1
|
Cabrera-Sosa L, Safarpour M, Kattenberg JH, Ramirez R, Vinetz JM, Rosanas-Urgell A, Gamboa D, Delgado-Ratto C. Comparing newly developed SNP barcode panels with microsatellites to explore population genetics of malaria parasites in the Peruvian Amazon. Front Genet 2024; 15:1488109. [PMID: 39748949 PMCID: PMC11693692 DOI: 10.3389/fgene.2024.1488109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/29/2024] [Indexed: 01/04/2025] Open
Abstract
Introduction Malaria molecular surveillance (MMS) can provide insights into transmission dynamics, guiding national control programs. We previously designed AmpliSeq assays for MMS, which include different traits of interest (resistance markers and pfhrp2/3 deletions), and SNP barcodes to provide population genetics estimates of Plasmodium vivax and Plasmodium falciparum parasites in the Peruvian Amazon. The present study compares the genetic resolution of the barcodes in the AmpliSeq assays with widely used microsatellite (MS) panels to investigate population genetics of Amazonian malaria parasites. Methods We analyzed 51 P. vivax and 80 P. falciparum samples from three distinct areas in the Loreto region of the Peruvian Amazon: Nueva Jerusalén (NJ), Mazan (MZ), and Santa Emilia (SE). Population genetics estimates and costs were compared using the SNP barcodes (P. vivax: 40 SNPs and P. falciparum: 28 SNPs) and MS panels (P. vivax: 16 MS and P. falciparum: 7 MS). Results The P. vivax genetic diversity (expected heterozygosity, He) trends were similar for both markers: He MS = 0.68-0.78 (p > 0.05) and He SNP = 0.36-0.38 (p > 0.05). P. vivax pairwise genetic differentiation (fixation index, FST) was also comparable: FST-MS = 0.04-0.14 and FST-SNP = 0.03-0.12 (pairwise p > 0.05). In addition, P. falciparum genetic diversity trends (He MS = 0-0.48, p < 0.05; He SNP = 0-0.09, p < 0.05) and pairwise FST comparisons (FST-MS = 0.14-0.65, FST-SNP = 0.19-0.61, pairwise p > 0.05) were concordant between both panels. For P. vivax, no geographic clustering was observed with any panel, whereas for P. falciparum, similar population structure clustering was observed with both markers, assigning most parasites from NJ to a distinct subpopulation from MZ and SE. We found significant differences in detecting polyclonal infections: for P. vivax, MS identified a higher proportion of polyclonal infections than SNP (69% vs. 33%, p = 3.3 × 10-5), while for P. falciparum, SNP and MS detected similar rates (46% vs. 31%, p = 0.21). The AmpliSeq assay had a higher estimated per-sample cost compared to MS ($183 vs. $27-49). Discussion The SNP barcodes in the AmpliSeq assays offered comparable results to MS for investigating population genetics in P. vivax and P. falciparum populations, despite some discrepancies in determining polyclonality. Given both panels have their respective advantages and limitations, the choice between both should be guided by research objectives, costs, and resource availability.
Collapse
Affiliation(s)
- Luis Cabrera-Sosa
- Laboratorio de Malaria: Parásitos y Vectores, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
- Instituto de Medicina Tropical “Alexander von Humboldt”, Universidad Peruana Cayetano Heredia, Lima, Peru
- Malaria Research Group (MaRch), Global Health Institute (GHI), Family Medicine and Population Health Department (FAMPOP), Faculty of Medicine, University of Antwerp, Antwerp, Belgium
| | - Mahdi Safarpour
- Malaria Research Group (MaRch), Global Health Institute (GHI), Family Medicine and Population Health Department (FAMPOP), Faculty of Medicine, University of Antwerp, Antwerp, Belgium
| | | | - Roberson Ramirez
- Laboratorio ICEMR-Amazonia y Enfermedades Emergentes, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Joseph M. Vinetz
- Instituto de Medicina Tropical “Alexander von Humboldt”, Universidad Peruana Cayetano Heredia, Lima, Peru
- Laboratorio ICEMR-Amazonia y Enfermedades Emergentes, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, United States
| | - Anna Rosanas-Urgell
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Dionicia Gamboa
- Laboratorio de Malaria: Parásitos y Vectores, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
- Instituto de Medicina Tropical “Alexander von Humboldt”, Universidad Peruana Cayetano Heredia, Lima, Peru
- Laboratorio ICEMR-Amazonia y Enfermedades Emergentes, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
- Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Christopher Delgado-Ratto
- Instituto de Medicina Tropical “Alexander von Humboldt”, Universidad Peruana Cayetano Heredia, Lima, Peru
- Malaria Research Group (MaRch), Global Health Institute (GHI), Family Medicine and Population Health Department (FAMPOP), Faculty of Medicine, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
2
|
Dash M, Mallick PK. Microhaplotypes: the QR-code for Plasmodium vivax infection dynamics. Trends Parasitol 2024; 40:959-961. [PMID: 39428304 DOI: 10.1016/j.pt.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 10/08/2024] [Indexed: 10/22/2024]
Abstract
An array of microhaplotypes - small segments of ≤200 nucleotides with heterozygous multiple-SNP exhibiting multiple allelic combinations - were identified in the Plasmodium vivax genome by Siegel et al. Interestingly, the microhaplotype has significant potential to distinguish relapse/reinfection and identify genetic relatedness across vivax-endemic areas. It is essential to validate the universal applicability of microhaplotypes.
Collapse
Affiliation(s)
- Manoswini Dash
- Centre for Aging, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Prashant Kumar Mallick
- Department of Molecular Biology, ICMR-National Institute of Malaria Research, New Delhi, India; Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India.
| |
Collapse
|
3
|
Cabrera-Sosa L, Safarpour M, Kattenberg JH, Ramirez R, Vinetz J, Rosanas-Urgell A, Gamboa D, Delgado-Ratto C. Comparing newly developed SNP barcode panels with microsatellites to explore population genetics of malaria parasites in the Peruvian Amazon. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.09.611954. [PMID: 39314390 PMCID: PMC11418992 DOI: 10.1101/2024.09.09.611954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Malaria molecular surveillance (MMS) can provide insights into transmission dynamics, guiding national control/elimination programs. Considering the genetic differences among parasites from different areas in the Peruvian Amazon, we previously designed SNP barcode panels for Plasmodium vivax (Pv) and P. falciparum (Pf), integrated into AmpliSeq assays, to provide population genetics estimates of malaria parasites. These AmpliSeq assays are ideal for MMS: multiplexing different traits of interest, applicable to many use cases, and high throughput for large numbers of samples. The present study compares the genetic resolution of the SNP barcode panels in the AmpliSeq assays with widely used microsatellite (MS) panels to investigate Amazonian malaria parasites. Malaria samples collected in remote areas of the Peruvian Amazon (51 Pv & 80 Pf samples) were characterized using the Ampliseq assays and MS. Population genetics estimates (complexity of infection, genetic diversity and differentiation, and population structure) were compared using the SNP barcodes (Pv: 40 SNPs & Pf: 28 SNPs) and MS panels (Pv: 16 MS & Pf: 7 MS). The genetic diversity of Pv (expected heterozygosity, He ) was similar across the subpopulations for both makers: He MS = 0.68 - 0.78 (p = 0.23) and He SNP = 0.36 - 0.38 (p = 0.80). Pairwise genetic differentiation (fixation index, F ST ) was also comparable: F ST-MS = 0.04 - 0.14 and F ST-SNP = 0.03 - 0.12 (p = 0.34 - 0.85). No geographic clustering was observed with any panel. In addition, Pf genetic diversity trends ( He MS = 0 - 0.48 p = 0.03 - 1; He SNP = 0 - 0.09, p = 0.03 - 1) and pairwise F ST comparisons (F ST-MS = 0.14 - 0.65, F ST-SNP = 0.19 - 0.61, p = 0.24 - 0.83) were concordant between the panels. Similar population structure clustering was observed with both SNP and MS, highlighting one Pf subpopulation in an indigenous community. The SNP barcodes in the Pv AmpliSeq v2 Peru and Pf AmpliSeq v1 Peru assays offer comparable results to MS panels when investigating population genetics in Pv and Pv populations. Therefore, the AmpliSeq assays can efficiently characterize malaria transmission dynamics and population structure and support malaria elimination efforts in Peru.
Collapse
|
4
|
Ali Albsheer MM, Hubbard A, Dieng CC, Gebremeskel EI, Ahmed S, Rougeron V, Ibrahim ME, Lo E, Abdel Hamid MM. Extensive genetic diversity in Plasmodium vivax from Sudan and its genetic relationships with other geographical isolates. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 123:105643. [PMID: 39053565 DOI: 10.1016/j.meegid.2024.105643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/03/2024] [Accepted: 07/13/2024] [Indexed: 07/27/2024]
Abstract
Plasmodium vivax, traditionally overlooked has experienced a notable increase in cases in East Africa. This study investigated the geographical origin and genetic diversity of P. vivax in Sudan using 14 microsatellite markers. A total of 113 clinical P. vivax samples were collected from two different ecogeographical zones, New Halfa and Khartoum, in Sudan. Additionally, 841 geographical samples from the database were incorporated for a global genetic analysis to discern genetic relationships among P. vivax isolates on regional and worldwide scales. On the regional scale, our findings revealed 91 unique and 8 shared haplotypes among the Sudan samples, showcasing a remarkable genetic diversity compared to other geographical isolates and supporting the hypothesis that P. vivax originated from Africa. On a global scale, distinct genetic clustering of P. vivax isolates from Africa, South America, and Asia (including Papua New Guinea and Solomon Island) was observed, with limited admixture among the three clusters. Principal component analysis emphasized the substantial contribution of African isolates to the observed global genetic variation. The Sudanese populations displayed extensive genetic diversity, marked by significant multi-locus linkage disequilibrium, suggesting an ancestral source of P. vivax variation globally and frequent recombination among the isolates. Notably, the East African P. vivax exhibited similarity with some Asian isolates, indicating potential recent introductions. Overall, our results underscore the effectiveness of utilizing microsatellite markers for implementing robust control measures, given their ability to capture extensive genetic diversity and linkage disequilibrium patterns.
Collapse
Affiliation(s)
- Musab M Ali Albsheer
- Department of Parasitology and Medical Entomology, Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan; Faculty of Medical Laboratory Sciences, Sinnar University, Sudan
| | - Alfred Hubbard
- Department of Bioinformatics and Genomics, University of North Carolina, Charlotte, NC 28223, USA
| | - Cheikh Cambel Dieng
- Department of Microbiology and Immunology, Drexel University, Philadelphia, PA 19129, USA
| | | | - Safaa Ahmed
- Department of Parasitology and Medical Entomology, Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| | - Virginie Rougeron
- Laboratoire MIVEGEC (Université de Montpellier-CNRS-IRD), CREES, 34394 Montpellier, France
| | - Muntaser E Ibrahim
- Department of Parasitology and Medical Entomology, Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| | - Eugenia Lo
- Department of Microbiology and Immunology, Drexel University, Philadelphia, PA 19129, USA.
| | - Muzamil M Abdel Hamid
- Department of Parasitology and Medical Entomology, Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan.
| |
Collapse
|
5
|
Spiliopoulou I, Pervanidou D, Tegos N, Tseroni M, Baka A, Vakali A, Kefaloudi CN, Papavasilopoulos V, Mpimpa A, Patsoula E. Genetic Structure of Introduced Plasmodium vivax Malaria Isolates in Greece, 2015-2019. Trop Med Infect Dis 2024; 9:102. [PMID: 38787035 PMCID: PMC11126073 DOI: 10.3390/tropicalmed9050102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/25/2024] [Accepted: 04/27/2024] [Indexed: 05/25/2024] Open
Abstract
Greece has been malaria-free since 1974, after an intense malaria control program. However, as Greece hosts migrant populations from P. vivax malaria-endemic countries, there is a risk of introducing the disease to specific vulnerable and receptive areas of the country. Knowledge of the genetic diversity of P. vivax populations is essential for understanding the dynamics of malaria disease transmission in a given region. We used nine highly polymorphic markers to genotype 124 P. vivax-infected archived DNA samples from human blood specimens referred to the NMRL from all over Greece throughout 2015-2019. The genotypic variability of the samples studied was noted, as they comprised several unique haplotypes, indicative of the importation of a large number of different P. vivax strains in the country. However, only a few events of local transmission were recorded. Genotyping revealed and confirmed the same clusters as those identified through epidemiological investigation. In only one introduction event was the index case found. No sustained/ongoing malaria transmissions in/between the studied regions or during consecutive years or additional foci of local transmission were observed. Genotyping is an important component in assisting malaria surveillance, as it provides information concerning the patterns of introduction and the effectiveness of implemented malaria control and elimination measures.
Collapse
Affiliation(s)
- Ioanna Spiliopoulou
- European Programme for Public Health Microbiology (EUPHEM), European Centre for Disease Prevention and Control (ECDC), 16973 Stockholm, Sweden;
- National Public Health Organization (NPHO), 15123 Athens, Greece; (D.P.); or (M.T.); (A.B.); (A.V.); (C.-N.K.)
| | - Danai Pervanidou
- National Public Health Organization (NPHO), 15123 Athens, Greece; (D.P.); or (M.T.); (A.B.); (A.V.); (C.-N.K.)
| | - Nikolaos Tegos
- National Malaria Reference Center, Laboratory for the Surveillance of Infectious Diseases, Department of Public Health Policy, School of Public Health, University of West Attica, 11521 Athens, Greece; (N.T.); (V.P.); (A.M.)
| | - Maria Tseroni
- National Public Health Organization (NPHO), 15123 Athens, Greece; (D.P.); or (M.T.); (A.B.); (A.V.); (C.-N.K.)
- Department of Nursing, School of Health Sciences, National and Kapodistrian University of Athens, 123 Papadiamantopoulou Str., Goudi, 11527 Athens, Greece
| | - Agoritsa Baka
- National Public Health Organization (NPHO), 15123 Athens, Greece; (D.P.); or (M.T.); (A.B.); (A.V.); (C.-N.K.)
| | - Annita Vakali
- National Public Health Organization (NPHO), 15123 Athens, Greece; (D.P.); or (M.T.); (A.B.); (A.V.); (C.-N.K.)
| | | | - Vasilios Papavasilopoulos
- National Malaria Reference Center, Laboratory for the Surveillance of Infectious Diseases, Department of Public Health Policy, School of Public Health, University of West Attica, 11521 Athens, Greece; (N.T.); (V.P.); (A.M.)
| | - Anastasia Mpimpa
- National Malaria Reference Center, Laboratory for the Surveillance of Infectious Diseases, Department of Public Health Policy, School of Public Health, University of West Attica, 11521 Athens, Greece; (N.T.); (V.P.); (A.M.)
| | - Eleni Patsoula
- National Malaria Reference Center, Laboratory for the Surveillance of Infectious Diseases, Department of Public Health Policy, School of Public Health, University of West Attica, 11521 Athens, Greece; (N.T.); (V.P.); (A.M.)
| |
Collapse
|
6
|
Ruybal-Pesántez S, McCann K, Vibin J, Siegel S, Auburn S, Barry AE. Molecular markers for malaria genetic epidemiology: progress and pitfalls. Trends Parasitol 2024; 40:147-163. [PMID: 38129280 DOI: 10.1016/j.pt.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023]
Abstract
Over recent years, progress in molecular markers for genotyping malaria parasites has enabled informative studies of epidemiology and transmission dynamics. Results have highlighted the value of these tools for surveillance to support malaria control and elimination strategies. There are many different types and panels of markers available for malaria parasite genotyping, and for end users, the nuances of these markers with respect to 'use case', resolution, and accuracy, are not well defined. This review clarifies issues surrounding different molecular markers and their application to malaria control and elimination. We describe available marker panels, use cases, implications for different transmission settings, limitations, access, cost, and data accuracy. The information provided can be used as a guide for molecular epidemiology and surveillance of malaria.
Collapse
Affiliation(s)
- Shazia Ruybal-Pesántez
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, UK; Institute of Microbiology, Universidad San Francisco de Quito, Quito, Ecuador
| | - Kirsty McCann
- Life Sciences Discipline, Burnet Institute, Melbourne, Victoria, Australia; Centre for Innovation in Infectious Disease and Immunology Research (CIIDIR), Institute for Mental and Physical Health and Clinical Translation (IMPACT) and School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - Jessy Vibin
- Life Sciences Discipline, Burnet Institute, Melbourne, Victoria, Australia; Centre for Innovation in Infectious Disease and Immunology Research (CIIDIR), Institute for Mental and Physical Health and Clinical Translation (IMPACT) and School of Medicine, Deakin University, Geelong, Victoria, Australia
| | | | - Sarah Auburn
- Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia; Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Alyssa E Barry
- Life Sciences Discipline, Burnet Institute, Melbourne, Victoria, Australia; Centre for Innovation in Infectious Disease and Immunology Research (CIIDIR), Institute for Mental and Physical Health and Clinical Translation (IMPACT) and School of Medicine, Deakin University, Geelong, Victoria, Australia.
| |
Collapse
|
7
|
Mensah BA, Akyea-Bobi NE, Ghansah A. Genomic approaches for monitoring transmission dynamics of malaria: A case for malaria molecular surveillance in Sub-Saharan Africa. FRONTIERS IN EPIDEMIOLOGY 2022; 2:939291. [PMID: 38455324 PMCID: PMC10911004 DOI: 10.3389/fepid.2022.939291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 10/10/2022] [Indexed: 03/09/2024]
Abstract
Transmission dynamics is an important indicator for malaria control and elimination. As we move closer to eliminating malaria in Sub-Saharan Africa (sSA), transmission indices with higher resolution (genomic approaches) will complement our current measurements of transmission. Most of the present programmatic knowledge of malaria transmission patterns are derived from assessments of epidemiologic and clinical data, such as case counts, parasitological estimates of parasite prevalence, and Entomological Inoculation Rates (EIR). However, to eliminate malaria from endemic areas, we need to track changes in the parasite population and how they will impact transmission. This is made possible through the evolving field of genomics and genetics, as well as the development of tools for more in-depth studies on the diversity of parasites and the complexity of infections, among other topics. If malaria elimination is to be achieved globally, country-specific elimination activities should be supported by parasite genomic data from regularly collected blood samples for diagnosis, surveillance and possibly from other programmatic interventions. This presents a unique opportunity to track the spread of malaria parasites and shed additional light on intervention efficacy. In this review, various genetic techniques are highlighted along with their significance for an enhanced understanding of transmission patterns in distinct topological settings throughout Sub-Saharan Africa. The importance of these methods and their limitations in malaria surveillance to guide control and elimination strategies, are explored.
Collapse
Affiliation(s)
- Benedicta A. Mensah
- Department of Epidemiology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Nukunu E. Akyea-Bobi
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Anita Ghansah
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| |
Collapse
|
8
|
Barry AE. Complex infections in vivax malaria: the more you look, the more you find. Trends Parasitol 2021; 37:1022-1023. [PMID: 34756507 DOI: 10.1016/j.pt.2021.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 10/14/2021] [Indexed: 12/23/2022]
Abstract
The human malaria parasite Plasmodium vivax commonly causes complex multiclonal infections. Recently, Dia et al. have developed innovative methods for single-cell sequencing (SCS) of P. vivax infections by adapting an approach used previously for Plasmodium falciparum. Their studies provide fascinating new insights into P. vivax intrahost diversity and evolution.
Collapse
Affiliation(s)
- Alyssa E Barry
- Institute of Mental and Physical Health and Clinical Translation (IMPACT) and School of Medicine, Deakin University, Geelong, Victoria, Australia; Life Sciences Discipline, Burnet Institute, Melbourne, Victoria, Australia.
| |
Collapse
|
9
|
Kattenberg JH, Razook Z, Keo R, Koepfli C, Jennison C, Lautu-Gumal D, Fola AA, Ome-Kaius M, Barnadas C, Siba P, Felger I, Kazura J, Mueller I, Robinson LJ, Barry AE. Monitoring Plasmodium falciparum and Plasmodium vivax using microsatellite markers indicates limited changes in population structure after substantial transmission decline in Papua New Guinea. Mol Ecol 2020; 29:4525-4541. [PMID: 32985031 PMCID: PMC10008436 DOI: 10.1111/mec.15654] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 07/27/2020] [Indexed: 02/01/2023]
Abstract
Monitoring the genetic structure of pathogen populations may be an economical and sensitive approach to quantify the impact of control on transmission dynamics, highlighting the need for a better understanding of changes in population genetic parameters as transmission declines. Here we describe the first population genetic analysis of two major human malaria parasites, Plasmodium falciparum (Pf) and Plasmodium vivax (Pv), following nationwide distribution of long-lasting insecticide-treated nets (LLINs) in Papua New Guinea (PNG). Parasite isolates from pre- (2005-2006) and post-LLIN (2010-2014) were genotyped using microsatellite markers. Despite parasite prevalence declining substantially (East Sepik Province: Pf = 54.9%-8.5%, Pv = 35.7%-5.6%, Madang Province: Pf = 38.0%-9.0%, Pv: 31.8%-19.7%), genetically diverse and intermixing parasite populations remained. Pf diversity declined modestly post-LLIN relative to pre-LLIN (East Sepik: Rs = 7.1-6.4, HE = 0.77-0.71; Madang: Rs = 8.2-6.1, HE = 0.79-0.71). Unexpectedly, population structure present in pre-LLIN populations was lost post-LLIN, suggesting that more frequent human movement between provinces may have contributed to higher gene flow. Pv prevalence initially declined but increased again in one province, yet diversity remained high throughout the study period (East Sepik: Rs = 11.4-9.3, HE = 0.83-0.80; Madang: Rs = 12.2-14.5, HE = 0.85-0.88). Although genetic differentiation values increased between provinces over time, no significant population structure was observed at any time point. For both species, a decline in multiple infections and increasing clonal transmission and significant multilocus linkage disequilibrium post-LLIN were positive indicators of impact on the parasite population using microsatellite markers. These parameters may be useful adjuncts to traditional epidemiological tools in the early stages of transmission reduction.
Collapse
Affiliation(s)
- Johanna Helena Kattenberg
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Vector Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Yagaum, Papua New Guinea
| | - Zahra Razook
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Raksmei Keo
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Cristian Koepfli
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Charlie Jennison
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Dulcie Lautu-Gumal
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Vector Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Yagaum, Papua New Guinea.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Abebe A Fola
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Maria Ome-Kaius
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Vector Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Yagaum, Papua New Guinea.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Céline Barnadas
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Vector Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Yagaum, Papua New Guinea.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Peter Siba
- Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
| | - Ingrid Felger
- Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - James Kazura
- Centre for Global Health and Diseases, Case Western Reserve University, Cleveland, OH, USA
| | - Ivo Mueller
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia.,Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
| | - Leanne J Robinson
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Vector Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Yagaum, Papua New Guinea.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia.,Disease Elimination, Burnet Institute, Melbourne, VIC, Australia
| | - Alyssa E Barry
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
10
|
Fola AA, Kattenberg E, Razook Z, Lautu-Gumal D, Lee S, Mehra S, Bahlo M, Kazura J, Robinson LJ, Laman M, Mueller I, Barry AE. SNP barcodes provide higher resolution than microsatellite markers to measure Plasmodium vivax population genetics. Malar J 2020; 19:375. [PMID: 33081815 PMCID: PMC7576724 DOI: 10.1186/s12936-020-03440-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 10/03/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Genomic surveillance of malaria parasite populations has the potential to inform control strategies and to monitor the impact of interventions. Barcodes comprising large numbers of single nucleotide polymorphism (SNP) markers are accurate and efficient genotyping tools, however may need to be tailored to specific malaria transmission settings, since 'universal' barcodes can lack resolution at the local scale. A SNP barcode was developed that captures the diversity and structure of Plasmodium vivax populations of Papua New Guinea (PNG) for research and surveillance. METHODS Using 20 high-quality P. vivax genome sequences from PNG, a total of 178 evenly spaced neutral SNPs were selected for development of an amplicon sequencing assay combining a series of multiplex PCRs and sequencing on the Illumina MiSeq platform. For initial testing, 20 SNPs were amplified in a small number of mono- and polyclonal P. vivax infections. The full barcode was then validated by genotyping and population genetic analyses of 94 P. vivax isolates collected between 2012 and 2014 from four distinct catchment areas on the highly endemic north coast of PNG. Diversity and population structure determined from the SNP barcode data was then benchmarked against that of ten microsatellite markers used in previous population genetics studies. RESULTS From a total of 28,934,460 reads generated from the MiSeq Illumina run, 87% mapped to the PvSalI reference genome with deep coverage (median = 563, range 56-7586) per locus across genotyped samples. Of 178 SNPs assayed, 146 produced high-quality genotypes (minimum coverage = 56X) in more than 85% of P. vivax isolates. No amplification bias was introduced due to either polyclonal infection or whole genome amplification (WGA) of samples before genotyping. Compared to the microsatellite panels, the SNP barcode revealed greater variability in genetic diversity between populations and geographical population structure. The SNP barcode also enabled assignment of genotypes according to their geographic origins with a significant association between genetic distance and geographic distance at the sub-provincial level. CONCLUSIONS High-throughput SNP barcoding can be used to map variation of malaria transmission dynamics at sub-national resolution. The low cost per sample and genotyping strategy makes the transfer of this technology to field settings highly feasible.
Collapse
Affiliation(s)
- Abebe A Fola
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Eline Kattenberg
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Vector Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
- Malariology Unit, Institute of Tropical Medicine, Antwerp, Belgium
| | - Zahra Razook
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- IMPACT Institute for Innovation in Mental and Physical Health and Clinical Translation, Deakin University, 75 Pigdons Road, Waurn Ponds, Geelong, VIC, 3216, Australia
| | - Dulcie Lautu-Gumal
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
- Vector Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
- Disease Elimination Program, Burnet Institute, Melbourne, VIC, Australia
- IMPACT Institute for Innovation in Mental and Physical Health and Clinical Translation, Deakin University, 75 Pigdons Road, Waurn Ponds, Geelong, VIC, 3216, Australia
| | - Stuart Lee
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Somya Mehra
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Disease Elimination Program, Burnet Institute, Melbourne, VIC, Australia
- IMPACT Institute for Innovation in Mental and Physical Health and Clinical Translation, Deakin University, 75 Pigdons Road, Waurn Ponds, Geelong, VIC, 3216, Australia
| | - Melanie Bahlo
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - James Kazura
- Disease Elimination Program, Burnet Institute, Melbourne, VIC, Australia
- Centre for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio, USA
| | - Leanne J Robinson
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
- Vector Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
- Disease Elimination Program, Burnet Institute, Melbourne, VIC, Australia
| | - Moses Laman
- Vector Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Ivo Mueller
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
- Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
| | - Alyssa E Barry
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia.
- Disease Elimination Program, Burnet Institute, Melbourne, VIC, Australia.
- IMPACT Institute for Innovation in Mental and Physical Health and Clinical Translation, Deakin University, 75 Pigdons Road, Waurn Ponds, Geelong, VIC, 3216, Australia.
| |
Collapse
|
11
|
Abstract
Malaria is a vector-borne disease that involves multiple parasite species in a variety of ecological settings. However, the parasite species causing the disease, the prevalence of subclinical infections, the emergence of drug resistance, the scale-up of interventions, and the ecological factors affecting malaria transmission, among others, are aspects that vary across areas where malaria is endemic. Such complexities have propelled the study of parasite genetic diversity patterns in the context of epidemiologic investigations. Importantly, molecular studies indicate that the time and spatial distribution of malaria cases reflect epidemiologic processes that cannot be fully understood without characterizing the evolutionary forces shaping parasite population genetic patterns. Although broad in scope, this review in the Microbiology Spectrum Curated Collection: Advances in Molecular Epidemiology highlights the need for understanding population genetic concepts when interpreting parasite molecular data. First, we discuss malaria complexity in terms of the parasite species involved. Second, we describe how molecular data are changing our understanding of malaria incidence and infectiousness. Third, we compare different approaches to generate parasite genetic information in the context of epidemiologically relevant questions related to malaria control. Finally, we describe a few Plasmodium genomic studies as evidence of how these approaches will provide new insights into the malaria disease dynamics. *This article is part of a curated collection.
Collapse
|
12
|
Ventocilla JA, Nuñez J, Tapia LL, Lucas CM, Manock SR, Lescano AG, Edgel KA, Graf PCF. Genetic Variability of Plasmodium vivax in the North Coast of Peru and the Ecuadorian Amazon Basin. Am J Trop Med Hyg 2018; 99:27-32. [PMID: 29761758 DOI: 10.4269/ajtmh.17-0498] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In the Peruvian North Coast (PNC), the number of Plasmodium vivax malaria cases increased steadily from 2007 to 2010 despite a significant decline in the overall number of cases in Peru during the same period. To better understand the transmission dynamics of P. vivax populations in the PNC and the neighboring Ecuadorian Amazon Basin (EAB), we studied the genetic variability and population structure of P. vivax in these areas. One hundred and twenty P. vivax isolates (58 from Piura and 37 from Tumbes in the PNC collected from 2008 to 2010 and 25 from the EAB collected in Pastaza from 2001 to 2004) were assessed by five polymorphic microsatellite markers. Genetic variability was determined by expected heterozygosity (He) and population structure by Bayesian inference cluster analysis. We found very low genetic diversity in the PNC (He = 0-0.32) but high genetic diversity in the EAB (He = 0.43-0.70). Population structure analysis revealed three distinct populations in the three locations. Six of 37 (16%) isolates from Tumbes had an identical haplotype to that found in Piura, suggesting unidirectional flow from Piura to Tumbes. In addition, one haplotype from Tumbes showed similarity to a haplotype found in Pastaza, suggesting that this could be an imported case from EAB. These findings strongly suggest a minimal population flow and different levels of genetic variability between these two areas divided by the Andes Mountains. This work presents molecular markers that could be used to increase our understanding of regional malaria transmission dynamics, which has implications for the development of strategies for P. vivax control.
Collapse
Affiliation(s)
| | - Jorge Nuñez
- U.S. Naval Medical Research Unit 6 (NAMRU-6), Lima, Peru
| | - L Lorena Tapia
- U.S. Naval Medical Research Unit 6 (NAMRU-6), Lima, Peru
| | - Carmen M Lucas
- U.S. Naval Medical Research Unit 6 (NAMRU-6), Lima, Peru
| | | | - Andrés G Lescano
- Emerge, Emerging Diseases and Climate Change Research Unit, School of Public Health and Administration Universidad Peruana Cayetano Heredia, Lima, Peru.,U.S. Naval Medical Research Unit 6 (NAMRU-6), Lima, Peru
| | | | | |
Collapse
|
13
|
Zhong D, Koepfli C, Cui L, Yan G. Molecular approaches to determine the multiplicity of Plasmodium infections. Malar J 2018; 17:172. [PMID: 29685152 PMCID: PMC5914063 DOI: 10.1186/s12936-018-2322-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/18/2018] [Indexed: 12/26/2022] Open
Abstract
Multiplicity of infection (MOI), also termed complexity of infection (COI), is defined as the number of genetically distinct parasite strains co-infecting a single host, which is an important indicator of malaria epidemiology. PCR-based genotyping often underestimates MOI. Next generation sequencing technologies provide much more accurate and genome-wide characterization of polyclonal infections. However, complete haplotype characterization of multiclonal infections remains a challenge due to PCR artifacts and sequencing errors, and requires efficient computational tools. In this review, the advantages and limitations of current molecular approaches to determine multiplicity of malaria parasite infection are discussed.
Collapse
Affiliation(s)
- Daibin Zhong
- Program in Public Health, University of California, Irvine, CA, 92617, USA.
| | - Cristian Koepfli
- Program in Public Health, University of California, Irvine, CA, 92617, USA
| | - Liwang Cui
- Department of Entomology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Guiyun Yan
- Program in Public Health, University of California, Irvine, CA, 92617, USA.
| |
Collapse
|
14
|
Increasingly inbred and fragmented populations of Plasmodium vivax associated with the eastward decline in malaria transmission across the Southwest Pacific. PLoS Negl Trop Dis 2018; 12:e0006146. [PMID: 29373596 PMCID: PMC5802943 DOI: 10.1371/journal.pntd.0006146] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 02/07/2018] [Accepted: 12/01/2017] [Indexed: 01/17/2023] Open
Abstract
The human malaria parasite Plasmodium vivax is more resistant to malaria control strategies than Plasmodium falciparum, and maintains high genetic diversity even when transmission is low. To investigate whether declining P. vivax transmission leads to increasing population structure that would facilitate elimination, we genotyped samples from across the Southwest Pacific region, which experiences an eastward decline in malaria transmission, as well as samples from two time points at one site (Tetere, Solomon Islands) during intensified malaria control. Analysis of 887 P. vivax microsatellite haplotypes from hyperendemic Papua New Guinea (PNG, n = 443), meso-hyperendemic Solomon Islands (n = 420), and hypoendemic Vanuatu (n = 24) revealed increasing population structure and multilocus linkage disequilibrium yet a modest decline in diversity as transmission decreases over space and time. In Solomon Islands, which has had sustained control efforts for 20 years, and Vanuatu, which has experienced sustained low transmission for many years, significant population structure was observed at different spatial scales. We conclude that control efforts will eventually impact P. vivax population structure and with sustained pressure, populations may eventually fragment into a limited number of clustered foci that could be targeted for elimination. Plasmodium vivax is a major human malaria parasite, common in endemic areas outside sub-Saharan Africa, and more difficult to control than other malaria parasite species. The distinct lifecycle biology of P. vivax is thought to contribute to its more stable and efficient transmission allowing the maintenance of high diversity and potentially, gene flow. Independent studies are therefore needed to understand how P. vivax populations respond to changing transmission levels, in order to inform malaria control and elimination efforts. Here we have determined parasite population genetic structure in three countries of the Southwest Pacific, an island chain with a natural west to east decline in transmission intensity (Papua New Guinea > Solomon Islands > Vanuatu). With declining transmission, P. vivax populations experience only a modest decline in diversity but a significant increase in multilocus linkage disequilibrium and population structure, indicating that parasite populations become more inbred and begin to fragment into clustered foci. Analysis of two time points in one study area (Tetere, Solomon Islands) also show similar changes in association with intensifying malaria control. The results indicate that with long term sustained malaria control P. vivax populations will eventually fracture into population clusters that could be targeted for elimination.
Collapse
|
15
|
Nationwide genetic surveillance of Plasmodium vivax in Papua New Guinea reveals heterogeneous transmission dynamics and routes of migration amongst subdivided populations. INFECTION GENETICS AND EVOLUTION 2017; 58:83-95. [PMID: 29313805 DOI: 10.1016/j.meegid.2017.11.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/27/2017] [Accepted: 11/30/2017] [Indexed: 11/20/2022]
Abstract
The Asia Pacific Leaders in Malaria Alliance (APLMA) have committed to eliminate malaria from the region by 2030. Papua New Guinea (PNG) has the highest malaria burden in the Asia-Pacific region but with the intensification of control efforts since 2005, transmission has been dramatically reduced and Plasmodium vivax is now the dominant malaria infection in some parts of the country. To gain a better understanding of the transmission dynamics and migration patterns of P. vivax in PNG, here we investigate population structure in eight geographically and ecologically distinct regions of the country. A total of 219 P. vivax isolates (16-30 per population) were successfully haplotyped using 10 microsatellite markers. A wide range of genetic diversity (He=0.37-0.87, Rs=3.60-7.58) and significant multilocus linkage disequilibrium (LD) was observed in six of the eight populations (IAS=0.08-0.15 p-value<0.05) reflecting a spectrum of transmission intensities across the country. Genetic differentiation between regions was evident (Jost's D=0.07-0.72), with increasing divergence of populations with geographic distance. Overall, P. vivax isolates clustered into three major genetic populations subdividing the Mainland lowland and coastal regions, the Islands and the Highlands. P. vivax gene flow follows major human migration routes, and there was higher gene flow amongst Mainland parasite populations than among Island populations. The Central Province (samples collected in villages close to the capital city, Port Moresby), acts as a sink for imported infections from the three major endemic areas. These insights into P. vivax transmission dynamics and population networks will inform targeted strategies to contain malaria infections and to prevent the spread of drug resistance in PNG.
Collapse
|
16
|
Congpuong K, Ubalee R. Population Genetics of Plasmodium vivax in Four High Malaria Endemic Areas in Thailand. THE KOREAN JOURNAL OF PARASITOLOGY 2017; 55:465-472. [PMID: 29103261 PMCID: PMC5678461 DOI: 10.3347/kjp.2017.55.5.465] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 07/02/2017] [Accepted: 08/02/2017] [Indexed: 11/23/2022]
Abstract
Recent trends of malaria in Thailand illustrate an increasing proportion of Plasmodium vivax, indicating the importance of P. vivax as a major causative agent of malaria. P. vivax malaria is usually considered a benign disease so the knowledge of this parasite has been limited, especially the genetic diversity and genetic structure of isolates from different endemic areas. The aim of this study was to examine the population genetics and structure of P. vivax isolates from 4 provinces with different malaria endemic settings in Thailand using 6 microsatellite markers. Total 234 blood samples from P. vivax mono-infected patients were collected. Strong genetic diversity was observed across all study sites; the expected heterozygosity values ranged from 0.5871 to 0.9033. Genetic variability in this study divided P. vivax population into 3 clusters; first was P. vivax isolates from Mae Hong Son and Kanchanaburi Provinces located on the western part of Thailand; second, Yala isolates from the south; and third, Chanthaburi isolates from the east. P. vivax isolates from patients having parasite clearance time (PCT) longer than 24 hr after the first dose of chloroquine treatment had higher diversity when compared with those having PCT within 24 hr. This study revealed a clear evidence of different population structure of P. vivax from different malaria endemic areas of Thailand. The findings provide beneficial information to malaria control programme as it is a useful tool to track the source of infections and current malaria control efforts.
Collapse
Affiliation(s)
- Kanungnit Congpuong
- Department of Medical Technology, Faculty of Science and Technology, Bansomdejchaopraya Rajabhat University, Bangkok 10600, Thailand
| | - Ratawan Ubalee
- Department of Entomology, Armed Forces Research Institute of Medical Sciences, Bangkok 10400, Thailand
| |
Collapse
|
17
|
Substantial population structure of Plasmodium vivax in Thailand facilitates identification of the sources of residual transmission. PLoS Negl Trop Dis 2017; 11:e0005930. [PMID: 29036178 PMCID: PMC5658191 DOI: 10.1371/journal.pntd.0005930] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 10/26/2017] [Accepted: 09/04/2017] [Indexed: 11/23/2022] Open
Abstract
Background Plasmodium vivax transmission in Thailand has been substantially reduced over the past 10 years, yet it remains highly endemic along international borders. Understanding the genetic relationship of residual parasite populations can help track the origins of the parasites that are reintroduced into malaria-free regions within the country. Methodology/Results A total of 127 P. vivax isolates were genotyped from two western provinces (Tak and Kanchanaburi) and one eastern province (Ubon Ratchathani) of Thailand using 10 microsatellite markers. Genetic diversity was high, but recent clonal expansion was detected in all three provinces. Substantial population structure and genetic differentiation of parasites among provinces suggest limited gene flow among these sites. There was no haplotype sharing among the three sites, and a reduced panel of four microsatellite markers was sufficient to assign the parasites to their provincial origins. Conclusion/Significance Significant parasite genetic differentiation between provinces shows successful interruption of parasite spread within Thailand, but high diversity along international borders implies a substantial parasite population size in these regions. The provincial origin of P. vivax cases can be reliably determined by genotyping four microsatellite markers, which should be useful for monitoring parasite reintroduction after malaria elimination. This study presents an updated view of the P. vivax populations along the Thai-Myanmar and the Thai-Cambodian borders. Genotyping of parasite samples collected after intensified malaria control demonstrated that despite the decline in overall transmission intensity, the genetic diversity of the P. vivax parasites remained high. Parasite populations from three border provinces showed clear genetic separation. This indicates successful interruption of parasite gene flow within Thailand, but suggests frequent parasite migration across international borders. From the analysis of 10 microsatellite markers, we further refined a set of four that are sufficient for distinguishing the provincial origins of these parasites, which should allow tracking of parasite introduction among these provinces.
Collapse
|
18
|
Malaria Epidemiology at the Clone Level. Trends Parasitol 2017; 33:974-985. [PMID: 28966050 DOI: 10.1016/j.pt.2017.08.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/14/2017] [Accepted: 08/30/2017] [Indexed: 01/08/2023]
Abstract
Genotyping to distinguish between parasite clones is nowadays a standard in many molecular epidemiological studies of malaria. It has become crucial in drug trials and to follow individual clones in epidemiological studies, and to understand how drug resistance emerges and spreads. Here, we review the applications of the increasingly available genotyping tools and whole-genome sequencing data, and argue for a better integration of population genetics findings into malaria-control strategies.
Collapse
|
19
|
Neafsey DE, Volkman SK. Malaria Genomics in the Era of Eradication. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a025544. [PMID: 28389516 DOI: 10.1101/cshperspect.a025544] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The first reference genome assembly for the Plasmodium falciparum malaria parasite was completed over a decade ago, and the impact of this and other genomic resources on malaria research has been significant. Genomic resources for other malaria parasites are being established, even as P. falciparum continues to be the focus of development of new genomic methods and applications. Here we review the impact and applications of genomic data on malaria research, and discuss future needs and directions as genomic data generation becomes less expensive and more decentralized. Specifically, we focus on how population genomic strategies can be utilized to advance the malaria eradication agenda.
Collapse
Affiliation(s)
- Daniel E Neafsey
- Genome Sequencing and Analysis Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142
| | - Sarah K Volkman
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115.,Infectious Disease Initiative, Broad Institute of MIT and Harvard, Cambridge Massachusetts 02142.,School of Nursing and Health Sciences, Simmons College, Boston, MA 02115
| |
Collapse
|
20
|
Htun MW, Mon NCN, Aye KM, Hlaing CM, Kyaw MP, Handayuni I, Trimarsanto H, Bustos D, Ringwald P, Price RN, Auburn S, Thriemer K. Chloroquine efficacy for Plasmodium vivax in Myanmar in populations with high genetic diversity and moderate parasite gene flow. Malar J 2017; 16:281. [PMID: 28693552 PMCID: PMC5504659 DOI: 10.1186/s12936-017-1912-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 06/26/2017] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Plasmodium vivax malaria remains a major public health burden in Myanmar. Resistance to chloroquine (CQ), the first-line treatment for P. vivax, has been reported in the country and has potential to undermine local control efforts. METHODS Patients over 6 years of age with uncomplicated P. vivax mono-infection were enrolled into clinical efficacy studies in Myawaddy in 2014 and Kawthoung in 2012. Study participants received a standard dose of CQ (25 mg/kg over 3 days) followed by weekly review until day 28. Pvmdr1 copy number (CN) and microsatellite diversity were assessed on samples from the patients enrolled in the clinical study and additional cross-sectional surveys undertaken in Myawaddy and Shwegyin in 2012. RESULTS A total of 85 patients were enrolled in the CQ clinical studies, 25 in Myawaddy and 60 in Kawthoung. One patient in Myawaddy (1.2%) had an early treatment failure and two patients (2.3%) in Kawthoung presented with late treatment failures on day 28. The day 28 efficacy was 92.0% (95% CI 71.6-97.9) in Myawaddy and 98.3% (95% CI 88.7-99.8) in Kawthoung. By day 2, 92.2% (23/25) in Myawaddy and 85.0% (51/60) in Kawthoung were aparasitaemic. Genotyping and pvmdr1 CN assessment was undertaken on 43, 52 and 46 clinical isolates from Myawaddy, Kawthoung and Shwegyin respectively. Pvmdr1 amplification was observed in 3.2% (1/31) of isolates in Myawaddy, 0% (0/49) in Kawthoung and 2.5% (1/40) in Shwegyin. Diversity was high in all sites (H E 0.855-0.876), with low inter-population differentiation (F ST 0.016-0.026, P < 0.05). CONCLUSIONS Treatment failures after chloroquine were observed following chloroquine monotherapy, with pvmdr1 amplification present in both Myawaddy and Shwegyin. The results emphasize the importance of ongoing P. vivax drug resistance surveillance in Myanmar, particularly given the potential connectivity between parasite population at different sites.
Collapse
Affiliation(s)
- Myo Win Htun
- grid.415741.2Department of Medical Research, Yangon, 11191 Myanmar
| | - Nan Cho Nwe Mon
- grid.415741.2Department of Medical Research, Yangon, 11191 Myanmar
| | - Khin Myo Aye
- grid.415741.2Department of Medical Research, Yangon, 11191 Myanmar
| | - Chan Myae Hlaing
- grid.415741.2Department of Medical Research, Yangon, 11191 Myanmar
| | - Myat Phone Kyaw
- grid.415741.2Department of Medical Research, Yangon, 11191 Myanmar
| | - Irene Handayuni
- 0000 0000 8523 7955grid.271089.5Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT 0810 Australia
| | - Hidayat Trimarsanto
- 0000 0004 1795 0993grid.418754.bEijkman Institute for Molecular Biology, Jl. Diponegoro 69, Central Jakarta, 10430 Indonesia ,grid.466915.9The Ministry of Research and Technology (RISTEK), Jakarta, Indonesia ,0000 0001 0746 0534grid.432292.cAgency for Assessment and Application of Technology, Jl. MH Thamrin 8, Jakarta, 10340 Indonesia
| | - Dorina Bustos
- 0000 0004 0576 2573grid.415836.dWorld Health Organization, Country Office for Thailand, Ministry of Public Health, Nonthaburi, Thailand
| | - Pascal Ringwald
- 0000000121633745grid.3575.4Global Malaria Programme, World Health Organization, 20 Avenue Appia, 1211 Geneva, 27, Switzerland
| | - Ric N. Price
- 0000 0000 8523 7955grid.271089.5Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT 0810 Australia ,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine Research Building, University of Oxford Old Road Campus, Oxford, UK
| | - Sarah Auburn
- 0000 0000 8523 7955grid.271089.5Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT 0810 Australia
| | - Kamala Thriemer
- 0000 0000 8523 7955grid.271089.5Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT 0810 Australia
| |
Collapse
|
21
|
Pava Z, Noviyanti R, Handayuni I, Trimarsanto H, Trianty L, Burdam FH, Kenangalem E, Utami RAS, Tirta YK, Coutrier F, Poespoprodjo JR, Price RN, Marfurt J, Auburn S. Genetic micro-epidemiology of malaria in Papua Indonesia: Extensive P. vivax diversity and a distinct subpopulation of asymptomatic P. falciparum infections. PLoS One 2017; 12:e0177445. [PMID: 28498860 PMCID: PMC5428948 DOI: 10.1371/journal.pone.0177445] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 04/27/2017] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Genetic analyses of Plasmodium have potential to inform on transmission dynamics, but few studies have evaluated this on a local spatial scale. We used microsatellite genotyping to characterise the micro-epidemiology of P. vivax and P. falciparum diversity to inform malaria control strategies in Timika, Papua Indonesia. METHODS Genotyping was undertaken on 713 sympatric P. falciparum and P. vivax isolates from a cross-sectional household survey and clinical studies conducted in Timika. Standard population genetic measures were applied, and the data was compared to published data from Kalimantan, Bangka, Sumba and West Timor. RESULTS Higher diversity (HE = 0.847 vs 0.625; p = 0.017) and polyclonality (46.2% vs 16.5%, p<0.001) were observed in P. vivax versus P. falciparum. Distinct P. falciparum substructure was observed, with two subpopulations, K1 and K2. K1 was comprised solely of asymptomatic infections and displayed greater relatedness to isolates from Sumba than to K2, possibly reflecting imported infections. CONCLUSIONS The results demonstrate the greater refractoriness of P. vivax versus P. falciparum to control measures, and risk of distinct parasite subpopulations persisting in the community undetected by passive surveillance. These findings highlight the need for complimentary new surveillance strategies to identify transmission patterns that cannot be detected with traditional malariometric methods.
Collapse
Affiliation(s)
- Zuleima Pava
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Rintis Noviyanti
- Malaria Pathogenesis Unit, Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Irene Handayuni
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Hidayat Trimarsanto
- Bioinformatics Laboratory, Eijkman Institute for Molecular Biology, Jakarta, Indonesia
- Agency for Assessment and Application of Technology, Jakarta, Indonesia
| | - Leily Trianty
- Malaria Pathogenesis Unit, Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Faustina H. Burdam
- Mimika District Health Authority, Timika, Papua, Indonesia
- Timika Malaria Research Programme, Papuan Health and Community Development Foundation, Timika, Papua, Indonesia
- Pediatric Research Office, Department of Child Health, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Enny Kenangalem
- Mimika District Health Authority, Timika, Papua, Indonesia
- Timika Malaria Research Programme, Papuan Health and Community Development Foundation, Timika, Papua, Indonesia
| | - Retno A. S. Utami
- Malaria Pathogenesis Unit, Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Yusrifar K. Tirta
- Malaria Pathogenesis Unit, Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Farah Coutrier
- Malaria Pathogenesis Unit, Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Jeanne R. Poespoprodjo
- Mimika District Health Authority, Timika, Papua, Indonesia
- Timika Malaria Research Programme, Papuan Health and Community Development Foundation, Timika, Papua, Indonesia
- Pediatric Research Office, Department of Child Health, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Ric N. Price
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
- Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Jutta Marfurt
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Sarah Auburn
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| |
Collapse
|
22
|
Fola AA, Harrison GLA, Hazairin MH, Barnadas C, Hetzel MW, Iga J, Siba PM, Mueller I, Barry AE. Higher Complexity of Infection and Genetic Diversity of Plasmodium vivax Than Plasmodium falciparum Across All Malaria Transmission Zones of Papua New Guinea. Am J Trop Med Hyg 2017; 96:630-641. [PMID: 28070005 DOI: 10.4269/ajtmh.16-0716] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Plasmodium falciparum and Plasmodium vivax have varying transmission dynamics that are informed by molecular epidemiology. This study aimed to determine the complexity of infection and genetic diversity of P. vivax and P. falciparum throughout Papua New Guinea (PNG) to evaluate transmission dynamics across the country. In 2008-2009, a nationwide malaria indicator survey collected 8,936 samples from all 16 endemic provinces of PNG. Of these, 892 positive P. vivax samples were genotyped at PvMS16 and PvmspF3, and 758 positive P. falciparum samples were genotyped at Pfmsp2. The data were analyzed for multiplicity of infection (MOI) and genetic diversity. Overall, P. vivax had higher polyclonality (71%) and mean MOI (2.32) than P. falciparum (20%, 1.39). These measures were significantly associated with prevalence for P. falciparum but not for P. vivax. The genetic diversity of P. vivax (PvMS16: expected heterozygosity = 0.95, 0.85-0.98; PvMsp1F3: 0.78, 0.66-0.89) was higher and less variable than that of P. falciparum (Pfmsp2: 0.89, 0.65-0.97). Significant associations of MOI with allelic richness (rho = 0.69, P = 0.009) and expected heterozygosity (rho = 0.87, P < 0.001) were observed for P. falciparum. Conversely, genetic diversity was not correlated with polyclonality nor mean MOI for P. vivax. The results demonstrate higher complexity of infection and genetic diversity of P. vivax across the country. Although P. falciparum shows a strong association of these parameters with prevalence, a lack of association was observed for P. vivax and is consistent with higher potential for outcrossing of this species.
Collapse
Affiliation(s)
- Abebe A Fola
- Department of Medical Biology, University of Melbourne, Parkville, Australia.,Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - G L Abby Harrison
- Department of Medical Biology, University of Melbourne, Parkville, Australia.,Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Mita Hapsari Hazairin
- Department of Epidemiology and Preventative Medicine, Monash University, Clayton, Australia.,Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Céline Barnadas
- Statens Serum Institut, Copenhagen, Denmark.,European Public Health Microbiology (EUPHEM) Training Programme, European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden.,Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Manuel W Hetzel
- University of Basel, Basel, Switzerland.,Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Jonah Iga
- Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
| | - Peter M Siba
- Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
| | - Ivo Mueller
- Institut Pasteur, Paris, France.,Department of Medical Biology, University of Melbourne, Parkville, Australia.,Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Alyssa E Barry
- Department of Medical Biology, University of Melbourne, Parkville, Australia.,Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| |
Collapse
|
23
|
VivaxGEN: An open access platform for comparative analysis of short tandem repeat genotyping data in Plasmodium vivax populations. PLoS Negl Trop Dis 2017; 11:e0005465. [PMID: 28362818 PMCID: PMC5389845 DOI: 10.1371/journal.pntd.0005465] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 04/12/2017] [Accepted: 03/07/2017] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The control and elimination of Plasmodium vivax will require a better understanding of its transmission dynamics, through the application of genotyping and population genetics analyses. This paper describes VivaxGEN (http://vivaxgen.menzies.edu.au), a web-based platform that has been developed to support P. vivax short tandem repeat data sharing and comparative analyses. RESULTS The VivaxGEN platform provides a repository for raw data generated by capillary electrophoresis (FSA files), with fragment analysis and standardized allele calling tools. The query system of the platform enables users to filter, select and differentiate samples and alleles based on their specified criteria. Key population genetic analyses are supported including measures of population differentiation (FST), expected heterozygosity (HE), linkage disequilibrium (IAS), neighbor-joining analysis and Principal Coordinate Analysis. Datasets can also be formatted and exported for application in commonly used population genetic software including GENEPOP, Arlequin and STRUCTURE. To date, data from 10 countries, including 5 publicly available data sets have been shared with VivaxGEN. CONCLUSIONS VivaxGEN is well placed to facilitate regional overviews of P. vivax transmission dynamics in different endemic settings and capable to be adapted for similar genetic studies of P. falciparum and other organisms.
Collapse
|
24
|
Auburn S, Barry AE. Dissecting malaria biology and epidemiology using population genetics and genomics. Int J Parasitol 2016; 47:77-85. [PMID: 27825828 DOI: 10.1016/j.ijpara.2016.08.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 08/09/2016] [Accepted: 08/25/2016] [Indexed: 10/20/2022]
Abstract
Molecular approaches have an increasingly recognized utility in surveillance of malaria parasite populations, not only in defining prevalence and incidence with higher sensitivity than traditional methods, but also in monitoring local and regional parasite transmission patterns. In this review, we provide an overview of population genetic and genomic studies of human-infecting Plasmodium species, highlighting recent advances in the field. In accordance with the renewed impetus for malaria eradication, many studies are now using genetic and genomic epidemiology to support local evidence-based intervention strategies. Microsatellite genotyping remains a popular approach for both Plasmodium falciparum and Plasmodium vivax. However, with the increasing availability of whole genome sequencing data enabling effective single nucleotide polymorphism-based panels tailored to a given study question and setting, this approach is gaining popularity. The availability of new reference genomes for Plasmodium malariae and Plasmodium ovale should see a surge in similar molecular studies on these currently neglected species. Genomic studies are revealing new insights into important adaptive mechanisms of the parasite including antimalarial drug resistance. The advent of new methodologies such as selective whole genome amplification for dealing with extensive human DNA in low density field isolates should see genome-wide approaches becoming routine for parasite surveillance once the economic costs outweigh the current cost benefits of targeted approaches.
Collapse
Affiliation(s)
- Sarah Auburn
- Global and Tropical Health Division, Menzies School of Health Research, Darwin, Australia
| | - Alyssa E Barry
- Division of Population Health and Immunity, Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Australia.
| |
Collapse
|
25
|
Wangchuk S, Drukpa T, Penjor K, Peldon T, Dorjey Y, Dorji K, Chhetri V, Trimarsanto H, To S, Murphy A, von Seidlein L, Price RN, Thriemer K, Auburn S. Where chloroquine still works: the genetic make-up and susceptibility of Plasmodium vivax to chloroquine plus primaquine in Bhutan. Malar J 2016; 15:277. [PMID: 27176722 PMCID: PMC4866075 DOI: 10.1186/s12936-016-1320-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 04/30/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Bhutan has made substantial progress in reducing malaria incidence. The national guidelines recommend chloroquine (CQ) and primaquine (PQ) for radical cure of uncomplicated Plasmodium vivax, but the local efficacy has not been assessed. The impact of cases imported from India on the genetic make-up of the local vivax populations is currently unknown. METHODS Patients over 4 years of age with uncomplicated P. vivax mono-infection were enrolled into a clinical efficacy study and molecular survey. Study participants received a standard dose of CQ (25 mg/kg over 3 days) followed by weekly review until day 28. On day 28 a 14-day regimen of PQ (0.25 mg/kg/day) was commenced under direct observation. After day 42, patients were followed up monthly for a year. The primary and secondary endpoints were risk of treatment failure at day 28 and at 1 year. Parasite genotyping was undertaken at nine tandem repeat markers, and standard population genetic metrics were applied to examine population diversity and structure in infections thought to be acquired inside or outside of Bhutan. RESULTS A total of 24 patients were enrolled in the clinical study between April 2013 and October 2015. Eight patients (33.3 %) were lost to follow-up in the first 6 months and another eight patients lost between 6 and 12 months. No (0/24) treatment failures occurred by day 28 and no (0/8) parasitaemia was detected following PQ treatment. Some 95.8 % (23/24) of patients were aparasitaemic by day 2. There were no haemolytic or serious events. Genotyping was undertaken on parasites from 12 autochthonous cases and 16 suspected imported cases. Diversity was high (H E 0.87 and 0.90) in both populations. There was no notable differentiation between the autochthonous and imported populations. CONCLUSIONS CQ and PQ remains effective for radical cure of P. vivax in Bhutan. The genetic analyses indicate that imported infections are sustaining the local vivax population, with concomitant risk of introducing drug-resistant strains.
Collapse
Affiliation(s)
- Sonam Wangchuk
- Public Health Laboratory, Department of Public Health, Ministry of Health, Thimphu, Bhutan
| | - Tobgyel Drukpa
- Vector Borne Disease Control Programme in Gelephu, Communicable Disease Division, Department of Public Health, Ministry of Health, Thimphu, Bhutan
| | - Kinley Penjor
- Sarpang District Hospital, Ministry of Health, Sarpang District, Bhutan
| | - Tashi Peldon
- Gelephu Regional Referral Hospital, Ministry of Health, Gelephu, Bhutan
| | - Yeshey Dorjey
- Yebilaptsa Hospital, Ministry of Health, Zhemgang District, Bhutan
| | - Kunzang Dorji
- Public Health Laboratory, Department of Public Health, Ministry of Health, Thimphu, Bhutan
| | - Vishal Chhetri
- Gelephu Regional Referral Hospital, Ministry of Health, Gelephu, Bhutan
| | - Hidayat Trimarsanto
- Eijkman Institute for Molecular Biology, Jl. Diponegoro 69, Jakarta Pusat, 10430, Indonesia.,The Ministry of Research and Technology (RISTEK), Jakarta, Indonesia.,Agency for Assessment and Application of Technology, Jl. MH Thamrin 8, Jakarta, 10340, Indonesia
| | - Sheren To
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, 0810, Australia
| | - Amanda Murphy
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, 0810, Australia.,Faculty of Medicine and Biomedical Sciences, School of Population Health, The University of Queensland, Brisbane, Australia
| | - Lorenz von Seidlein
- Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine Research Building, University of Oxford Old Road Campus, Oxford, UK
| | - Ric N Price
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, 0810, Australia.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine Research Building, University of Oxford Old Road Campus, Oxford, UK
| | - Kamala Thriemer
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, 0810, Australia.
| | - Sarah Auburn
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, 0810, Australia.
| |
Collapse
|
26
|
Kim JY, Goo YK, Zo YG, Ji SY, Trimarsanto H, To S, Clark TG, Price RN, Auburn S. Further Evidence of Increasing Diversity of Plasmodium vivax in the Republic of Korea in Recent Years. PLoS One 2016; 11:e0151514. [PMID: 26990869 PMCID: PMC4798397 DOI: 10.1371/journal.pone.0151514] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 02/29/2016] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Vivax malaria was successfully eliminated from the Republic of Korea (ROK) in the late 1970s but re-emerged in 1993. Two decades later as the ROK enters the final stages of malaria elimination, dedicated surveillance of the local P. vivax population is critical. We apply a population genetic approach to gauge P. vivax transmission dynamics in the ROK between 2010 and 2012. METHODOLOGY/PRINCIPAL FINDINGS P. vivax positive blood samples from 98 autochthonous cases were collected from patients attending health centers in the ROK in 2010 (n = 27), 2011 (n = 48) and 2012 (n = 23). Parasite genotyping was undertaken at 9 tandem repeat markers. Although not reaching significance, a trend of increasing population diversity was observed from 2010 (HE = 0.50 ± 0.11) to 2011 (HE = 0.56 ± 0.08) and 2012 (HE = 0.60 ± 0.06). Conversely, linkage disequilibrium declined during the same period: IAS = 0.15 in 2010 (P = 0.010), 0.09 in 2011 (P = 0.010) and 0.05 in 2012 (P = 0.010). In combination with data from other ROK studies undertaken between 1994 and 2007, our results are consistent with increasing parasite divergence since re-emergence. Polyclonal infections were rare (3% infections) suggesting that local out-crossing alone was unlikely to explain the increased divergence. Cases introduced from an external reservoir may therefore have contributed to the increased diversity. Aside from one isolate, all infections carried a short MS20 allele (142 or 149 bp), not observed in other studies in tropical endemic countries despite high diversity, inferring that these regions are unlikely reservoirs. CONCLUSIONS Whilst a number of factors may explain the observed population genetic trends, the available evidence suggests that an external geographic reservoir with moderate diversity sustains the majority of P. vivax infection in the ROK, with important implications for malaria elimination.
Collapse
Affiliation(s)
- Jung-Yeon Kim
- Division of Malaria and Parasitic Diseases, National Institute of Health, Korea CDC, Osong Saeng-myeong, 2 ro, Osong Health Technology Administration, Osong, Republic of Korea
| | - Youn-Kyoung Goo
- Division of Malaria and Parasitic Diseases, National Institute of Health, Korea CDC, Osong Saeng-myeong, 2 ro, Osong Health Technology Administration, Osong, Republic of Korea
- Department of Parasitology and Tropical Medicine, Kyungpook National University School of Medicine, Daegu, 700–422, Republic of Korea
| | - Young-Gun Zo
- Department of Molecular Parasitology, Sungkyunkwan University School of Medicine and Center for Molecular Medicine, Samsung Biomedical Research Institute, Suwon, Gyeonggi-do 440–746, Republic of Korea
| | - So-Young Ji
- Division of Malaria and Parasitic Diseases, National Institute of Health, Korea CDC, Osong Saeng-myeong, 2 ro, Osong Health Technology Administration, Osong, Republic of Korea
| | - Hidayat Trimarsanto
- Eijkman Institute for Molecular Biology, Jl. Diponegoro 69, Jakarta Pusat, 10430, Indonesia
- Agency for Assessment and Application of Technology, Jl. MH Thamrin 8, Jakarta, 10340, Indonesia
| | - Sheren To
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT 0810, Australia
| | - Taane G. Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, United Kingdom
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, United Kingdom
| | - Ric N. Price
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT 0810, Australia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Sarah Auburn
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT 0810, Australia
| |
Collapse
|
27
|
Population Genetics of Plasmodium vivax in Four Rural Communities in Central Vietnam. PLoS Negl Trop Dis 2016; 10:e0004434. [PMID: 26872387 PMCID: PMC4752448 DOI: 10.1371/journal.pntd.0004434] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 01/14/2016] [Indexed: 12/03/2022] Open
Abstract
Background The burden of malaria in Vietnam has drastically reduced, prompting the National Malaria Control Program to officially engage in elimination efforts. Plasmodium vivax is becoming increasingly prevalent, remaining a major problem in the country's central and southern provinces. A better understanding of P. vivax genetic diversity and structure of local parasite populations will provide baseline data for the evaluation and improvement of current efforts for control and elimination. The aim of this study was to examine the population genetics and structure of P. vivax isolates from four communities in Tra Leng commune, Nam Tra My district in Quang Nam, Central Vietnam. Methodology/Principal Findings P. vivax mono infections collected from 234 individuals between April 2009 and December 2010 were successfully analyzed using a panel of 14 microsatellite markers. Isolates displayed moderate genetic diversity (He = 0.68), with no significant differences between study communities. Polyclonal infections were frequent (71.4%) with a mean multiplicity of infection of 1.91 isolates/person. Low but significant genetic differentiation (FST value from -0.05 to 0.18) was observed between the community across the river and the other communities. Strong linkage disequilibrium ( IAS = 0.113, p < 0.001) was detected across all communities, suggesting gene flow within and among them. Using multiple approaches, 101 haplotypes were grouped into two genetic clusters, while 60.4% of haplotypes were admixed. Conclusions/Significance In this area of Central Vietnam, where malaria transmission has decreased significantly over the past decade, there was moderate genetic diversity and high occurrence of polyclonal infections. Local human populations have frequent social and economic interactions that facilitate gene flow and inbreeding among parasite populations, while decreasing population structure. Findings provide important information on parasites populations circulating in the study area and are relevant to current malaria elimination efforts. In Vietnam, Plasmodium vivax (P. vivax) is the second most frequent human malaria parasite and a major obstacle to countrywide malaria elimination. Knowing the local parasite structure is useful for elimination efforts. Therefore, we analyzed, with a panel of 14 microsatellite markers, 234 P. vivax mono infections in blood samples collected from 4 communities in central Vietnam. Genetic diversity in the population was moderate; a high occurrence of polyclonal infections and significant linkage disequilibrium were detected, suggesting inbreeding or recombination between highly related haplotypes. In addition, both genetic differentiation and population structure was low and only detected between communities at each side of the river. Those results suggest gene flow between study communities with the river defining a moderate geographical barrier. Future studies should determine how this genetic variation is maintained in an area of extremely low transmission.
Collapse
|
28
|
Delgado-Ratto C, Gamboa D, Soto-Calle VE, Van den Eede P, Torres E, Sánchez-Martínez L, Contreras-Mancilla J, Rosanas-Urgell A, Rodriguez Ferrucci H, Llanos-Cuentas A, Erhart A, Van geertruyden JP, D’Alessandro U. Population Genetics of Plasmodium vivax in the Peruvian Amazon. PLoS Negl Trop Dis 2016; 10:e0004376. [PMID: 26766548 PMCID: PMC4713096 DOI: 10.1371/journal.pntd.0004376] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 12/18/2015] [Indexed: 11/18/2022] Open
Abstract
Background Characterizing the parasite dynamics and population structure provides useful information to understand the dynamic of transmission and to better target control interventions. Despite considerable efforts for its control, vivax malaria remains a major health problem in Peru. In this study, we have explored the population genetics of Plasmodium vivax isolates from Iquitos, the main city in the Peruvian Amazon, and 25 neighbouring peri-urban as well as rural villages along the Iquitos-Nauta Road. Methodology/ Results From April to December 2008, 292 P. vivax isolates were collected and successfully genotyped using 14 neutral microsatellites. Analysis of the molecular data revealed a similar proportion of monoclonal and polyclonal infections in urban areas, while in rural areas monoclonal infections were predominant (p = 0.002). Multiplicity of infection was higher in urban (MOI = 1.5–2) compared to rural areas (MOI = 1) (p = 0.003). The level of genetic diversity was similar in all areas (He = 0.66–0.76, p = 0.32) though genetic differentiation between areas was substantial (PHIPT = 0.17, p<0.0001). Principal coordinate analysis showed a marked differentiation between parasites from urban and rural areas. Linkage disequilibrium was detected in all the areas ( IAs = 0.08–0.49, for all p<0.0001). Gene flow among the areas was stablished through Bayesian analysis of migration models. Recent bottleneck events were detected in 4 areas and a recent parasite expansion in one of the isolated areas. In total, 87 unique haplotypes grouped in 2 or 3 genetic clusters described a sub-structured parasite population. Conclusion/Significance Our study shows a sub-structured parasite population with clonal propagation, with most of its components recently affected by bottleneck events. Iquitos city is the main source of parasite spreading for all the peripheral study areas. The routes of transmission and gene flow and the reduction of the parasite population described are important from the public health perspective as well for the formulation of future control policies. We present the population genetics of malaria vivax parasites in a large area of the Peruvian Amazon. Our results showed that the parasite population had a predominant clonal propagation, reproducing themselves with identically or closely related parasites; therefore, the same genetic characteristics are maintained in the offspring. The clonal propagation may favour the higher levels of genetic differentiation among the parasites from isolated areas compared to areas where human migration is common. The patterns of gene flow have been established, finding Iquitos city as a reservoir of parasite genetic variability. Moreover, a recent reduction of the parasite population was observed in areas where recent control activities were performed. This research provides a picture of the nature and dynamics of the parasite population which have a significant impact in the malaria epidemiology; therefore, this knowledge is crucial for the development of efficient control policies.
Collapse
Affiliation(s)
| | - Dionicia Gamboa
- Institute of Tropical Medicine Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Veronica E. Soto-Calle
- Institute of Tropical Medicine Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Peter Van den Eede
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Eliana Torres
- Institute of Tropical Medicine Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Luis Sánchez-Martínez
- Institute of Tropical Medicine Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Juan Contreras-Mancilla
- Institute of Tropical Medicine Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Anna Rosanas-Urgell
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | | | - Alejandro Llanos-Cuentas
- Institute of Tropical Medicine Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Annette Erhart
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | | | - Umberto D’Alessandro
- Department of Public Health, Institute of Tropical Medicine, Antwerp, Belgium
- Medical Research Council Unit, Fajara, The Gambia
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
29
|
Winter DJ, Pacheco MA, Vallejo AF, Schwartz RS, Arevalo-Herrera M, Herrera S, Cartwright RA, Escalante AA. Whole Genome Sequencing of Field Isolates Reveals Extensive Genetic Diversity in Plasmodium vivax from Colombia. PLoS Negl Trop Dis 2015; 9:e0004252. [PMID: 26709695 PMCID: PMC4692395 DOI: 10.1371/journal.pntd.0004252] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 10/30/2015] [Indexed: 11/24/2022] Open
Abstract
Plasmodium vivax is the most prevalent malarial species in South America and exerts a substantial burden on the populations it affects. The control and eventual elimination of P. vivax are global health priorities. Genomic research contributes to this objective by improving our understanding of the biology of P. vivax and through the development of new genetic markers that can be used to monitor efforts to reduce malaria transmission. Here we analyze whole-genome data from eight field samples from a region in Cordóba, Colombia where malaria is endemic. We find considerable genetic diversity within this population, a result that contrasts with earlier studies suggesting that P. vivax had limited diversity in the Americas. We also identify a selective sweep around a substitution known to confer resistance to sulphadoxine-pyrimethamine (SP). This is the first observation of a selective sweep for SP resistance in this species. These results indicate that P. vivax has been exposed to SP pressure even when the drug is not in use as a first line treatment for patients afflicted by this parasite. We identify multiple non-synonymous substitutions in three other genes known to be involved with drug resistance in Plasmodium species. Finally, we found extensive microsatellite polymorphisms. Using this information we developed 18 polymorphic and easy to score microsatellite loci that can be used in epidemiological investigations in South America.
Collapse
Affiliation(s)
- David J. Winter
- The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - M. Andreína Pacheco
- The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
- Institute for Genomics and Evolutionary Medicine (igem), Temple University, Philadelphia, Pennsylvania, United States of America
| | | | - Rachel S. Schwartz
- The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - Myriam Arevalo-Herrera
- Caucaseco Scientific Research Center, Cali, Colombia
- Faculty of Health, Universidad del Valle, Cali, Colombia
| | | | - Reed A. Cartwright
- The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
- The School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Ananias A. Escalante
- The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
- Institute for Genomics and Evolutionary Medicine (igem), Temple University, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
30
|
Variation in Complexity of Infection and Transmission Stability between Neighbouring Populations of Plasmodium vivax in Southern Ethiopia. PLoS One 2015; 10:e0140780. [PMID: 26468643 PMCID: PMC4607408 DOI: 10.1371/journal.pone.0140780] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 09/30/2015] [Indexed: 12/21/2022] Open
Abstract
Background P. vivax is an important public health burden in Ethiopia, accounting for almost half of all malaria cases. Owing to heterogeneous transmission across the country, a stronger evidence base on local transmission dynamics is needed to optimise allocation of resources and improve malaria interventions. Methodology and Principal Findings In a pilot evaluation of local level P. vivax molecular surveillance in southern Ethiopia, the diversity and population structure of isolates collected between May and November 2013 were investigated. Blood samples were collected from microscopy positive P. vivax patients recruited to clinical and cross-sectional surveys from four sites: Arbaminch, Halaba, Badawacho and Hawassa. Parasite genotyping was undertaken at nine tandem repeat markers. Eight loci were successfully genotyped in 197 samples (between 36 and 59 per site). Heterogeneity was observed in parasite diversity and structure amongst the sites. Badawacho displayed evidence of unstable transmission, with clusters of identical clonal infections. Linkage disequilibrium in Badawacho was higher (IAS = 0.32, P = 0.010) than in the other populations (IAS range = 0.01–0.02) and declined markedly after adjusting for identical infections (IAS = 0.06, P = 0.010). Other than Badawacho (HE = 0.70), population diversity was equivalently high across the sites (HE = 0.83). Polyclonal infections were more frequent in Hawassa (67%) than the other populations (range: 8–44%). Despite the variable diversity, differentiation between the sites was low (FST range: 5 x 10−3–0.03). Conclusions Marked variation in parasite population structure likely reflects differing local transmission dynamics. Parasite genotyping in these heterogeneous settings has potential to provide important complementary information with which to optimise malaria control interventions.
Collapse
|
31
|
Manrique P, Hoshi M, Fasabi M, Nolasco O, Yori P, Calderón M, Gilman RH, Kosek MN, Vinetz JM, Gamboa D. Assessment of an automated capillary system for Plasmodium vivax microsatellite genotyping. Malar J 2015; 14:326. [PMID: 26293655 PMCID: PMC4546211 DOI: 10.1186/s12936-015-0842-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 08/08/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Several platforms have been used to generate the primary data for microsatellite analysis of malaria parasite genotypes. Each has relative advantages but share a limitation of being time- and cost-intensive. A commercially available automated capillary gel cartridge system was assessed in the microsatellite analysis of Plasmodium vivax diversity in the Peruvian Amazon. METHODS The reproducibility and accuracy of a commercially-available automated capillary system, QIAxcel, was assessed using a sequenced PCR product of 227 base pairs. This product was measured 42 times, then 27 P. vivax samples from Peruvian Amazon subjects were analyzed with this instrument using five informative microsatellites. Results from the QIAxcel system were compared with a Sanger-type sequencing machine, the ABI PRISM(®) 3100 Genetic Analyzer. RESULTS Significant differences were seen between the sequenced amplicons and the results from the QIAxcel instrument. Different runs, plates and cartridges yielded significantly different results. Additionally, allele size decreased with each run by 0.045, or 1 bp, every three plates. QIAxcel and ABI PRISM systems differed in giving different values than those obtained by ABI PRISM, and too many (i.e. inaccurate) alleles per locus were also seen with the automated instrument. CONCLUSIONS While P. vivax diversity could generally be estimated using an automated capillary gel cartridge system, the data demonstrate that this system is not sufficiently precise for reliably identifying parasite strains via microsatellite analysis. This conclusion reached after systematic analysis was due both to inadequate precision and poor reproducibility in measuring PCR product size.
Collapse
Affiliation(s)
- Paulo Manrique
- Malaria Laboratory, Institute of Tropical Medicine Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru.
| | - Mari Hoshi
- Malaria Laboratory, Institute of Tropical Medicine Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru.
| | | | - Oscar Nolasco
- Malaria Laboratory, Institute of Tropical Medicine Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru.
| | - Pablo Yori
- Department of International Health, Johns Hopkins School of Public Health, Baltimore, MD, USA.
| | - Martiza Calderón
- Division of Infectious Diseases, Department of Medicine, University of California San Diego, La Jolla, CA, USA.
| | - Robert H Gilman
- Department of International Health, Johns Hopkins School of Public Health, Baltimore, MD, USA.
| | - Margaret N Kosek
- Department of International Health, Johns Hopkins School of Public Health, Baltimore, MD, USA.
| | - Joseph M Vinetz
- Malaria Laboratory, Institute of Tropical Medicine Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru. .,Division of Infectious Diseases, Department of Medicine, University of California San Diego, La Jolla, CA, USA.
| | - Dionicia Gamboa
- Malaria Laboratory, Institute of Tropical Medicine Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru. .,Departamento de Ciencias Celulares y Moleculares, Universidad Peruana Cayetano Heredia, Lima, Peru.
| |
Collapse
|
32
|
Escalante AA, Ferreira MU, Vinetz JM, Volkman SK, Cui L, Gamboa D, Krogstad DJ, Barry AE, Carlton JM, van Eijk AM, Pradhan K, Mueller I, Greenhouse B, Andreina Pacheco M, Vallejo AF, Herrera S, Felger I. Malaria Molecular Epidemiology: Lessons from the International Centers of Excellence for Malaria Research Network. Am J Trop Med Hyg 2015; 93:79-86. [PMID: 26259945 PMCID: PMC4574277 DOI: 10.4269/ajtmh.15-0005] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 05/15/2015] [Indexed: 01/31/2023] Open
Abstract
Molecular epidemiology leverages genetic information to study the risk factors that affect the frequency and distribution of malaria cases. This article describes molecular epidemiologic investigations currently being carried out by the International Centers of Excellence for Malaria Research (ICEMR) network in a variety of malaria-endemic settings. First, we discuss various novel approaches to understand malaria incidence and gametocytemia, focusing on Plasmodium falciparum and Plasmodium vivax. Second, we describe and compare different parasite genotyping methods commonly used in malaria epidemiology and population genetics. Finally, we discuss potential applications of molecular epidemiological tools and methods toward malaria control and elimination efforts.
Collapse
Affiliation(s)
- Ananias A. Escalante
- *Address correspondence to Ananias A. Escalante, Institute for Genomics and Evolutionary Medicine, Temple University, SERC Building, 1925 N. 12th Street Philadelphia, PA 19122-1801, E-mail: or Marcelo U. Ferreira, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, 1374 - Edifício Biomédicas II, São Paulo, Brazil CEP CEP 05508-900, E-mail: or Ingrid Felger, Swiss Tropical and Public Health Institute, 4002 Basel, Switzerland, E-mail:
| | - Marcelo U. Ferreira
- *Address correspondence to Ananias A. Escalante, Institute for Genomics and Evolutionary Medicine, Temple University, SERC Building, 1925 N. 12th Street Philadelphia, PA 19122-1801, E-mail: or Marcelo U. Ferreira, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, 1374 - Edifício Biomédicas II, São Paulo, Brazil CEP CEP 05508-900, E-mail: or Ingrid Felger, Swiss Tropical and Public Health Institute, 4002 Basel, Switzerland, E-mail:
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Ingrid Felger
- *Address correspondence to Ananias A. Escalante, Institute for Genomics and Evolutionary Medicine, Temple University, SERC Building, 1925 N. 12th Street Philadelphia, PA 19122-1801, E-mail: or Marcelo U. Ferreira, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, 1374 - Edifício Biomédicas II, São Paulo, Brazil CEP CEP 05508-900, E-mail: or Ingrid Felger, Swiss Tropical and Public Health Institute, 4002 Basel, Switzerland, E-mail:
| |
Collapse
|
33
|
Koepfli C, Rodrigues PT, Antao T, Orjuela-Sánchez P, Van den Eede P, Gamboa D, van Hong N, Bendezu J, Erhart A, Barnadas C, Ratsimbasoa A, Menard D, Severini C, Menegon M, Nour BYM, Karunaweera N, Mueller I, Ferreira MU, Felger I. Plasmodium vivax Diversity and Population Structure across Four Continents. PLoS Negl Trop Dis 2015; 9:e0003872. [PMID: 26125189 PMCID: PMC4488360 DOI: 10.1371/journal.pntd.0003872] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 06/02/2015] [Indexed: 01/12/2023] Open
Abstract
Plasmodium vivax is the geographically most widespread human malaria parasite. To analyze patterns of microsatellite diversity and population structure across countries of different transmission intensity, genotyping data from 11 microsatellite markers was either generated or compiled from 841 isolates from four continents collected in 1999–2008. Diversity was highest in South-East Asia (mean allelic richness 10.0–12.8), intermediate in the South Pacific (8.1–9.9) Madagascar and Sudan (7.9–8.4), and lowest in South America and Central Asia (5.5–7.2). A reduced panel of only 3 markers was sufficient to identify approx. 90% of all haplotypes in South Pacific, African and SE-Asian populations, but only 60–80% in Latin American populations, suggesting that typing of 2–6 markers, depending on the level of endemicity, is sufficient for epidemiological studies. Clustering analysis showed distinct clusters in Peru and Brazil, but little sub-structuring was observed within Africa, SE-Asia or the South Pacific. Isolates from Uzbekistan were exceptional, as a near-clonal parasite population was observed that was clearly separated from all other populations (FST>0.2). Outside Central Asia FST values were highest (0.11–0.16) between South American and all other populations, and lowest (0.04–0.07) between populations from South-East Asia and the South Pacific. These comparisons between P. vivax populations from four continents indicated that not only transmission intensity, but also geographical isolation affect diversity and population structure. However, the high effective population size results in slow changes of these parameters. This persistency must be taken into account when assessing the impact of control programs on the genetic structure of parasite populations. Plasmodium vivax is the predominant malaria parasite in Latin America, Asia and the South Pacific. Different factors are expected to shape diversity and population structure across continents, e.g. transmission intensity which is much lower in South America as compared to Southeast-Asia and the South Pacific, or geographical isolation of P. vivax populations in the South Pacific. We have compiled data from 841 isolates from South and Central America, Africa, Central Asia, Southeast-Asia and the South Pacific typed with a panel of 11 microsatellite markers. Diversity was highest in Southeast-Asia, where transmission is intermediate-high and migration of infected hosts is high, and lowest in South America and Central Asia where malaria transmission is low and focal. Reducing the panel of microsatellites showed that 2–6 markers are sufficient for genotyping for most drug trials and epidemiological studies, as these markers can identify >90% of all haplotypes. Parasites clustered according to continental origin, with high population differentiation between South American and Central Asian populations and the other populations, and lowest differences between Southeast-Asia and the South Pacific. Current attempts to reduce malaria transmission might change this pattern, but only after transmission is reduced for an extended period of time.
Collapse
Affiliation(s)
- Cristian Koepfli
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- Walter and Eliza Hall Institute, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Priscila T. Rodrigues
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Tiago Antao
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Pamela Orjuela-Sánchez
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Peter Van den Eede
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Dionicia Gamboa
- Instituto de Medicina Tropical Alexander Von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Nguyen van Hong
- National Institute of Malariology, Parasitology, and Entomology, Hanoi, Vietnam
| | - Jorge Bendezu
- Instituto de Medicina Tropical Alexander Von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Annette Erhart
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Céline Barnadas
- Walter and Eliza Hall Institute, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Arsène Ratsimbasoa
- Immunology Unit, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| | - Didier Menard
- Institut Pasteur de Cambodge, Malaria Molecular Epidemiology Unit, Phnom Penh, Cambodia
| | - Carlo Severini
- Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Michela Menegon
- Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Bakri Y. M. Nour
- Department of Parasitology, Blue Nile National Institute for Communicable Diseases, University of Gezira, Wad Medani, Sudan
| | - Nadira Karunaweera
- Department of Parasitology, Faculty of Medicine, University of Colombo, Sri Lanka
| | - Ivo Mueller
- Walter and Eliza Hall Institute, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
- Barcelona Centre for International Health Research, Barcelona, Spain
| | - Marcelo U. Ferreira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ingrid Felger
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- * E-mail:
| |
Collapse
|
34
|
Daniels RF, Rice BL, Daniels NM, Volkman SK, Hartl DL. The utility of genomic data for Plasmodium vivax population surveillance. Pathog Glob Health 2015; 109:153-61. [PMID: 25892032 DOI: 10.1179/2047773215y.0000000014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Genetic polymorphisms identified from genomic sequencing can be used to track changes in parasite populations through time. Such tracking is particularly informative when applying control strategies and evaluating their effectiveness. Using genomic approaches may also enable improved ability to categorise populations and to stratify them according to the likely effectiveness of intervention. Clinical applications of genomic approaches also allow relapses to be classified according to reinfection or recrudescence. These tools can be used not only to assess the effectiveness of malaria interventions but also to appraise the strategies for malaria elimination.
Collapse
|
35
|
Barry AE, Waltmann A, Koepfli C, Barnadas C, Mueller I. Uncovering the transmission dynamics of Plasmodium vivax using population genetics. Pathog Glob Health 2015; 109:142-52. [PMID: 25891915 DOI: 10.1179/2047773215y.0000000012] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Population genetic analysis of malaria parasites has the power to reveal key insights into malaria epidemiology and transmission dynamics with the potential to deliver tools to support control and elimination efforts. Analyses of parasite genetic diversity have suggested that Plasmodium vivax populations are more genetically diverse and less structured than those of Plasmodium falciparum indicating that P. vivax may be a more ancient parasite of humans and/or less susceptible to population bottlenecks, as well as more efficient at disseminating its genes. These population genetic insights into P. vivax transmission dynamics provide an explanation for its relative resilience to control efforts. Here, we describe current knowledge on P. vivax population genetic structure, its relevance to understanding transmission patterns and relapse and how this information can inform malaria control and elimination programmes.
Collapse
Key Words
- Control,
- Elimination
- Genetic diversity,
- Genetics,
- Genomics,
- Linkage disequilibrium,
- Malaria,
- Microsatellites,
- Mitochondrial DNA,
- Plasmodium vivax,
- Population structure,
- Relapse,
- Single nucleotide polymorphisms,
- Transmission,
Collapse
|
36
|
Plasmodium vivax populations are more genetically diverse and less structured than sympatric Plasmodium falciparum populations. PLoS Negl Trop Dis 2015; 9:e0003634. [PMID: 25874894 PMCID: PMC4398418 DOI: 10.1371/journal.pntd.0003634] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 02/20/2015] [Indexed: 11/20/2022] Open
Abstract
Introduction The human malaria parasite, Plasmodium vivax, is proving more difficult to control and eliminate than Plasmodium falciparum in areas of co-transmission. Comparisons of the genetic structure of sympatric parasite populations may provide insight into the mechanisms underlying the resilience of P. vivax and can help guide malaria control programs. Methodology/Principle findings P. vivax isolates representing the parasite populations of four areas on the north coast of Papua New Guinea (PNG) were genotyped using microsatellite markers and compared with previously published microsatellite data from sympatric P. falciparum isolates. The genetic diversity of P. vivax (He = 0.83–0.85) was higher than that of P. falciparum (He = 0.64–0.77) in all four populations. Moderate levels of genetic differentiation were found between P. falciparum populations, even over relatively short distances (less than 50 km), with 21–28% private alleles and clear geospatial genetic clustering. Conversely, very low population differentiation was found between P. vivax catchments, with less than 5% private alleles and no genetic clustering observed. In addition, the effective population size of P. vivax (30353; 13043–69142) was larger than that of P. falciparum (18871; 8109–42986). Conclusions/Significance Despite comparably high prevalence, P. vivax had higher diversity and a panmictic population structure compared to sympatric P. falciparum populations, which were fragmented into subpopulations. The results suggest that in comparison to P. falciparum, P. vivax has had a long-term large effective population size, consistent with more intense and stable transmission, and limited impact of past control and elimination efforts. This underlines suggestions that more intensive and sustained interventions will be needed to control and eventually eliminate P. vivax. This research clearly demonstrates how population genetic analyses can reveal deeper insight into transmission patterns than traditional surveillance methods. The neglected human malaria parasite Plasmodium vivax is responsible for a large proportion of the global malaria burden. Efforts to control malaria have revealed that P. vivax is more resilient than the other major human malaria parasite, Plasmodium falciparum. This study utilised population genetics to compare patterns of P. vivax and P. falciparum transmission in Papua New Guinea, a region where infection rates of the two species are similar. The results demonstrated that P. vivax populations are more genetically diverse than those of P. falciparum suggestive of a parasite population that is more resilient to environmental challenges, undergoing higher levels of interbreeding locally and between distant parasite populations. Unique characteristics of P. vivax such as relapse, which allows different strains from past infections to produce subsequent infections, may provide more opportunities for the exchange and dissemination of genetic material. The contrasting patterns observed for the two species may be the result of a differential impact of past elimination attempts and indicate that more rigorous interventions will be needed in efforts to control and eventually eliminate P. vivax.
Collapse
|
37
|
Baniecki ML, Faust AL, Schaffner SF, Park DJ, Galinsky K, Daniels RF, Hamilton E, Ferreira MU, Karunaweera ND, Serre D, Zimmerman PA, Sá JM, Wellems TE, Musset L, Legrand E, Melnikov A, Neafsey DE, Volkman SK, Wirth DF, Sabeti PC. Development of a single nucleotide polymorphism barcode to genotype Plasmodium vivax infections. PLoS Negl Trop Dis 2015; 9:e0003539. [PMID: 25781890 PMCID: PMC4362761 DOI: 10.1371/journal.pntd.0003539] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 01/15/2015] [Indexed: 12/30/2022] Open
Abstract
Plasmodium vivax, one of the five species of Plasmodium parasites that cause human malaria, is responsible for 25–40% of malaria cases worldwide. Malaria global elimination efforts will benefit from accurate and effective genotyping tools that will provide insight into the population genetics and diversity of this parasite. The recent sequencing of P. vivax isolates from South America, Africa, and Asia presents a new opportunity by uncovering thousands of novel single nucleotide polymorphisms (SNPs). Genotyping a selection of these SNPs provides a robust, low-cost method of identifying parasite infections through their unique genetic signature or barcode. Based on our experience in generating a SNP barcode for P. falciparum using High Resolution Melting (HRM), we have developed a similar tool for P. vivax. We selected globally polymorphic SNPs from available P. vivax genome sequence data that were located in putatively selectively neutral sites (i.e., intergenic, intronic, or 4-fold degenerate coding). From these candidate SNPs we defined a barcode consisting of 42 SNPs. We analyzed the performance of the 42-SNP barcode on 87 P. vivax clinical samples from parasite populations in South America (Brazil, French Guiana), Africa (Ethiopia) and Asia (Sri Lanka). We found that the P. vivax barcode is robust, as it requires only a small quantity of DNA (limit of detection 0.3 ng/μl) to yield reproducible genotype calls, and detects polymorphic genotypes with high sensitivity. The markers are informative across all clinical samples evaluated (average minor allele frequency > 0.1). Population genetic and statistical analyses show the barcode captures high degrees of population diversity and differentiates geographically distinct populations. Our 42-SNP barcode provides a robust, informative, and standardized genetic marker set that accurately identifies a genomic signature for P. vivax infections. Plasmodium vivax malaria is a major global public health problem, with nearly 2.5 billion people at risk for infection and approximately 132–391 million clinical infections annually. It has a wide geographical range, with a high disease burden in Asia, Central and South America, the Middle East, Oceania, and East Africa. Advances in sequencing technology and sample processing have made it possible to characterize the genetic diversity of P. vivax populations. This genetic variation provides a means to identify parasites by unique genetic signatures, or “barcodes.” We developed such a genetic barcode for P. vivax, composed of 42 robust and informative variants. Here we report its development and validation based on 87 clinical samples identified by microscopy to contain P. vivax from geographically diverse parasite populations from South America (Brazil, French Guiana), Africa (Ethiopia) and Asia (Sri Lanka). We show that the SNP barcode provides a genotyping tool that can be performed at low cost, providing a means to uniquely identify parasite infections and distinguish geographic origins, and that barcode data may offer new insights into P. vivax population structure and diversity.
Collapse
Affiliation(s)
- Mary Lynn Baniecki
- Broad Institute, Cambridge, Massachusetts, United States of America
- * E-mail:
| | - Aubrey L. Faust
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | | | - Daniel J. Park
- Broad Institute, Cambridge, Massachusetts, United States of America
| | - Kevin Galinsky
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Rachel F. Daniels
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Elizabeth Hamilton
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | | | - Nadira D. Karunaweera
- Department of Parasitology, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - David Serre
- Department of Genomic Medicine Institute, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, United States of America
| | - Peter A. Zimmerman
- Department of International Health, Biology and Genetics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Juliana M. Sá
- Laboratory of Malaria and Vector Research, Malaria Genetics Section, National Institute of Allergy and Infectious Diseases, Rockville, Maryland, United States of America
| | - Thomas E. Wellems
- Laboratory of Malaria and Vector Research, Malaria Genetics Section, National Institute of Allergy and Infectious Diseases, Rockville, Maryland, United States of America
| | - Lise Musset
- Department of Parasitology, Institute Pasteur de la Guyane, Cayenne, French Guiana
| | - Eric Legrand
- Department of Parasitology, Institute Pasteur de la Guyane, Cayenne, French Guiana
| | | | | | - Sarah K. Volkman
- Broad Institute, Cambridge, Massachusetts, United States of America
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
- School of Nursing and Health Sciences, Simmons College, Boston, Massachusetts, United States of America
| | - Dyann F. Wirth
- Broad Institute, Cambridge, Massachusetts, United States of America
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Pardis C. Sabeti
- Broad Institute, Cambridge, Massachusetts, United States of America
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| |
Collapse
|
38
|
Lin JT, Hathaway NJ, Saunders DL, Lon C, Balasubramanian S, Kharabora O, Gosi P, Sriwichai S, Kartchner L, Chuor CM, Satharath P, Lanteri C, Bailey JA, Juliano JJ. Using Amplicon Deep Sequencing to Detect Genetic Signatures of Plasmodium vivax Relapse. J Infect Dis 2015; 212:999-1008. [PMID: 25748326 DOI: 10.1093/infdis/jiv142] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 02/27/2015] [Indexed: 01/31/2023] Open
Abstract
Plasmodium vivax infections often recur due to relapse of hypnozoites from the liver. In malaria-endemic areas, tools to distinguish relapse from reinfection are needed. We applied amplicon deep sequencing to P. vivax isolates from 78 Cambodian volunteers, nearly one-third of whom suffered recurrence at a median of 68 days. Deep sequencing at a highly variable region of the P. vivax merozoite surface protein 1 gene revealed impressive diversity-generating 67 unique haplotypes and detecting on average 3.6 cocirculating parasite clones within individuals, compared to 2.1 clones detected by a combination of 3 microsatellite markers. This diversity enabled a scheme to classify over half of recurrences as probable relapses based on the low probability of reinfection by multiple recurring variants. In areas of high P. vivax diversity, targeted deep sequencing can help detect genetic signatures of relapse, key to evaluating antivivax interventions and achieving a better understanding of relapse-reinfection epidemiology.
Collapse
Affiliation(s)
- Jessica T Lin
- Division of Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill
| | - Nicholas J Hathaway
- Program in Bioinformatics and Integrative Biology, University of Massachusetts, Worcester
| | - David L Saunders
- US Army Medical Component, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Chanthap Lon
- US Army Medical Component, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Sujata Balasubramanian
- Division of Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill
| | - Oksana Kharabora
- Division of Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill
| | - Panita Gosi
- US Army Medical Component, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Sabaithip Sriwichai
- US Army Medical Component, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Laurel Kartchner
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill
| | - Char Meng Chuor
- National Center for Parasitology, Entomology and Malaria Control
| | | | - Charlotte Lanteri
- US Army Medical Component, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Jeffrey A Bailey
- Program in Bioinformatics and Integrative Biology, University of Massachusetts, Worcester Division of Transfusion Medicine, University of Massachusetts Medical School, Worcester
| | - Jonathan J Juliano
- Division of Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill
| |
Collapse
|
39
|
Menegon M, Durand P, Menard D, Legrand E, Picot S, Nour B, Davidyants V, Santi F, Severini C. Genetic diversity and population structure of Plasmodium vivax isolates from Sudan, Madagascar, French Guiana and Armenia. INFECTION GENETICS AND EVOLUTION 2014; 27:244-9. [PMID: 25102032 DOI: 10.1016/j.meegid.2014.07.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 07/25/2014] [Accepted: 07/28/2014] [Indexed: 10/24/2022]
Abstract
Polymorphic genetic markers and especially microsatellite analysis can be used to investigate multiple aspects of the biology of Plasmodium species. In the current study, we characterized 7 polymorphic microsatellites in a total of 281 Plasmodium vivax isolates to determine the genetic diversity and population structure of P. vivax populations from Sudan, Madagascar, French Guiana, and Armenia. All four parasite populations were highly polymorphic with 3-32 alleles per locus. Mean genetic diversity values was 0.83, 0.79, 0.78 and 0.67 for Madagascar, French Guiana, Sudan, and Armenia, respectively. Significant genetic differentiation between all four populations was observed.
Collapse
Affiliation(s)
- Michela Menegon
- Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità, Rome, Italy.
| | - Patrick Durand
- Laboratoire MIVEGEC, UMR 224-5290 CNRS-IRD-UM1-UM2, IRD, Montpellier, France
| | - Didier Menard
- Malaria Molecular Epidemiology Unit, Pasteur Institute in Cambodia, Phnom Penh, Cambodia
| | - Eric Legrand
- National Reference Centre of Malaria Chemoresistance in French Guiana and West Indies, Institut Pasteur de la Guyane, Cayenne, French Guiana
| | - Stéphane Picot
- Malaria Research Unit, CNRS UMR 5246, Faculté de Médecine, Université Lyon 1, Lyon, France
| | - Bakri Nour
- Department of Parasitology, Blue Nile National Institute for Communicable Diseases, University of Gezira, Wad Medani, Sudan
| | - Vladimir Davidyants
- Department of Epidemiology and Health Informatics, Armenian National Institute of Health, Yerevan, Armenia
| | - Flavia Santi
- Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Carlo Severini
- Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
40
|
Genetic diversity of Plasmodium vivax over time and space: a community-based study in rural Amazonia. Parasitology 2014; 142:374-84. [PMID: 25068581 DOI: 10.1017/s0031182014001176] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
To examine how community-level genetic diversity of the malaria parasite Plasmodium vivax varies across time and space, we investigated the dynamics of parasite polymorphisms during the early phases of occupation of a frontier settlement in the Amazon Basin of Brazil. Microsatellite characterization of 84 isolates of P. vivax sampled over 3 years revealed a moderate-to-high genetic diversity (mean expected heterozygosity, 0.699), with a large proportion (78.5%) of multiple-clone infections (MCI), but also a strong multilocus linkage disequilibrium (LD) consistent with rare outcrossing. Little temporal and no spatial clustering was observed in the distribution of parasite haplotypes. A single microsatellite haplotype was shared by 3 parasites collected during an outbreak; all other 81 haplotypes were recovered only once. The lowest parasite diversity, with the smallest proportion of MCI and the strongest LD, was observed at the time of the outbreak, providing a clear example of epidemic population structure in a human pathogen. Population genetic parameters returned to pre-outbreak values during last 2 years of study, despite the concomitant decline in malaria incidence. We suggest that parasite genotyping can be useful for tracking the spread of new parasite strains associated with outbreaks in areas approaching malaria elimination.
Collapse
|
41
|
Shalini S, Chaudhuri S, Sutton PL, Mishra N, Srivastava N, David JK, Ravindran KJ, Carlton JM, Eapen A. Chloroquine efficacy studies confirm drug susceptibility of Plasmodium vivax in Chennai, India. Malar J 2014; 13:129. [PMID: 24685286 PMCID: PMC4021252 DOI: 10.1186/1475-2875-13-129] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 03/24/2014] [Indexed: 02/06/2023] Open
Abstract
Background Assessing the Plasmodium vivax burden in India is complicated by the potential threat of an emerging chloroquine (CQ) resistant parasite population from neighbouring countries in Southeast Asia. Chennai, the capital of Tamil Nadu and an urban setting for P. vivax in southern India, was selected as a sentinel site for investigating CQ efficacy and sensitivity in vivax malaria. Methods CQ efficacy was evaluated with a 28-day in vivo therapeutic study, while CQ sensitivity was measured with an in vitro drug susceptibility assay. In both studies, isolates also underwent molecular genotyping to investigate correlations between parasite diversity and drug susceptibility to CQ. Molecular genotyping included sequencing a 604 base pair (bp) fragment of the P. vivax multidrug resistant gene-1 (Pvmdr1) for single nucleotide polymorphisms (SNPs) and also the amplification of eight microsatellite (MS) loci located across the genome on eight different chromosomes. Results In the 28-day in vivo study (N=125), all subjects were aparasitaemic by Day 14. Passive case surveillance continuing beyond Day 28 in 22 subjects exposed 17 recurrent infections, which ranged from 44 to 148 days post-enrollment. Pvmdr1 sequencing of these recurrent infections revealed that 93.3% had identical mutant haplotypes (958M/Y976/1076L) to their baseline Day 0 infection. MS genotyping further revealed that nine infection pairs were related with ≥75% haplotype similarity (same allele at six or more loci). To test the impact of this mutation on CQ efficacy, an in vitro drug assay (N=68) was performed. No correlation between IC50 values and the percentage of ring-stage parasites prior to culture was observed (rsadj: -0.00063, p = 0.3307) and the distribution of alleles among the Pvmdr1 SNPs and MS haplotypes showed no significant associations with IC50 values. Conclusions Plasmodium vivax was found to be susceptible to CQ drug treatment in both the in vivo therapeutic drug study and the in vitro drug assay. Though the mutant 1076L of Pvmdr1 was found in a majority of isolates tested, this single mutation did not associate with CQ resistance. MS haplotypes revealed strong heterogeneity in this population, indicating a low probability of reinfection with highly related haplotypes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Alex Eapen
- National Institute of Malaria Research (Indian Council of Medical Research), National Institute of Epidemiology Campus, Second Main Road, Tamil Nadu Housing Board, Ayapakkam, Chennai 600 077, Tamil Nadu, India.
| |
Collapse
|
42
|
McCollum AM, Soberon V, Salas CJ, Santolalla ML, Udhayakumar V, Escalante AA, Graf PCF, Durand S, Cabezas C, Bacon DJ. Genetic variation and recurrent parasitaemia in Peruvian Plasmodium vivax populations. Malar J 2014; 13:67. [PMID: 24568141 PMCID: PMC3941685 DOI: 10.1186/1475-2875-13-67] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 02/13/2014] [Indexed: 11/12/2022] Open
Abstract
Background Plasmodium vivax is a predominant species of malaria in parts of South America and there is increasing resistance to drugs to treat infections by P. vivax. The existence of latent hypnozoites further complicates the ability to classify recurrent infections as treatment failures due to relapse, recrudescence of hyponozoites or re-infections. Antigen loci are putatively under natural selection and may not be an optimal molecular marker to define parasite haplotypes in paired samples. Putatively neutral microsatellite loci, however, offer an assessment of neutral haplotypes. The objective here was to assess the utility of neutral microsatellite loci to reconcile cases of recurrent parasitaemia in Amazonian P. vivax populations in Peru. Methods Patient blood samples were collected from three locations in or around Iquitos in the Peruvian Amazon. Five putatively neutral microsatellite loci were characterized from 445 samples to ascertain the within and amongst population variation. A total of 30 day 0 and day of recurrent parasitaemia samples were characterized at microsatellite loci and five polymorphic antigen loci for haplotype classification. Results The genetic diversity at microsatellite loci was consistent with neutral levels of variation measured in other South American P. vivax populations. Results between antigen and microsatellite loci for the 30 day 0 and day of recurrent parasitaemia samples were the same for 80% of the pairs. The majority of non-concordant results were the result of differing alleles at microsatellite loci. This analysis estimates that 90% of the paired samples with the same microsatellite haplotype are unlikely to be due to a new infection. Conclusions A population-level approach was used to yield a better estimate of the probability of a new infection versus relapse or recrudescence of homologous hypnozoites; hypnozoite activation was common for this cohort. Population studies are critical with the evaluation of genetic markers to assess P. vivax biology and epidemiology. The additional demonstration of microsatellite loci as neutral markers capable of distinguishing the origin of the recurrent parasites (new infection or originating from the patient) lends support to their use in assessment of treatment outcomes.
Collapse
Affiliation(s)
- Andrea M McCollum
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|