institute of Food Science, National Research Council (CNR), via Roma 64, 83100, Avellino, Italy.
| | - Beatrice De Giulio
- Institute of Food Science, National Research Council (CNR), via Roma 64, 83100, Avellino, Italy.
| | - A Martignetti
- Institute of Food Science, National Research Council (CNR), via Roma 64, 83100, Avellino, Italy
| | - G Forte
- Institute of Food Science, National Research Council (CNR), via Roma 64, 83100, Avellino, Italy
| | - M Dallio
- Hepatogastroenterology Division, Department of Precision Medicine, University of Campania Luigi Vanvitelli, Piazza Miraglia 2, 80138, Naples, Italy
| | - M Romeo
- Hepatogastroenterology Division, Department of Precision Medicine, University of Campania Luigi Vanvitelli, Piazza Miraglia 2, 80138, Naples, Italy
| | - F Scognamiglio
- Hepatogastroenterology Division, Department of Precision Medicine, University of Campania Luigi Vanvitelli, Piazza Miraglia 2, 80138, Naples, Italy
| | - L Ventriglia
- Hepatogastroenterology Division, Department of Precision Medicine, University of Campania Luigi Vanvitelli, Piazza Miraglia 2, 80138, Naples, Italy
| | - M Stocchero
- Department of Women's and Children's Health, University of Padua, Padua, Italy
| | - A Federico
- Institute of Food Science, National Research Council (CNR), via Roma 64, 83100, Avellino, Italy
| |
Collapse
|
8
|
Khan H, Shah MR, Barek J, Malik MI. Cancer biomarkers and their biosensors: A comprehensive review. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
9
|
Sana SRGL, Chen GM, Lv Y, Guo L, Li EY. Metabonomics fingerprint of volatile organic compounds in serum and urine of pregnant women with gestational diabetes mellitus. World J Diabetes 2022; 13:888-899. [PMID: 36312001 PMCID: PMC9606790 DOI: 10.4239/wjd.v13.i10.888] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/23/2022] [Accepted: 09/12/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Gestational diabetes mellitus (GDM) is a metabolic disease with an increasing annual incidence rate. Our previous observational study found that pregnant women with GDM had mild cognitive decline.
AIM To analyze the changes in metabonomics in pregnant women with GDM and explore the mechanism of cognitive function decline.
METHODS Thirty GDM patients and 30 healthy pregnant women were analyzed. Solid-phase microextraction gas chromatography/mass spectrometry was used to detect organic matter in plasma and urine samples. Statistical analyses were conducted using principal component analysis and partial least squares discriminant analysis.
RESULTS Differential volatile metabolites in the serum of pregnant women with GDM included hexanal, 2-octen-1-ol, and 2-propanol. Differential volatile metabolites in the urine of these women included benzene, cyclohexanone, 1-hexanol, and phenol. Among the differential metabolites, the conversion of 2-propanol to acetone may further produce methylglyoxal. Therefore, 2-propanol may be a potential marker for serum methylglyoxal.
CONCLUSION 2-propanol may be a potential volatile marker to evaluate cognitive impairment in pregnant women with GDM.
Collapse
Affiliation(s)
- Si-Ri-Gu-Leng Sana
- Department of Anesthesiology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Guang-Min Chen
- Department of Anesthesiology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Yang Lv
- Department of Anesthesiology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Lei Guo
- Department of Anesthesiology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - En-You Li
- Department of Anesthesiology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| |
Collapse
|
10
|
Issitt T, Sweeney ST, Brackenbury WJ, Redeker KR. Sampling and Analysis of Low-Molecular-Weight Volatile Metabolites in Cellular Headspace and Mouse Breath. Metabolites 2022; 12:599. [PMID: 35888722 PMCID: PMC9315489 DOI: 10.3390/metabo12070599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/08/2022] [Accepted: 06/15/2022] [Indexed: 02/04/2023] Open
Abstract
Volatile compounds, abundant in breath, can be used to accurately diagnose and monitor a range of medical conditions. This offers a noninvasive, low-cost approach with screening applications; however, the uptake of this diagnostic approach has been limited by conflicting published outcomes. Most published reports rely on large scale screening of the public, at single time points and without reference to ambient air. Here, we present a novel approach to volatile sampling from cellular headspace and mouse breath that incorporates multi-time-point analysis and ambient air subtraction revealing compound flux as an effective proxy of active metabolism. This approach to investigating breath volatiles offers a new avenue for disease biomarker discovery and diagnosis. Using gas chromatography mass spectrometry (GC/MS), we focus on low molecular weight, metabolic substrate/by-product compounds and demonstrate that this noninvasive technique is sensitive (reproducible at ~1 µg cellular protein, or ~500,000 cells) and capable of precisely determining cell type, status and treatment. Isolated cellular models represent components of larger mammalian systems, and we show that stress- and pathology-indicative compounds are detectable in mice, supporting further investigation using this methodology as a tool to identify volatile targets in human patients.
Collapse
Affiliation(s)
- Theo Issitt
- Department of Biology, University of York, York YO10 5DD, UK; (T.I.); (S.T.S.); (W.J.B.)
- York Biomedical Research Institute, University of York, York YO10 5DD, UK
| | - Sean T. Sweeney
- Department of Biology, University of York, York YO10 5DD, UK; (T.I.); (S.T.S.); (W.J.B.)
- York Biomedical Research Institute, University of York, York YO10 5DD, UK
| | - William J. Brackenbury
- Department of Biology, University of York, York YO10 5DD, UK; (T.I.); (S.T.S.); (W.J.B.)
- York Biomedical Research Institute, University of York, York YO10 5DD, UK
| | - Kelly R. Redeker
- Department of Biology, University of York, York YO10 5DD, UK; (T.I.); (S.T.S.); (W.J.B.)
| |
Collapse
|
11
|
Volatilomic Signatures of AGS and SNU-1 Gastric Cancer Cell Lines. Molecules 2022; 27:molecules27134012. [PMID: 35807254 PMCID: PMC9268292 DOI: 10.3390/molecules27134012] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/18/2022] [Accepted: 06/18/2022] [Indexed: 02/06/2023] Open
Abstract
In vitro studies can help reveal the biochemical pathways underlying the origin of volatile indicators of numerous diseases. The key objective of this study is to identify the potential biomarkers of gastric cancer. For this purpose, the volatilomic signatures of two human gastric cancer cell lines, AGS (human gastric adenocarcinoma) and SNU-1 (human gastric carcinoma), and one normal gastric mucosa cell line (GES-1) were investigated. More specifically, gas chromatography mass spectrometry has been applied to pinpoint changes in cell metabolism triggered by cancer. In total, ten volatiles were found to be metabolized, and thirty-five were produced by cells under study. The volatiles consumed were mainly six aldehydes and two heterocyclics, whereas the volatiles released embraced twelve ketones, eight alcohols, six hydrocarbons, three esters, three ethers, and three aromatic compounds. The SNU-1 cell line was found to have significantly altered metabolism in comparison to normal GES-1 cells. This was manifested by the decreased production of alcohols and ketones and the upregulated emission of esters. The AGS cells exhibited the increased production of methyl ketones containing an odd number of carbons, namely 2-tridecanone, 2-pentadecanone, and 2-heptadecanone. This study provides evidence that the cancer state modifies the volatilome of human cells.
Collapse
|
12
|
Nazir N, Abbas S, Nasir H, Hussain I. Electrochemical sensing of limonene using thiol capped gold nanoparticles and its detection in the real breath sample of a cirrhotic patient. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2021.115977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Gouzerh F, Bessière JM, Ujvari B, Thomas F, Dujon AM, Dormont L. Odors and cancer: Current status and future directions. Biochim Biophys Acta Rev Cancer 2021; 1877:188644. [PMID: 34737023 DOI: 10.1016/j.bbcan.2021.188644] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/22/2021] [Accepted: 10/23/2021] [Indexed: 02/07/2023]
Abstract
Cancer is the second leading cause of death in the world. Because tumors detected at early stages are easier to treat, the search for biomarkers-especially non-invasive ones-that allow early detection of malignancies remains a central goal to reduce cancer mortality. Cancer, like other pathologies, often alters body odors, and much has been done by scientists over the last few decades to assess the value of volatile organic compounds (VOCs) as signatures of cancers. We present here a quantitative review of 208 studies carried out between 1984 and 2020 that explore VOCs as potential biomarkers of cancers. We analyzed the main findings of these studies, listing and classifying VOCs related to different cancer types while considering both sampling methods and analysis techniques. Considering this synthesis, we discuss several of the challenges and the most promising prospects of this research direction in the war against cancer.
Collapse
Affiliation(s)
- Flora Gouzerh
- CREEC/CANECEV (CREES), Montpellier, France; MIVEGEC, Université de Montpellier, CNRS, IRD, Montpellier, France; CEFE, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3, Montpellier, France.
| | - Jean-Marie Bessière
- Ecole Nationale de Chimie de Montpellier, Laboratoire de Chimie Appliquée, Montpellier, France
| | - Beata Ujvari
- Deakin University, School of Life and Environmental Sciences, Centre for Integrative Ecology, Waurn Ponds, Vic 3216, Australia
| | - Frédéric Thomas
- CREEC/CANECEV (CREES), Montpellier, France; MIVEGEC, Université de Montpellier, CNRS, IRD, Montpellier, France
| | - Antoine M Dujon
- CREEC/CANECEV (CREES), Montpellier, France; MIVEGEC, Université de Montpellier, CNRS, IRD, Montpellier, France; Deakin University, School of Life and Environmental Sciences, Centre for Integrative Ecology, Waurn Ponds, Vic 3216, Australia
| | - Laurent Dormont
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3, Montpellier, France
| |
Collapse
|
14
|
Effective exposure of chemicals in in vitro cell systems: A review of chemical distribution models. Toxicol In Vitro 2021; 73:105133. [DOI: 10.1016/j.tiv.2021.105133] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 02/11/2021] [Accepted: 02/25/2021] [Indexed: 12/23/2022]
|
15
|
Bannaga AS, Tyagi H, Daulton E, Covington JA, Arasaradnam RP. Exploratory Study Using Urinary Volatile Organic Compounds for the Detection of Hepatocellular Carcinoma. Molecules 2021; 26:2447. [PMID: 33922256 PMCID: PMC8122735 DOI: 10.3390/molecules26092447] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/17/2021] [Accepted: 04/20/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) biomarkers are lacking in clinical practice. We therefore explored the pattern and composition of urinary volatile organic compounds (VOCs) in HCC patients. This was done in order to assess the feasibility of a potential non-invasive test for HCC, and to enhance our understanding of the disease. This pilot study recruited 58 participants, of whom 20 were HCC cases and 38 were non-HCC cases. The non-HCC cases included healthy individuals and patients with various stages of non-alcoholic fatty liver disease (NAFLD), including those with and without fibrosis. Urine was analysed using gas chromatography-ion mobility spectrometry (GC-IMS) and gas chromatography-time-of-flight mass spectrometry (GC-TOF-MS). GC-IMS was able to separate HCC from fibrotic cases with an area under the curve (AUC) of 0.97 (0.91-1.00), and from non-fibrotic cases with an AUC of 0.62 (0.48-0.76). For GC-TOF-MS, a subset of samples was analysed in which seven chemicals were identified and tentatively linked with HCC. These include 4-methyl-2,4-bis(p-hydroxyphenyl)pent-1-ene (2TMS derivative), 2-butanone, 2-hexanone, benzene, 1-ethyl-2-methyl-, 3-butene-1,2-diol, 1-(2-furanyl)-, bicyclo(4.1.0)heptane, 3,7,7-trimethyl-, [1S-(1a,3β,6a)]-, and sulpiride. Urinary VOC analysis using both GC-IMS and GC-TOF-MS proved to be a feasible method of identifying HCC cases, and was also able to enhance our understanding of HCC pathogenesis.
Collapse
Affiliation(s)
- Ayman S. Bannaga
- Department of Gastroenterology and Hepatology, University Hospital, Coventry CV2 2DX, UK;
- Warwick Medical School, University of Warwick, Coventry CV4 7HL, UK
| | - Heena Tyagi
- School of Engineering, University of Warwick, Coventry CV4 7AL, UK; (H.T.); (E.D.); (J.A.C.)
| | - Emma Daulton
- School of Engineering, University of Warwick, Coventry CV4 7AL, UK; (H.T.); (E.D.); (J.A.C.)
| | - James A. Covington
- School of Engineering, University of Warwick, Coventry CV4 7AL, UK; (H.T.); (E.D.); (J.A.C.)
| | - Ramesh P. Arasaradnam
- Department of Gastroenterology and Hepatology, University Hospital, Coventry CV2 2DX, UK;
- Warwick Medical School, University of Warwick, Coventry CV4 7HL, UK
- Faculty of Health & Life Sciences, Coventry University, Coventry CV1 5FB, UK
- Leicester Cancer Research Centre, University of Leicester, Leicester LE1 7RH, UK
| |
Collapse
|
16
|
Zou Y, Wang Y, Jiang Z, Zhou Y, Chen Y, Hu Y, Jiang G, Xie D. Breath profile as composite biomarkers for lung cancer diagnosis. Lung Cancer 2021; 154:206-213. [PMID: 33563485 DOI: 10.1016/j.lungcan.2021.01.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Lung cancer is continuously the leading cause of cancer related death, resulting from the lack of specific symptoms at early stage. A large-scale screening method may be the key point to find asymptomatic patients, leading to the reduction of mortality. METHODS An alternative method combining breath test and a machine learning algorithm is proposed. 236 breath samples were analyzed by TD-GCMS. Breath profile of each sample is composed of 308 features extracted from chromatogram. Gradient boost decision trees algorithm was employed to recognize lung cancer patients. Bootstrap is performed to simulate real diagnostic practice, with which we evaluated the confidence of our methods. RESULTS An accuracy of 85 % is shown in 6-fold cross validations. In statistical bootstrap, 72 % samples are marked as "confident", and the accuracy of confident samples is 93 % throughout the cross validations. CONCLUSION We have proposed such a non-invasive, accurate and confident method that might contribute to large-scale screening of lung cancer. As a consequence, more asymptomatic patients with early lung cancer may be detected.
Collapse
Affiliation(s)
- Yingchang Zou
- School of Electronic Information and Electrical Engineering, Changsha University, Changsha 410003, China
| | - Yu Wang
- Research Center for Healthcare Data Science, Zhijiang Lab, Hangzhou, China
| | - Zaile Jiang
- Tianhe Culture Chain Technologies Co Ltd., Changsha, 410008, China
| | - Yuan Zhou
- School of Electronic Information and Electrical Engineering, Changsha University, Changsha 410003, China
| | - Ying Chen
- School of Electronic Information and Electrical Engineering, Changsha University, Changsha 410003, China
| | - Yanjie Hu
- Zhejiang Sir Run Run Shaw Hospital, Department of Medicine, Zhejiang University, Hangzhou 310027, China
| | - Guobao Jiang
- School of Electronic Information and Electrical Engineering, Changsha University, Changsha 410003, China
| | - Duan Xie
- School of Electronic Information and Electrical Engineering, Changsha University, Changsha 410003, China
| |
Collapse
|
17
|
Leiherer A, Ślefarska D, Leja M, Heinzle C, Mündlein A, Kikuste I, Mezmale L, Drexel H, Mayhew CA, Mochalski P. The Volatilomic Footprints of Human HGC-27 and CLS-145 Gastric Cancer Cell Lines. Front Mol Biosci 2021; 7:607904. [PMID: 33585559 PMCID: PMC7874186 DOI: 10.3389/fmolb.2020.607904] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/09/2020] [Indexed: 12/12/2022] Open
Abstract
The presence of certain volatile biomarkers in the breath of patients with gastric cancer has been reported by several studies; however, the origin of these compounds remains controversial. In vitro studies, involving gastric cancer cells may address this problem and aid in revealing the biochemical pathways underlying the production and metabolism of gastric cancer volatile indicators. Gas chromatography with mass spectrometric detection, coupled with headspace needle trap extraction as the pre-concentration technique, has been applied to map the volatilomic footprints of human HGC-27 and CLS-145 gastric cancer cell lines and normal Human Stomach Epithelial Cells (HSEC). In total, 27 volatile compounds are found to be associated with metabolism occurring in HGC-27, CLS-145, and HSEC. Amongst these, the headspace concentrations of 12 volatiles were found to be reduced compared to those above just the cultivating medium, namely there was an observed uptake of eight aldehydes (2-methylpropanal, 2-methyl-2-propenal, 2-methylbutanal, 3-methylbutanal, hexanal, heptanal, nonanal, and benzaldehyde), three heterocyclic compounds (2-methyl-furan, 2-ethyl-furan, and 2-pentyl-furan), and one sulfur-containing compound (dimethyl disulphide). For the other 15 volatiles, the headspace concentrations above the healthy and cancerous cells were found to be higher than those found above the cultivating medium, namely the cells were found to release three esters (ethyl acetate, ethyl propanoate, and ethyl 2-methylbutyrate), seven ketones (2-pentanone, 2-heptanone, 2-nonanone, 2-undecanone, 2-tridecanone, 2-pentadecanone, and 2-heptadecanone), three alcohols (2-methyl-1-butanol, 3-methyl-1-butanol, and 2-ethyl-1-hexanol), one aromatic compound (toluene), and one sulfur containing compound [2-methyl-5-(methylthio) furan]. In comparison to HSEC, HGC-27 cancer cell lines were found to have significantly altered metabolism, manifested by an increased production of methyl ketones containing an odd number of carbons. Amongst these species, three volatiles were found exclusively to be produced by this cell line, namely 2-undecanone, 2-tridecanone, and 2-heptadecanone. Another interesting feature of the HGC-27 footprint is the lowered level of alcohols and esters. The CLS-145 cells exhibited less pronounced changes in their volatilomic pattern compared to HSEC. Their footprint was characterized by the upregulated production of esters and 2-ethyl-hexanol and downregulated production of other alcohols. We have therefore demonstrated that it is possible to differentiate between cancerous and healthy gastric cells using biochemical volatile signatures.
Collapse
Affiliation(s)
- Andreas Leiherer
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Feldkirch, Austria
- Private University of the Principality of Liechtenstein, Triesen, Liechtenstein
- Medical Central Laboratories, Feldkirch, Austria
| | - Daria Ślefarska
- Institute for Breath Research, University of Innsbruck, Dornbirn, Austria
- Institute of Chemistry, Jan Kochanowski University, Kielce, Poland
| | - Marcis Leja
- Institute of Clinical and Preventive Medicine, University of Latvia, Riga, Latvia
- Faculty of Medicine, University of Latvia, Riga, Latvia
- Riga East University Hospital, Riga, Latvia
| | - Christine Heinzle
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Feldkirch, Austria
| | - Axel Mündlein
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Feldkirch, Austria
| | - Ilze Kikuste
- Institute of Clinical and Preventive Medicine, University of Latvia, Riga, Latvia
- Faculty of Medicine, University of Latvia, Riga, Latvia
- Riga East University Hospital, Riga, Latvia
| | - Linda Mezmale
- Institute of Clinical and Preventive Medicine, University of Latvia, Riga, Latvia
- Faculty of Medicine, University of Latvia, Riga, Latvia
- Riga East University Hospital, Riga, Latvia
| | - Heinz Drexel
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Feldkirch, Austria
- Private University of the Principality of Liechtenstein, Triesen, Liechtenstein
- Drexel University College of Medicine, Philadelphia, PA, United States
| | - Chris A. Mayhew
- Institute for Breath Research, University of Innsbruck, Dornbirn, Austria
- Molecular Physics Group, School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
| | - Paweł Mochalski
- Institute for Breath Research, University of Innsbruck, Dornbirn, Austria
- Institute of Chemistry, Jan Kochanowski University, Kielce, Poland
| |
Collapse
|
18
|
Zhang J, Yao W, Wang S, Li M, Tan G, An J, Xu L, Dong J, Cheng P. Detection of the effects of triclosan (TCS) on the metabolism of VOCs in HepG2 cells by SPI-TOFMS. J Breath Res 2020; 14:046002. [PMID: 32512549 DOI: 10.1088/1752-7163/ab9ab1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Volatile organic compounds (VOCs) emitted by organisms and cell metabolism have demonstrated great physiological and pathological values. At present, there is a great interest in the study of volatile metabolome to determine whether VOCs can serve as potential diagnostic biomarkers. In view of the sensitivity of VOCs to physiological changes, the aim of this study was to investigate alterations in VOC profiles in the in vitro headspace of HepG2 cells after exposure to triclosan (TCS). Since the in vivo biological effects of TCS are clearly defined, several TCS-related VOCs may potentially be traced back to common cellular processes. In this study, HepG2 cells were cultured in TCS-containing medium for 2 h, and the emitted VOCs in the headspace of the culture flask were detected using a single photon ionization time-of-flight mass spectrometry instrument. The control group and the TCS-treated group could be well separated by differential VOC profiles, which were related to the physiological states of the HepG2 cells. Compared to the control group, eleven and ten specific VOCs were identified in the 20 μm and 50 μm TCS-treated groups, respectively. Among them, five specific VOCs (m/z 62, 64, 70, 121 and 146) were commonly observed in these two TCS-treated groups. These results indicate that TCS can cause changes in cellular metabolic VOCs, and different concentrations of TCS lead to different VOCs profiles. Based on the findings of the study, the detection of VOCs in cell metabolism can be used as an auxiliary tool to explore the mechanism of drug action, and also as an exploratory method to determine whether drugs play a role in disease treatment.
Collapse
Affiliation(s)
- Jiyang Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Rodinkov OV, Bugaichenko AS, Moskvin LN. Static Headspace Analysis and Its Current Status. JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1134/s106193482001013x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
20
|
Kulas P, Seidel M, Bozzato A, Schick B, Sessler DI, Kreuer S, Hüppe T. Volatile organic compounds in head and neck squamous cell carcinoma-An in vitro pilot study. Biomed Chromatogr 2020; 34:e4811. [PMID: 32059060 DOI: 10.1002/bmc.4811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 02/02/2020] [Accepted: 02/11/2020] [Indexed: 11/07/2022]
Abstract
Owing to the lack of specific symptoms, diagnosis of head and neck squamous cell carcinoma (HNSCC) may be delayed. We evaluated volatile organic compounds in tumor samples from patients suffering from HNSCC and tested the hypothesis that there is a characteristic altered composition in the headspace of HNSCC compared with control samples from the same patient with normal squamous epithelium. These results provide the basis for future noninvasive breath analysis in HNSCC. Headspace air of suspected tumor and contralateral control samples in 20 patients were analyzed using ion-mobility spectrometry. Squamous cell carcinoma was diagnosed in 16 patients. In total, we observed 93 different signals in headspace measurements. Squamous cell carcinomas revealed significantly higher levels of volatile cyclohexanol (0.54 ppbv , 25th to 75th percentiles 0.35-0.86) compared with healthy squamous epithelium (0.24 ppbv , 25th to 75th percentiles 0.12-0.3; p < 0.001). In conclusion, head and neck squamous cell carcinoma emitted significantly higher levels of volatile cyclohexanol in headspace compared with normal squamous epithelium. These findings form the basis for future breath analysis for diagnosis, therapy control and the follow-up of HNSSC to improve therapy and aftercare.
Collapse
Affiliation(s)
- Philipp Kulas
- Department of Otorhinolaryngology, Head and Neck Surgery, Saarland University Medical Center, Homburg (Saar), Germany
| | - Martin Seidel
- Center of Breath Research, Department of Anesthesiology, Intensive Care and Pain Therapy, Saarland University Medical Center, Homburg (Saar), Germany
| | - Alessandro Bozzato
- Department of Otorhinolaryngology, Head and Neck Surgery, Saarland University Medical Center, Homburg (Saar), Germany
| | - Bernhard Schick
- Department of Otorhinolaryngology, Head and Neck Surgery, Saarland University Medical Center, Homburg (Saar), Germany
| | - Daniel I Sessler
- Department of Outcomes Research, Anesthesiology Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Sascha Kreuer
- Center of Breath Research, Department of Anesthesiology, Intensive Care and Pain Therapy, Saarland University Medical Center, Homburg (Saar), Germany
| | - Tobias Hüppe
- Center of Breath Research, Department of Anesthesiology, Intensive Care and Pain Therapy, Saarland University Medical Center, Homburg (Saar), Germany
| |
Collapse
|
21
|
Volatile scents of influenza A and S. pyogenes (co-)infected cells. Sci Rep 2019; 9:18894. [PMID: 31827195 PMCID: PMC6906285 DOI: 10.1038/s41598-019-55334-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/27/2019] [Indexed: 12/23/2022] Open
Abstract
Influenza A is a serious pathogen itself, but often leads to dangerous co-infections in combination with bacterial species such as Streptococcus pyogenes. In comparison to classical biochemical methods, analysis of volatile organic compounds (VOCs) in headspace above cultures can enable destruction free monitoring of metabolic processes in vitro. Thus, volatile biomarkers emitted from biological cell cultures and pathogens could serve for monitoring of infection processes in vitro. In this study we analysed VOCs from headspace above (co)-infected human cells by using a customized sampling system. For investigating the influenza A mono-infection and the viral-bacterial co-infection in vitro, we analysed VOCs from Detroit cells inoculated with influenza A virus and S. pyogenes by means of needle-trap micro-extraction (NTME) and gas chromatography mass spectrometry (GC-MS). Besides the determination of microbiological data such as cell count, cytokines, virus load and bacterial load, emissions from cell medium, uninfected cells and bacteria mono-infected cells were analysed. Significant differences in emitted VOC concentrations were identified between non-infected and infected cells. After inoculation with S. pyogenes, bacterial infection was mirrored by increased emissions of acetaldehyde and propanal. N-propyl acetate was linked to viral infection. Non-destructive monitoring of infections by means of VOC analysis may open a new window for infection research and clinical applications. VOC analysis could enable early recognition of pathogen presence and in-depth understanding of their etiopathology.
Collapse
|
22
|
Janfaza S, Khorsand B, Nikkhah M, Zahiri J. Digging deeper into volatile organic compounds associated with cancer. Biol Methods Protoc 2019; 4:bpz014. [PMID: 32161807 PMCID: PMC6994028 DOI: 10.1093/biomethods/bpz014] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/25/2019] [Indexed: 12/13/2022] Open
Abstract
Volatile organic compounds (VOCs), produced and emitted through the metabolism of cancer cells or the body's immune system, are considered novel cancer biomarkers for diagnostic purposes. Of late, a large number of work has been done to find a relationship between VOCs' signature of body and cancer. Cancer-related VOCs can be used to detect several types of cancers at the earlier stages which in turn provide a significantly higher chance of survival. Here we aim to provide an updated picture of cancer-related VOCs based on recent findings in this field focusing on cancer odor database.
Collapse
Affiliation(s)
- Sajjad Janfaza
- School of Engineering, University of British Columbia, Kelowna, BC, Canada
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Jalal Ale Ahmad Highway, Tehran 14117, Iran
| | - Babak Khorsand
- Department of Computer Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Maryam Nikkhah
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Jalal Ale Ahmad Highway, Tehran 14117, Iran
| | - Javad Zahiri
- Bioinformatics and Computational Omics Lab (BioCOOL), Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Jalal Ale Ahmad Highway, Tehran 14117, Iran
| |
Collapse
|
23
|
Volatile Organic Compounds in Patients With Acute Kidney Injury and Changes During Dialysis. Crit Care Med 2019; 47:239-246. [PMID: 30365402 DOI: 10.1097/ccm.0000000000003523] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVES To characterize volatile organic compounds in breath exhaled by ventilated care patients with acute kidney injury and changes over time during dialysis. DESIGN Prospective observational feasibility study. SETTING Critically ill patients on an ICU in a University Hospital, Germany. PATIENTS Twenty sedated, intubated, and mechanically ventilated patients with acute kidney injury and indication for dialysis. INTERVENTIONS Patients exhalome was evaluated from at least 30 minutes before to 7 hours after beginning of continuous venovenous hemodialysis. MEASUREMENTS AND MAIN RESULTS Expired air samples were aspirated from the breathing circuit at 20-minute intervals and analyzed using multicapillary column ion-mobility spectrometry. Volatile organic compound intensities were compared with a ventilated control group with normal renal function. A total of 60 different signals were detected by multicapillary column ion-mobility spectrometry, of which 44 could be identified. Thirty-four volatiles decreased during hemodialysis, whereas 26 remained unaffected. Forty-five signals showed significant higher intensities in patients with acute kidney injury compared with control patients with normal renal function. Among these, 30 decreased significantly during hemodialysis. Volatile cyclohexanol (23 mV; 2575th, 19-38), 3-hydroxy-2-butanone (16 mV, 9-26), 3-methylbutanal (20 mV; 14-26), and dimer of isoprene (26 mV; 18-32) showed significant higher intensities in acute kidney impairment compared with control group (12 mV; 10-16 and 8 mV; 7-14 and not detectable and 4 mV; 0-6; p < 0.05) and a significant decline after 7 hours of continuous venovenous hemodialysis (16 mV; 13-21 and 7 mV; 6-13 and 9 mV; 8-13 and 14 mV; 10-19). CONCLUSIONS Exhaled concentrations of 45 volatile organic compounds were greater in critically ill patients with acute kidney injury than in patients with normal renal function. Concentrations of two-thirds progressively decreased during dialysis. Exhalome analysis may help quantify the severity of acute kidney injury and to gauge the efficacy of dialysis.
Collapse
|
24
|
Klemenz AC, Meyer J, Ekat K, Bartels J, Traxler S, Schubert JK, Kamp G, Miekisch W, Peters K. Differences in the Emission of Volatile Organic Compounds (VOCs) between Non-Differentiating and Adipogenically Differentiating Mesenchymal Stromal/Stem Cells from Human Adipose Tissue. Cells 2019; 8:cells8070697. [PMID: 31295931 PMCID: PMC6678290 DOI: 10.3390/cells8070697] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/03/2019] [Accepted: 07/09/2019] [Indexed: 12/23/2022] Open
Abstract
Metabolic characterization of human adipose tissue-derived mesenchymal stromal/stem cells (ASCs) is of importance in stem cell research. The monitoring of the cell status often requires cell destruction. An analysis of volatile organic compounds (VOCs) in the headspace above cell cultures might be a noninvasive and nondestructive alternative to in vitro analysis. Furthermore, VOC analyses permit new insight into cellular metabolism due to their view on volatile compounds. Therefore, the aim of our study was to compare VOC profiles in the headspace above nondifferentiating and adipogenically differentiating ASCs. To this end, ASCs were cultivated under nondifferentiating and adipogenically differentiating conditions for up to 21 days. At different time points the headspace samples were preconcentrated by needle trap micro extraction and analyzed by gas chromatography/mass spectrometry. Adipogenic differentiation was assessed at equivalent time points. Altogether the emissions of 11 VOCs showed relevant changes and were analyzed in more detail. A few of these VOCs, among them acetaldehyde, were significantly different in the headspace of adipogenically differentiating ASCs and appeared to be linked to metabolic processes. Furthermore, our data indicate that VOC headspace analysis might be a suitable, noninvasive tool for the metabolic monitoring of (mesenchymal stem) cells in vitro.
Collapse
Affiliation(s)
- Ann-Christin Klemenz
- Department of Anesthesiology and Intensive Care Medicine, University Medical Centre Rostock, Schillingallee 35, 18057 Rostock, Germany
| | - Juliane Meyer
- Department of Cell Biology, University Medical Centre Rostock, Schillingallee 69, 18057 Rostock, Germany
| | - Katharina Ekat
- Department of Cell Biology, University Medical Centre Rostock, Schillingallee 69, 18057 Rostock, Germany
| | - Julia Bartels
- Department of Anesthesiology and Intensive Care Medicine, University Medical Centre Rostock, Schillingallee 35, 18057 Rostock, Germany
| | - Selina Traxler
- Department of Anesthesiology and Intensive Care Medicine, University Medical Centre Rostock, Schillingallee 35, 18057 Rostock, Germany
| | - Jochen K Schubert
- Department of Anesthesiology and Intensive Care Medicine, University Medical Centre Rostock, Schillingallee 35, 18057 Rostock, Germany
| | - Günter Kamp
- AMP-Lab GmbH, Mendelstr. 11, 48149 Münster, Germany
| | - Wolfram Miekisch
- Department of Anesthesiology and Intensive Care Medicine, University Medical Centre Rostock, Schillingallee 35, 18057 Rostock, Germany
| | - Kirsten Peters
- Department of Cell Biology, University Medical Centre Rostock, Schillingallee 69, 18057 Rostock, Germany.
| |
Collapse
|
25
|
ZHU B, GUO XY, WANG XY, LIAN LL, ZHANG H, GAO WX, TIAN YY, ZHANG XY, LOU DW. Development of A Fiber-Packed In-Tube Extraction Device and Its Application in BTEX Analysis. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2019. [DOI: 10.1016/s1872-2040(19)61161-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
26
|
Serasanambati M, Broza YY, Marmur A, Haick H. Profiling Single Cancer Cells with Volatolomics Approach. iScience 2018; 11:178-188. [PMID: 30612036 PMCID: PMC6319329 DOI: 10.1016/j.isci.2018.12.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/26/2018] [Accepted: 12/10/2018] [Indexed: 12/23/2022] Open
Abstract
Single-cell analysis is a rapidly evolving to characterize molecular information at the individual cell level. Here, we present a new approach with the potential to overcome several key challenges facing the currently available techniques. The approach is based on the identification of volatile organic compounds (VOCs), viz. organic compounds having relatively high vapor pressure, emitted to the cell's headspace. This concept is demonstrated using lung cancer cells with various p53 genetic status and normal lung cells. The VOCs were analyzed by gas chromatography combined with mass spectrometry. Among hundreds of detected compounds, 18 VOCs showed significant changes in their concentration levels in tumor cells versus control. The composition of these VOCs was found to depend, also, on the sub-molecular structure of the p53 genetic status. Analyzing the VOCs offers a complementary way of querying the molecular mechanisms of cancer as well as of developing new generation(s) of biomedical approaches for personalized screening and diagnosis. Measurement of VOCs was achieved at the single-cell level Genetic changes influence the emitted volatiles of single and bulk cancer cells Single-cell VOC analysis measures population heterogeneity in initial stage of tumors Volatolomics research can promote non-invasive, simple, and cost-effective diagnostics
Collapse
Affiliation(s)
- Mamatha Serasanambati
- Department of Chemical Engineering, Technion - Israel Institute of Technology, Technion City, Haifa 3200003, Israel
| | - Yoav Y Broza
- Department of Chemical Engineering, Technion - Israel Institute of Technology, Technion City, Haifa 3200003, Israel
| | - Abraham Marmur
- Department of Chemical Engineering, Technion - Israel Institute of Technology, Technion City, Haifa 3200003, Israel
| | - Hossam Haick
- Department of Chemical Engineering, Technion - Israel Institute of Technology, Technion City, Haifa 3200003, Israel; Russell Berries Nanotechnology Institute, Technion - Israel Institute of Technology, Technion City, Haifa 3200003, Israel; Technion Integrated Cancer Center, The Ruth and Bruce Rappaport Faculty of Medicine, 1 Efron St. Bat Galim, Haifa 3525433, Israel.
| |
Collapse
|
27
|
Mochalski P, Diem E, Unterkofler K, Mündlein A, Drexel H, Mayhew CA, Leiherer A. In vitro profiling of volatile organic compounds released by Simpson-Golabi-Behmel syndrome adipocytes. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1104:256-261. [PMID: 30537625 DOI: 10.1016/j.jchromb.2018.11.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/31/2018] [Accepted: 11/27/2018] [Indexed: 12/23/2022]
Abstract
Breath analysis offers a non-invasive and rapid diagnostic method for detecting various volatile organic compounds that could be indicators for different diseases, particularly metabolic disorders including type 2 diabetes mellitus. The development of type 2 diabetes mellitus is closely linked to metabolic dysfunction of adipose tissue and adipocytes. However, the VOC profile of human adipocytes has not yet been investigated. Gas chromatography with mass spectrometric detection and head-space needle trap extraction (two-bed Carbopack X/Carboxen 1000 needle traps) were applied to profile VOCs produced and metabolised by human Simpson Golabi Behmel Syndrome adipocytes. In total, sixteen compounds were identified to be related to the metabolism of the cells. Four sulphur compounds (carbon disulphide, dimethyl sulphide, ethyl methyl sulphide and dimethyl disulphide), three heterocyclic compounds (2-ethylfuran, 2-methyl-5-(methyl-thio)-furan, and 2-pentylfuran), two ketones (acetone and 2-pentanone), two hydrocarbons (isoprene and n-heptane) and one ester (ethyl acetate) were produced, and four aldehydes (2-methyl-propanal, butanal, pentanal and hexanal) were found to be consumed by the cells of interest. This study presents the first profile of VOCs formed by human adipocytes, which may reflect the activity of the adipose tissue enzymes and provide evidence of their active role in metabolic regulation. Our data also suggest that a previously reported increase of isoprene and sulphur compounds in diabetic patients may be explained by their production by adipocytes. Moreover, the unique features of this profile, including a high emission of dimethyl sulphide and the production of furan-containing VOCs, increase our knowledge about metabolism in adipose tissue and provide diagnostic potential for future applications.
Collapse
Affiliation(s)
- Paweł Mochalski
- Institute for Breath Research, University of Innsbruck, Rathausplatz 4, A-6850 Dornbirn, Austria; Institute of Chemistry, Jan Kochanowski University, Świętokrzyska 15G, PL-25406 Kielce, Poland.
| | - Eva Diem
- MCI Management Center Innsbruck, Universitaetsstrasse 15, A-6020 Innsbruck, Austria
| | - Karl Unterkofler
- Institute for Breath Research, University of Innsbruck, Rathausplatz 4, A-6850 Dornbirn, Austria; Vorarlberg University of Applied Sciences, Hochschulstrasse 1, A-6850 Dornbirn, Austria
| | - Axel Mündlein
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Carinagasse 47, A-6800 Feldkirch, Austria
| | - Heinz Drexel
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Carinagasse 47, A-6800 Feldkirch, Austria; Division of Angiology, Swiss Cardiovascular Center, University Hospital Berne, Berne, Switzerland; Drexel University College of Medicine, Philadelphia, PA, USA
| | - Chris A Mayhew
- Institute for Breath Research, University of Innsbruck, Rathausplatz 4, A-6850 Dornbirn, Austria; Molecular Physics Group, School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Andreas Leiherer
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Carinagasse 47, A-6800 Feldkirch, Austria; Private University of the Principality of Liechtenstein, Triesen, Liechtenstein; Medical Central Laboratories, A-6800 Feldkirch, Austria
| |
Collapse
|
28
|
Identification of volatile metabolites in human saliva from patients with oral squamous cell carcinoma via zeolite-based thin-film microextraction coupled with GC-MS. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1104:49-58. [PMID: 30445287 DOI: 10.1016/j.jchromb.2018.11.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 10/04/2018] [Accepted: 11/02/2018] [Indexed: 12/20/2022]
Abstract
In recent years, volatile organic compounds (VOCs) discharged from the human body, of which some compounds exhibit strong correlations with pathological conditions, have attracted attention as a new means of disease diagnosis technology. The aim of this study was to establish the salivary metabolomic profiles of oral squamous cell carcinoma (OSCC) patients and healthy volunteers (control group) and to investigate VOCs as potential biomarkers in the diagnosis of oral cancer. We have demonstrated a method combining thin-film microextraction based on a ZSM-5/polydimethylsiloxane hybrid film coupled with gas chromatography-mass spectrometry and carried out a comparative analysis of salivary VOC profiles between OSCC patients and healthy controls. The results depicted that 42 and 73 VOCs were detected and identified in samples from the healthy control group (n = 50) and oral cancer group (n = 24), respectively. Among them, twenty-seven VOCs (ten were decreased, seven disappeared, and ten were newly produced in the oral cancer group) depict significant differences between both the sample groups, and they have relevance as candidate biomarkers for OSCC. Twelve salivary VOCs that were characteristic of oral cancer patients were finally extracted and used for pattern recognition analyses for oral cancer diagnosis. The proposed TFME approach for analyzing human saliva on the basis of a ZSM-5-loaded PDMS hybrid thin film has been performed for the very first time in the field of dentistry.
Collapse
|
29
|
Traxler S, Bischoff AC, Saß R, Trefz P, Gierschner P, Brock B, Schwaiger T, Karte C, Blohm U, Schröder C, Miekisch W, Schubert JK. VOC breath profile in spontaneously breathing awake swine during Influenza A infection. Sci Rep 2018; 8:14857. [PMID: 30291257 PMCID: PMC6173698 DOI: 10.1038/s41598-018-33061-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 09/21/2018] [Indexed: 12/23/2022] Open
Abstract
Influenza is one of the most common causes of virus diseases worldwide. Virus detection requires determination of Influenza RNA in the upper respiratory tract. Efficient screening is not possible in this way. Analysis of volatile organic compounds (VOCs) in breath holds promise for non-invasive and fast monitoring of disease progression. Breath VOC profiles of 14 (3 controls and 11 infected animals) swine were repeatedly analyzed during a complete infection cycle of Influenza A under high safety conditions. Breath VOCs were pre-concentrated by means of needle trap micro-extraction and analysed by gas chromatography mass spectrometry before infection, during virus presence in the nasal cavity, and after recovery. Six VOCs could be related to disease progression: acetaldehyde, propanal, n-propyl acetate, methyl methacrylate, styrene and 1,1-dipropoxypropane. As early as on day four after inoculation, when animals were tested positive for Influenza A, differentiation between control and infected animals was possible. VOC based information on virus infection could enable early detection of Influenza A. As VOC analysis is completely non-invasive it has potential for large scale screening purposes. In a perspective, breath analysis may offer a novel tool for Influenza monitoring in human medicine, animal health control or border protection.
Collapse
Affiliation(s)
- Selina Traxler
- Department of Anaesthesiology and Intensive Care, Rostock University Medical Center, ROMBAT, Schillingallee 35, 18057, Rostock, Germany
| | - Ann-Christin Bischoff
- Department of Anaesthesiology and Intensive Care, Rostock University Medical Center, ROMBAT, Schillingallee 35, 18057, Rostock, Germany
| | - Radost Saß
- Department of Anaesthesiology and Intensive Care, Rostock University Medical Center, ROMBAT, Schillingallee 35, 18057, Rostock, Germany
| | - Phillip Trefz
- Department of Anaesthesiology and Intensive Care, Rostock University Medical Center, ROMBAT, Schillingallee 35, 18057, Rostock, Germany
| | - Peter Gierschner
- Department of Anaesthesiology and Intensive Care, Rostock University Medical Center, ROMBAT, Schillingallee 35, 18057, Rostock, Germany
| | - Beate Brock
- Department of Anaesthesiology and Intensive Care, Rostock University Medical Center, ROMBAT, Schillingallee 35, 18057, Rostock, Germany
| | - Theresa Schwaiger
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institute, Südufer 10, 17493, Greifswald- Insel Riems, Germany
| | - Claudia Karte
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Ulrike Blohm
- Institute of Immunology, Friedrich-Loeffler-Institute, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Charlotte Schröder
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institute, Südufer 10, 17493, Greifswald- Insel Riems, Germany
| | - Wolfram Miekisch
- Department of Anaesthesiology and Intensive Care, Rostock University Medical Center, ROMBAT, Schillingallee 35, 18057, Rostock, Germany.
| | - Jochen K Schubert
- Department of Anaesthesiology and Intensive Care, Rostock University Medical Center, ROMBAT, Schillingallee 35, 18057, Rostock, Germany
| |
Collapse
|
30
|
GC-MS metabolomics reveals disturbed metabolic pathways in primary mouse hepatocytes exposed to subtoxic levels of 3,4-methylenedioxymethamphetamine (MDMA). Arch Toxicol 2018; 92:3307-3323. [PMID: 30255327 DOI: 10.1007/s00204-018-2314-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 09/19/2018] [Indexed: 12/23/2022]
Abstract
3,4-Methylenedioxymethamphetamine (MDMA, ecstasy) is a well-known hepatotoxic drug. Although its toxicity has been thoroughly studied at high concentrations, there is still insufficient knowledge on possible alterations of cell function at subtoxic concentrations, which are in fact more representative concentrations of intoxication scenarios. In this study, a gas chromatography-mass spectrometry (GC-MS) metabolomics approach was used to investigate the metabolic changes in primary mouse hepatocytes (PMH) exposed to two subtoxic concentrations of MDMA (LC01 and LC10) for 24 h. Metabolomic profiling of both intracellular metabolites and volatile metabolites in the extracellular medium of PMH was performed. Multivariate analysis showed that the metabolic pattern of cells exposed to MDMA discriminates from the controls in a concentration-dependent manner. Exposure to LC10 MDMA induces a significant increase in some intracellular metabolites, including oleic acid and palmitic acid, and a decrease in glutamate, aspartate, 5-oxoproline, fumarate, malate, phosphoric acid, α-ketoglutarate and citrate. Extracellular metabolites such as acetophenone, formaldehyde, pivalic acid, glyoxal and 2-butanone were found significantly increased after exposure to MDMA, compared to controls, whereas 4-methylheptane, 2,4-dimethyl-1-heptene, nonanal, among others, were found significantly decreased. The panel of discriminatory metabolites is mainly involved in tricarboxylic acid (TCA) cycle, fatty acid metabolism, glutamate metabolism, antioxidant defenses and possibly changes in the liver enzyme machinery. Overall, these results highlight the potential of the intra- and extracellular metabolome to study alterations triggered by subtoxic concentrations of MDMA in hepatic cell functions, which represents a more realistic appraisal of early toxicity events posed by exposure to this drug. In addition, these results also revealed some metabolites that may be used as potential biomarkers indicative of early events in the hepatotoxicity induced by MDMA.
Collapse
|
31
|
Mochalski P, Leja M, Gasenko E, Skapars R, Santare D, Sivins A, Aronsson DE, Ager C, Jaeschke C, Shani G, Mitrovics J, Mayhew CA, Haick H. Ex vivo emission of volatile organic compounds from gastric cancer and non-cancerous tissue. J Breath Res 2018; 12:046005. [PMID: 29893713 DOI: 10.1088/1752-7163/aacbfb] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The presence of certain volatile organic compounds (VOCs) in the breath of patients with gastric cancer has been reported by a number of research groups; however, the source of these compounds remains controversial. Comparison of VOCs emitted from gastric cancer tissue to those emitted from non-cancerous tissue would help in understanding which of the VOCs are associated with gastric cancer and provide a deeper knowledge on their generation. Gas chromatography with mass spectrometric detection (GC-MS) coupled with head-space needle trap extraction (HS-NTE) as the pre-concentration technique, was used to identify and quantify VOCs released by gastric cancer and non-cancerous tissue samples collected from 41 patients during surgery. Excluding contaminants, a total of 32 VOCs were liberated by the tissue samples. The emission of four of them (carbon disulfide, pyridine, 3-methyl-2-butanone and 2-pentanone) was significantly higher from cancer tissue, whereas three compounds (isoprene, γ-butyrolactone and dimethyl sulfide) were in greater concentration from the non-cancerous tissues (Wilcoxon signed-rank test, p < 0.05). Furthermore, the levels of three VOCs (2-methyl-1-propene, 2-propenenitrile and pyrrole) were correlated with the occurrence of H. pylori; and four compounds (acetonitrile, pyridine, toluene and 3-methylpyridine) were associated with tobacco smoking. Ex vivo analysis of VOCs emitted by human tissue samples provides a unique opportunity to identify chemical patterns associated with a cancerous state and can be considered as a complementary source of information on volatile biomarkers found in breath, blood or urine.
Collapse
Affiliation(s)
- Pawel Mochalski
- Institute for Breath Research, University of Innsbruck, Rathausplatz 4, A-6850 Dornbirn, Austria. Institute of Chemistry, Jan Kochanowski University, Świętokrzyska 15G, PL-25406 Kielce, Poland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Jalal AH, Alam F, Roychoudhury S, Umasankar Y, Pala N, Bhansali S. Prospects and Challenges of Volatile Organic Compound Sensors in Human Healthcare. ACS Sens 2018; 3:1246-1263. [PMID: 29879839 DOI: 10.1021/acssensors.8b00400] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The chemical signatures of volatile organic compounds (VOCs) in humans can be utilized for point-of-care (POC) diagnosis. Apart from toxic exposure studies, VOCs generated in humans can provide insights into one's healthy and diseased metabolic states, acting as a biomarker for identifying numerous diseases noninvasively. VOC sensors and the technology of e-nose have received significant attention for continuous and selective monitoring of various physiological and pathophysiological conditions of an individual. Noninvasive detection of VOCs is achieved from biomatrices of breath, sweat and saliva. Among these, detection from sweat and saliva can be continuous in real-time. The sensing approaches include optical, chemiresistive and electrochemical techniques. This article provides an overview of such techniques. These, however, have limitations of reliability, precision, selectivity, and stability in continuous monitoring. Such limitations are due to lack of sensor stability and complexity of samples in a multivariate environment, which can lead to false readings. To overcome selectivity barriers, sensor arrays enabling multimodal sensing, have been used with pattern recognition techniques. Stability and precision issues have been addressed through advancements in nanotechnology. The use of various forms of nanomaterial not only enhance sensing performance, but also plays a major role in detection on a miniaturized scale. The rapid growth in medical Internet of Things (IoT) and artificial intelligence paves a pathway for improvements in human theranostics.
Collapse
Affiliation(s)
- Ahmed H. Jalal
- Department of Electrical and Computer Engineering, Florida International University, Miami, Florida 33174, United States
| | - Fahmida Alam
- Department of Electrical and Computer Engineering, Florida International University, Miami, Florida 33174, United States
| | - Sohini Roychoudhury
- Department of Electrical and Computer Engineering, Florida International University, Miami, Florida 33174, United States
| | - Yogeswaran Umasankar
- Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, United States
| | - Nezih Pala
- Department of Electrical and Computer Engineering, Florida International University, Miami, Florida 33174, United States
| | - Shekhar Bhansali
- Department of Electrical and Computer Engineering, Florida International University, Miami, Florida 33174, United States
| |
Collapse
|
33
|
Markar SR, Brodie B, Chin ST, Romano A, Spalding D, Hanna GB. Profile of exhaled-breath volatile organic compounds to diagnose pancreatic cancer. Br J Surg 2018; 105:1493-1500. [DOI: 10.1002/bjs.10909] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 04/01/2018] [Accepted: 05/11/2018] [Indexed: 12/23/2022]
Abstract
Abstract
Background
Pancreatic cancer has a very poor prognosis as most patients are diagnosed at an advanced stage when curative treatments are not possible. Breath volatile organic compounds (VOCs) have shown potential as novel biomarkers to detect cancer. The aim of the study was to quantify differences in exhaled breath VOCs of patients with pancreatic cancers compared with cohorts without cancer.
Methods
Patients were recruited to an initial development cohort and a second validation cohort. The cancer group included patients with localized and metastatic cancers, whereas the control group included patients with benign pancreatic disease or normal pancreas. The reference test for comparison was radiological imaging using abdominal CT, ultrasound imaging or endoscopic ultrasonography, confirmed by histopathological examination as appropriate. Breath was collected from the development cohort with steel bags, and from the validation cohort using the ReCIVA™ system. Analysis was performed using gas chromatography–mass spectrometry.
Results
A total of 68 patients were recruited to the development cohort (25 with cancer, 43 no cancer) and 64 to the validation cohort (32 with cancer, 32 no cancer). Of 66 VOCs identified, 12 were significantly different between groups in the development cohort on univariable analysis. Receiver operating characteristic (ROC) curve analysis using significant volatile compounds and the validation cohort produced an area under the curve of 0·736 (sensitivity 81 per cent, specificity 58 per cent) for differentiating cancer from no cancer, and 0·744 (sensitivity 70 per cent, specificity 74 per cent) for differentiating adenocarcinoma from no cancer.
Conclusion
Breath VOCs may distinguish patients with pancreatic cancer from those without cancer.
Collapse
Affiliation(s)
- S R Markar
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - B Brodie
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - S-T Chin
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - A Romano
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - D Spalding
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - G B Hanna
- Department of Surgery and Cancer, Imperial College London, London, UK
| |
Collapse
|
34
|
Traxler S, Bischoff AC, Trefz P, Schubert JK, Miekisch W. Versatile set-up for non-invasive in vitro analysis of headspace VOCs. J Breath Res 2018; 12:041001. [PMID: 29900878 DOI: 10.1088/1752-7163/aaccad] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Volatile organic compound (VOC) profiles emitted in trace concentrations from bacteria or cells has gained increasing importance over the decades. Analysis of VOCs in the headspace does not interfere with in vitro systems and, therefore, offers new options for non-invasive monitoring of cultures. Currently there is not any available standardized in vitro sampling system which considers effects of dilution and contamination onto ppbV to pptV VOC concentrations during. In this study a new in vitro system for online and offline headspace measurement of biological cultures was designed. The system was built from inert materials, equipped with universal sampling ports and easily adjustable volume options. Standard VOC mixtures in the system were analyzed by means of proton-transfer-reaction time-of-flight mass spectrometry and needle-trap-microextraction coupled with gas chromatography/mass spectrometry with a variance of 5%-14% and 10%-15%, respectively. In a proof of concept setup volatile emissions over cell cultures and pure media were assessed. The newly developed system enabled reliable and reproducible headspace analyses of in vitro cultures. As parallel application of different analytical methods is possible and confounding factors could be minimized, this set-up represents an important step towards standardization of headspace analysis over biological cultures.
Collapse
Affiliation(s)
- Selina Traxler
- Department of Anaesthesia and Intensive Care, Rostock University Medical Center, ROMBAT, Schillingallee 35, D-18057 Rostock, Germany
| | | | | | | | | |
Collapse
|
35
|
Rodrigues D, Pinto J, Araújo AM, Monteiro-Reis S, Jerónimo C, Henrique R, de Lourdes Bastos M, de Pinho PG, Carvalho M. Volatile metabolomic signature of bladder cancer cell lines based on gas chromatography-mass spectrometry. Metabolomics 2018; 14:62. [PMID: 30830384 DOI: 10.1007/s11306-018-1361-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 04/13/2018] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Recent studies provide a convincing support that the presence of cancer cells in the body leads to the alteration of volatile organic compounds (VOCs) emanating from biological samples, particularly of those closely related with tumoral tissues. Thus, a great interest emerged for the study of cancer volatilome and subsequent attempts to confirm VOCs as potential diagnostic biomarkers. OBJECTIVES The aim of this study was to determine the volatile metabolomic signature of bladder cancer (BC) cell lines and provide an in vitro proof-of-principle that VOCs emanated into the extracellular medium may discriminate BC cells from normal bladder epithelial cells. METHODS VOCs in the culture media of three BC cell lines (Scaber, J82, 5637) and one normal bladder cell line (SV-HUC-1) were extracted by headspace-solid phase microextraction and analysed by gas chromatography-mass spectrometry (HS-SPME/GC-MS). Two different pH (pH 2 and 7) were used for VOCs extraction to infer the best pH to be used in in vitro metabolomic studies. RESULTS Multivariate analysis revealed a panel of volatile metabolites that discriminated cancerous from normal bladder cells, at both pHs, although a higher number of discriminative VOCs was obtained at neutral pH. Most of the altered metabolites were ketones and alkanes, which were generally increased in BC compared to normal cells, and alcohols, which were significantly decreased in BC cells. Among them, three metabolites, namely 2-pentadecanone, dodecanal and γ-dodecalactone (the latter only tentatively identified), stood out as particularly important metabolites and promising volatile biomarkers for BC detection. Furthermore, our results also showed the potential of VOCs in discriminating BC cell lines according to tumour grade and histological subtype. CONCLUSIONS We demonstrate that a GC-MS metabolomics-based approach for analysis of VOCs is a valuable strategy for identifying new and specific biomarkers that may improve BC diagnosis. Future studies should entail the validation of volatile signature found for BC cell lines in biofluids from BC patients.
Collapse
Affiliation(s)
- Daniela Rodrigues
- UCIBIO/REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal.
| | - Joana Pinto
- UCIBIO/REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Ana Margarida Araújo
- UCIBIO/REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Sara Monteiro-Reis
- Cancer Biology & Epigenetics Group, Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology & Epigenetics Group, Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal
- Department of Pathology and Molecular Immunology-Biomedical Sciences Institute (ICBAS), University of Porto, Porto, Portugal
| | - Rui Henrique
- Cancer Biology & Epigenetics Group, Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal
- Department of Pathology and Molecular Immunology-Biomedical Sciences Institute (ICBAS), University of Porto, Porto, Portugal
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal
| | - Maria de Lourdes Bastos
- UCIBIO/REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Paula Guedes de Pinho
- UCIBIO/REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Márcia Carvalho
- UCIBIO/REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal.
- UFP Energy, Environment and Health Research Unit (FP-ENAS), University Fernando Pessoa, Porto, Portugal.
| |
Collapse
|
36
|
Lima AR, Araújo AM, Pinto J, Jerónimo C, Henrique R, Bastos MDL, Carvalho M, Guedes de Pinho P. Discrimination between the human prostate normal and cancer cell exometabolome by GC-MS. Sci Rep 2018; 8:5539. [PMID: 29615722 PMCID: PMC5882858 DOI: 10.1038/s41598-018-23847-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 03/13/2018] [Indexed: 12/23/2022] Open
Abstract
Serum prostate-specific antigen (PSA) is currently the most used biomarker in clinical practice for prostate cancer (PCa) detection. However, this biomarker has several drawbacks. In this work, an untargeted gas chromatography-mass spectrometry (GC-MS)-based metabolomic profiling of PCa cells was performed to prove the concept that metabolic alterations might differentiate PCa cell lines from normal prostate cell line. For that, we assessed the differences in volatile organic compounds (VOCs) profile in the extracellular medium (exometabolome) of four PCa cell lines and one normal prostate cell line at two pH values (pH 2 and 7) by GC-MS. Multivariate analysis revealed a panel of volatile metabolites that discriminated cancerous from normal prostate cells. The most altered metabolites included ketones, aldehydes and organic acids. Among these, we highlight pentadecane-2-one and decanoic acid, which were significantly increased in PCa compared to normal cells, and cyclohexanone, 4-methylheptan-2-one, 2-methylpentane-1,3-diol, 4-methylbenzaldehyde, 1-(3,5-dimethylfuran-2-yl)ethanone, methyl benzoate and nonanoic acid, which were significantly decreased in PCa cells. The PCa volatilome was markedly influenced by the VOCs extraction pH, though the discriminant capability was similar. Overall, our data suggest that VOCs monitoring has the potential to be used as a PCa screening methodology.
Collapse
Affiliation(s)
- Ana Rita Lima
- UCIBIO/REQUIMTE, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Porto, Portugal.
| | - Ana Margarida Araújo
- UCIBIO/REQUIMTE, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Joana Pinto
- UCIBIO/REQUIMTE, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology & Epigenetics Group, Research Center (CI-IPOP) Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal.,Department of Pathology and Molecular Immunology-Biomedical Sciences Institute (ICBAS), University of Porto, Porto, Portugal
| | - Rui Henrique
- Cancer Biology & Epigenetics Group, Research Center (CI-IPOP) Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal.,Department of Pathology and Molecular Immunology-Biomedical Sciences Institute (ICBAS), University of Porto, Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal
| | - Maria de Lourdes Bastos
- UCIBIO/REQUIMTE, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Márcia Carvalho
- UCIBIO/REQUIMTE, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Porto, Portugal.,UFP Energy, Environment and Health Research Unit (FP-ENAS), University Fernando Pessoa, Porto, Portugal
| | - Paula Guedes de Pinho
- UCIBIO/REQUIMTE, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Porto, Portugal.
| |
Collapse
|
37
|
Bischoff AC, Oertel P, Sukul P, Rimmbach C, David R, Schubert J, Miekisch W. Smell of cells: Volatile profiling of stem- and non-stem cell proliferation. J Breath Res 2018; 12:026014. [PMID: 29231842 DOI: 10.1088/1752-7163/aaa111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Bacterial and cell cultures are known to emit a large number of volatile organic compounds (VOCs). Conventional biochemical methods are often destructive, time-consuming and expensive. In contrast, VOC analysis of headspace over cultures may offer a non-destructive alternative for the monitoring of cell proliferation and metabolism. VOC profiles from cultures of murine pluripotent stem cells and fibroblasts were assessed every 24 h for 3 days. Pure cell media were measured as parallel controls. VOC analysis was highly standardized with respect to time of measurement and phases of cell growth. Cultures were grown in custom-made inert boxes. In order to determine the effects of fresh media supply on VOC emissions, both cell types were cultured with and without daily media exchange. VOCs from headspace were preconcentrated by means of needle trap micro-extraction and analysed by gas chromatography-mass spectrometry (GC-MS). Murine pluripotent stem cells emitted increasing concentrations of thiirane and methyl-methoxy-hydroxy-methyl-amine (MMHA). Substance concentration correlated with cell numbers. Murine fibroblasts did not emit thiirane or MMHA. Concentrations of aldehydes, especially benzaldehyde, were lower in both cell cultures than in pure media samples. Daily media exchange resulted in higher cell numbers, but had no major effects on VOC concentrations emitted from the cells. Investigation and monitoring of volatile substances such as thiirane and MMHA may enhance the understanding of stem cell properties and lead to a destruction-free characterization of pluripotent stem cells.
Collapse
Affiliation(s)
- Ann-Christin Bischoff
- Department of Anesthesiology and Intensive Care Medicine, University Medicine of Rostock, Germany
| | | | | | | | | | | | | |
Collapse
|
38
|
Burton M, Gorbunov B. NMT – A new individual ion counting method: Comparison to a Faraday cup. Chem Phys 2018. [DOI: 10.1016/j.chemphys.2018.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
39
|
Fijten RRR, Smolinska A, Shi Q, Pachen DM, Dallinga JW, Boots AW, van Schooten FJ. Exposure to genotoxic compounds alters in vitro cellular VOC excretion. J Breath Res 2018; 12:027101. [PMID: 28972195 DOI: 10.1088/1752-7163/aa9080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Genotoxic carcinogens significantly damage cells and tissues by targeting macromolecules such as proteins and DNA, but their mechanisms of action and effects on human health are diverse. Consequently, determining the amount of exposure to a carcinogen and its cellular effects is essential, yet difficult. The aim of this manuscript was to investigate the potential of detecting alterations in volatile organic compounds (VOCs) profiles in the in vitro headspace of pulmonary cells after exposure to the genotoxic carcinogens cisplatin and benzo[a]pyrene using two different sampling set-ups. A prototype set-up was used for the cisplatin exposure, whereas a modified set-up was utilized for the benzo[a]pyrene exposure. Both carcinogens were added to the cell medium for 24 h. The headspace in the culture flask was sampled to measure the VOC content using gas chromatography-time-of-flight-mass spectrometry. Eight cisplatin-specific VOCs and six benzo[a]pyrene-specific VOCs were discriminatory between treated and non-treated cells. Since the in vivo biological effects of both genotoxic compounds are well-defined, the origin of the identified VOCs could potentially be traced back to common cellular processes including cell cycle pathways, DNA damage and repair. These results indicate that exposing lung cells to genotoxins alters headspace VOC profiles, suggesting that it might be possible to monitor VOC changes in vivo to study drug efficacy or exposure to different pollutants. In conclusion, this study emphasizes the innovative potential of in vitro VOCs experiments to determine their in vivo applicability and discover their endogenous origin.
Collapse
Affiliation(s)
- R R R Fijten
- Department of Pharmacology & Toxicology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
40
|
Mutations in SELENBP1, encoding a novel human methanethiol oxidase, cause extraoral halitosis. Nat Genet 2017; 50:120-129. [PMID: 29255262 PMCID: PMC5742538 DOI: 10.1038/s41588-017-0006-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 11/08/2017] [Indexed: 12/23/2022]
Abstract
Selenium-binding protein 1 (SELENBP1) has been associated with several cancers, although its exact role is unknown. We show that SELENBP1 is a methanethiol oxidase (MTO), related to the MTO in methylotrophic bacteria, that converts methanethiol to H2O2, formaldehyde, and H2S, an activity not previously known to exist in humans. We identified mutations in SELENBP1 in five patients with cabbage-like breath odor. The malodor was attributable to high levels of methanethiol and dimethylsulfide, the main odorous compounds in their breath. Elevated urinary excretion of dimethylsulfoxide was associated with MTO deficiency. Patient fibroblasts had low SELENBP1 protein levels and were deficient in MTO enzymatic activity; these effects were reversed by lentivirus-mediated expression of wild-type SELENBP1. Selenbp1-knockout mice showed biochemical characteristics similar to those in humans. Our data reveal a potentially frequent inborn error of metabolism that results from MTO deficiency and leads to a malodor syndrome.
Collapse
|
41
|
Ratel J, Planche C, Mercier F, Blinet P, Kondjoyan N, Marchand P, Fournier A, Travel A, Jondreville C, Engel E. Liver volatolomics to reveal poultry exposure to γ-hexabromocyclododecane (HBCD). CHEMOSPHERE 2017; 189:634-642. [PMID: 28965058 DOI: 10.1016/j.chemosphere.2017.09.074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/08/2017] [Accepted: 09/15/2017] [Indexed: 06/07/2023]
Abstract
Hexabromocyclododecane (HBCD) is a critical emerging brominated flame retardant to which consumers can be exposed at high doses through a single food intake. Based on an animal experiment involving 3 groups of laying hens fed during 70 days with a control diet or γ-HBCD-contaminated diets at 0.1 or 10 μg γ-HBCD g-1 feed, this study aims to use the volatolome of biological samples for revealing markers of livestock exposure to HBCD. Liquid chromatography-tandem mass spectrometry was used to monitor the time-course of HBCD levels in bodily samples. Each liver was analyzed by solid-phase microextraction-gas chromatography-mass spectrometry for volatolome profiling. After 70 days, γ-HBCD concentrations in egg yolk, fat, liver and serum reached 54 ± 4, 85 ± 6, 31 ± 6, and 32 ± 4 ng g-1 lw, respectively, for the low exposure level and 4.6+/5.7, 7.8+/6.5, 3.9+/3.0 and 3.9+/6.1 μg g-1 lw, respectively, for the high exposure level. Isomerization of γ-HBCD into α- and β-HBCD was observed in all tissues, at least for the high exposure level. Volatolome data allowed a significant discrimination between control and exposed animals whatever the feed contamination load, demonstrating a liver metabolic response to γ-HBCD exposure. The relevance of the twenty nine volatile exposure markers tentatively identified was discussed in light of literature data.
Collapse
Affiliation(s)
- Jérémy Ratel
- INRA, UR QuaPA, F-63122 Saint-Genès-Champanelle, France
| | | | | | | | | | | | - Agnès Fournier
- INRA, Université de Lorraine, UR AFPA, F-54500 Vandoeuvre-les-Nancy, France
| | | | | | - Erwan Engel
- INRA, UR QuaPA, F-63122 Saint-Genès-Champanelle, France.
| |
Collapse
|
42
|
Review of recent developments in determining volatile organic compounds in exhaled breath as biomarkers for lung cancer diagnosis. Anal Chim Acta 2017; 996:1-9. [DOI: 10.1016/j.aca.2017.09.021] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 09/08/2017] [Accepted: 09/09/2017] [Indexed: 12/20/2022]
|
43
|
Kitiyakara T, Redmond S, Unwanatham N, Rattanasiri S, Thakkinstian A, Tangtawee P, Mingphruedhi S, Sobhonslidsuk A, Intaraprasong P, Kositchaiwat C. The detection of hepatocellular carcinoma (HCC) from patients' breath using canine scent detection: a proof-of-concept study. J Breath Res 2017. [PMID: 28649095 DOI: 10.1088/1752-7163/aa7b8e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Patients with hepatocellular carcinoma (HCC) have poor outcomes as a result of late detection of the disease. We investigated the possibility of using smell detection by dogs for detecting HCC from the breath of patients. Patients whose diagnosis of HCC was confirmed histologically or radiologically according to the American Association for the Study of Liver Diseases criteria had breaths collected using face masks and transported to the study test site. The numbering of the HCC samples was sent in a sealed envelope to blind the dog trainer during testing but allow for correct rewarding of the dog afterwards. One golden retriever was trained to detect HCC with positive feedback using known samples of HCC and healthy controls in a step-wise manner. The controls were selected from hospital staff and relatives of patients who were not involved in the study. They were questioned about the risks of their disease before selection. When the trainer was confident that the dog could recognize the HCC scent, blind testing was performed using 1 HCC : 3 healthy controls per test run. Once the dog signaled on a specimen, it was given a reward. The correct-detection rate was compared to the theoretical detection rate expected based on chance of 25% using the statistical one-sample test of proportions. Thirty-seven HCC patients were tested. The patients had a mean age of 58 years and 21/37 were male. Seventeen patients had hepatitis B and 14 patients had hepatitis C. Twenty-six patients had one HCC lesion; four patients had two lesions in the liver, whilst seven had many lesions. The number of patients in the very early, early, intermediate, advanced, and terminal stages of the Barcelona Clinic Liver Cancer classification was 5, 9, 21, 1, and 1, respectively. The dog detected correctly in 29 runs. The sensitivity for canine detection was 78% (95% CI: 62%-90%). Compared to the 25% correct indication expected based on chance, this was statistically significant (p < 0.001). CONCLUSION This is the first study to look at the possibility of detecting HCC from breath using canine olfaction. Our results show that this is possible with an accuracy of 78% (p < 0.001 when compared to chance alone), and are thus a proof of concept. Further refinement of the process of detection will be needed before clinical application.
Collapse
Affiliation(s)
- Taya Kitiyakara
- Division of Gastroenterology and Hepatology, Department of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Kędziora K, Wasiak W. Extraction media used in needle trap devices—Progress in development and application. J Chromatogr A 2017; 1505:1-17. [DOI: 10.1016/j.chroma.2017.05.030] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/10/2017] [Accepted: 05/12/2017] [Indexed: 12/13/2022]
|
45
|
Determination of volatile organic compounds exhaled by cell lines derived from hematological malignancies. Biosci Rep 2017; 37:BSR20170106. [PMID: 28507202 PMCID: PMC5479021 DOI: 10.1042/bsr20170106] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 05/10/2017] [Accepted: 05/10/2017] [Indexed: 12/16/2022] Open
Abstract
Background: The gas human exhaled contains many volatile organic compounds (VOCs), which is related to the health status of body. Analysis of VOCs has been proposed as a noninvasive diagnostic tool for certain cancers. Detailed research on the VOCs in gas exhaled by cell can characterize cell type specific metabolites and may be helpful to detect the cancer markers in clinical practice. Methods: Solid-phase microextraction (SPME) gas chromatography–mass spectrometry was used to detect VOCs in the headspace of tissue culture flask in non-Hodgkin’s lymphoma (NHL) cell line JEKO and acute mononuclear leukemia cell line SHI-1, to elaborate the characteristic gaseous biomarkers of hematological malignancies. While macrophage cells and lymphocytic cells were acted as control. The blank group was only the RPMI 1640 medium containing 10% fetal calf serum that without cells. Results: Comparing with control group, the concentration of dimethyl sulfide, 2,4-dimethylheptane, methylbenzene, o-xylene, dodecane, and 1,3-di-tert-butylbenzene in JEKO cells was relatively higher, while the concentration of ethanol, hexanal, and benzaldehyde was lower. In SHI-1 cells, the levels of 2,4-dimethylheptane, benzene, 4-methyldecane, chloroform, 3,7-dimethyl dodecane, and hexadecane were significantly elevated, but the levels of hexanol and cyclohexanol were distinctly reduced. Conclusions: This pilot study revealed that the malignant hematological cells could change the components of VOCs in the cell culture flask in a cell type-specific pattern. The traits of VOCs in our setting offered new strategy for hematological malignancies tracing, and would act as potential biomarkers in diagnosis of malignant hematological diseases.
Collapse
|
46
|
Hartwig S, Raguse JD, Pfitzner D, Preissner R, Paris S, Preissner S. Volatile Organic Compounds in the Breath of Oral Squamous Cell Carcinoma Patients: A Pilot Study. Otolaryngol Head Neck Surg 2017; 157:981-987. [DOI: 10.1177/0194599817711411] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Objective To assess the feasibility of detecting signature volatile organic compounds in the breath of patients with oral squamous cell carcinoma. Study Design Prospective cohort pilot study. Setting University hospital. Subjects and Methods Using gas chromatography and mass spectrometry, emitted volatile organic compounds in the breath of patients before and after curative surgery (n = 10) were compared with those of healthy subjects (n = 4). It was hypothesized that certain volatile organic compounds disappear after surgical therapy. A characteristic signature of these compounds for diseased patients was compiled and validated. Results Breath analyses revealed 125 volatile organic compounds in patients with oral cancer. A signature of 8 compounds that were characteristic for patients with oral cancer could be detected: 3 from this group presented were absent after surgery. Conclusion The presented results confirmed the hypothesis of an absence of cancer-associated volatile organic compounds in the breath after therapy. In this pilot study, we proved the feasibility of this test approach. Further studies should be initiated to establish protocols for usage in a clinical setting.
Collapse
Affiliation(s)
- Stefan Hartwig
- Department of Oral and Maxillofacial Surgery/Clinical Navigation, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Jan D. Raguse
- Department of Oral and Maxillofacial Surgery/Clinical Navigation, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Dorothee Pfitzner
- Department of Operative and Preventive Dentistry, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Robert Preissner
- Institute of Physiology, Structural Bioinformatics Group, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Sebastian Paris
- Department of Operative and Preventive Dentistry, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Saskia Preissner
- Department of Operative and Preventive Dentistry, Charité–Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
47
|
Silva CL, Perestrelo R, Silva P, Tomás H, Câmara JS. Volatile metabolomic signature of human breast cancer cell lines. Sci Rep 2017; 7:43969. [PMID: 28256598 PMCID: PMC5335623 DOI: 10.1038/srep43969] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 01/31/2017] [Indexed: 12/23/2022] Open
Abstract
Breast cancer (BC) remains the most prevalent oncologic pathology in women, causing huge psychological, economic and social impacts on our society. Currently, the available diagnostic tools have limited sensitivity and specificity. Metabolome analysis has emerged as a powerful tool for obtaining information about the biological processes that occur in organisms, and is a useful platform for discovering new biomarkers or make disease diagnosis using different biofluids. Volatile organic compounds (VOCs) from the headspace of cultured BC cells and normal human mammary epithelial cells, were collected by headspace solid-phase microextraction (HS-SPME) and analyzed by gas chromatography combined with mass spectrometry (GC-MS), thus defining a volatile metabolomic signature. 2-Pentanone, 2-heptanone, 3-methyl-3-buten-1-ol, ethyl acetate, ethyl propanoate and 2-methyl butanoate were detected only in cultured BC cell lines. Multivariate statistical methods were used to verify the volatomic differences between BC cell lines and normal cells in order to find a set of specific VOCs that could be associated with BC, providing comprehensive insight into VOCs as potential cancer biomarkers. The establishment of the volatile fingerprint of BC cell lines presents a powerful approach to find endogenous VOCs that could be used to improve the BC diagnostic tools and explore the associated metabolomic pathways.
Collapse
Affiliation(s)
- Catarina L. Silva
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - Rosa Perestrelo
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - Pedro Silva
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - Helena Tomás
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
- Departamento de Química, Faculdade de Ciências Exatas e Engenharia da Universidade da Madeira, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - José S. Câmara
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
- Departamento de Química, Faculdade de Ciências Exatas e Engenharia da Universidade da Madeira, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| |
Collapse
|
48
|
Filipiak W, Mochalski P, Filipiak A, Ager C, Cumeras R, Davis CE, Agapiou A, Unterkofler K, Troppmair J. A Compendium of Volatile Organic Compounds (VOCs) Released By Human Cell Lines. Curr Med Chem 2017; 23:2112-31. [PMID: 27160536 PMCID: PMC5086670 DOI: 10.2174/0929867323666160510122913] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 05/02/2016] [Accepted: 05/10/2016] [Indexed: 12/18/2022]
Abstract
Volatile organic compounds (VOCs) offer unique insights into ongoing biochemical processes in healthy and diseased humans. Yet, their diagnostic use is hampered by the limited understanding of their biochemical or cellular origin and their frequently unclear link to the underlying diseases. Major advancements are expected from the analyses of human primary cells, cell lines and cultures of microorganisms. In this review, a database of 125 reliably identified VOCs previously reported for human healthy and diseased cells was assembled and their potential origin is discussed. The majority of them have also been observed in studies with other human matrices (breath, urine, saliva, feces, blood, skin emanations). Moreover, continuing improvements of qualitative and quantitative analyses, based on the recommendations of the ISO-11843 guidelines, are suggested for the necessary standardization of analytical procedures and better comparability of results. The data provided contribute to arriving at a more complete human volatilome and suggest potential volatile biomarkers for future validation. Dedication: This review is dedicated to the memory of Prof. Dr. Anton Amann, who sadly passed away on January 6, 2015. He was motivator and motor for the field of breath research.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jakob Troppmair
- Daniel Swarovski Research Laboratory, Department of Visceral-, Transplant- and Thoracic Surgery, Innsbruck Medical University, Innsbruck, Austria.
| |
Collapse
|
49
|
Guerrero-Flores H, Apresa-García T, Garay-Villar Ó, Sánchez-Pérez A, Flores-Villegas D, Bandera-Calderón A, García-Palacios R, Rojas-Sánchez T, Romero-Morelos P, Sánchez-Albor V, Mata O, Arana-Conejo V, Badillo-Romero J, Taniguchi K, Marrero-Rodríguez D, Mendoza-Rodríguez M, Rodríguez-Esquivel M, Huerta-Padilla V, Martínez-Castillo A, Hernández-Gallardo I, López-Romero R, Bandala C, Rosales-Guevara J, Salcedo M. A non-invasive tool for detecting cervical cancer odor by trained scent dogs. BMC Cancer 2017; 17:79. [PMID: 28122528 PMCID: PMC5267360 DOI: 10.1186/s12885-016-2996-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 12/13/2016] [Indexed: 12/23/2022] Open
Abstract
Background Cervical Cancer (CC) has become a public health concern of alarming proportions in many developing countries such as Mexico, particularly in low income sectors and marginalized regions. As such, an early detection is a key medical factor in improving not only their population’s quality of life but also its life expectancy. Interestingly, there has been an increase in the number of reports describing successful attempts at detecting cancer cells in human tissues or fluids using trained (sniffer) dogs. The great odor detection threshold exhibited by dogs is not unheard of. However, this represented a potential opportunity to develop an affordable, accessible, and non-invasive method for detection of CC. Methods Using clicker training, a male beagle was trained to recognize CC odor. During training, fresh CC biopsies were used as a reference point. Other samples used included cervical smears on glass slides and medical surgical bandages used as intimate sanitary pads by CC patients. A double-blind procedure was exercised when testing the beagle’s ability to discriminate CC from control samples. Results The beagle was proven able to detect CC-specific volatile organic compounds (VOC) contained in both fresh cervical smear samples and adsorbent material samples. Beagle’s success rate at detecting and discriminating CC and non-CC odors, as indicated by specificity and sensitivity values recorded during the experiment, stood at an overall high (>90%). CC-related VOC in adsorbent materials were detectable after only eight hours of use by CC patients. Conclusion Present data suggests different applications for VOC from the uterine cervix to be used in the detection and diagnosis of CC. Furthermore, data supports the use of trained dogs as a viable, affordable, non-invasive and, therefore, highly relevant alternative method for detection of CC lesions. Additional benefits of this method include its quick turnaround time and ease of use while remaining highly accurate and robust.
Collapse
Affiliation(s)
- Héctor Guerrero-Flores
- Coordinación de Prevención y Atención a la Salud, Delegación Sur (Instituto Mexicano del Seguro Social) IMSS, Mexico City, Mexico
| | - Teresa Apresa-García
- Laboratorio de Oncología Genómica, Unidad de Investigación Médica en Enfermedades Oncológicas, UMAE Hospital de Oncología, CMN- SXXI-IMSS, Av. Cuauhtémoc 330, Col. Doctores, Del. Cuauhtémoc, 06720, Mexico City, Mexico
| | - Ónix Garay-Villar
- Servicio de Braquiterapia, UMAE Hospital de Oncología, CMN-SXXI-IMSS, Mexico City, Mexico
| | | | | | - Artfy Bandera-Calderón
- Servicio de Oncología, Hospital General de Zona y de Medicina Familiar No. 5, IMSS, Taxco, Guerrero, Mexico
| | | | | | - Pablo Romero-Morelos
- Laboratorio de Oncología Genómica, Unidad de Investigación Médica en Enfermedades Oncológicas, UMAE Hospital de Oncología, CMN- SXXI-IMSS, Av. Cuauhtémoc 330, Col. Doctores, Del. Cuauhtémoc, 06720, Mexico City, Mexico
| | - Verónica Sánchez-Albor
- Laboratorio de Oncología Genómica, Unidad de Investigación Médica en Enfermedades Oncológicas, UMAE Hospital de Oncología, CMN- SXXI-IMSS, Av. Cuauhtémoc 330, Col. Doctores, Del. Cuauhtémoc, 06720, Mexico City, Mexico
| | - Osvaldo Mata
- Laboratorio de Oncología Genómica, Unidad de Investigación Médica en Enfermedades Oncológicas, UMAE Hospital de Oncología, CMN- SXXI-IMSS, Av. Cuauhtémoc 330, Col. Doctores, Del. Cuauhtémoc, 06720, Mexico City, Mexico
| | - Víctor Arana-Conejo
- Laboratorio de Oncología Genómica, Unidad de Investigación Médica en Enfermedades Oncológicas, UMAE Hospital de Oncología, CMN- SXXI-IMSS, Av. Cuauhtémoc 330, Col. Doctores, Del. Cuauhtémoc, 06720, Mexico City, Mexico
| | - Jesús Badillo-Romero
- Departamento de Anatomía Patológica, Hospital General de Zona Troncoso, Mexico City, Mexico
| | - Keiko Taniguchi
- Laboratorio de Oncología Genómica, Unidad de Investigación Médica en Enfermedades Oncológicas, UMAE Hospital de Oncología, CMN- SXXI-IMSS, Av. Cuauhtémoc 330, Col. Doctores, Del. Cuauhtémoc, 06720, Mexico City, Mexico
| | - Daniel Marrero-Rodríguez
- Laboratorio de Oncología Genómica, Unidad de Investigación Médica en Enfermedades Oncológicas, UMAE Hospital de Oncología, CMN- SXXI-IMSS, Av. Cuauhtémoc 330, Col. Doctores, Del. Cuauhtémoc, 06720, Mexico City, Mexico
| | - Mónica Mendoza-Rodríguez
- Laboratorio de Oncología Genómica, Unidad de Investigación Médica en Enfermedades Oncológicas, UMAE Hospital de Oncología, CMN- SXXI-IMSS, Av. Cuauhtémoc 330, Col. Doctores, Del. Cuauhtémoc, 06720, Mexico City, Mexico
| | - Miriam Rodríguez-Esquivel
- Laboratorio de Oncología Genómica, Unidad de Investigación Médica en Enfermedades Oncológicas, UMAE Hospital de Oncología, CMN- SXXI-IMSS, Av. Cuauhtémoc 330, Col. Doctores, Del. Cuauhtémoc, 06720, Mexico City, Mexico
| | - Víctor Huerta-Padilla
- Laboratorio de Oncología Genómica, Unidad de Investigación Médica en Enfermedades Oncológicas, UMAE Hospital de Oncología, CMN- SXXI-IMSS, Av. Cuauhtémoc 330, Col. Doctores, Del. Cuauhtémoc, 06720, Mexico City, Mexico
| | - Andrea Martínez-Castillo
- Laboratorio de Oncología Genómica, Unidad de Investigación Médica en Enfermedades Oncológicas, UMAE Hospital de Oncología, CMN- SXXI-IMSS, Av. Cuauhtémoc 330, Col. Doctores, Del. Cuauhtémoc, 06720, Mexico City, Mexico
| | - Irma Hernández-Gallardo
- Coordinación de Prevención y Atención a la Salud, Delegación Sur (Instituto Mexicano del Seguro Social) IMSS, Mexico City, Mexico
| | - Ricardo López-Romero
- Laboratorio de Oncología Genómica, Unidad de Investigación Médica en Enfermedades Oncológicas, UMAE Hospital de Oncología, CMN- SXXI-IMSS, Av. Cuauhtémoc 330, Col. Doctores, Del. Cuauhtémoc, 06720, Mexico City, Mexico
| | - Cindy Bandala
- División de Neurociencias, Instituto Nacional de Rehabilitación (INR), Secretaría de Salud (S.S.), Mexico City, Mexico
| | | | - Mauricio Salcedo
- Laboratorio de Oncología Genómica, Unidad de Investigación Médica en Enfermedades Oncológicas, UMAE Hospital de Oncología, CMN- SXXI-IMSS, Av. Cuauhtémoc 330, Col. Doctores, Del. Cuauhtémoc, 06720, Mexico City, Mexico.
| |
Collapse
|
50
|
Li Z, Shu J, Zhang P, Sun W, Yang B, Zhang H. Real-time ultrasensitive VUV-PIMS detection of representative endogenous volatile markers in cancers. Cancer Biomark 2016; 16:477-87. [PMID: 27062705 DOI: 10.3233/cbm-160587] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Identifying endogenous volatile organic compounds (VOCs) as markers for different cancers currently requires time-consuming procedures and specialized operators. OBJECTIVE The objective of this study was to develop a rapid and simple method for measuring VOCs at trace levels. METHODS A simple vacuum ultraviolet photoionization mass spectrometer (VUV-PIMS) was used to detect trace levels of dimethyl trisulfide (DMTS), dimethyl sulfide (DMS), and 2-butanone, which correspond to volatile biomarker candidates present in the exhaled breath of patients with breast, liver, and lung cancers, respectively. The practicality of measuring endogenous VOCs using VUV-PIMS was confirmed by detecting them in cultured cell lines. RESULTS The abovementioned VOCs were detected with high sensitivity by VUV-PIMS. The limits of detection (LODs) for DMTS, DMS, and 2-butanone were 3.1, 3.9, and 23.2 pptv, respectively, under ambient conditions, which surpass the sensitivity of nearly all other MS-based techniques. Moreover, relatively high concentrations of 2-butanone and DMS were observed in VOCs emitted from the A549 lung cancer cell line and the HepG2 liver cancer cell line, respectively. CONCLUSIONS Our results show that VUV-PIMS may serve as a reliable method for real-time measurement of endogenous volatile cancer biomarkers.
Collapse
|