1
|
Chen S, Leng P, Guo J, Zhou H. FBXW7 in breast cancer: mechanism of action and therapeutic potential. J Exp Clin Cancer Res 2023; 42:226. [PMID: 37658431 PMCID: PMC10474666 DOI: 10.1186/s13046-023-02767-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/18/2023] [Indexed: 09/03/2023] Open
Abstract
Breast cancer is one of the frequent tumors that seriously endanger the physical and mental well-being in women. F-box and WD repeat domain-containing 7 (FBXW7) is a neoplastic repressor. Serving as a substrate recognition element for ubiquitin ligase, FBXW7 participates in the ubiquitin-proteasome system and is typically in charge of the ubiquitination and destruction of crucial oncogenic proteins, further performing a paramount role in cell differentiation, apoptosis and metabolic processes. Low levels of FBXW7 cause abnormal stability of pertinent substrates, mutations and/or deletions in the FBXW7 gene have been reported to correlate with breast cancer malignant progression and chemoresistance. Given the lack of an effective solution to breast cancer's clinical drug resistance dilemma, elucidating FBXW7's mechanism of action could provide a theoretical basis for targeted drug exploration. Therefore, in this review, we focused on FBXW7's role in a range of breast cancer malignant behaviors and summarized the pertinent cellular targets, signaling pathways, as well as the mechanisms regulating FBXW7 expression. We also proposed novel perspectives for the exploitation of alternative therapies and specific tumor markers for breast cancer by therapeutic strategies aiming at FBXW7.
Collapse
Affiliation(s)
- Siyu Chen
- Chongqing Key Laboratory of Sichuan-Chongqing Co-Construction for Diagnosisand, Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology , Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ping Leng
- Chongqing Key Laboratory of Sichuan-Chongqing Co-Construction for Diagnosisand, Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology , Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinlin Guo
- Chongqing Key Laboratory of Sichuan-Chongqing Co-Construction for Diagnosisand, Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology , Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Hao Zhou
- Chongqing Key Laboratory of Sichuan-Chongqing Co-Construction for Diagnosisand, Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology , Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
2
|
Liu J, Pan Y, Liu Y, Wei W, Hu X, Xin W, Chen N. The regulation of PTEN: Novel insights into functions as cancer biomarkers and therapeutic targets. J Cell Physiol 2023; 238:1693-1715. [PMID: 37334436 DOI: 10.1002/jcp.31053] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/10/2023] [Accepted: 05/17/2023] [Indexed: 06/20/2023]
Abstract
This review summarizes the implications of the primary tumor suppressor protein phosphatase and tensin homolog (PTEN) in aggressive cancer development. PTEN interacts with other cellular proteins or factors suggesting the existence of an intricate molecular network that regulates their oncogenic function. Accumulating evidence has shown that PTEN exists and plays a role in the cytoplasmic organelles and in the nucleus. PTEN blocks phosphoinositide 3-kinases (PI3K)-protein kinase B-mammalian target of rapamycin signaling pathway by dephosphorylating phosphatidylinositol (PI)-3,4,5-triphosphate to PI-4,5-bisphosphate thus counteracting PI3K function. Studies have shown that PTEN expression is tightly regulated at transcriptional, posttranscriptional, and posttranslational levels (including protein-protein interactions and posttranslational modifications). Despite recent advances in PTEN research, the regulation and function of the PTEN gene remain largely unknown. How mutation or loss of specific exons in the PTEN gene occurs and involves in cancer development is not clear. This review illustrates the regulatory mechanisms of PTEN expression and discusses how PTEN participates in tumor development and/or suppression. Future prospects for the clinical applications are also highlighted.
Collapse
Affiliation(s)
- Jie Liu
- Department of Dermatology, Skin Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Yongli Pan
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Yuheng Liu
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Wei Wei
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Xiaoping Hu
- Department of Dermatology, Skin Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Wenqiang Xin
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Nan Chen
- Department of Gastroenterology, Liaocheng People's Hospital, Liaocheng, China
| |
Collapse
|
3
|
Targeting CDCP1 gene transcription coactivated by BRD4 and CBP/p300 in castration-resistant prostate cancer. Oncogene 2022; 41:3251-3262. [PMID: 35513563 DOI: 10.1038/s41388-022-02327-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 11/09/2022]
Abstract
CUB domain-containing protein 1 (CDCP1), a transmembrane protein with tumor pro-metastatic activity, is highly expressed in late-stage and castrate-resistant prostate cancer (CRPC). However, the molecular mechanism driving CDCP1 overexpression in CRPC progress remains elusive. Here we report that transcription cofactors BRD4 and CBP/p300 co-regulate transcriptional expression of CDCP1 in CRPC tumorigenesis. In contrast to androgen receptor (AR) in CRPC, increased expression of BRD4 and CBP/p300 is strongly correlated with CDCP1 gene amplification. Combined knockdown or dual-inhibition of BRD4 and CBP/p300 down-regulated CDCP1 transcription and downstream PI3K/AKT and/or SRC/MAPK signaling pathways in CRPC cells much more so than single-protein perturbation. Our biochemical and structural analyses further showed that NEO2734, a dual-inhibitor targeting BRD4 and p300 bromodomains exhibits greater efficacy than single inhibitors for BRD4 or CBP/p300 in suppressing CDCP1 transcriptional expression and its downstream signaling pathways in CRPC cell proliferation and metastasis. Our study illustrates that targeting CDCP1 through dual-inhibition of BRD4 and CBP/p300 represents a synergistic therapeutic strategy for new treatment of CRPC.
Collapse
|
4
|
Yeh CH, Bellon M, Nicot C. FBXW7: a critical tumor suppressor of human cancers. Mol Cancer 2018; 17:115. [PMID: 30086763 PMCID: PMC6081812 DOI: 10.1186/s12943-018-0857-2] [Citation(s) in RCA: 356] [Impact Index Per Article: 50.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 07/16/2018] [Indexed: 12/14/2022] Open
Abstract
The ubiquitin-proteasome system (UPS) is involved in multiple aspects of cellular processes, such as cell cycle progression, cellular differentiation, and survival (Davis RJ et al., Cancer Cell 26:455-64, 2014; Skaar JR et al., Nat Rev Drug Discov 13:889-903, 2014; Nakayama KI and Nakayama K, Nat Rev Cancer 6:369-81, 2006). F-box and WD repeat domain containing 7 (FBXW7), also known as Sel10, hCDC4 or hAgo, is a member of the F-box protein family, which functions as the substrate recognition component of the SCF E3 ubiquitin ligase. FBXW7 is a critical tumor suppressor and one of the most commonly deregulated ubiquitin-proteasome system proteins in human cancer. FBXW7 controls proteasome-mediated degradation of oncoproteins such as cyclin E, c-Myc, Mcl-1, mTOR, Jun, Notch and AURKA. Consistent with the tumor suppressor role of FBXW7, it is located at chromosome 4q32, a genomic region deleted in more than 30% of all human cancers (Spruck CH et al., Cancer Res 62:4535-9, 2002). Genetic profiles of human cancers based on high-throughput sequencing have revealed that FBXW7 is frequently mutated in human cancers. In addition to genetic mutations, other mechanisms involving microRNA, long non-coding RNA, and specific oncogenic signaling pathways can inactivate FBXW7 functions in cancer cells. In the following sections, we will discuss the regulation of FBXW7, its role in oncogenesis, and the clinical implications and prognostic value of loss of function of FBXW7 in human cancers.
Collapse
Affiliation(s)
- Chien-Hung Yeh
- Department of Pathology and Laboratory Medicine, Center for Viral Pathogenesis, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA
| | - Marcia Bellon
- Department of Pathology and Laboratory Medicine, Center for Viral Pathogenesis, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA
| | - Christophe Nicot
- Department of Pathology and Laboratory Medicine, Center for Viral Pathogenesis, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA.
| |
Collapse
|
5
|
Ozcagli E, Kara M, Kotil T, Fragkiadaki P, Tzatzarakis MN, Tsitsimpikou C, Stivaktakis PD, Tsoukalas D, Spandidos DA, Tsatsakis AM, Alpertunga B. Stanozolol administration combined with exercise leads to decreased telomerase activity possibly associated with liver aging. Int J Mol Med 2018; 42:405-413. [PMID: 29717770 PMCID: PMC5979936 DOI: 10.3892/ijmm.2018.3644] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/11/2018] [Indexed: 12/28/2022] Open
Abstract
Anabolic agents are doping substances which are commonly used in sports. Stanozolol, a 17α‑alkylated derivative of testosterone, has a widespread use among athletes and bodybuilders. Several medical and behavioral adverse effects are associated with anabolic androgenic steroids (AAS) abuse, while the liver remains the most well recognized target organ. In the present study, the hepatic effects of stanozolol administration in rats at high doses resembling those used for doping purposes were investigated, in the presence or absence of exercise. Stanozolol and its metabolites, 16‑β‑hydroxystanozolol and 3'‑hydroxystanozolol, were detected in rat livers using liquid chromatography‑mass spectrometry (LC‑MS). Telomerase activity, which is involved in cellular aging and tumorigenesis, was detected by examining telomerase reverse transcriptase (TERT) and phosphatase and tensin homolog (PTEN) expression levels in the livers of stanozolol‑treated rats. Stanozolol induced telomerase activity at the molecular level in the liver tissue of rats and exercise reversed this induction, reflecting possible premature liver tissue aging. PTEN gene expression in the rat livers was practically unaffected either by exercise or by stanozolol administration.
Collapse
Affiliation(s)
- Eren Ozcagli
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy and
| | - Mehtap Kara
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy and
| | - Tugba Kotil
- Department of Histology and Embryology, Faculty of Medicine, Istanbul University, Istanbul 34116, Turkey
| | - Persefoni Fragkiadaki
- Laboratory of Forensic Sciences and Toxicology, Medical School, University of Crete, 71003 Heraklion
| | - Manolis N. Tzatzarakis
- Laboratory of Forensic Sciences and Toxicology, Medical School, University of Crete, 71003 Heraklion
| | | | | | - Dimitrios Tsoukalas
- Laboratory of Forensic Sciences and Toxicology, Medical School, University of Crete, 71003 Heraklion
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Aristides M. Tsatsakis
- Laboratory of Forensic Sciences and Toxicology, Medical School, University of Crete, 71003 Heraklion
| | - Buket Alpertunga
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy and
| |
Collapse
|
6
|
Ao X, Li S, Xu Z, Yang Y, Chen M, Jiang X, Wu H. Sumoylation of TCF21 downregulates the transcriptional activity of estrogen receptor-alpha. Oncotarget 2018; 7:26220-34. [PMID: 27028856 PMCID: PMC5041976 DOI: 10.18632/oncotarget.8354] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 03/06/2016] [Indexed: 12/18/2022] Open
Abstract
Aberrant estrogen receptor-α (ERα) signaling is recognized as a major contributor to the development of breast cancer. However, the molecular mechanism underlying the regulation of ERα in breast cancer is still inconclusive. In this study, we showed that the transcription factor 21 (TCF21) interacted with ERα, and repressed its transcriptional activity in a HDACs-dependent manner. We also showed that TCF21 could be sumoylated by the small ubiquitin-like modifier SUMO1, and this modification could be reversed by SENP1. Sumoylation of TCF21 occurred at lysine residue 24 (K24). Substitution of K24 with arginine resulted in complete abolishment of sumoylation. Sumoylation stabilized TCF21, but did not affect its subcellular localization. Sumoylation of TCF21 also enhanced its interaction with HDAC1/2 without affecting its interaction with ERα. Moreover, sumoylation of TCF21 promoted its repression of ERα transcriptional activity, and increased the recruitment of HDAC1/2 to the pS2 promoter. Consistent with these observations, sumoylation of TCF21 could inhibit the growth of ERα-positive breast cancer cells and decreased the proportion of S-phase cells in the cell cycle. These findings suggested that TCF21 might act as a negative regulator of ERα, and its sumoylation inhibited the transcriptional activity of ERα through promoting the recruitment of HDAC1/2.
Collapse
Affiliation(s)
- Xiang Ao
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, Liaoning, People's Republic of China
| | - Shujing Li
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, Liaoning, People's Republic of China
| | - Zhaowei Xu
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, Liaoning, People's Republic of China
| | - Yangyang Yang
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, Liaoning, People's Republic of China
| | - Min Chen
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, Liaoning, People's Republic of China
| | - Xiao Jiang
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, Liaoning, People's Republic of China
| | - Huijian Wu
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, Liaoning, People's Republic of China.,School of Life Science and Medicine, Dalian University of Technology, Panjin 114221, Liaoning, People's Republic of China
| |
Collapse
|
7
|
Wang M, Wu H, Li S, Xu Z, Li X, Yang Y, Li B, Li Y, Guo J, Chen H. SYNJ2BP promotes the degradation of PTEN through the lysosome-pathway and enhances breast tumor metastasis via PI3K/AKT/SNAI1 signaling. Oncotarget 2017; 8:89692-89706. [PMID: 29163781 PMCID: PMC5685702 DOI: 10.18632/oncotarget.21058] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 09/03/2017] [Indexed: 12/22/2022] Open
Abstract
SYNJ2BP plays an important role in breast cancer metastasis. However, the molecular mechanism associated with the function of SYNJ2BP in metastasis remains unclear. In this study, we investigated the role of SYNJ2BP in tumor metastasis and established the associated underlying mechanism. Over-expression of SYNJ2BP promoted both cell migration and invasion. In contrast, silencing SYNJ2BP caused the suppression of cell migration and invasion. SYNJ2BP increased the levels of phosphorylation for AKT and GSK3β, which could be inhibited by the PI3K inhibitor, LY294002, and the GSK3β inhibitor, LiCl, and regulated the accumulation of SNAI1 in the nucleus and the expression of the SNAI1 target gene, E-cadherin (EMT marker). It is known that the stability of PTEN is regulated by ubiquitination. However, in this study, we additionally demonstrated that SYNJ2BP mediated the degradation of PTEN protein by the lysosome-pathway and induced the activation of PI3K/AKT signaling by promoting the co-localization of PTEN with autophagy-lysosomes and the expression of LC3-II and p62. In vivo study, the overexpression of SYNJ2BP significantly increased the metastasis of 4T1 cells in BALB/c mice. In addition, SYNJ2BP was highly expressed in breast carcinoma (p = 0.0031), but not in normal breast tissue, while analysis of tissue samples taken from SNAI1-positive human breast cancers showed a significant correlation between the expression of SYNJ2BP and that of p-AKT (p < 0.005). Collectively, our data identified a tumor inducer, SYNJ2BP, which could activate the PI3K/AKT/GSK3β/SNAI1 signaling pathway through the lysosome-mediated degradation of PTEN, and promote both EMT and tumor metastasis during the progression of breast cancer.
Collapse
Affiliation(s)
- Miao Wang
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - Huijian Wu
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China.,School of Life Science and Medicine, Dalian University of Technology, Panjin, China
| | - Shujing Li
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - Zhaowei Xu
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - Xiahui Li
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - Yangyang Yang
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - Bowen Li
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - Yanan Li
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - Jing Guo
- School of Life Science and Medicine, Dalian University of Technology, Panjin, China
| | - Huan Chen
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| |
Collapse
|
8
|
Zhu J, Li Y, Chen C, Ma J, Sun W, Tian Z, Li J, Xu J, Liu CS, Zhang D, Huang C, Huang H. NF-κB p65 Overexpression Promotes Bladder Cancer Cell Migration via FBW7-Mediated Degradation of RhoGDIα Protein. Neoplasia 2017; 19:672-683. [PMID: 28772241 PMCID: PMC5540704 DOI: 10.1016/j.neo.2017.06.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 05/26/2017] [Accepted: 06/05/2017] [Indexed: 11/24/2022]
Abstract
BACKGROUND Since invasive bladder cancer (BC) is one of the most lethal urological malignant tumors worldwide, understanding the molecular mechanisms that trigger the migration, invasion, and metastasis of BC has great significance in reducing the mortality of this disease. Although RelA/p65, a member of the NF-kappa B transcription factor family, has been reported to be upregulated in human BCs, its regulation of BC motility and mechanisms have not been explored yet. METHODS NF-κBp65 expression was evaluated in N-butyl-N-(4-hydroxybutyl)-nitrosamine (BBN)-induced high invasive BCs by immunohistochemistry staining and in human BC cell lines demonstrated by Western Blot. The effects of NF-κBp65 knockdown on BC cell migration and invasion, as well as its regulated RhoGDIα and FBW7, were also evaluated in T24T cells by using loss- and gain-function approaches. Moreover, the interaction of FBW7 with RhoGDIα was determined with immunoprecipitation assay, while critical role of ubiquitination of RhoGDIα by FBW7 was also demonstrated in the studies. RESULTS p65 protein was remarkably upregulated in the BBN-induced high invasive BCs and in human BC cell lines. We also observed that p65 overexpression promoted BC cell migration by inhibiting RhoGDIα expression. The regulatory effect of p65 on RhoGDIα expression is mediated by its upregulation of FBW7, which specifically interacted with RhoGDIα and promoted RhoGDIα ubiquitination and degradation. Mechanistic studies revealed that p65 stabilizing the E3 ligase FBW7 protein was mediated by its attenuating pten mRNA transcription. CONCLUSIONS We demonstrate that p65 overexpression inhibits pten mRNA transcription, which stabilizes the protein expression of ubiquitin E3 ligase FBW7, in turn increasing the ubiquitination and degradation of RhoGDIα protein and finally promoting human BC migration. The novel identification of p65/PTEN/FBW7/RhoGDIα axis provides a significant insight into understanding the nature of BC migration, further offering a new theoretical support for cancer therapy.
Collapse
Key Words
- bc, bladder cancer
- bbn, n-butyl-n-(4-hydroxybutyl)-nitrosamine
- chx, cycloheximide
- rt-pcr, reverse transcription-polymerase chain reaction
- nf-κb, transcription factors of the nuclear factor kappa b
- rhogdi, rho guanosine diphosphate dissociation inhibitors
- fbw7, f-box and wd repeat domain-containing 7
- pten, phosphatase and tensin homolog
- gfp, green fluorescent protein
- mef, murine embryonic fibroblasts
Collapse
Affiliation(s)
- Junlan Zhu
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China 325035; Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| | - Yang Li
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China 325035; Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| | - Caiyi Chen
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China 325035
| | - Jiugao Ma
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China 325035
| | - Wenrui Sun
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China 325035
| | - Zhongxian Tian
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China 325035; Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| | - Jingxia Li
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| | - Jiheng Xu
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China 325035; Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| | - Claire S Liu
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| | - Dongyun Zhang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| | - Chuanshu Huang
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China 325035; Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA.
| | - Haishan Huang
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China 325035.
| |
Collapse
|
9
|
Li M, Ouyang L, Zheng Z, Xiang D, Ti A, Li L, Dan Y, Yu C, Li W. E3 ubiquitin ligase FBW7α inhibits cholangiocarcinoma cell proliferation by downregulating c-Myc and cyclin E. Oncol Rep 2017; 37:1627-1636. [PMID: 28184929 DOI: 10.3892/or.2017.5432] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 01/23/2017] [Indexed: 11/05/2022] Open
Abstract
FBW7 (F-box and WD repeat domain-containing 7), also known as CDC4, AGO and SEL10, is the substrate recognition component of an evolutionary conserved SCF (complex of SKP1, CUL1 and F-box protein)-type E3 ubiquitin ligase. It is a recognized tumor suppressor because it targets multiple oncoproteins for ubiquitination-mediated destruction and its mutations are frequently identified in a variety of human malignancies. However, the function of FBW7 in proliferation of cholangiocarcinoma (CCA) remains unknown. We found that overexpression of FBW7α induced CCA cell arrest in G1 phase of cell cycle and inhibited cell proliferation in vitro and CCA xenograft tumor growth, suggesting that FBW7α is a tumor suppressor in CCA progression. Overxpression of FBW7α resulted in the protein degradation of its substrates such as c-Myc and cyclin E which promote CCA cell proliferation. Restoration of the expression of c-Myc, but not cyclin E, rescued the proliferation of FBW7α-overexpression CCA cells. These results suggest that FBW7α plays an essential inhibitory role in CCA progression, indicating that targeting FBW7α substrate c-Myc may be a potential strategy for CCA treatment.
Collapse
Affiliation(s)
- Ming Li
- Department of Hepatobiliary Pancreas and Vessel Surgery, Chenggong Hospital of Xiamen University, Xiamen, Fujian, P.R. China
| | - Ling Ouyang
- Xiamen City Key Laboratory of Biliary Tract Diseases, Chenggong Hospital of Xiamen University, Xiamen, Fujian, P.R. China
| | - Zhigang Zheng
- Department of General Surgery, The First Hospital of Fuzhou, Fuzhou, Fujian, P.R. China
| | - Dan Xiang
- Department of Hepatobiliary Pancreas and Vessel Surgery, Chenggong Hospital of Xiamen University, Xiamen, Fujian, P.R. China
| | - Aijun Ti
- Department of Hepatobiliary Pancreas and Vessel Surgery, Chenggong Hospital of Xiamen University, Xiamen, Fujian, P.R. China
| | - Leihua Li
- Department of Hepatobiliary Pancreas and Vessel Surgery, Chenggong Hospital of Xiamen University, Xiamen, Fujian, P.R. China
| | - Yuzhen Dan
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, P.R. China
| | - Chundong Yu
- Xiamen City Key Laboratory of Biliary Tract Diseases, Chenggong Hospital of Xiamen University, Xiamen, Fujian, P.R. China
| | - Wengang Li
- Department of Hepatobiliary Pancreas and Vessel Surgery, Chenggong Hospital of Xiamen University, Xiamen, Fujian, P.R. China
| |
Collapse
|
10
|
Abstract
Rapidly accumulating data indicate that F-box/WD repeat-containing protein 7 (Fbxw7) is one of the most frequently mutated genes in human cancers and regulates a network of crucial oncoproteins. These studies have generated important new insights into tumorigenesis and may soon enable therapies targeting the Fbxw7 pathway. We searched PubMed, Embase, and ISI Web of Science databases (1973-2015, especially recent 5 years) for articles published in the English language using the key words "Fbxw7," "Fbw7," "hCDC4," and "Sel-10," and we reviewed recent developments in the search for Fbxw7. Fbxw7 coordinates the ubiquitin-dependent proteolysis of several critical cellular regulators, thereby controlling essential processes, such as cell cycle, differentiation, and apoptosis. Fbxw7 contains 3 isoforms (Fbxw7α, Fbxw7β, and Fbxw7γ), and they are differently regulated in subtract recognition. Besides those, Fbxw7 activity is controlled at different levels, resulting in specific and tunable regulation of the abundance and activity of its substrates in a variety of human solid tumor types, including glioma malignancy, nasopharyngeal carcinoma, osteosarcoma, melanoma as well as colorectal, lung, breast, gastric, liver, pancreatic, renal, prostate, endometrial, and esophageal cancers. Fbxw7 is strongly associated with tumorigenesis, and the mechanisms and consequences of Fbxw7 deregulation in cancers may soon enable the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Jun Cao
- From the Zhejiang Cancer Research Institute (JC, Z-QL); and Department of Surgical Oncology, Zhejiang Province Cancer Hospital, Zhejiang Cancer Center, Hangzhou, China (JC, M-HG)
| | | | | |
Collapse
|
11
|
PTEN stabilizes TOP2A and regulates the DNA decatenation. Sci Rep 2015; 5:17873. [PMID: 26657567 PMCID: PMC4674714 DOI: 10.1038/srep17873] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 11/06/2015] [Indexed: 11/12/2022] Open
Abstract
PTEN is a powerful tumor suppressor that antagonizes the cytoplasmic PI3K-AKT pathway and suppresses cellular proliferation. PTEN also plays a role in the maintenance of genomic stability in the nucleus. Here we report that PTEN facilitates DNA decatenation and controls a decatenation checkpoint. Catenations of DNA formed during replication are decatenated by DNA topoisomerase II (TOP2), and this process is actively monitored by a decatenation checkpoint in G2 phase. We found that PTEN deficient cells form ultra-fine bridges (UFBs) during anaphase and these bridges are generated as a result of insufficient decatenation. We show that PTEN is physically associated with a decatenation enzyme TOP2A and that PTEN influences its stability through OTUD3 deubiquitinase. In the presence of PTEN, ubiquitination of TOP2A is inhibited by OTUD3. Deletion or deficiency of PTEN leads to down regulation of TOP2A, dysfunction of the decatenation checkpoint and incomplete DNA decatenation in G2 and M phases. We propose that PTEN controls DNA decatenation to maintain genomic stability and integrity.
Collapse
|
12
|
Fang Y, Xu C, Fu Y. MicroRNA-17-5p induces drug resistance and invasion of ovarian carcinoma cells by targeting PTEN signaling. ACTA ACUST UNITED AC 2015; 22:12. [PMID: 26500892 PMCID: PMC4619013 DOI: 10.1186/s40709-015-0035-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 10/12/2015] [Indexed: 11/18/2022]
Abstract
Background The miR-17-5p was overexpressed in ovarian cancer cells, and those cells were treated with paclitaxel. The proliferation of ovarian cancer cells was assessed by MTT assay. The Caspase-Glo3/7 and TUNEL assay were used to examine the effect of miR-17-5p on paclitaxel-induced apoptosis in ovarian cancer cells. The migration and invasion of ovarian cancer cells were analyzed by BD matrigel assays. Western blot was performed to evaluate the expression of apoptotic proteins and epithelial-mesenchymal transition markers in ovarian cancer cells. Results The survival rate of ovarian cancer cells was increased after overexpression of miR-17-5p. The apoptosis decreased in miR-17-5p overexpressed ovarian cancer cells. Altered miR-17-5p expression affected migration and invasion of ovarian cancer cells. The overexpression of miR-17-5p altered the expression of EMT markers. miR-17-5p activates AKT by downregulation of PTEN in ovarian cancer cells. Conclusion Our results indicate that miR-17-5p might serve as potential molecular therapeutic target.
Collapse
Affiliation(s)
- Ying Fang
- Department of Gynecology, The First Hospital of Jilin University, Changchun, Jilin People's Republic of China ; Department of Gynecology, No. 208 Hospital of Chinese People's Liberation Army, Changchun, Jilin People's Republic of China
| | - Changyan Xu
- Department of Medical Administration, The First Hospital of Jilin University, Changchun, Jilin People's Republic of China
| | - Yan Fu
- Department of Gynecology, The First Hospital of Jilin University, Changchun, Jilin People's Republic of China
| |
Collapse
|
13
|
Bi H, Li S, Qu X, Wang M, Bai X, Xu Z, Ao X, Jia Z, Jiang X, Yang Y, Wu H. DEC1 regulates breast cancer cell proliferation by stabilizing cyclin E protein and delays the progression of cell cycle S phase. Cell Death Dis 2015; 6:e1891. [PMID: 26402517 PMCID: PMC4650443 DOI: 10.1038/cddis.2015.247] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 07/24/2015] [Accepted: 07/28/2015] [Indexed: 02/07/2023]
Abstract
Breast cancer that is accompanied by a high level of cyclin E expression usually exhibits poor prognosis and clinical outcome. Several factors are known to regulate the level of cyclin E during the cell cycle progression. The transcription factor DEC1 (also known as STRA13 and SHARP2) plays an important role in cell proliferation and apoptosis. Nevertheless, the mechanism of its role in cell proliferation is poorly understood. In this study, using the breast cancer cell lines MCF-7 and T47D, we showed that DEC1 could inhibit the cell cycle progression of breast cancer cells independently of its transcriptional activity. The cell cycle-dependent timing of DEC1 overexpression could affect the progression of the cell cycle through regulating the level of cyclin E protein. DEC1 stabilized cyclin E at the protein level by interacting with cyclin E. Overexpression of DEC1 repressed the interaction between cyclin E and its E3 ligase Fbw7α, consequently reducing the level of polyunbiquitinated cyclin E and increased the accumulation of non-ubiquitinated cyclin E. Furthermore, DEC1 also promoted the nuclear accumulation of Cdk2 and the formation of cyclin E/Cdk2 complex, as well as upregulating the activity of the cyclin E/Cdk2 complex, which inhibited the subsequent association of cyclin A with Cdk2. This had the effect of prolonging the S phase and suppressing the growth of breast cancers in a mouse xenograft model. These events probably constitute the essential steps in DEC1-regulated cell proliferation, thus opening up the possibility of a protein-based molecular strategy for eliminating cancer cells that manifest a high-level expression of cyclin E.
Collapse
Affiliation(s)
- H Bi
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China
| | - S Li
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China
| | - X Qu
- School of Life Science and Medicine, Dalian University of Technology, Panjin 124221, China
| | - M Wang
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China
| | - X Bai
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China
| | - Z Xu
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China
| | - X Ao
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China
| | - Z Jia
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China
| | - X Jiang
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China
| | - Y Yang
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China
| | - H Wu
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China.,School of Life Science and Medicine, Dalian University of Technology, Panjin 124221, China
| |
Collapse
|
14
|
Bermúdez Brito M, Goulielmaki E, Papakonstanti EA. Focus on PTEN Regulation. Front Oncol 2015; 5:166. [PMID: 26284192 PMCID: PMC4515857 DOI: 10.3389/fonc.2015.00166] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 07/07/2015] [Indexed: 12/17/2022] Open
Abstract
The role of phosphatase and tensin homolog on chromosome 10 (PTEN) as a tumor suppressor has been for a long time attributed to its lipid phosphatase activity against PI(3,4,5)P3, the phospholipid product of the class I PI3Ks. Besides its traditional role as a lipid phosphatase at the plasma membrane, a wealth of data has shown that PTEN can function independently of its phosphatase activity and that PTEN also exists and plays a role in the nucleus, in cytoplasmic organelles, and extracellularly. Accumulating evidence has shed light on diverse physiological functions of PTEN, which are accompanied by a complex regulation of its expression and activity. PTEN levels and function are regulated transcriptionally, post-transcriptionally, and post-translationally. PTEN is also sensitive to regulation by its interacting proteins and its localization. Herein, we summarize the current knowledge on mechanisms that regulate the expression and enzymatic activity of PTEN and its role in human diseases.
Collapse
Affiliation(s)
- Miriam Bermúdez Brito
- Department of Biochemistry, School of Medicine, University of Crete , Heraklion , Greece
| | - Evangelia Goulielmaki
- Department of Biochemistry, School of Medicine, University of Crete , Heraklion , Greece
| | | |
Collapse
|
15
|
Ao X, Liu Y, Bai XY, Qu X, Xu Z, Hu G, Chen M, Wu H. Association between EHBP1 rs721048(A>G) polymorphism and prostate cancer susceptibility: a meta-analysis of 17 studies involving 150,678 subjects. Onco Targets Ther 2015; 8:1671-80. [PMID: 26185455 PMCID: PMC4500625 DOI: 10.2147/ott.s84034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Background EHBP1 rs721048(A) was first identified as a prostate cancer (PCa) risk in Caucasians by genome-wide association study, but subsequent replication studies involving Caucasian and other ethnicities did not produce consistent results. The aim of this study was to obtain a more definite association between rs721048(A) and PCa risk. Methods We comprehensively searched several databases updated to September 2014, including PubMed, Web of Science, EBSCO, and Google Scholar. Two authors independently screened and reviewed the eligibility of each study. The quality of the included studies was assessed by the Newcastle–Ottawa scale. The association of rs721048(A) and PCa risk was assessed by pooling odds ratios (ORs) with 95% confidence intervals (CIs). Results A total of 17 studies, including 48,135 cases and 102,543 controls, published between 2008 and 2014 were included in the meta-analysis. Overall, the pooled analysis demonstrated that rs721048(A) was significantly associated with the risk of PCa under the allele model (OR=1.14, 95% CI=1.11–1.17, P=0.000). Subgroup analysis based on ethnicity revealed a significant association between rs721048(A) and PCa in Caucasian (OR=1.14, 95% CI=1.11–1.16, P=0.000), African descent (OR=1.11, 95% CI=1.01–1.23, P=0.025), and Asian (OR=1.35, 95% CI=1.12–1.64, P=0.002). Conclusion Our results provided strong evidence that rs721048(A) could be a risk factor for PCa.
Collapse
Affiliation(s)
- Xiang Ao
- Laboratory of Molecular Medicine & Pharmacy, School of Life Science and Biotechnology, Dalian University of Technology, Dalian, People's Republic of China
| | - Ying Liu
- Laboratory of Molecular Medicine & Pharmacy, School of Life Science and Biotechnology, Dalian University of Technology, Dalian, People's Republic of China
| | - Xiao-Yan Bai
- Laboratory of Molecular Medicine & Pharmacy, School of Life Science and Biotechnology, Dalian University of Technology, Dalian, People's Republic of China
| | - Xinjian Qu
- Laboratory of Molecular Medicine & Pharmacy, School of Life Science and Medicine, Dalian University of Technology, Panjin, Liaoning, People's Republic of China
| | - Zhaowei Xu
- Laboratory of Molecular Medicine & Pharmacy, School of Life Science and Biotechnology, Dalian University of Technology, Dalian, People's Republic of China
| | - Gaolei Hu
- Laboratory of Molecular Medicine & Pharmacy, School of Life Science and Biotechnology, Dalian University of Technology, Dalian, People's Republic of China
| | - Min Chen
- Laboratory of Molecular Medicine & Pharmacy, School of Life Science and Biotechnology, Dalian University of Technology, Dalian, People's Republic of China
| | - Huijian Wu
- Laboratory of Molecular Medicine & Pharmacy, School of Life Science and Biotechnology, Dalian University of Technology, Dalian, People's Republic of China ; Laboratory of Molecular Medicine & Pharmacy, School of Life Science and Medicine, Dalian University of Technology, Panjin, Liaoning, People's Republic of China
| |
Collapse
|
16
|
Zhao F, Wang M, Li S, Bai X, Bi H, Liu Y, Ao X, Jia Z, Wu H. DACH1 inhibits SNAI1-mediated epithelial-mesenchymal transition and represses breast carcinoma metastasis. Oncogenesis 2015; 4:e143. [PMID: 25775416 PMCID: PMC5399170 DOI: 10.1038/oncsis.2015.3] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 01/06/2015] [Accepted: 01/28/2015] [Indexed: 02/06/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) has a major role in cancer progression and metastasis. However, the specific mechanism of transcriptional repression involved in this process remains largely unknown. Dachshund homologue 1 (DACH1) expression is lost in invasive breast cancer with poor prognosis, and the role of DACH1 in regulating breast cancer metastasis is poorly understood. In this study, significant correlation between the expression of DACH1 and the morphology of breast cancer cells was observed. Subsequent investigation into the relationship between DACH1 and EMT showed that overexpression of DACH1 in ZR-75-30 cells induced a shift towards epithelial morphology and cell-cell adhesion, as well as increased the expression of the epithelial marker E-cadherin and suppressed cell migration and invasion. In contrast, silencing DACH1 in MCF-7 and T47D cells disrupted the epithelial morphology and cell-cell contact, reduced the expression of E-cadherin, and induced cell migration and invasion. DACH1 also specifically interacted with SNAI1, but not SNAI2, to form a complex, which could bind to the E-box on the E-cadherin promoter in an SNAI1-dependent manner. DACH1 inhibited the transcriptional activity of SNAI1, leading to the activation of E-cadherin in breast cancer cells. Furthermore, the level of DACH1 also correlated with the extent of metastasis in a mouse model. DACH1 overexpression significantly decreased the metastasis and growth of 4T1/Luc cells in BALB/c mice. Analysis of tissue samples taken from human breast cancers showed a significant correlation between the expression of DACH1 and E-cadherin in SNAI1-positive breast cancer. Collectively, our data identified a new mechanistic pathway for the regulation of EMT and metastasis of breast cancer cells, one that is based on the regulation of E-cadherin expression by direct DACH1-SNAI1 interaction.
Collapse
Affiliation(s)
- F Zhao
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - M Wang
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - S Li
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - X Bai
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - H Bi
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - Y Liu
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - X Ao
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - Z Jia
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - H Wu
- 1] School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China [2] School of Life Science and Medicine, Dalian University of Technology, Panjin, China
| |
Collapse
|
17
|
Liu Y, Ao X, Jia Z, Bai XY, Xu Z, Hu G, Jiang X, Chen M, Wu H. FOXK2 transcription factor suppresses ERα-positive breast cancer cell growth through down-regulating the stability of ERα via mechanism involving BRCA1/BARD1. Sci Rep 2015; 5:8796. [PMID: 25740706 PMCID: PMC4350111 DOI: 10.1038/srep08796] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 02/04/2015] [Indexed: 01/05/2023] Open
Abstract
Estrogen receptors (ERs) are critical regulators of breast cancer development. Identification of molecules that regulate the function of ERs may facilitate the development of more effective breast cancer treatment strategies. In this study, we showed that the forkhead transcription factor FOXK2 interacted with ERα, and inhibited ERα-regulated transcriptional activities by enhancing the ubiquitin-mediated degradation of ERα. This process involved the interaction between FOXK2 and BRCA1/BARD1, the E3 ubiquitin ligase of ERα. FOXK2 interacted with BARD1 and acted as a scaffold protein for BRCA1/BARD1 and ERα, leading to enhanced degradation of ERα, which eventually accounted for its decreased transcriptional activity. Consistent with these observations, overexpression of FOXK2 inhibited the transcriptional activity of ERα, decreased the transcription of ERα target genes, and suppressed the proliferation of ERα-positive breast cancer cells. In contract, knockdown of FOXK2 in MCF-7 cells promoted cell proliferation. However, when ERα was also knocked down, knockdown of FOXK2 had no effect on cell proliferation. These findings suggested that FOXK2 might act as a negative regulator of ERα, and its association with both ERα and BRCA1/BARD1 could lead to the down-regulation of ERα transcriptional activity, effectively regulating the function of ERα.
Collapse
Affiliation(s)
- Ying Liu
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Xiang Ao
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Zhaojun Jia
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Xiao-Yan Bai
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Zhaowei Xu
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Gaolei Hu
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Xiao Jiang
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Min Chen
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Huijian Wu
- 1] School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, Liaoning, China [2] School of Life Science and Medicine, Dalian University of Technology, Panjin 114221, Liaoning, China
| |
Collapse
|
18
|
Bi H, Li S, Wang M, Jia Z, Chang AK, Pang P, Wu H. SUMOylation of GPS2 protein regulates its transcription-suppressing function. Mol Biol Cell 2014; 25:2499-508. [PMID: 24943844 PMCID: PMC4142620 DOI: 10.1091/mbc.e13-12-0733] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
GPS2 can be modified by SUMO-1. SUMOylation stabilizes GPS2 protein and enhances its ability to suppress transcription, as well as promoting its ability to inhibit ERα-mediated transcription by increasing its association with SMRT, as demonstrated in MCF-7 and T47D cells. G-protein pathway suppressor 2 (GPS2) is a human suppressor of G protein–activated mitogen-activated protein kinase signaling. It is involved in many physiological processes, including DNA repair, cell proliferation, apoptosis, and brain development. In this study, we show that GPS2 can be modified by the small ubiquitin-like modifier (SUMO) SUMO-1 but not SUMO-2 or -3. Two SUMOylation sites (K45 and K71) are identified in the N-terminal coiled-coil domain of GPS2. Substitution of K45 with arginine reduces SUMOylation, whereas substitution of K71 or both K45 and K71 with arginine abolishes SUMOylation, with more of the double mutant GPS2 appearing in the cytosol than in the nucleus compared with wild type and the two-single-mutant GPS2. SUMOylation stabilizes GPS2 protein by promoting its interaction with TBL1 and reducing its ubiquitination. SUMOylation also enhances the ability of GPS2 to suppress transcription and promotes its ability to inhibit estrogen receptor α–mediated transcription by increasing its association with SMRT, as demonstrated in MCF-7 and T47D cells. Moreover, SUMOylation of GPS2 also represses the proliferation of MCF-7 and T47D cells. These findings suggest that posttranslational modification of GPS2 by SUMOylation may serve as a key factor that regulates the function of GPS2 in vivo.
Collapse
Affiliation(s)
- Hailian Bi
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China
| | - Shujing Li
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China
| | - Miao Wang
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China
| | - Zhaojun Jia
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China
| | - Alan K Chang
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China
| | - Pengsha Pang
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China
| | - Huijian Wu
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, ChinaSchool of Life Science and Medicine, Dalian University of Technology, Panjin 124221, China
| |
Collapse
|
19
|
Xiao L, Chang AK, Zang MX, Bi H, Li S, Wang M, Xing X, Wu H. Induction of the CLOCK gene by E2-ERα signaling promotes the proliferation of breast cancer cells. PLoS One 2014; 9:e95878. [PMID: 24789043 PMCID: PMC4008427 DOI: 10.1371/journal.pone.0095878] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 04/01/2014] [Indexed: 11/19/2022] Open
Abstract
Growing genetic and epidemiological evidence suggests a direct connection between the disruption of circadian rhythm and breast cancer. Moreover, the expression of several molecular components constituting the circadian clock machinery has been found to be modulated by estrogen-estrogen receptor α (E2-ERα) signaling in ERα-positive breast cancer cells. In this study, we investigated the regulation of CLOCK expression by ERα and its roles in cell proliferation. Immunohistochemical analysis of human breast tumor samples revealed high expression of CLOCK in ERα-positive breast tumor samples. Subsequent experiments using ERα-positive human breast cancer cell lines showed that both protein and mRNA levels of CLOCK were up-regulated by E2 and ERα. In these cells, E2 promoted the binding of ERα to the EREs (estrogen-response elements) of CLOCK promoter, thereby up-regulating the transcription of CLOCK. Knockdown of CLOCK attenuated cell proliferation in ERα-positive breast cancer cells. Taken together, these results demonstrated that CLOCK could be an important gene that mediates cell proliferation in breast cancer cells.
Collapse
Affiliation(s)
- Liyun Xiao
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - Alan K. Chang
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - Ming-Xi Zang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Hailian Bi
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - Shujing Li
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - Miao Wang
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - Xinrong Xing
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - Huijian Wu
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
- School of Life Science and Medicine, Dalian University of Technology, Panjin, China
- * E-mail:
| |
Collapse
|
20
|
Hopkins BD, Hodakoski C, Barrows D, Mense SM, Parsons RE. PTEN function: the long and the short of it. Trends Biochem Sci 2014; 39:183-90. [PMID: 24656806 DOI: 10.1016/j.tibs.2014.02.006] [Citation(s) in RCA: 224] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 02/11/2014] [Accepted: 02/13/2014] [Indexed: 12/31/2022]
Abstract
Phosphatase and tensin homolog deleted on chromosome ten (PTEN) is a phosphatase that is frequently altered in cancer. PTEN has phosphatase-dependent and -independent roles, and genetic alterations in PTEN lead to deregulation of protein synthesis, the cell cycle, migration, growth, DNA repair, and survival signaling. PTEN localization, stability, conformation, and phosphatase activity are controlled by an array of protein-protein interactions and post-translational modifications. Thus, PTEN-interacting and -modifying proteins have profound effects on the tumor suppressive functions of PTEN. Moreover, recent studies identified mechanisms by which PTEN can exit cells, via either exosomal export or secretion, and act on neighboring cells. This review focuses on modes of PTEN protein regulation and ways in which perturbations in this regulation may lead to disease.
Collapse
Affiliation(s)
- Benjamin D Hopkins
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029, USA
| | - Cindy Hodakoski
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029, USA
| | - Douglas Barrows
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029, USA
| | - Sarah M Mense
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029, USA
| | - Ramon E Parsons
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029, USA.
| |
Collapse
|
21
|
Wang M, Zhao F, Li S, Chang AK, Jia Z, Chen Y, Xu F, Pan H, Wu H. AIB1 cooperates with ERα to promote epithelial mesenchymal transition in breast cancer through SNAI1 activation. PLoS One 2013; 8:e65556. [PMID: 23762395 PMCID: PMC3676316 DOI: 10.1371/journal.pone.0065556] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 04/25/2013] [Indexed: 02/04/2023] Open
Abstract
Epithelial Mesenchymal Transition (EMT) plays a major role in cancer metastasis. Several genes have been shown to play a role in EMT, and one of these is Amplified-in-breast cancer 1 (AIB1), which has oncogenic function and is known to be amplified in breast cancer. However, the role of AIB1 in EMT remains largely undefined at the molecular level. In this study, the effect of AIB1 overexpression on the EMT of the breast cancer cell line T47D was investigated. Overexpression of AIB1 disrupted the epithelial morphology of the cells. At the same time, the cells displayed a strong metastasis and reduced level of the epithelial marker E-cadherin. In contrast, knockdown of AIB1 in T47D cells increased cell-cell adhesion and produced weak metastasis, as well as a higher level of E-cadherin expression. We proposed that the regulation of EMT by AIB1 occurred through the action of the transcription factor SNAI1, and demonstrated that such interaction required the participation of ERα and the presence of ERα-binding site on SNAI1 promoter. The expression level of E-cadherin and the extent of cell migration and invasion in SNAI1-knocked down T47D cells that overexpressed AIB1 were similar to those of T47D cells that did not overexpress AIB1 and had no SNAI1 knockdown. Taken together, these results suggested that AIB1 exerted its effect on EMT through its interaction with ERα, which could directly bind to the ERα-binding site on the SNAI1 promoter, allowing the AIB1-ERα complex to promote the transcription of SNAI1 and eventually led to repression of E-cadherin expression, consistent with the loss of E-cadherin being a hallmark of EMT.
Collapse
Affiliation(s)
- Miao Wang
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - Feng Zhao
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - Shujing Li
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - Alan K. Chang
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - Zhaojun Jia
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - Yixuan Chen
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - Feihong Xu
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - Hongming Pan
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - Huijian Wu
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| |
Collapse
|