1
|
Zhang T, Wang B, Su F, Gu B, Xiang L, Gao L, Zheng P, Li XM, Chen H. TCF7L2 promotes anoikis resistance and metastasis of gastric cancer by transcriptionally activating PLAUR. Int J Biol Sci 2022; 18:4560-4577. [PMID: 35864968 PMCID: PMC9295057 DOI: 10.7150/ijbs.69933] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 06/14/2022] [Indexed: 12/04/2022] Open
Abstract
Gastric cancer (GC) is the most common gastrointestinal malignant tumor, and distant metastasis is a critical factor in the prognosis of patients with GC. Understanding the mechanism of GC metastasis will help improve patient prognosis. Studies have confirmed that urokinase-type plasminogen activator receptor (PLAUR) promotes GC metastasis; however, its relationship with anoikis resistance and associated mechanisms remains unclear. In this study, we demonstrated that PLAUR promotes the anoikis resistance and metastasis of GC cells and identified transcription Factor 7 Like 2 (TCF7L2) as an important transcriptional regulator of PLAUR. We also revealed that TCF7L2 is highly expressed in GC and promotes the anoikis resistance and metastasis of GC cells. Moreover, we found that TCF7L2 transcription activates PLAUR. Finally, we confirmed that TCF7L2 is an independent risk factor for poor prognosis of patients with GC. Our results show that TCF7L2 and PLAUR are candidate targets for developing therapeutic strategies for GC metastasis.
Collapse
Affiliation(s)
- Tao Zhang
- Department of oncology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China.,The second clinical medical college of Lanzhou university, Lanzhou , Gansu, China.,Key laboratory of digestive system tumors, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Bofang Wang
- The second clinical medical college of Lanzhou university, Lanzhou , Gansu, China.,Key laboratory of digestive system tumors, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Fei Su
- Department of oncology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Baohong Gu
- The second clinical medical college of Lanzhou university, Lanzhou , Gansu, China.,Key laboratory of digestive system tumors, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Lin Xiang
- The second clinical medical college of Lanzhou university, Lanzhou , Gansu, China.,Key laboratory of digestive system tumors, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Lei Gao
- The second clinical medical college of Lanzhou university, Lanzhou , Gansu, China.,Key laboratory of digestive system tumors, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Peng Zheng
- The second clinical medical college of Lanzhou university, Lanzhou , Gansu, China.,Key laboratory of digestive system tumors, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Xue-Mei Li
- The second clinical medical college of Lanzhou university, Lanzhou , Gansu, China.,Key laboratory of digestive system tumors, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Hao Chen
- The second clinical medical college of Lanzhou university, Lanzhou , Gansu, China.,Key laboratory of digestive system tumors, Lanzhou University Second Hospital, Lanzhou, Gansu, China.,Cancer center, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| |
Collapse
|
2
|
Son D, Kong HK, Kim Y, Song MJ, Kim HP, Lee HW, Park JH. Transgenic overexpression of human LY6K in mice suppresses mature T cell development in the thymus. Oncol Lett 2019; 17:379-387. [PMID: 30655778 DOI: 10.3892/ol.2018.9548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 01/17/2018] [Indexed: 11/05/2022] Open
Abstract
Lymphocyte antigen 6 family member K (LY6K) is upregulated in a number of types of cancer and promotes tumor cell proliferation and metastasis. In addition, LY6K is involved in tamoxifen resistance in breast cancer. However, the in vivo molecular mechanism of LY6K has not yet been investigated. In the present study, transgenic mice overexpressing human LY6K (hLY6K) were generated using the pMAMneo vector, and the effect of LY6K upregulation in vivo was investigated. A total of 4 transgenic mice were generated, and the gene copy number was examined using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). RT-qPCR demonstrated that mRNA of hLY6K was overexpressed in the thymus and spleen of the transgenic mice compared with wild-type mice. Flow cytometric analysis demonstrated that the proportions of B and T cells in the spleen were similar in wild-type and transgenic mice; however, the proportion of thymic mature T cells decreased in the transgenic mice, while there was an increase in the proportion of naïve T cells. These findings suggest that the overexpression of LY6K suppresses T cell development, and that LY6K is a potential therapeutic target for cancer.
Collapse
Affiliation(s)
- Dasom Son
- Department of Biological Science, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Hyun-Kyung Kong
- Department of Biological Science, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Yesol Kim
- Department of Biological Science, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Min-Ji Song
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Hyong Pyo Kim
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Han Woong Lee
- Department of Biochemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Jong Hoon Park
- Department of Biological Science, Sookmyung Women's University, Seoul 04310, Republic of Korea
| |
Collapse
|
3
|
Mallett CL, Lim H, Thind K, Chen Y, Ribot EJ, Martinez F, Scholl TJ, Foster PJ. Longitudinal anatomical and metabolic MRI characterization of orthotopic xenograft prostate tumors in nude mice. J Magn Reson Imaging 2013; 40:848-56. [PMID: 24924594 DOI: 10.1002/jmri.24433] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 09/01/2013] [Indexed: 01/04/2023] Open
Abstract
PURPOSE To assess anatomic and functional magnetic resonance imaging (MRI) for monitoring of tumor volume and metabolism of orthotopic xenograft prostate cancer tumors. MATERIALS AND METHODS Human-derived PC-3M cells were implanted into the prostate in 22 nude mice. Tumor volume and MRI appearance were monitored for up to 29 days. Histology was performed to detect metastases. Hyperpolarized [1-(13) C]pyruvate MRI was used to measure tumor metabolism on day 22. RESULTS Tumors were visible by MRI 9 days after tumor cell implantation. Tumor volume increased to 720 ± 190 mm(3) on day 29 of imaging. Metastasis was seen in the iliac lymph nodes at all timepoints, and in more distant lymph nodes at later timepoints, but was not detectable by MRI. Regions with low pyruvate uptake corresponded to regions with necrosis and had a higher lactate/pyruvate ratio (0.98 ± 0.4 vs. 1.6 ± 1.1). CONCLUSION MRI using the balanced steady-state free precession (bSSFP) sequence can be used to monitor tumor growth in orthotopic PC-3M tumors as early as 9 days post-injection. Hyperpolarized pyruvate MRI has potential to assess tumor metabolism and necrosis.
Collapse
Affiliation(s)
- Christiane L Mallett
- Imaging Research Laboratories, Robarts Research Institute, London, Ontario, Canada; Department of Medical Biophysics, Western University, London, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Abstract
Urokinase-type plasminogen activator (uPA) and its receptor, uPAR, play important roles in promoting cancer cell adhesion, migration and invasion. Rho GTPases are key coordinators of these processes; the Rho GTPase Rac1 has previously been implicated in uPA- and/or uPAR-induced migratory or morphological cell responses. We used RNAi to deplete 12 different Rho GTPases to screen for effects on uPA-stimulated migration, and found that depletion of RhoB significantly reduces uPA-induced migration and invasion of prostate carcinoma cells. RhoB depletion did not affect the expression or surface levels of uPAR but reduced the uPAR-induced increase in levels of several integrins and inhibited uPAR signalling to the actin regulator cofilin, the cell-adhesion signal-transduction adaptor molecule paxillin and the serine/threonine kinase Akt. uPAR rapidly activated RhoB and increased RhoB expression. RhoB depletion also reduced cell adhesion to and spreading on vitronectin, which is a uPAR ligand. This correlated with decreased association between integrins and uPAR and reduced integrin β1 activity. Our results indicate that RhoB is a key regulator of uPAR signalling in cell adhesion, migration and invasion.
Collapse
Affiliation(s)
- Daniela Alfano
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, UK
| | | | | | | |
Collapse
|
5
|
Xue A, Xue M, Jackson C, Smith RC. Suppression of urokinase plasminogen activator receptor inhibits proliferation and migration of pancreatic adenocarcinoma cells via regulation of ERK/p38 signaling. Int J Biochem Cell Biol 2009; 41:1731-1738. [PMID: 19433314 DOI: 10.1016/j.biocel.2009.03.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 03/12/2009] [Accepted: 03/12/2009] [Indexed: 01/12/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) expresses high levels of urokinase-type plasminogen activator (uPA), its receptor (uPAR) and plasminogen activator inhibitor (PAI)-2, which may play an important role in PDAC progression. The overexpression of uPAR predicted short survival in PDAC patients. In this study, two different PDAC cell lines were used to examine the effect of small interfering (si) RNAs to uPAR, uPA and PAI-2 on proliferation, apoptosis, migration and MAP kinase activation. In both PDAC cell lines, siRNA to uPAR significantly inhibited cell proliferation and migration and stimulated apoptosis, to a greater extent than uPA siRNA. When either PDAC cell line was treated with uPAR siRNA, the level of phosphorylated ERK (p-ERK) decreased substantially, whereas phosphorylated p38 (p-p38) increased when compared to non-silencing control, uPA siRNA or PAI-2 siRNA treatment. This resulted in enhancement of the p-p38/p-ERK ratio which favors cancer cell arrest. Interestingly, uPAR protein expression was suppressed by p-ERK inhibition and stimulated with p-p38 inhibition, suggesting the presence of a positive feedback loop between uPAR and ERK. In summary, our data indicate that, of the uPA system, uPAR exerts the strongest effects on PDAC cells, by acting through the ERK signaling pathway via a positive feedback loop. Disruption of this loop with uPAR siRNA or inhibitor of p-ERK, inhibits PDAC proliferation and migration and promotes apoptosis. These findings suggest that uPAR strongly contributes to PDAC progression and may be considered as a potential anti-pancreatic cancer target.
Collapse
Affiliation(s)
- Aiqun Xue
- Department of Surgery, The University of Sydney, Royal North Shore Hospital, St Leonards, NSW, Australia
| | | | | | | |
Collapse
|
6
|
Deutscher SL, Figueroa SD, Kumar SR. Tumor targeting and SPECT imaging properties of an (111)In-labeled galectin-3 binding peptide in prostate carcinoma. Nucl Med Biol 2009; 36:137-46. [PMID: 19217525 DOI: 10.1016/j.nucmedbio.2008.10.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Revised: 10/15/2008] [Accepted: 10/27/2008] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Galectin-3 (gal-3) is a carbohydrate binding protein that has been implicated in cell adhesion, tumor invasion and metastasis. The objective of this study was to evaluate the tumor targeting and imaging properties of a gal-3 binding peptide selected by phage display in a mouse model of metastatic human prostate carcinoma expressing gal-3. METHODS A gal-3 binding peptide, ANTPCGPYTHDCPVKR, was synthesized with a Gly-Ser-Gly (GSG) spacer and 1,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid (DOTA) and then radiolabeled with (111)In. The in vitro cell binding properties of (111)In-DOTA-(GSG)-ANTPCGPYTHDCPVKR were determined in metastatic human PC3-M prostate carcinoma cells. The pharmacokinetics and single-photon emission computed tomographic (SPECT/CT) imaging with the radiolabeled peptide were evaluated in SCID mice bearing human PC3-M prostate carcinoma tumor xenografts. RESULTS The radiolabeled peptide bound with a 50% inhibitory concentration of 191+/-10.2 nM to cultured PC3-M prostate carcinoma cells. In vivo tumor uptake and retention coupled with fast whole-body clearance of the peptide were demonstrated in PC3-M tumor-bearing SCID mice. The tumor uptake rates of the radiolabeled peptide were 1.27+/-0.10%ID/g at 30 min, 0.82+/-0.15%ID/g at 1 h and 0.57+/-0.09%ID/g at 2 h. MicroSPECT/CT studies revealed good tumor uptake of (111)In-DOTA-(GSG)-ANTPCGPYTHDCPVKR 2 h postinjection, while uptake in normal organs was low, with the exception of the kidneys. CONCLUSIONS In vitro cell binding along with tumor uptake of (111)In-DOTA-(GSG)-ANTPCGPYTHDCPVKR in PC3-M human prostate carcinoma tumor-bearing SCID mice suggests the potential of this peptide as a radiopharmaceutical for imaging of gal-3-expressing prostate tumors.
Collapse
Affiliation(s)
- Susan L Deutscher
- Department of Biochemistry, University of Missouri-Columbia School of Medicine, Columbia, MO 65211, USA
| | | | | |
Collapse
|
7
|
Stocking KL, Jones JC, Everds NE, Buetow BS, Roudier MP, Miller RE. Use of low-molecular-weight heparin to decrease mortality in mice after intracardiac injection of tumor cells. Comp Med 2009; 59:37-45. [PMID: 19295053 PMCID: PMC2703139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Revised: 07/02/2008] [Accepted: 08/10/2008] [Indexed: 05/27/2023]
Abstract
Intracardiac injection of human tumor cells into anesthetized nude mice is an established model of bone metastasis. However, intracardiac injection of some human tumor cell lines cause acute neurologic signs and high mortality, making some potentially relevant tumor cell lines unusable for investigation. We showed that intracardiac injection of tumor cells can induce a hypercoagulable state leading to platelet consumption and thromboemboli formation and that pretreatment with intravenous injection of low-molecular-weight heparin (LMWH; enoxaparin) blocks this state. In addition, intravenous injection of enoxaparin before intracardiac injection with 2 different small-cell lung carcinoma lines, H1975 and H2126, dramatically decreased mouse mortality while still generating bone metastases. Therefore, reduction of mortality by pretreatment with LMWH increases the types of cells that can be studied in this metastasis model and decreases the number of animals used.
Collapse
Affiliation(s)
- Kim L Stocking
- Comparative Animal Research, Amgen Corporation, Seattle, Washington, USA.
| | | | | | | | | | | |
Collapse
|
8
|
Hasanuzzaman M, Kutner R, Agha-Mohammadi S, Reiser J, Sehgal I. A doxycycline-inducible urokinase receptor (uPAR) upregulates uPAR activities including resistance to anoikis in human prostate cancer cell lines. Mol Cancer 2007; 6:34. [PMID: 17509140 PMCID: PMC1885813 DOI: 10.1186/1476-4598-6-34] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2007] [Accepted: 05/17/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The urokinase receptor (uPAR) mediates a diverse array of cellular processes including several events involved in prostate cancer metastasis. Many of these activities are initiated or enhanced by uPAR binding to its proteolytic ligand, urokinase (uPA). Our objective in this study was to generate and test an inducible lentiviral system capable of expressing uPAR and DsRed fluorescent protein in human prostate cancer cell lines. RESULTS A DsRed-uPAR fusion construct was inserted into a lentiviral vector. Transduction of human prostate cancer cell lines with this virus and with a virus containing a reverse-tetracycline transactivator (rt-TA) resulted in a stable transgene which induced both uPAR and DsRed proteins in a dose-responsive fashion upon stimulation with doxycycline. Immunoblots and immunofluorescence studies indicated no detectable uPAR expression in non-induced prostate cancer cell lines. Cells with induced-uPAR demonstrated increased cellular adhesion to the matrix substrate vitronectin and increased net cell proliferation compared to uninduced cells. Finally, induced uPAR-expressing prostate cancer cells were resistant to anoikis over an extended time period when grown in suspension. CONCLUSION This doxycycline-inducible lentivirus system produces titerable levels of biologically active uPAR in vitro. This tool can be used to dissect cellular events following induction of uPAR in prostate cancer cells.
Collapse
Affiliation(s)
- Mohammad Hasanuzzaman
- LSU Department of Comparative Biomedical Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.
| | | | | | | | | |
Collapse
|