1
|
Zhao R, Hu Z, Zhang X, Huang S, Yu G, Wu Z, Yu W, Lu J, Ruan B. The oncogenic mechanisms of the Janus kinase-signal transducer and activator of transcription pathway in digestive tract tumors. Cell Commun Signal 2024; 22:68. [PMID: 38273295 PMCID: PMC10809652 DOI: 10.1186/s12964-023-01421-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/03/2023] [Indexed: 01/27/2024] Open
Abstract
Digestive tract tumors are heterogeneous and involve the dysregulation of multiple signaling pathways. The Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway plays a notable role in the oncogenesis of digestive tract tumors. Typically activated by pro-inflammatory cytokines, it regulates important biological processes, such as cell growth, differentiation, apoptosis, immune responses, and inflammation. The aberrant activation of this pathway manifests in different forms, including mutations in JAKs, overexpression of cytokine receptors, and sustained STAT activation, and contributes to promoting the malignant characteristics of cancer cells, including uncontrolled proliferation, resistance to apoptosis, enhanced invasion and metastasis, angiogenesis, acquisition of stem-like properties, and drug resistance. Numerous studies have shown that aberrant activation of the JAK-STAT pathway is closely related to the development and progression of digestive tract tumors, contributing to tumor survival, angiogenesis, changes in the tumor microenvironment, and even immune escape processes. In addition, this signaling pathway also affects the sensitivity of digestive tract tumors to chemotherapy and targeted therapy. Therefore, it is crucial to comprehensively understand the oncogenic mechanisms underlying the JAK-STAT pathway in order to develop effective therapeutic strategies against digestive tract tumors. Currently, several JAK-STAT inhibitors are undergoing clinical and preclinical trials as potential treatments for various human diseases. However, further investigation is required to determine the role of this pathway, as well as the effectiveness and safety of its inhibitors, especially in the context of digestive tract tumors. In this review, we provide an overview of the structure, classic activation, and negative regulation of the JAK-STAT pathway. Furthermore, we discuss the pathogenic mechanisms of JAK-STAT signaling in different digestive tract tumors, with the aim of identifying potential novel therapeutic targets. Video Abstract.
Collapse
Affiliation(s)
- Ruihong Zhao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, National Medical Center for Infectious Diseases, Zhejiang University School of Medicine, No. 79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang, 310003, China
| | - Zhangmin Hu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, National Medical Center for Infectious Diseases, Zhejiang University School of Medicine, No. 79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang, 310003, China
| | - Xiaoli Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, National Medical Center for Infectious Diseases, Zhejiang University School of Medicine, No. 79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang, 310003, China
| | - Shujuan Huang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, National Medical Center for Infectious Diseases, Zhejiang University School of Medicine, No. 79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang, 310003, China
| | - Guodong Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, National Medical Center for Infectious Diseases, Zhejiang University School of Medicine, No. 79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang, 310003, China
| | - Zhe Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, National Medical Center for Infectious Diseases, Zhejiang University School of Medicine, No. 79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang, 310003, China
| | - Wei Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, National Medical Center for Infectious Diseases, Zhejiang University School of Medicine, No. 79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang, 310003, China
| | - Juan Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, National Medical Center for Infectious Diseases, Zhejiang University School of Medicine, No. 79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang, 310003, China.
| | - Bing Ruan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, National Medical Center for Infectious Diseases, Zhejiang University School of Medicine, No. 79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang, 310003, China.
| |
Collapse
|
2
|
Fang YT, Yang WW, Niu YR, Sun YK. Recent advances in targeted therapy for pancreatic adenocarcinoma. World J Gastrointest Oncol 2023; 15:571-595. [PMID: 37123059 PMCID: PMC10134207 DOI: 10.4251/wjgo.v15.i4.571] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/11/2022] [Accepted: 03/16/2023] [Indexed: 04/12/2023] Open
Abstract
Pancreatic adenocarcinoma (PDAC) is a fatal disease with a 5-year survival rate of 8% and a median survival of 6 mo. In PDAC, several mutations in the genes are involved, with Kirsten rat sarcoma oncogene (90%), cyclin-dependent kinase inhibitor 2A (90%), and tumor suppressor 53 (75%–90%) being the most common. Mothers against decapentaplegic homolog 4 represents 50%. In addition, the self-preserving cancer stem cells, dense tumor microenvironment (fibrous accounting for 90% of the tumor volume), and suppressive and relatively depleted immune niche of PDAC are also constitutive and relevant elements of PDAC. Molecular targeted therapy is widely utilized and effective in several solid tumors. In PDAC, targeted therapy has been extensively evaluated; however, survival improvement of this aggressive disease using a targeted strategy has been minimal. There is currently only one United States Food and Drug Administration-approved targeted therapy for PDAC – erlotinib, but the absolute benefit of erlotinib in combination with gemcitabine is also minimal (2 wk). In this review, we summarize current targeted therapies and clinical trials targeting dysregulated signaling pathways and components of the PDAC oncogenic process, analyze possible reasons for the lack of positive results in clinical trials, and suggest ways to improve them. We also discuss emerging trends in targeted therapies for PDAC: combining targeted inhibitors of multiple pathways. The PubMed database and National Center for Biotechnology Information clinical trial website (www.clinicaltrials.gov) were queried to identify completed and published (PubMed) and ongoing (clinicaltrials.gov) clinical trials (from 2003-2022) using the keywords pancreatic cancer and targeted therapy. The PubMed database was also queried to search for information about the pathogenesis and molecular pathways of pancreatic cancer using the keywords pancreatic cancer and molecular pathways.
Collapse
Affiliation(s)
- Yu-Ting Fang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Wen-Wei Yang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Ya-Ru Niu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yong-Kun Sun
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Hebei Cancer Hospital, Chinese Academy of Medical Sciences, Langfang 065001, Hebei Province, China
| |
Collapse
|
3
|
Overcoming Acquired Drug Resistance to Cancer Therapies through Targeted STAT3 Inhibition. Int J Mol Sci 2023; 24:ijms24054722. [PMID: 36902166 PMCID: PMC10002572 DOI: 10.3390/ijms24054722] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/21/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
Anti-neoplastic agents for cancer treatment utilize many different mechanisms of action and, when combined, can result in potent inhibition of cancer growth. Combination therapies can result in long-term, durable remission or even cure; however, too many times, these anti-neoplastic agents lose their efficacy due to the development of acquired drug resistance (ADR). In this review, we evaluate the scientific and medical literature that elucidate STAT3-mediated mechanisms of resistance to cancer therapeutics. Herein, we have found that at least 24 different anti-neoplastic agents-standard toxic chemotherapeutic agents, targeted kinase inhibitors, anti-hormonal agents, and monoclonal antibodies-that utilize the STAT3 signaling pathway as one mechanism of developing therapeutic resistance. Targeting STAT3, in combination with existing anti-neoplastic agents, may prove to be a successful therapeutic strategy to either prevent or even overcome ADR to standard and novel cancer therapies.
Collapse
|
4
|
Chen Q, Wang Q, Wang Y, Chu Y, Luo Y, You H, Su B, Li C, Guo Q, Sun T, Jiang C. Penetrating Micelle for Reversing Immunosuppression and Drug Resistance in Pancreatic Cancer Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107712. [PMID: 35285149 DOI: 10.1002/smll.202107712] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is on of the most lethal malignant tumors with relatively poor prognosis, characterized with insufficient drug penetration, low immune response and obvious drug resistances. The therapeutic inefficiency is multifactorially related to its specific tumor microenvironment (TME), which is representatively featured as rich stroma and immunosuppression. In this work, a versatile drug delivery system is developed that can coencapsulate two prodrugs modified from gemcitabine (GEM) and a signal transducer and activator of transcription 3 (STAT3) inhibitor (HJC0152), and the gradient pH variation is further sensed in the TME of PDAC to achieve a higher penetration by reversing its surficial charges. The escorted prodrugs can release GEM intracellularly, and respond to the hypoxic condition to yield the parental STAT3 inhibitor HJC0152, respectively. By inhibiting STAT3, the tumor immunosuppression microenvironment can be re-educated through the reversion of M2-like tumor associated macrophages (M2-TAMs), recruitment of cytotoxic T lymphocytes and downregulation of regulatory T cells (Treg s). Furthermore, cytidine deaminase (CDA) and α-smooth muscle actin (α-SMA) expression can be downregulated, plus the lipid modification of GEM, the drug resistance of GEM can be greatly relieved. Based on the above design, a synergetic therapeutic efficacy in PDAC treatment can be achieved to provide more opportunity for clinical applications.
Collapse
Affiliation(s)
- Qinjun Chen
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Pharmaceutics, School of Pharmacy, Research Center on Aging and Medicine, Fudan University, Shanghai, 201203, P. R. China
| | - Qingbing Wang
- Department of Interventional Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Yu Wang
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Pharmaceutics, School of Pharmacy, Research Center on Aging and Medicine, Fudan University, Shanghai, 201203, P. R. China
| | - Yongchao Chu
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Pharmaceutics, School of Pharmacy, Research Center on Aging and Medicine, Fudan University, Shanghai, 201203, P. R. China
| | - Yifan Luo
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Pharmaceutics, School of Pharmacy, Research Center on Aging and Medicine, Fudan University, Shanghai, 201203, P. R. China
| | - Haoyu You
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Pharmaceutics, School of Pharmacy, Research Center on Aging and Medicine, Fudan University, Shanghai, 201203, P. R. China
| | - Boyu Su
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Pharmaceutics, School of Pharmacy, Research Center on Aging and Medicine, Fudan University, Shanghai, 201203, P. R. China
| | - Chao Li
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Pharmaceutics, School of Pharmacy, Research Center on Aging and Medicine, Fudan University, Shanghai, 201203, P. R. China
| | - Qin Guo
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Pharmaceutics, School of Pharmacy, Research Center on Aging and Medicine, Fudan University, Shanghai, 201203, P. R. China
| | - Tao Sun
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Pharmaceutics, School of Pharmacy, Research Center on Aging and Medicine, Fudan University, Shanghai, 201203, P. R. China
| | - Chen Jiang
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Pharmaceutics, School of Pharmacy, Research Center on Aging and Medicine, Fudan University, Shanghai, 201203, P. R. China
| |
Collapse
|
5
|
Zhao X, Li Z, Gu Z. A new era: tumor microenvironment in chemoresistance of pancreatic cancer. JOURNAL OF CANCER SCIENCE AND CLINICAL THERAPEUTICS 2022; 6:61-86. [PMID: 35187493 DOI: 10.26502/jcsct.5079146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a solid malignant tumor with an extremely poor prognosis. Gemcitabine (GEM)-based chemotherapy remains one of the most important treatment choices for PDAC. However, either as monotherapy or as a part of the combination chemotherapy, GEM achieved only limited success in improving the survival of patients with advanced PDAC, primarily due to GEM resistance. PDAC is characterized by an extensive desmoplasia in the tumor microenvironment (TME). Increasing evidence indicates that this fibrotic TME not only actively participates in the tumor growth and spread of PDAC but also contributes to the induction of GEM resistance. Here we review the current advances of how TME components are involved in the induction of GEM resistance.
Collapse
Affiliation(s)
- Xueping Zhao
- School of Life Science and Biopharmaceutical, Shenyang Pharmaceutical University, Shenyang, China
| | - Zongze Li
- Department of Pancreatic and Gastric Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zongting Gu
- Department of Pancreatic and Gastric Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
6
|
5- epi-Sinuleptolide from Soft Corals of the Genus Sinularia Exerts Cytotoxic Effects on Pancreatic Cancer Cell Lines via the Inhibition of JAK2/STAT3, AKT, and ERK Activity. Molecules 2021; 26:molecules26226932. [PMID: 34834023 PMCID: PMC8623039 DOI: 10.3390/molecules26226932] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 12/25/2022] Open
Abstract
Pancreatic ductal adenocarcinoma is one of the most lethal malignancies: more than half of patients are diagnosed with a metastatic disease, which is associated with a five-year survival rate of only 3%. 5-epi-Sinuleptolide, a norditerpene isolated from Sinularia sp., has been demonstrated to possess cytotoxic activity against cancer cells. However, the cytotoxicity against pancreatic cancer cells and the related mechanisms are unknown. The aim of this study was to evaluate the anti-pancreatic cancer potential of 5-epi-sinuleptolide and to elucidate the underlying mechanisms. The inhibitory effects of 5-epi-sinuleptolide treatment on the proliferation of pancreatic cancer cells were determined and the results showed that 5-epi-sinuleptolide treatment inhibited cell proliferation, induced apoptosis and G2/M cell cycle arrest, and suppressed the invasion of pancreatic cancer cells. The results of western blotting further revealed that 5-epi-sinuleptolide could inhibit JAK2/STAT3, AKT, and ERK phosphorylation, which may account for the diverse cytotoxic effects of 5-epi-sinuleptolide. Taken together, our present investigation unveils a new therapeutic and anti-metastatic potential of 5-epi-sinuleptolide for pancreatic cancer treatment.
Collapse
|
7
|
He SW, Zhang Y, Chen L, Luo WJ, Li XM, Chen Y, Huang SY, He QM, Yang XJ, Li YQ, Liu N, Zhao Y, Ma J. Gemcitabine synergizes with cisplatin to inhibit nasopharyngeal carcinoma cell proliferation and tumor growth. FASEB J 2021; 35:e21885. [PMID: 34478585 DOI: 10.1096/fj.202100076rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 07/17/2021] [Accepted: 08/12/2021] [Indexed: 12/24/2022]
Abstract
In a recently published phase III clinical trial, gemcitabine (GEM) plus cisplatin (DDP) induction chemotherapy significantly improved recurrence-free survival and overall survival and became the standard of care among patients with locoregionally advanced NPC. However, the molecular mechanisms of GEM synergized with DPP in NPC cells remain elucidated. These findings prompt us to explore the effect of the combination between GEM and DDP in NPC cell lines through proliferative phenotype, immunofluorescence, flow cytometry, and western blotting assays. In vitro studies reveal that GEM or DPP treated alone induces cell cycle arrest, promotes cell apoptosis, forces DNA damage response, and GEM synergism with DDP significantly increases the above effects in NPC cells. In vivo studies indicate that GEM or DPP treated alone significantly inhibits the tumor growth and prolongs the survival time of mice injected with SUNE1 cells compared to the control group. Moreover, the mice treated with GEM combined with DDP have smaller tumors and survive longer than those in GEM or DPP treated alone group. In addition, P-gp may be the key molecule that regulates the synergistic effect of gemcitabine and cisplatin. GEM synergizes with DPP to inhibit NPC cell proliferation and tumor growth by inducing cell cycle arrest, cell apoptosis, and DNA damage response, which reveals the mechanisms of combined GEM and DDP induction chemotherapy in improving locoregionally advanced NPC.
Collapse
Affiliation(s)
- Shi-Wei He
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Yuan Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Lei Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Wei-Jie Luo
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Xiao-Min Li
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Yang Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Sheng-Yan Huang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Qing-Mei He
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Xiao-Jing Yang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Ying-Qin Li
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Na Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Yin Zhao
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Jun Ma
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| |
Collapse
|
8
|
Qian H, Li H, Xie J, Lu X, Li F, Wang W, Tang X, Shi M, Jiang L, Li H, Chen H, Peng C, Xu Z, Deng X, Shen B. Immunity-Related Gene Signature Identifies Subtypes Benefitting From Adjuvant Chemotherapy or Potentially Responding to PD1/PD-L1 Blockage in Pancreatic Cancer. Front Cell Dev Biol 2021; 9:682261. [PMID: 34249934 PMCID: PMC8264789 DOI: 10.3389/fcell.2021.682261] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/26/2021] [Indexed: 01/04/2023] Open
Abstract
Tumor microenvironment comprises of a variety of cell types, which is quite complex and involved in chemotherapy and immune checkpoint blockage resistance. In order to explore the mechanisms involved in tumor immune microenvironment in pancreatic ductal adenocarcinoma (PDAC), we first constructed an immunity-related 18-gene signature using The Cancer Genome Atlas (TCGA) PDAC project data. Then we applied the 18-gene signature to divide PDAC patients into low score and high score groups. Patients in high score group showed inferior prognosis, which was validated in another four independent cohorts, including Ruijin cohort. High score group showed significant enrichment of pathways involved in cell division and cell cycle especially in G1/S phase transition. In high score group, IHC analysis revealed higher levels of the proliferative indexes of Ki67 and PCNA than that in low score group. Prognostic analysis confirmed that patients in high score group could benefit from the gemcitabine-based adjuvant chemotherapy. In low score group, the programmed cell death 1 ligand 1(PD-L1) (+) cases showed worse prognosis but higher T cell infiltration than PD-L1(−) cases. Our immunity-related 18-gene signature could effectively predict PDAC prognosis, and it might be a practical predictive tool to identify PDAC subtype benefitting from gemcitabine-based adjuvant chemotherapy or potentially responding to PD1/PD-L1 blockade therapy.
Collapse
Affiliation(s)
- Hao Qian
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongzhe Li
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junjie Xie
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiongxiong Lu
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fanlu Li
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weishen Wang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaomei Tang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Minmin Shi
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Linxi Jiang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongwei Li
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Chen
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenghong Peng
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiwei Xu
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaxing Deng
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Baiyong Shen
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Shanghai, China.,Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
9
|
Alzhrani R, Alsaab HO, Vanamal K, Bhise K, Tatiparti K, Barari A, Sau S, Iyer AK. Overcoming the Tumor Microenvironmental Barriers of Pancreatic Ductal Adenocarcinomas for Achieving Better Treatment Outcomes. ADVANCED THERAPEUTICS 2021; 4:2000262. [PMID: 34212073 PMCID: PMC8240487 DOI: 10.1002/adtp.202000262] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Indexed: 02/06/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive disease with the lowest survival rate among all solid tumors. The lethality of PDAC arises from late detection and propensity of the tumor to metastasize and develop resistance against chemo and radiation therapy. A highly complex tumor microenvironment composed of dense stroma, immune cells, fibroblast, and disorganized blood vessels, is the main obstacle to current PDAC therapy. Despite the tremendous success of immune checkpoint inhibitors (ICIs) in cancers, PDAC remains one of the poorest responders of ICIs therapy. The immunologically "cold" phenotype of PDAC is attributed to the low mutational burden, high infiltration of myeloid-derived suppressor cells and T-regs, contributing to a significant immunotherapy resistance mechanism. Thus, the development of innovative strategies for turning immunologically "cold" tumor into "hot" ones is an unmet need to improve the outcome of PDAC ICIs therapies. Other smart strategies, such as nanomedicines, sonic Hedgehog inhibitor, or smoothened inhibitor, are discussed to enhance chemotherapeutic agents' efficiency by disrupting the PDAC stroma. This review highlights the current challenges and various preclinical and clinical strategies to overcome current PDAC therapy difficulties, thus significantly advancing PDAC research knowledge.
Collapse
Affiliation(s)
- Rami Alzhrani
- Use-Inspired Biomaterials and Integrated Nano Delivery Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit 48201, United States
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia
| | - Hashem O. Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia
| | - Kushal Vanamal
- Use-Inspired Biomaterials and Integrated Nano Delivery Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit 48201, United States
| | - Ketki Bhise
- Use-Inspired Biomaterials and Integrated Nano Delivery Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit 48201, United States
| | - Katyayani Tatiparti
- Use-Inspired Biomaterials and Integrated Nano Delivery Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit 48201, United States
| | - Ayatakshi Barari
- Use-Inspired Biomaterials and Integrated Nano Delivery Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit 48201, United States
| | - Samaresh Sau
- Use-Inspired Biomaterials and Integrated Nano Delivery Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit 48201, United States
| | - Arun K. Iyer
- Use-Inspired Biomaterials and Integrated Nano Delivery Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit 48201, United States
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University, School of Medicine, Detroit, MI, United States
| |
Collapse
|
10
|
Gu ZT, Li ZZ, Wang CF. Advances in research of extracellular mechanisms underlying gemcitabine resistance in pancreatic cancer. Shijie Huaren Xiaohua Zazhi 2021; 29:421-434. [DOI: 10.11569/wcjd.v29.i8.421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is a solid malignant tumor with the worst prognosis worldwide, and about 90% of cases are pancreatic ductal adenocarcinoma (PDAC). Although surgical resection is the only potential way to cure PDAC, the overall survival rate after surgery is still not optimistic. Consequently, gemcitabine (GEM)-based chemotherapy is still one of the most important treatment options for PDAC. However, the survival improvement by GEM monotherapy for advanced PDAC is very limited, and GEM resistance is the key reason. The mechanism underlying gemcitabine resistance is complex and still unclear in PDAC. The extensive and dense fibrous mesenchyme in the tumor microenvironment (TME) is an important feature of PDAC. More and more evidence has shown that TME is not only an active participant in tumor growth and spread, but also a contributor to the induction of GEM resistance. This article will review the recent advances in the understanding of the cellular and molecular mechanisms underlying GEM resistance in PDAC, and discuss potential GEM chemosensitization strategies, in order to improve the effective rate of chemotherapy and the outcome.
Collapse
Affiliation(s)
- Zong-Ting Gu
- Cheng-Feng Wang, State Key Laboratory of Molecular Oncology & Department of Pancreatic and Gastric Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Zong-Ze Li
- Cheng-Feng Wang, State Key Laboratory of Molecular Oncology & Department of Pancreatic and Gastric Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | | |
Collapse
|
11
|
He QR, Tang JJ, Liu Y, Chen ZF, Liu YX, Chen H, Li D, Yi ZF, Gao JM. The natural product trienomycin A is a STAT3 pathway inhibitor that exhibits potent in vitro and in vivo efficacy against pancreatic cancer. Br J Pharmacol 2021; 178:2496-2515. [PMID: 33687738 DOI: 10.1111/bph.15435] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/10/2021] [Accepted: 02/15/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND PURPOSE Pancreatic cancer is an exceptionally fatal disease. However, therapeutic drugs for pancreatic cancer have presented a serious shortage over the past few decades. Signal transducer and activator of transcription-3 (STAT3) is persistently activated in many human cancers where it promotes tumour development and progression. Natural products serve as an inexhaustible source of anticancer drugs. Here, we identified the natural product trienomycin A (TA), an ansamycin antibiotic, as a potential inhibitor of the STAT3 pathway with potent activity against pancreatic cancer. EXPERIMENTAL APPROACH Effects of trienomycin A on transcriptional activity of STAT3 were assessed by the STAT3-luciferase (STAT3-luc) reporter system. In vitro and in vivo inhibitory activity of TA against pancreatic cancer made use of molecular docking, surface plasmon resonance (SPR) assay, MTS assay, colony formation assay, transwell migration/invasion assay, flow cytometric analysis, immunofluorescence staining, quantitative real-time polymerase chain reaction (PCR), western blotting, tumour xenograft model, haematoxylin and eosin (H&E) staining and immunohistochemistry. KEY RESULTS Trienomycin A directly bound to STAT3 and inhibited STAT3 (Tyr705) phosphorylation, thus inhibiting the STAT3 pathway. Trienomycin A also inhibited colony formation, proliferation, migration and invasion of pancreatic cancer cell lines. Trienomycin A also markedly blocked pancreatic tumour growth in vivo. More importantly, trienomycin A did not show obvious toxicity at the effective dose in mice. CONCLUSIONS AND IMPLICATIONS Trienomycin A exerted anti-neoplastic activity by suppressing STAT3 activation in pancreatic cancer. This natural product could be a novel therapeutic candidate for pancreatic cancer.
Collapse
Affiliation(s)
- Qiu-Rui He
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Xianyang, China
| | - Jiang-Jiang Tang
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Xianyang, China
| | - Yao Liu
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Xianyang, China
| | - Zhi-Fan Chen
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Xianyang, China
| | - Yu-Xi Liu
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Xianyang, China
| | - Huang Chen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Ding Li
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Xianyang, China
| | - Zheng-Fang Yi
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Xianyang, China
| |
Collapse
|
12
|
Luo D, Digiovanni MG, Wei R, Lacomb JF, Williams JL, Rigas B, Mackenzie GG. Phospho-valproic acid (MDC-1112) reduces pancreatic cancer growth in patient-derived tumor xenografts and KPC mice: enhanced efficacy when combined with gemcitabine. Carcinogenesis 2021; 41:927-939. [PMID: 31584613 DOI: 10.1093/carcin/bgz170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/30/2019] [Accepted: 10/01/2019] [Indexed: 02/07/2023] Open
Abstract
New chemotherapeutic agents are needed for pancreatic cancer (PC). We have previously shown that phospho-valproic acid (MDC-1112) is effective in cell-line xenografts of PC. Here, we explored whether MDC-1112 is effective in additional clinically relevant animal models of PC and whether MDC-1112 enhances the anticancer effect of clinically used chemotherapeutic agents. MDC-1112 alone strongly reduced patient-derived pancreatic tumor xenograft growth, and extended survival of LSL-KrasG12D/+; LSL-Trp53R172H/+; Pdx1-Cre (KPC) mice. In both models, MDC-1112 inhibited STAT3 activation and its downstream signals, including Bcl-xL and cyclin D1. In human PC cell lines, P-V enhanced the growth inhibitory effect of gemcitabine (GEM), Abraxane and 5-FU, but not that of irinotecan. Normal human pancreatic epithelial cells were more resistant to the cytotoxic effects of MDC-1112/GEM combination. Furthermore, MDC-1112 enhanced GEM's effect on colony formation, apoptosis, cell migration, and cell invasion. In vivo, MDC-1112 and GEM, given alone, reduced patient-derived pancreatic tumor xenograft growth by 58% and 87%, respectively; whereas MDC-1112/GEM combination reduced tumor growth by 94%, inducing tumor stasis. In conclusion, MDC-1112 should be further explored as a potential agent to be used in combination with GEM for treating PC.
Collapse
Affiliation(s)
- Dingyuan Luo
- Department of Nutrition, University of California, Davis, One Shields Ave, Davis, CA, USA.,Department of Thyroid Surgery, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Matthew G Digiovanni
- Department of Nutrition, University of California, Davis, One Shields Ave, Davis, CA, USA.,Departments of Family, Population and Preventive Medicine, Stony Brook, NY, USA
| | - Ran Wei
- Department of Nutrition, University of California, Davis, One Shields Ave, Davis, CA, USA
| | - Joseph F Lacomb
- Departments of Family, Population and Preventive Medicine, Stony Brook, NY, USA
| | - Jennie L Williams
- Departments of Family, Population and Preventive Medicine, Stony Brook, NY, USA
| | - Basil Rigas
- Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Gerardo G Mackenzie
- Department of Nutrition, University of California, Davis, One Shields Ave, Davis, CA, USA.,Departments of Family, Population and Preventive Medicine, Stony Brook, NY, USA.,University of California, Davis Comprehensive Cancer Center, Sacramento, CA, USA
| |
Collapse
|
13
|
Caston RA, Shah F, Starcher CL, Wireman R, Babb O, Grimard M, McGeown J, Armstrong L, Tong Y, Pili R, Rupert J, Zimmers TA, Elmi AN, Pollok KE, Motea EA, Kelley MR, Fishel ML. Combined inhibition of Ref-1 and STAT3 leads to synergistic tumour inhibition in multiple cancers using 3D and in vivo tumour co-culture models. J Cell Mol Med 2021; 25:784-800. [PMID: 33274592 PMCID: PMC7812272 DOI: 10.1111/jcmm.16132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/19/2020] [Accepted: 11/09/2020] [Indexed: 12/26/2022] Open
Abstract
With a plethora of molecularly targeted agents under investigation in cancer, a clear need exists to understand which pathways can be targeted simultaneously with multiple agents to elicit a maximal killing effect on the tumour. Combination therapy provides the most promise in difficult to treat cancers such as pancreatic. Ref-1 is a multifunctional protein with a role in redox signalling that activates transcription factors such as NF-κB, AP-1, HIF-1α and STAT3. Formerly, we have demonstrated that dual targeting of Ref-1 (redox factor-1) and STAT3 is synergistic and decreases cell viability in pancreatic cancer cells. Data presented here extensively expands upon this work and provides further insights into the relationship of STAT3 and Ref-1 in multiple cancer types. Using targeted small molecule inhibitors, Ref-1 redox signalling was blocked along with STAT3 activation, and tumour growth evaluated in the presence and absence of the relevant tumour microenvironment. Our study utilized qPCR, cytotoxicity and in vivo analysis of tumour and cancer-associated fibroblasts (CAF) response to determine the synergy of Ref-1 and STAT3 inhibitors. Overall, pancreatic tumours grown in the presence of CAFs were sensitized to the combination of STAT3 and Ref-1 inhibition in vivo. In vitro bladder and pancreatic cancer demonstrated the most synergistic responses. By disabling both of these important pathways, this combination therapy has the capacity to hinder crosstalk between the tumour and its microenvironment, leading to improved tumour response.
Collapse
Affiliation(s)
- Rachel A. Caston
- Department of Pediatrics and Herman B Wells Center for Pediatric ResearchIndiana University School of MedicineIndianapolisINUSA
| | - Fenil Shah
- Department of Pediatrics and Herman B Wells Center for Pediatric ResearchIndiana University School of MedicineIndianapolisINUSA
| | - Colton L. Starcher
- Department of Biochemistry and Molecular BiologyIndiana University School of MedicineIndianapolisINUSA
| | - Randall Wireman
- Department of Pediatrics and Herman B Wells Center for Pediatric ResearchIndiana University School of MedicineIndianapolisINUSA
| | - Olivia Babb
- Department of Pediatrics and Herman B Wells Center for Pediatric ResearchIndiana University School of MedicineIndianapolisINUSA
| | - Michelle Grimard
- Department of Pediatrics and Herman B Wells Center for Pediatric ResearchIndiana University School of MedicineIndianapolisINUSA
| | - Jack McGeown
- Department of Pediatrics and Herman B Wells Center for Pediatric ResearchIndiana University School of MedicineIndianapolisINUSA
| | - Lee Armstrong
- Department of Pediatrics and Herman B Wells Center for Pediatric ResearchIndiana University School of MedicineIndianapolisINUSA
| | - Yan Tong
- Department of BiostatisticsIndiana University School of MedicineIndianapolisINUSA
| | - Roberto Pili
- Department of Pharmacology and ToxicologyIndiana University School of MedicineIndianapolisINUSA
- Department of UrologyIndiana University School of MedicineIndianapolisINUSA
- Department of Hematology and OncologyIndiana University School of MedicineIndianapolisINUSA
- Indiana University Simon Comprehensive Cancer CenterIndiana University School of MedicineIndianapolisINUSA
| | - Joseph Rupert
- Department of Biochemistry and Molecular BiologyIndiana University School of MedicineIndianapolisINUSA
- Indiana University Simon Comprehensive Cancer CenterIndiana University School of MedicineIndianapolisINUSA
- Department of SurgeryIndiana University School of MedicineIndianapolisINUSA
| | - Teresa A. Zimmers
- Department of Biochemistry and Molecular BiologyIndiana University School of MedicineIndianapolisINUSA
- Indiana University Simon Comprehensive Cancer CenterIndiana University School of MedicineIndianapolisINUSA
- Department of SurgeryIndiana University School of MedicineIndianapolisINUSA
- Richard L. Roudebush Veterans Administration Medical CenterIndianapolisINUSA
| | - Adily N. Elmi
- Department of Pediatrics and Herman B Wells Center for Pediatric ResearchIndiana University School of MedicineIndianapolisINUSA
| | - Karen E. Pollok
- Department of Pediatrics and Herman B Wells Center for Pediatric ResearchIndiana University School of MedicineIndianapolisINUSA
- Department of Pharmacology and ToxicologyIndiana University School of MedicineIndianapolisINUSA
- Indiana University Simon Comprehensive Cancer CenterIndiana University School of MedicineIndianapolisINUSA
| | - Edward A. Motea
- Department of Biochemistry and Molecular BiologyIndiana University School of MedicineIndianapolisINUSA
- Indiana University Simon Comprehensive Cancer CenterIndiana University School of MedicineIndianapolisINUSA
| | - Mark R. Kelley
- Department of Pediatrics and Herman B Wells Center for Pediatric ResearchIndiana University School of MedicineIndianapolisINUSA
- Department of Biochemistry and Molecular BiologyIndiana University School of MedicineIndianapolisINUSA
- Department of Pharmacology and ToxicologyIndiana University School of MedicineIndianapolisINUSA
- Indiana University Simon Comprehensive Cancer CenterIndiana University School of MedicineIndianapolisINUSA
| | - Melissa L. Fishel
- Department of Pediatrics and Herman B Wells Center for Pediatric ResearchIndiana University School of MedicineIndianapolisINUSA
- Department of Pharmacology and ToxicologyIndiana University School of MedicineIndianapolisINUSA
- Indiana University Simon Comprehensive Cancer CenterIndiana University School of MedicineIndianapolisINUSA
| |
Collapse
|
14
|
Hsu JHM, Chang PMH, Cheng TS, Kuo YL, Wu ATH, Tran TH, Yang YH, Chen JM, Tsai YC, Chu YS, Huang TH, Huang CYF, Lai JM. Identification of Withaferin A as a Potential Candidate for Anti-Cancer Therapy in Non-Small Cell Lung Cancer. Cancers (Basel) 2019; 11:cancers11071003. [PMID: 31319622 PMCID: PMC6678286 DOI: 10.3390/cancers11071003] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 07/15/2019] [Indexed: 12/21/2022] Open
Abstract
Low response rate and recurrence are common issues in lung cancer; thus, identifying a potential compound for these patients is essential. Utilizing an in silico screening method, we identified withaferin A (WA), a cell-permeable steroidal lactone initially extracted from Withania somnifera, as a potential anti-lung cancer and anti-lung cancer stem-like cell (CSC) agent. First, we demonstrated that WA exhibited potent cytotoxicity in several lung cancer cells, as evidenced by low IC50 values. WA concurrently induced autophagy and apoptosis and the activation of reactive oxygen species (ROS), which plays an upstream role in mediating WA-elicited effects. The increase in p62 indicated that WA may modulate the autophagy flux followed by apoptosis. In vivo research also demonstrated the anti-tumor effect of WA treatment. We subsequently demonstrated that WA could inhibit the growth of lung CSCs, decrease side population cells, and inhibit lung cancer spheroid-forming capacity, at least through downregulation of mTOR/STAT3 signaling. Furthermore, the combination of WA and chemotherapeutic drugs, including cisplatin and pemetrexed, exerted synergistic effects on the inhibition of epidermal growth factor receptor (EGFR) wild-type lung cancer cell viability. In addition, WA can further enhance the cytotoxic effect of cisplatin in lung CSCs. Therefore, WA alone or in combination with standard chemotherapy is a potential treatment option for EGFR wild-type lung cancer and may decrease the occurrence of cisplatin resistance by inhibiting lung CSCs.
Collapse
Affiliation(s)
- Jade H-M Hsu
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei 112, Taiwan
| | - Peter M-H Chang
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei 112, Taiwan
- Faculty of Medicine, National Yang-Ming University, Taipei 112, Taiwan
| | - Tai-Shan Cheng
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei 112, Taiwan
| | - Yu-Lun Kuo
- Department of Computer Science and Information Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Alexander T-H Wu
- The PhD Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Thu-Ha Tran
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei 112, Taiwan
- Taiwan International Graduate Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei 112, Taiwan
| | - Yun-Hsuan Yang
- The Ph.D. Program in Pharmaceutical Biotechnology, College of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan
| | - Jing-Ming Chen
- Graduate Institute of Applied Science and Engineering, College of Science and Engineering, Fu Jen Catholic University, New Taipei City 242, Taiwan
| | - Yu-Chen Tsai
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei 112, Taiwan
| | - Yeh-Shiu Chu
- Brain Research Center, National Yang-Ming University, Taipei 112, Taiwan
| | - Tse-Hung Huang
- Graduate Institute of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Chang Gung University, Taoyuan 333, Taiwan.
- School of Nursing, National Taipei University of Nursing and Health Sciences, Taipei 110, Taiwan.
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung 204, Taiwan.
- Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan.
| | - Chi-Ying F Huang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei 112, Taiwan.
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei 112, Taiwan.
| | - Jin-Mei Lai
- The Ph.D. Program in Pharmaceutical Biotechnology, College of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan.
- Graduate Institute of Applied Science and Engineering, College of Science and Engineering, Fu Jen Catholic University, New Taipei City 242, Taiwan.
- Department of Life Science, College of Science and Engineering, Fu Jen Catholic University, New Taipei City 242, Taiwan.
| |
Collapse
|
15
|
Xi X, Wu Q, Bao Y, Lin M, Zhong X, Dai X, Lin H. Overexpression of TBL1XR1 confers tumorigenic capability and promotes recurrence of osteosarcoma. Eur J Pharmacol 2019; 844:259-267. [DOI: 10.1016/j.ejphar.2018.12.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 12/06/2018] [Accepted: 12/06/2018] [Indexed: 12/25/2022]
|
16
|
Temraz S, Shamseddine A, Mukherji D, Charafeddine M, Tfayli A, Assi H, Hammoud MS, Makki I, Nassif S. Ki67 and P53 in Relation to Disease Progression in Metastatic Pancreatic Cancer: a Single Institution Analysis. Pathol Oncol Res 2018; 25:1059-1066. [PMID: 30187215 DOI: 10.1007/s12253-018-0464-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 08/23/2018] [Indexed: 01/05/2023]
Abstract
We investigated the expression patterns of Ki67 and p53 in metastatic pancreatic adenocarcinomas and analyzed their relationship with disease progression-free survival (PFS) and overall survival (OS) in the overall study population and in patients treated with a gemcitabine-containing chemotherapy versus FOLFIRINOX chemotherapy. Patients with histologically confirmed stage IV adenocarcinoma of the pancreas treated at AUBMC were included after obtaining institutional review board approval (IRB ID: IM.ST.05). The ROC was plotted to identify the threshold Ki-67, p53 and CA19-9 value for disease progression, the identified value was further used in Kaplan Meier curves to compare PFS for both groups (gemcitabine versus FOLFIRINOX). A value of p < 0.05 was considered significant in all analyses. On univariate analysis, patients who had a Ki-67 > 12.5% or a p53 > 15% had significantly shorter PFS (p = 0.034 and p = 0.016, respectively). This effect was restricted to Gemcitabine or gemcitabine-combination treated patients. A decrease in CA19-9 levels 6-8 weeks after chemotherapy of >58% had significantly longer PFS (p = 0.027). On multivariate analysis after controlling for grade, age and P53, Ki-67 remained significant, for every one unit increase in Ki-67 the progression risk increases by 1.017 times. Our study highlights the negative impact of high P53 expression and Ki67 proliferation index on PFS in patients with metastatic pancreatic cancer.
Collapse
Affiliation(s)
- Sally Temraz
- Department of internal medicine, division of oncology/hematology, American University of Beirut Medical Center, Riad El Solh, Beirut, 110 72020, Lebanon.
| | - Ali Shamseddine
- Department of internal medicine, division of oncology/hematology, American University of Beirut Medical Center, Riad El Solh, Beirut, 110 72020, Lebanon
| | - Deborah Mukherji
- Department of internal medicine, division of oncology/hematology, American University of Beirut Medical Center, Riad El Solh, Beirut, 110 72020, Lebanon
| | - Maya Charafeddine
- Data Management and Clinical Research Unit, American University of Beirut Medical Center, Riad El Solh, Beirut, 110 72020, Lebanon
| | - Arafat Tfayli
- Department of internal medicine, division of oncology/hematology, American University of Beirut Medical Center, Riad El Solh, Beirut, 110 72020, Lebanon
| | - Hazem Assi
- Department of internal medicine, division of oncology/hematology, American University of Beirut Medical Center, Riad El Solh, Beirut, 110 72020, Lebanon
| | - Miza Salim Hammoud
- Department of internal medicine, division of oncology/hematology, American University of Beirut Medical Center, Riad El Solh, Beirut, 110 72020, Lebanon
| | - Iman Makki
- Department of internal medicine, division of oncology/hematology, American University of Beirut Medical Center, Riad El Solh, Beirut, 110 72020, Lebanon
| | - Samer Nassif
- Department of Pathology & Laboratory Medicine, American University of Beirut Medical Center, Riad El Solh, Beirut, 110 72020, Lebanon
| |
Collapse
|
17
|
TGF-βRII Knock-down in Pancreatic Cancer Cells Promotes Tumor Growth and Gemcitabine Resistance. Importance of STAT3 Phosphorylation on S727. Cancers (Basel) 2018; 10:cancers10080254. [PMID: 30065235 PMCID: PMC6116183 DOI: 10.3390/cancers10080254] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 07/26/2018] [Accepted: 07/27/2018] [Indexed: 01/05/2023] Open
Abstract
Pancreatic adenocarcinoma (PDAC) is one of the most deadly cancers in the Western world because of a lack of early diagnostic markers and efficient therapeutics. At the time of diagnosis, more than 80% of patients have metastasis or locally advanced cancer and are therefore not eligible for surgical resection. Pancreatic cancer cells also harbour a high resistance to chemotherapeutic drugs such as gemcitabine that is one of the main palliative treatments for PDAC. Proteins involved in TGF-β signaling pathway (SMAD4 or TGF-βRII) are frequently mutated in PDAC (50–80%). TGF-β signalling pathway plays antagonistic roles during carcinogenesis by initially inhibiting epithelial growth and later promoting the progression of advanced tumors and thus emerged as both tumor suppressor and oncogenic pathways. In order to decipher the role of TGF-β in pancreatic carcinogenesis and chemoresistance, we generated CAPAN-1 and CAPAN-2 cell lines knocked down for TGF-βRII (first actor of TGF-β signaling). The impact on biological properties of these TGF-βRII-KD cells was studied both in vitro and in vivo. We show that TGF-βRII silencing alters tumor growth and migration as well as resistance to gemcitabine. TGF-βRII silencing also leads to S727 STAT3 and S63 c-Jun phosphorylation, decrease of MRP3 and increase of MRP4 ABC transporter expression and induction of a partial EMT phenotype. These markers associated with TGF-β signaling pathways may thus appear as potent therapeutic tools to better treat/manage pancreatic cancer.
Collapse
|
18
|
Tsai WC, Bai LY, Chen YJ, Chu PC, Hsu YW, Sargeant AM, Weng JR. OSU-A9 inhibits pancreatic cancer cell lines by modulating p38-JAK-STAT3 signaling. Oncotarget 2018; 8:29233-29246. [PMID: 28418923 PMCID: PMC5438726 DOI: 10.18632/oncotarget.16450] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 02/27/2017] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer is an aggressive malignancy that is the fourth leading cause of death worldwide. Since there is a dire need for novel and effective therapies to improve the poor survival rates of advanced pancreatic cancer patients, we analyzed the antitumor effects of OSU-A9, an indole-3-carbinol derivative, on pancreatic cancer cell lines in vitro and in vivo. OSU-A9 exhibited a stronger antitumor effect than gemcitabine on two pancreatic cancer cell lines, including gemcitabine-resistant PANC-1 cells. OSU-A9 treatment induced apoptosis, the down-regulation of Akt phosphorylation, up-regulation of p38 phosphorylation and decreased phosphorylation of JAK and STAT3. Cell migration and invasiveness assays showed that OSU-A9 reduced cancer cell aggressiveness and inhibited BxPC-3 xenograft growth in nude mice. These results suggest that OSU-A9 modulates the p38-JAK-STAT3 signaling module, thereby inducing cytotoxicity in pancreatic cancer cells. Continued evaluation of OSU-A9 as a potential therapeutic agent for pancreatic cancer thus appears warrented.
Collapse
Affiliation(s)
- Wan-Chi Tsai
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.,Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Li-Yuan Bai
- College of Medicine, China Medical University, Taichung 40402, Taiwan.,Division of Hematology and Oncology, Department of Internal Medicine, China Medical University Hospital, Taichung 40447, Taiwan
| | - Yi-Jin Chen
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Po-Chen Chu
- Institute of Biological Chemistry, Academia Sinica, Taipei 11574, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Ya-Wen Hsu
- Department of Hospital and Health Care Administration, Chia Nan University of Pharmacy & Science, Tainan 71745, Taiwan
| | - Aaron M Sargeant
- Charles River Laboratories, Safety Assessment, Spencerville, OH 45887, USA
| | - Jing-Ru Weng
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| |
Collapse
|
19
|
Abstract
Pancreatic cancer is the twelfth most common cancer in the United States, representing 3.2% of all new cancer cases. While composing a small percentage of cancer diagnoses, pancreatic cancer is amongst the most lethal carcinomas, with an overall 5-year survival of 8.2% and incidence rates almost equivocal to death rates. By the time of diagnosis, a majority of patients will present with advanced stage disease. For patients with resectable disease, the estimated overall survival (OS) remains low at 20% as most will develop metastatic disease within 5 years. The lethality of this cancer is attributed to several factors including delayed presentation, lack of effective screening, and complex tumor biology and genetics. Data also suggest that even upon early presentation, pancreatic cancer is a systemic disease with micrometastasis present in the early stages. Traditional cytotoxic therapies have not been clinically impactful in pancreatic cancer, especially in advanced stages, and very little headway has been made in the development of new targeted therapies. As such, this review will discuss current advances in standard of care treatments and novel drug targets being researched.
Collapse
Affiliation(s)
- Amber Draper
- Emory Winship Cancer Institute, Atlanta, GA, USA
| |
Collapse
|
20
|
Xu BQ, Fu ZG, Meng Y, Wu XQ, Wu B, Xu L, Jiang JL, Li L, Chen ZN. Gemcitabine enhances cell invasion via activating HAb18G/CD147-EGFR-pSTAT3 signaling. Oncotarget 2018; 7:62177-62193. [PMID: 27556697 PMCID: PMC5308719 DOI: 10.18632/oncotarget.11405] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 08/08/2016] [Indexed: 12/20/2022] Open
Abstract
Pancreatic cancer, one of the most lethal cancers, has very poor 5-year survival partly due to gemcitabine resistance. Recently, it was reported that chemotherapeutic agents may act as stressors to induce adaptive responses and to promote chemoresistance in cancer cells. During long-term drug treatment, the minority of cancer cells survive and acquire an epithelial-mesenchymal transition phenotype with increased chemo-resistance and metastasis. However, the short-term response of most cancer cells remains unclear. This study aimed to investigate the short-term response of pancreatic cancer cells to gemcitabine stress and to explore the corresponding mechanism. Our results showed that gemcitabine treatment for 24 hours enhanced pancreatic cancer cell invasion. In gemcitabine-treated cells, HAb18G/CD147 was up-regulated; and HAb18G/CD147 down-regulation or inhibition attenuated gemcitabine-enhanced invasion. Mechanistically, HAb18G/CD147 promoted gemcitabine-enhanced invasion by activating the EGFR (epidermal growth factor receptor)-STAT3 (signal transducer and activator of transcription 3) signaling pathway. Inhibition of EGFR-STAT3 signaling counteracted gemcitabine-enhanced invasion, and which relied on HAb18G/CD147 levels. In pancreatic cancer tissues, EGFR was highly expressed and positively correlated with HAb18G/CD147. These data indicate that pancreatic cancer cells enhance cell invasion via activating HAb18G/CD147-EGFR-pSTAT3 signaling. Our findings suggest that inhibiting HAb18G/CD147 is a potential strategy for overcoming drug stress-associated resistance in pancreatic cancer.
Collapse
Affiliation(s)
- Bao-Qing Xu
- Department of Cell Biology and Cell Engineering Research Center, State Key Laboratory of Cancer Biology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Zhi-Guang Fu
- Department of Cell Biology and Cell Engineering Research Center, State Key Laboratory of Cancer Biology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Yao Meng
- Department of Cell Biology and Cell Engineering Research Center, State Key Laboratory of Cancer Biology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Xiao-Qing Wu
- Departments of Molecular Biosciences and Radiation Oncology, University of Kansas, Lawrence, Kansas, USA
| | - Bo Wu
- Department of Cell Biology and Cell Engineering Research Center, State Key Laboratory of Cancer Biology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Liang Xu
- Departments of Molecular Biosciences and Radiation Oncology, University of Kansas, Lawrence, Kansas, USA
| | - Jian-Li Jiang
- Department of Cell Biology and Cell Engineering Research Center, State Key Laboratory of Cancer Biology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Ling Li
- Department of Cell Biology and Cell Engineering Research Center, State Key Laboratory of Cancer Biology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Zhi-Nan Chen
- Department of Cell Biology and Cell Engineering Research Center, State Key Laboratory of Cancer Biology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
21
|
Wang T, Zhuang Z, Zhang P, Wang Y, Mu L, Jin H, Zhou L, Ma X, Liang R, Yuan Y. Effect of arenobufagin on human pancreatic carcinoma cells. Oncol Lett 2017; 14:4971-4976. [PMID: 29085509 DOI: 10.3892/ol.2017.6798] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 06/15/2017] [Indexed: 12/21/2022] Open
Abstract
Pancreatic carcinoma (PC) is a deadly form of cancer with poor overall survival. Currently, chemotherapy such as gemcitabine and 5-fluorouracil (5-FU) are the most popular medications that can improve survival, but rapid drug-resistance makes the search for more effective drugs urgent. Upon looking for natural components to treat PC, it was found that arenobufagin, a cardiac glycosides-like compound, showed significant effects on the gemcitabine-resistant pancreatic carcinoma cell line Panc-1 and the gemcitabine-sensitive cell line ASPC-1 at nanomolar concentrations. The present study used MTT and clonogenic survival assays to examine survival and proliferation, and western blotting to assess changes in the associated mitogen activated protein kinase and phosphoinositide 3-kinase pathways and expression of apoptosis-related proteins. The current study also detected the cell cycle by flow cytometry. Arenobufagin inhibited cell survival and proliferation, decreased the phosphorylation of key downstream proteins of K-Ras, including protein kinase B and extracellular signal related kinase, induced cell cycle G2/M phase arrest and apoptosis, and downregulated the level of phosphorylated epidermal growth factor receptor. Notably, the present data also showed that arenobufagin can enhance the sensitivity of PC cells to gemcitabine and 5-FU. In conclusion, arenobufagin could enhance the effect of gemcitabine and 5-FU on PC cells by targeting multiple key proteins. Therefore, arenobufagin has potential as anadjuvant therapy for the treatment of PC.
Collapse
Affiliation(s)
- Tianjiao Wang
- General Surgery, The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Zhumei Zhuang
- General Surgery, The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Peng Zhang
- General Surgery, The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Yueyue Wang
- General Surgery, The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Lin Mu
- College of Pharmacy, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Haifeng Jin
- General Surgery, The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Lei Zhou
- General Surgery, The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Xiaochi Ma
- College of Pharmacy, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Rui Liang
- General Surgery, The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Yuhui Yuan
- General Surgery, The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| |
Collapse
|
22
|
Pan LL, Wang XL, Luo XL, Liu SY, Xu P, Hu JF, Liu XH. Boehmenan, a Lignan From the Chinese Medicinal Plant Clematis armandii, Inhibits A431 Cell Growth via Blocking p70S6/S6 Kinase Pathway. Integr Cancer Ther 2016; 16:351-359. [PMID: 27698262 PMCID: PMC5759931 DOI: 10.1177/1534735416669803] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Previously, we have shown that boehmenan, a natural product isolated from the dried stem of Caulis clematidis armandii, exhibits various biological activities. The current study investigated the effects of boehmenan on the growth of human epidermoid carcinoma A431 cells. Cell viability and 50% inhibiting concentration (IC50) were assessed by CellTiter-Glo luminescent cell viability assay. Cell cycle arrest was measured by flow cytometry. Intracellular reactive oxygen species production and mitochondrial membrane potential (ΔΨm) collapse were analyzed by a fluorescence spectrophotometer. The activation of epidermal growth factor receptor signaling pathway was evaluated by Western blot. The results showed that boehmenan significantly inhibited the growth of A431 cells (IC50 = 1.6 µM) in a concentration- and time-dependent manner. This compound also blocked cell cycle progression at G2/M phase and modulated mitochondrial apoptosis-related proteins, as evidenced by upregulating p21, cleaved caspase-3, and cleaved poly (ADP-ribose) polymerase protein levels and by downregulating Bcl-2, pro-caspase-9 levels. In addition, boehmenan also markedly induced intracellular reactive oxygen species production and ΔΨm depolarization in a concentration-dependent manner. Furthermore, boehmenan-attenuated epidermal growth factor mediated the phosphorylation of signal transducer and activator of transcription 3 (STAT3), p70 ribosomal protein S6 kinase (p70S6)/S6 in a concentration-dependent manner. Taken together, our results suggest that boehmenan-mediated antiproliferative property in A431 cells was mediated partially by modulation of mitochondrial function and inhibition of STAT3 and p70S6 signal pathways.
Collapse
Affiliation(s)
| | | | | | | | - Peng Xu
- 1 Fudan University, Shanghai, China
| | | | | |
Collapse
|
23
|
Eriksson E, Wenthe J, Irenaeus S, Loskog A, Ullenhag G. Gemcitabine reduces MDSCs, tregs and TGFβ-1 while restoring the teff/treg ratio in patients with pancreatic cancer. J Transl Med 2016; 14:282. [PMID: 27687804 PMCID: PMC5041438 DOI: 10.1186/s12967-016-1037-z] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 09/21/2016] [Indexed: 02/06/2023] Open
Abstract
Background Cancer immunotherapy can be potentiated by conditioning regimens such as cyclophosphamide, which reduces the level of regulatory T cells (tregs). However, myeloid suppressive cells are still remaining. Accordingly to previous reports, gemcitabine improves immune status of cancer patients. In this study, the role of gemcitabine was further explored to map its immunological target cells and molecules in patients with pancreatic cancer. Methods Patient blood was investigated by flow cytometry and cytokine arrays at different time points during gemcitabine treatment. Results The patients had elevated myeloid-derived suppressor cells (MDSCs), and Tregs at diagnosis. Myeloid cells were in general decreased by gemcitabine. The granulocytic MDSCs were significantly reduced while monocytic MDSCs were not affected. In vitro, monocytes responding to IL-6 by STAT3 phosphorylation were prevented to respond in gemcitabine medium. However, gemcitabine could not prevent STAT3 phosphorylation in IL-6-treated tumor cell lines. TGFβ-1 was significantly reduced after only one treatment and continued to decrease. At the same time, the effector T cell:Treg ratio was increased and the effector T cells had full proliferative capacity during the gemcitabine cycle. However, after a resting period, the level of suppressor cells and TGFβ-1 had been restored showing the importance of continuous conditioning. Conclusions Gemcitabine regulates the immune system in patients with pancreatic cancer including MDSCs, Tregs and molecules such as TGFβ-1 but does not hamper the ability of effector lymphocytes to expand to stimuli. Hence, it may be of high interest to use gemcitabine as a conditioning strategy together with immunotherapy. Electronic supplementary material The online version of this article (doi:10.1186/s12967-016-1037-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Emma Eriksson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory C11 2nd floor, Uppsala University, Dag Hammarskjoldsvag 20, 751 85, Uppsala, Sweden
| | - Jessica Wenthe
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory C11 2nd floor, Uppsala University, Dag Hammarskjoldsvag 20, 751 85, Uppsala, Sweden
| | - Sandra Irenaeus
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory C11 2nd floor, Uppsala University, Dag Hammarskjoldsvag 20, 751 85, Uppsala, Sweden.,Department of Oncology, Uppsala University Hospital, Uppsala, Sweden
| | - Angelica Loskog
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory C11 2nd floor, Uppsala University, Dag Hammarskjoldsvag 20, 751 85, Uppsala, Sweden. .,Lokon Pharma AB, Uppsala, Sweden.
| | - Gustav Ullenhag
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory C11 2nd floor, Uppsala University, Dag Hammarskjoldsvag 20, 751 85, Uppsala, Sweden.,Department of Oncology, Uppsala University Hospital, Uppsala, Sweden
| |
Collapse
|
24
|
Zhang Z, Duan Q, Zhao H, Liu T, Wu H, Shen Q, Wang C, Yin T. Gemcitabine treatment promotes pancreatic cancer stemness through the Nox/ROS/NF-κB/STAT3 signaling cascade. Cancer Lett 2016; 382:53-63. [PMID: 27576197 DOI: 10.1016/j.canlet.2016.08.023] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 08/24/2016] [Accepted: 08/24/2016] [Indexed: 12/11/2022]
Abstract
Gemcitabine, the standard chemotherapy drug for advanced pancreatic cancer, has shown limited benefits because of profound chemoresistance. However, the mechanism involved remains unclear. Cancer stem cells exhibit great tumorigenicity and are closely correlated with drug resistance and tumor relapse. In this study, we demonstrated that certain doses of gemcitabine increased the ratios of CD24+ and CD133+ cells and the expression of stemness-associated genes such as Bmi1, Nanog, and Sox2. The enhancement of stemness after gemcitabine treatment was accompanied by increased cell migration, chemoresistance, and tumorigenesis. Moreover, we found that gemcitabine promoted the binding of phosphorylated STAT3 to the promoter of Bmi1, Nanog, and Sox2 genes. Furthermore, inhibition of STAT3 partially reversed gemcitabine-induced sphere formation, migration, chemoresistance, and tumor relapse. We also demonstrated that the activation of STAT3 and gemcitabine-enhanced stemness was NADPH oxidase (Nox)-generated, ROS-dependent, and NF-κB partially mediated the process. Together, our results suggest a pivotal role of pancreatic cancer stem cells in developing chemoresistance toward gemcitabine treatment through the Nox/ROS/NF-κB/STAT3 signaling pathway. These findings will provide new insight for identifying potential targets that can be used to sensitize pancreatic cancer cells to chemotherapy.
Collapse
Affiliation(s)
- Zhengle Zhang
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430022, China
| | - Qingke Duan
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430022, China
| | - Hengqiang Zhao
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430022, China
| | - Tao Liu
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430022, China
| | - Heshui Wu
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430022, China
| | - Qiang Shen
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chunyou Wang
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430022, China
| | - Tao Yin
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430022, China.
| |
Collapse
|
25
|
Striefler JK, Sinn M, Pelzer U, Jühling A, Wislocka L, Bahra M, Sinn BV, Denkert C, Dörken B, Oettle H, Riess H, Bläker H, Lohneis P. P53 overexpression and Ki67-index are associated with outcome in ductal pancreatic adenocarcinoma with adjuvant gemcitabine treatment. Pathol Res Pract 2016; 212:726-34. [DOI: 10.1016/j.prp.2016.06.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 03/28/2016] [Accepted: 06/08/2016] [Indexed: 02/06/2023]
|
26
|
Gong J, Muñoz AR, Pingali S, Payton-Stewart F, Chan DE, Freeman JW, Ghosh R, Kumar AP. Downregulation of STAT3/NF-κB potentiates gemcitabine activity in pancreatic cancer cells. Mol Carcinog 2016; 56:402-411. [PMID: 27208550 DOI: 10.1002/mc.22503] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 05/03/2016] [Accepted: 05/13/2016] [Indexed: 12/23/2022]
Abstract
There is an unmet need to develop new agents or strategies against therapy resistant pancreatic cancer (PanCA). Recent studies from our laboratory showed that STAT3 negatively regulates NF-κB and that inhibition of this crosstalk using Nexrutine® (Nx) reduces transcriptional activity of COX-2. Inhibition of these molecular interactions impedes pancreatic cancer cell growth as well as reduces fibrosis in a preclinical animal model. Nx is an extract derived from the bark of Phellodendron amurense and has been utilized in traditional Chinese medicine as antidiarrheal, astringent, and anti-inflammatory agent for centuries. We hypothesized that "Nx-mediated inhibition of survival molecules like STAT3 and NF-κB in pancreatic cancer cells will improve the efficacy of the conventional chemotherapeutic agent, gemcitabine (GEM)." Therefore, we explored the utility of Nx, one of its active constituents berberine and its derivatives, to enhance the effects of GEM. Using multiple human pancreatic cancer cells we found that combination treatment with Nx and GEM resulted in significant alterations of proteins in the STAT3/NF-κB signaling axis culminating in growth inhibition in a synergistic manner. Furthermore, GEM resistant cells were more sensitive to Nx treatment than their parental GEM-sensitive cells. Interestingly, although berberine, the Nx active component used, and its derivatives were biologically active in GEM sensitive cells they did not potentiate GEM activity when used in combination. Taken together, these results suggest that the natural extract, Nx, but not its active component, berberine, has the potential to improve GEM sensitivity, perhaps by down regulating STAT3/NF-κB signaling. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jingjing Gong
- Department of Pharmacology, University of Texas Health Science Center, San Antonio, Texas
| | - Amanda R Muñoz
- Department of Urology, University of Texas Health Science Center, San Antonio, Texas
| | - Subramanya Pingali
- Department of Chemistry, Xavier University of Louisiana, New Orleans, Los Angeles
| | | | - Daniel E Chan
- Division of Medical Oncology, University of Colorado, Aurora, Colorado
| | - James W Freeman
- Division of Medical Oncology, University of Texas Health Science Center, San Antonio, Texas.,Cancer Therapy and Research Center, University of Texas Health Science Center, San Antonio, Texas.,South Texas Veterans Health Care System, San Antonio, Texas
| | - Rita Ghosh
- Department of Pharmacology, University of Texas Health Science Center, San Antonio, Texas.,Department of Urology, University of Texas Health Science Center, San Antonio, Texas.,Cancer Therapy and Research Center, University of Texas Health Science Center, San Antonio, Texas.,Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, Texas
| | - Addanki P Kumar
- Department of Pharmacology, University of Texas Health Science Center, San Antonio, Texas.,Department of Urology, University of Texas Health Science Center, San Antonio, Texas.,Cancer Therapy and Research Center, University of Texas Health Science Center, San Antonio, Texas.,South Texas Veterans Health Care System, San Antonio, Texas.,Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, Texas
| |
Collapse
|
27
|
Blockage of STAT3 Signaling Pathway by Morusin Induces Apoptosis and Inhibits Invasion in Human Pancreatic Tumor Cells. Pancreas 2016; 45:409-19. [PMID: 26646273 DOI: 10.1097/mpa.0000000000000496] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVES Signal transducer and activator of transcription 3 (STAT3) is an oncogenic transcription factor implicated in carcinogenesis. Here, we investigated the role of morusin, the major prenylflavonoid, isolated from Chinese herbal medicine in abrogating the constitutive STAT3 activation in human pancreatic tumor cells. METHODS The effect of morusin on STAT3 activation, associated protein kinases, STAT3-regulated gene products, cellular proliferation, and apoptosis was examined. RESULTS Morusin specifically inhibited constitutive STAT3 activation both at tyrosine residue 705 and serine residue 727 in 4 pancreatic tumor cells. The inhibition of STAT3 was mediated through the suppression of activation of upstream JAK1, JAK2, and c-Src kinases. Morusin led to the accumulation of the cells in different phases of the cell cycle and caused induction of apoptosis and loss of mitochondrial membrane potential. Morusin downregulated the expression of various STAT3-regulated gene products; this correlated with induction of caspase-3 activation and anti-invasive effects. Treatment with the protein tyrosine phosphatase inhibitor pervanadate reversed the morusin-induced downregulation of STAT3, thereby suggesting the involvement of a protein tyrosine phosphatase. CONCLUSIONS Morusin is a novel blocker of STAT3 activation and thus may have potential in negative regulation of growth and metastasis of pancreatic tumor cells.
Collapse
|
28
|
Poli V, Camporeale A. STAT3-Mediated Metabolic Reprograming in Cellular Transformation and Implications for Drug Resistance. Front Oncol 2015; 5:121. [PMID: 26106584 PMCID: PMC4459099 DOI: 10.3389/fonc.2015.00121] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 05/15/2015] [Indexed: 12/20/2022] Open
Abstract
Signal transducer and activator of transcription (STAT)3 mediates the signaling downstream of cytokine and growth factor receptors, regulating the expression of target genes. It is constitutively phosphorylated on tyrosine (Y-P) in many tumors, where its transcriptional activity can induce a metabolic switch toward aerobic glycolysis and down-regulate mitochondrial activity, a prominent metabolic feature of most cancer cells, correlating with reduced production of ROS, delayed senescence, and protection from apoptosis. STAT3 can, however, also localize to mitochondria, where its serine-phosphorylated (S-P) form preserves mitochondrial oxidative phosphorylation and controls the opening of the mitochondrial permeability transition pore, also promoting survival and resistance to apoptosis in response to specific signals/oncogenes such as RAS. Thus, downstream of different signals, both nuclear, Y-P STAT3, and mitochondrial, S-P STAT3, can act by promoting cell survival and reducing ROS production. Here, we discuss these properties in the light of potential connections between STAT3-driven alterations of mitochondrial metabolism and the development of drug resistance in cancer patients.
Collapse
Affiliation(s)
- Valeria Poli
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino , Torino , Italy
| | - Annalisa Camporeale
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino , Torino , Italy
| |
Collapse
|
29
|
Jiang W, Zhao S, Xu L, Lu Y, Lu Z, Chen C, Ni J, Wan R, Yang L. The inhibitory effects of xanthohumol, a prenylated chalcone derived from hops, on cell growth and tumorigenesis in human pancreatic cancer. Biomed Pharmacother 2015. [PMID: 26211581 DOI: 10.1016/j.biopha.2015.05.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Pancreatic cancer (PC) is one of the most lethal human malignancies worldwide. Here, we demonstrated that xanthohumol (XN), the most abundant prenylated chalcone isolated from hops, inhibited the growth of cultured PC cells and their subcutaneous xenograft tumors. XN treatment was found to induce cell cycle arrest and apoptosis of PC cells (PANC-1, BxPC-3) by inhibiting phosphorylation of signal transducer and activator of transcription 3 (STAT3) and expression of its downstream targeted genes cyclinD1, survivin, and Bcl-xL at the messenger RNA level, which involved in regulation of apoptosis and the cell cycle. Overall, our results suggested that XN presents a promising candidate therapeutic agent against human PC and the STAT3 signaling pathway is its key molecular target.
Collapse
Affiliation(s)
- Weiliang Jiang
- Department of Gastroenterology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, No. 100, Hai Ning Road, Shanghai 200080, China.
| | - Senlin Zhao
- Department of General Surgery, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Ling Xu
- Department of Gastroenterology, Shanghai Tongren Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Yingying Lu
- Department of Gastroenterology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, No. 100, Hai Ning Road, Shanghai 200080, China.
| | - Zhanjun Lu
- Department of Gastroenterology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, No. 100, Hai Ning Road, Shanghai 200080, China.
| | - Congying Chen
- Department of Gastroenterology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, No. 100, Hai Ning Road, Shanghai 200080, China.
| | - Jianbo Ni
- Department of Gastroenterology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, No. 100, Hai Ning Road, Shanghai 200080, China.
| | - Rong Wan
- Department of Gastroenterology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, No. 100, Hai Ning Road, Shanghai 200080, China.
| | - Lijuan Yang
- Department of Gastroenterology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, No. 100, Hai Ning Road, Shanghai 200080, China.
| |
Collapse
|
30
|
Lui GYL, Kovacevic Z, V Menezes S, Kalinowski DS, Merlot AM, Sahni S, Richardson DR. Novel thiosemicarbazones regulate the signal transducer and activator of transcription 3 (STAT3) pathway: inhibition of constitutive and interleukin 6-induced activation by iron depletion. Mol Pharmacol 2015; 87:543-60. [PMID: 25561562 DOI: 10.1124/mol.114.096529] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Pharmacologic manipulation of metal pools in tumor cells is a promising strategy for cancer treatment. Here, we reveal how the iron-binding ligands desferrioxamine (DFO), di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone (Dp44mT), and di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC) inhibit constitutive and interleukin 6-induced activation of signal transducer and activator of transcription 3 (STAT3) signaling, which promotes proliferation, survival, and metastasis of cancer cells. We demonstrate that DFO, Dp44mT, and DpC significantly decrease constitutive phosphorylation of the STAT3 transcription factor at Tyr705 in the pancreatic cancer cell lines PANC-1 and MIAPaCa-2 as well as the prostate cancer cell line DU145. These compounds also significantly decrease the dimerized STAT3 levels, the binding of nuclear STAT3 to its target DNA, and the expression of downstream targets of STAT3, including cyclin D1, c-myc, and Bcl-2. Examination of upstream mediators of STAT3 in response to these ligands has revealed that Dp44mT and DpC could significantly decrease activation of the nonreceptor tyrosine kinase Src and activation of cAbl in DU145 and MIAPaCa-2 cells. In contrast to the effects of Dp44mT, DpC, or DFO on inhibiting STAT3 activation, the negative control compound di-2-pyridylketone 2-methyl-3-thiosemicarbazone, or the DFO:Fe complex, which cannot bind cellular iron, had no effect. This demonstrates the role of iron-binding in the activity observed. Immunohistochemical staining of PANC-1 tumor xenografts showed a marked decrease in STAT3 in the tumors of mice treated with Dp44mT or DpC compared with the vehicle. Collectively, these studies demonstrate suppression of STAT3 activity by iron depletion in vitro and in vivo, and reveal insights into regulation of the critical oncogenic STAT3 pathway.
Collapse
Affiliation(s)
- Goldie Y L Lui
- Department of Pathology and Bosch Institute, School of Medical Sciences, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Zaklina Kovacevic
- Department of Pathology and Bosch Institute, School of Medical Sciences, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Sharleen V Menezes
- Department of Pathology and Bosch Institute, School of Medical Sciences, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Danuta S Kalinowski
- Department of Pathology and Bosch Institute, School of Medical Sciences, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Angelica M Merlot
- Department of Pathology and Bosch Institute, School of Medical Sciences, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Sumit Sahni
- Department of Pathology and Bosch Institute, School of Medical Sciences, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Des R Richardson
- Department of Pathology and Bosch Institute, School of Medical Sciences, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
31
|
Jiang J, Li Z, Yu C, Chen M, Tian S, Sun C. MiR-1181 inhibits stem cell-like phenotypes and suppresses SOX2 and STAT3 in human pancreatic cancer. Cancer Lett 2014; 356:962-70. [PMID: 25444909 DOI: 10.1016/j.canlet.2014.11.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 11/05/2014] [Accepted: 11/05/2014] [Indexed: 01/04/2023]
Abstract
Recent studies have shown that cancer stem cells (CSCs) play an important role in the development of pancreatic cancer. Multiple oncogenes and signaling pathways have been confirmed to participate in the stemness maintenance and tumorigenicity of CSCs, including sex-determining region Y-box 2 (SOX2) and signal transduction and activation of transcription 3 (STAT3), which may provide novel therapeutic targets on pancreatic cancer. Here, we reported in pancreatic cancer tissues and cells that miR-1181 expression was markedly downregulated, and the low miR-1181 expression was associated with poorer overall survival and disease-free survival in pancreatic cancer patients. Furthermore, overexpression of miR-1181 inhibited, whereas downregulation of miR-1181 promoted, CSCs-like phenotypes in vitro and tumorigenicity in vivo in pancreatic cancer cells. Moreover, we demonstrated that miR-1181 directly suppressed SOX2 and STAT3 expression, resulting in downregulation of SOX2 and inhibition of the STAT3 pathway. Hence, our results suggest that miR-1181 plays a vital role in inhibiting the CSCs-like phenotypes in pancreatic cancer and might represent a potential target for anti-pancreatic cancer.
Collapse
Affiliation(s)
- Jianxin Jiang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guiyang Medical College, Guiyang 550004, China
| | - Zhu Li
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guiyang Medical College, Guiyang 550004, China
| | - Chao Yu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guiyang Medical College, Guiyang 550004, China
| | - Meiyuan Chen
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guiyang Medical College, Guiyang 550004, China
| | - Se Tian
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guiyang Medical College, Guiyang 550004, China
| | - Chengyi Sun
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guiyang Medical College, Guiyang 550004, China.
| |
Collapse
|
32
|
Zhu MH, Ji SL, Zhang CY, Cui L, Xiong L, Zheng HL. DNA microarray reveals ZNF195 and SBF1 are potential biomarkers for gemcitabine sensitivity in head and neck squamous cell carcinoma cell lines. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:1514-1523. [PMID: 24817947 PMCID: PMC4014231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 03/08/2014] [Indexed: 06/03/2023]
Abstract
Gemcitabine is a potential chemotherapy drug for treatment of head and neck squamous cell carcinoma (HNSCC), however, the poor or partial response of HNSCC patients to gemcitabine demonstrated the urgent need for gemcitabine biomarkers to improve the therapy. In present work, 10 HNSCC cell lines were employed to figure out the biomarkers for gemcitabine sensitivity. The sensitivities of these 10 cell lines to gemcitabine and the basal expression of these cell lines was investigated, the correlation between gemcitabine response (IC50 dose) and gene expression was investigated by Pearson correlation and FDR estimation. The top seven positive genes responsible for gemcitabine sensitivity were validated by qPCR in these 10 HNSCC cell lines, while only two genes (SBF1 and ZNF195) were expression-correlated to gemcitabine response. Furthermore, ZNF195 expression was closely associated with gemcitabine sensitivity in the subsequent independent validation in cell lines from various types of cancer. Our work might provide potential biomarkers for gemcitabine sensitivity in HNSCC and various type of cancer.
Collapse
Affiliation(s)
- Min-Hui Zhu
- Department of Otorhinolaryngology-Head and Neck Surgery, Changhai Hospital, Second Military Medical University Shanghai, China
| | - Shun-Long Ji
- Department of Otorhinolaryngology-Head and Neck Surgery, Changhai Hospital, Second Military Medical University Shanghai, China
| | - Cai-Yun Zhang
- Department of Otorhinolaryngology-Head and Neck Surgery, Changhai Hospital, Second Military Medical University Shanghai, China
| | - Long Cui
- Department of Otorhinolaryngology-Head and Neck Surgery, Changhai Hospital, Second Military Medical University Shanghai, China
| | - Lei Xiong
- Department of Otorhinolaryngology-Head and Neck Surgery, Changhai Hospital, Second Military Medical University Shanghai, China
| | - Hong-Liang Zheng
- Department of Otorhinolaryngology-Head and Neck Surgery, Changhai Hospital, Second Military Medical University Shanghai, China
| |
Collapse
|
33
|
Pierobon M, Wulfkuhle J, Liotta LA, Petricoin EF. Integration of Protein Network Activation Mapping Technology for Personalized Therapy. MOLECULAR DIAGNOSTICS AND TREATMENT OF PANCREATIC CANCER 2014:367-383. [DOI: 10.1016/b978-0-12-408103-1.00016-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|