1
|
Chang CF, Bao BY, Hsueh YM, Chen PL, Chang LH, Li CY, Geng JH, Lu TL, Huang CY, Huang SP. Prognostic Significance of VAV3 Gene Variants and Expression in Renal Cell Carcinoma. Biomedicines 2024; 12:1694. [PMID: 39200159 PMCID: PMC11351164 DOI: 10.3390/biomedicines12081694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/23/2024] [Accepted: 07/28/2024] [Indexed: 09/01/2024] Open
Abstract
Renal cell carcinoma (RCC) is characterized by high mortality and morbidity rates. Vav guanine nucleotide exchange factors (VAVs), crucial for signal transduction between cell membrane receptors and intracellular mediators, have been implicated in carcinogenesis. However, their potential prognostic value in RCC remains unclear. The impact of 150 common VAV polymorphisms on RCC risk and survival was investigated in a cohort of 630 individuals. Publicly available gene expression datasets were utilized to analyze VAV gene expression in relation to patient outcomes. The VAV3 rs17019888 polymorphism was significantly associated with RCC risk and overall survival after adjusting for false discovery rates. Expression quantitative trait loci analysis revealed that the risk allele of rs17019888 is linked to reduced VAV3 expression. Analysis of 19 kidney cancer gene expression datasets revealed lower VAV3 expression in RCC tissues compared to normal tissues, with higher expression correlating with better prognosis. Gene set enrichment analysis demonstrated that VAV3 negatively regulates the ubiquitin-proteasome system, extracellular matrix and membrane receptors, inflammatory responses, matrix metalloproteinases, and cell cycle pathways. Furthermore, elevated VAV3 expression was associated with increased infiltration of B cells, macrophages, and neutrophils into the RCC tumor microenvironment. Our findings suggest that VAV3 gene variants influence RCC risk and survival, contributing to a favorable prognosis in RCC.
Collapse
Affiliation(s)
- Chi-Fen Chang
- Department of Anatomy, School of Medicine, China Medical University, Taichung 406, Taiwan;
| | - Bo-Ying Bao
- Department of Pharmacy, China Medical University, Taichung 406, Taiwan; (B.-Y.B.); (T.-L.L.)
| | - Yu-Mei Hsueh
- Department of Family Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 110, Taiwan;
- Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Pei-Ling Chen
- Department of Urology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei 100, Taiwan;
| | - Li-Hsin Chang
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Chia-Yang Li
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Jiun-Hung Geng
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan;
- Department of Urology, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung 812, Taiwan
| | - Te-Ling Lu
- Department of Pharmacy, China Medical University, Taichung 406, Taiwan; (B.-Y.B.); (T.-L.L.)
| | - Chao-Yuan Huang
- Department of Urology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei 100, Taiwan;
| | - Shu-Pin Huang
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan;
- Institute of Medical Science and Technology, College of Medicine, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| |
Collapse
|
2
|
Liang Y, Cen J, Huang Y, Fang Y, Wang Y, Shu G, Pan Y, Huang K, Dong J, Zhou M, Xu Y, Luo J, Liu M, Zhang J. CircNTNG1 inhibits renal cell carcinoma progression via HOXA5-mediated epigenetic silencing of Slug. Mol Cancer 2022; 21:224. [PMID: 36536414 PMCID: PMC9761964 DOI: 10.1186/s12943-022-01694-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 12/03/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Recent studies have identified that circular RNAs (circRNAs) have an important role in cancer via their well-recognized sponge effect on miRNAs, which regulates a large variety of cancer-related genes. However, only a few circRNAs have been well-studied in renal cell carcinoma (RCC) and their regulatory function remains largely elusive. METHODS Bioinformatics approaches were used to characterize the differentially expressed circRNAs in our own circRNA-sequencing dataset, as well as two public circRNA microarray datasets. CircNTNG1 (hsa_circ_0002286) was identified as a potential tumor-suppressing circRNA. Transwell assay and CCK-8 assay were used to assess phenotypic changes. RNA pull-down, luciferase reporter assays and FISH experiment were used to confirm the interactions among circNTNG1, miR-19b-3p, and HOXA5 mRNA. GSEA was performed to explore the downstream pathway regulated by HOXA5. Immunoblotting, chromatin immunoprecipitation, and methylated DNA immunoprecipitation were used to study the mechanism of HOXA5. RESULTS In all three circRNA datasets, circNTNG1, which was frequently deleted in RCC, showed significantly low expression in the tumor group. The basic properties of circNTNG1 were characterized, and phenotype studies also demonstrated the inhibitory effect of circNTNG1 on RCC cell aggressiveness. Clinically, circNTNG1 expression was associated with RCC stage and Fuhrman grade, and it also served as an independent predictive factor for both OS and RFS of RCC patients. Next, the sponge effect of circNTNG1 on miR-19b-3p and the inhibition of HOXA5 by miR-19b-3p were validated. GSEA analysis indicated that HOXA5 could inactivate the epithelial-mesenchymal transition (EMT) process, and this inactivation was mediated by HOXA5-induced SNAI2 (Slug) downregulation. Finally, it was confirmed that the Slug downregulation was caused by HOXA5, along with the DNA methyltransferase DNMT3A, binding to its promoter region and increasing the methylation level. CONCLUSIONS Based on the experimental data, in RCC, circNTNG1/miR-19b-3p/HOXA5 axis can regulate the epigenetic silencing of Slug, thus interfering EMT and metastasis of RCC. Together, our findings provide potential biomarkers and novel therapeutic targets for future study in RCC.
Collapse
Affiliation(s)
- Yanping Liang
- grid.12981.330000 0001 2360 039XDepartment of Laboratory Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 China
| | - Junjie Cen
- grid.12981.330000 0001 2360 039XDepartment of Urology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 China
| | - Yong Huang
- grid.12981.330000 0001 2360 039XDepartment of Emergency, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 China
| | - Yong Fang
- grid.12981.330000 0001 2360 039XDepartment of Urology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 China
| | - Yunfei Wang
- grid.12981.330000 0001 2360 039XDepartment of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 China
| | - Guannan Shu
- grid.12981.330000 0001 2360 039XDepartment of Urology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 China
| | - Yihui Pan
- grid.12981.330000 0001 2360 039XDepartment of Urology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 China
| | - Kangbo Huang
- grid.488530.20000 0004 1803 6191Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, 510060 China
| | - Jiaqi Dong
- grid.12981.330000 0001 2360 039XDepartment of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 China
| | - Mi Zhou
- grid.12981.330000 0001 2360 039XDepartment of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 China
| | - Yi Xu
- grid.12981.330000 0001 2360 039XDepartment of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 China
| | - Junhang Luo
- grid.12981.330000 0001 2360 039XDepartment of Urology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 China ,grid.12981.330000 0001 2360 039XInstitute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 China
| | - Min Liu
- grid.12981.330000 0001 2360 039XDepartment of Laboratory Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 China
| | - Jiaxing Zhang
- grid.12981.330000 0001 2360 039XDepartment of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 China
| |
Collapse
|
3
|
Zhao J, Jiang O, Chen X, Liu Q, Li X, Wu M, Zhang Y, Zeng F. Development and validation of a prediction model for metastasis in colorectal cancer based on LncRNA CRNDE and radiomics. MEDCOMM – FUTURE MEDICINE 2022. [DOI: 10.1002/mef2.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Jiaojiao Zhao
- Department of Clinical Research Center Dazhou Central Hospital Dazhou China
| | - Ou Jiang
- Oncology Department The Second People's Hospital of Neijiang Neijiang China
| | - Xiao Chen
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Qin Liu
- Department of Clinical Research Center Dazhou Central Hospital Dazhou China
| | - Xue Li
- Department of Clinical Research Center Dazhou Central Hospital Dazhou China
| | - Min Wu
- Huaxi MR Research Center, Department of Radiology, West China Hospital Sichuan University Chengdu China
| | - Yan Zhang
- Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| | - Fanxin Zeng
- Department of Clinical Research Center Dazhou Central Hospital Dazhou China
| |
Collapse
|
4
|
Lu Y, Li S, Wang T, Liao X, Mao L, Li Z. PAPP-A functions as a tumor suppressor and is downregulated in renal cell carcinoma. FEBS Open Bio 2021; 11:1593-1606. [PMID: 33788403 PMCID: PMC8167875 DOI: 10.1002/2211-5463.13156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/15/2021] [Accepted: 03/29/2021] [Indexed: 01/17/2023] Open
Abstract
Pregnancy‐associated plasma protein A (PAPP‐A) is a proteolytic enzyme produced by the placenta. The expression and role of PAPP‐A in renal cell carcinoma (RCC) remain elusive. The aim of this study was to investigate the role and the molecular mechanisms of PAPP‐A in RCC. Initially, we evaluated the expression of PAPP‐A in samples from patients with RCC and cell lines by quantitative PCR, western blot and immunohistochemical staining, and examined the role of PAPP‐A in RCC cells by cell viability, colony formation and Transwell assays. Next, we investigated the molecular mechanisms regulating the tumor suppressor function of PAPP‐A. Our results demonstrated that PAPP‐A is expressed at low levels in RCC tissues and cells. Clinical data analysis revealed a significant correlation between PAPP‐A expression and RCC‐related death (P < 0.0115). Overexpression of PAPP‐A inhibited viability, proliferation, migration and invasion of RCC cells. Furthermore, PAPP‐A overexpression significantly increased phosphorylation of c‐Jun N‐terminal kinase and decreased the expression of cyclin D1, phosphorylated glycogen synthase kinase‐3β and β‐catenin. This study is the first to report that downregulation of PAPP‐A is associated with poor prognosis in patients with RCC. In conclusion, PAPP‐A may serve as a novel prognostic marker and potentially as a therapeutic target in patients with RCC.
Collapse
Affiliation(s)
- Yanxin Lu
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, China.,Zhuhai Campus of Zunyi Medical University, China.,Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, China
| | - Shi Li
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, China.,Shenzhen Key Laboratory of Genitourinary Tumor, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, China
| | - Tongyu Wang
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, China.,Shenzhen Key Laboratory of Genitourinary Tumor, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, China
| | - Ximian Liao
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, China.,Shenzhen Key Laboratory of Genitourinary Tumor, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, China
| | - Longyi Mao
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, China.,Shenzhen Key Laboratory of Genitourinary Tumor, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, China
| | - Zesong Li
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, China.,Shenzhen Key Laboratory of Genitourinary Tumor, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, China
| |
Collapse
|
5
|
Liu YJ, Houldsworth J, Emmadi R, Dyer L, Wolff DJ. Assessing Genomic Copy Number Alterations as Best Practice for Renal Cell Neoplasia: An Evidence-Based Review from the Cancer Genomics Consortium Workgroup. Cancer Genet 2020; 244:40-54. [PMID: 32434132 DOI: 10.1016/j.cancergen.2020.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 02/05/2023]
Abstract
Renal cell neoplasia are heterogeneous with diverse histology, genetic alterations, and clinical behavior that are diagnosed mostly on morphologic features. The Renal Cell Neoplasia Workgroup of the Cancer Genomics Consortium systematically evaluated peer-reviewed literature on genomic studies of renal cell carcinoma (RCC), including clear cell RCC, papillary RCC, chromophobe RCC, and the translocation RCC involving TFE3, TFEB and MITF rearrangements, as well as benign oncocytoma, which together comprise about 95% of all renal cell neoplasia. The Workgroup curated recurrent copy number alterations (CNAs), copy-neutral loss-of-heterozygosity (cnLOH), rearrangements, and mutations, found in each subtype and assigned clinical relevance according to established criteria. In clear cell RCC, loss of 3p has a disease-initiating role and most likely also in progression with mutations detected in VHL and other genes mapped to this arm, and loss of 9p and/or 14q has well-substantiated prognostic utility. Gain of chromosomes 7 and 17 are hallmark CNAs of papillary RCC, but patterns of other CNAs as detected by chromosomal microarray analysis (CMA) afford sub-classification into Type 1 and 2 with prognostic value, and for further sub-stratification of Type 2. Inherent chromosome loss in chromophobe RCC as detected by CMA is useful for distinguishing the eosinophilic variant from benign oncocytoma which in contrast exhibits few CNAs or rearranged CCND1, but share mitochondrial DNA mutations. In morphologically atypical RCCs, rearrangement of TFE3 and TFEB should be considered in the differential diagnosis, portending an aggressive RCC subtype. Overall, this evidence-based review provides a validated role for assessment of CNAs in renal cell neoplasia in the clinical setting to assist in renal cell neoplasm diagnosis and sub-classification within subtypes that is integral to the management of patients, from small incidentally found renal masses to larger surgically resected specimens, and simultaneously identify the presence of key alterations portending outcome in malignant RCC subtypes.
Collapse
Affiliation(s)
- Yajuan J Liu
- Departments of Pathology and Laboratory Medicine, University of Washington School of Medicine, 1959 NE Pacific Street, Seattle, WA 98195.
| | - Jane Houldsworth
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, The Mount Sinai Health System, 1 Gustave Levy Place, New York, NY 10029.
| | - Rajyasree Emmadi
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood Street, Chicago, IL 60612
| | - Lisa Dyer
- Department of Pediatrics, Division of Human Genetics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, MLC 4006, Cincinnati, OH 45229-3039
| | - Daynna J Wolff
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 165 Ashley Avenue, MSC 908, Charleston, SC 29425
| |
Collapse
|
6
|
Nejati R, Wei S, Uzzo RG, Poureghbali S, Pei J, Talarchek JN, Ruth K, Dulaimi E, Kutikov A, Testa JR, Al-Saleem T. Monosomy of Chromosome 9 Is Associated With Higher Grade, Advanced Stage, and Adverse Outcome in Clear-cell Renal Cell Carcinoma. Clin Genitourin Cancer 2019; 18:56-61. [PMID: 31648964 DOI: 10.1016/j.clgc.2019.09.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/21/2019] [Accepted: 09/10/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Clear-cell renal cell carcinoma (ccRCC) is one of the most common malignancies in humans and is usually associated with poor outcomes. Cancers are considered to be genetic diseases. Therefore, a better understanding of genetic alterations that are related to disease progression or poor prognosis can help to more precisely identify high-risk patients and treat them more effectively. The aim of this study was to examine the frequency of whole chromosome 9 loss (monosomy of chromosome 9) and its prognostic value in patients with ccRCC. MATERIALS AND METHODS Single nucleotide polymorphism-based chromosome microarray (CMA) analysis was performed on 103 resected specimens from patients with ccRCC who had undergone partial or radical nephrectomy between January 2002 and March 2017 at Fox Chase Cancer Center. Monosomy 9 was correlated with clinicopathologic parameters and recurrence-free survival. RESULTS Chromosome 9 loss was detected in 31 (30%) of 103 tumors. Tumors with chromosome 9 loss had higher histologic grade (3 and 4; P < .001) and pathologic stage (P < .001). In 59 patients with non-metastatic ccRCC, chromosome 9 loss was also associated with higher recurrence rate and shorter recurrence-free survival (RFS) (12-month RFS, 77.8%; 95% confidence interval, 36.5%-93.9% for chromosome 9 loss vs. 95.7%; 95% confidence interval, 84.0%-98.9% for no loss; P = .002). CONCLUSIONS Chromosome 9 loss was found in 30% of patients with ccRCC and correlated with higher grade, advanced stage, and shorter RFS in patients with Stage I to III ccRCC.
Collapse
Affiliation(s)
- Reza Nejati
- Department of Pathology, Fox Chase Cancer Center, Temple Health System, Philadelphia, PA.
| | - Shuanzeng Wei
- Department of Pathology, Fox Chase Cancer Center, Temple Health System, Philadelphia, PA
| | - Robert G Uzzo
- Division of Urologic Oncology, Fox Chase Cancer Center, Temple Health System, Philadelphia, PA
| | - Sahar Poureghbali
- Department of Pathology, Fox Chase Cancer Center, Temple Health System, Philadelphia, PA
| | - Jianming Pei
- Genomics Facility, Fox Chase Cancer Center, Temple Health System, Philadelphia, PA
| | | | - Karen Ruth
- Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Temple Health System, Philadelphia, PA
| | - Essel Dulaimi
- Department of Pathology, Fox Chase Cancer Center, Temple Health System, Philadelphia, PA
| | - Alexander Kutikov
- Division of Urologic Oncology, Fox Chase Cancer Center, Temple Health System, Philadelphia, PA
| | - Joseph R Testa
- Cancer Biology Program, Fox Chase Cancer Center, Temple Health System, Philadelphia, PA
| | - Tahseen Al-Saleem
- Department of Pathology, Fox Chase Cancer Center, Temple Health System, Philadelphia, PA
| |
Collapse
|
7
|
Zadeh Fakhar HB, Zali H, Rezaie-Tavirani M, Darkhaneh RF, Babaabasi B. Proteome profiling of low grade serous ovarian cancer. J Ovarian Res 2019; 12:64. [PMID: 31315664 PMCID: PMC6637464 DOI: 10.1186/s13048-019-0535-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 06/28/2019] [Indexed: 12/20/2022] Open
Abstract
Background Serous carcinoma, the subtype of ovarian cancer has the highest occurrence and mortality in women. Proteomic profiling using mass spectrometry (MS) has been used to detect biomarkers in tissue s obtained from patients with ovarian cancer. Thus, this study aimed at analyzing the interactome (protein-protein interaction (PPI)) and (MS) data to inspect PPI networks in patients with Low grade serous ovarian cancer. Methods For proteome profiling in Low grade serous ovarian cancer, 2DE and mass spectrometry were used. Differentially expressed proteins which had been determined in Low grade serous ovarian cancer and experimental group separately were integrated with PPI data to construct the (QQPPI) networks. Results Six Hub-bottlenecks proteins with significant centrality values, based on centrality parameters of the network (Degree and between), were found including Transgelin (TAGLN), Keratin (KRT14), Single peptide match to actin, cytoplasmic 1(ACTB), apolipoprotein A-I (APOA1), Peroxiredoxin-2 (PRDX2), and Haptoglobin (HP). Discussion This study showed these six proteins were introduced as hub-bottleneck protein. It can be concluded that regulation of gene expression can have a critical role in the pathology of Low-grade serous ovarian cancer.
Collapse
Affiliation(s)
| | - Hakimeh Zali
- Proteomics Research Center, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | - Babak Babaabasi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute, ACECR, Tehran, Iran
| |
Collapse
|
8
|
Du H, Chen Y. Competing endogenous RNA networks in cervical cancer: function, mechanism and perspective. J Drug Target 2019; 27:709-723. [PMID: 30052083 DOI: 10.1080/1061186x.2018.1505894] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In the past several years, competing endogenous RNAs (ceRNAs) have emerged as a potential class of post-transcriptional regulators that alter gene expression through a microRNA (miRNA)-mediated mechanism. An increasing number of studies have found that ceRNAs play important roles in tumorigenesis. Cervical cancer is one of the most common cancers in female malignancies. Despite advances in our understanding of this neoplasm, patients with advanced cervical cancer still have poor prognosis. There is an urgent need to provide a new insight on the mechanism of cervical cancer development and may be acted as new anticancer therapeutic strategies. Here, we review the ceRNA studies and coherent researches in cervical cancer, especially in long non-coding RNA (lncRNA) and miRNAs in order to broaden horizons into mechanisms, selection biomarkers for diagnosis as well as predicting prognosis, and targeting treatment for cervical cancer in the future.
Collapse
Affiliation(s)
- Hui Du
- a Department of Obstetrics and Gynecology , The Second Hospital of Hebei Medical University , Shijiazhuang , China
| | - Ying Chen
- b Department of Gynecologic Oncology , Tianjin Medical University Cancer Institute and Hospital , Tianjin , China.,c Key Laboratory of Cancer Prevention and Therapy , Tianjin , China.,d National Clinical Research Centre of Cancer , Tianjin , China
| |
Collapse
|
9
|
Su H, Sun T, Wang H, Shi G, Zhang H, Sun F, Ye D. Decreased TCL6 expression is associated with poor prognosis in patients with clear cell renal cell carcinoma. Oncotarget 2018; 8:5789-5799. [PMID: 27494890 PMCID: PMC5351589 DOI: 10.18632/oncotarget.11011] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 07/10/2016] [Indexed: 12/14/2022] Open
Abstract
One-third of clear cell renal cell carcinoma (ccRCC) patients present with metastasis at the time of diagnosis. The prognosis of these patients is poor. To identify potential prognostic biomarkers and therapeutic targets for ccRCC, we re-evaluated published long non-coding RNA (lncRNA) expression profiling data from the Gene Expression Omnibus and ArrayExpress database. We found that five lncRNAs were differentially expressed in ccRCC and adjacent tissues. These lncRNAs were assessed in an independent cohort of 71 paired patient samples using real-time PCR. Differences in expression of three of the lncRNAs (ENSG00000177133, TCL6, and ENSG00000244020) were validated in this analysis. Kaplan-Meier analysis indicated that low expression of ENSG00000177133 and TCL6 was associated with a poor prognosis. Univariate and multivariate regression analyses demonstrated that TCL6 but not ENSG00000177133 expression was an independent predictor of ccRCC aggressiveness and had hazard ratios predictive of clinical outcome. TCL6 expression was negatively correlated with pTNM stage. Overexpression of TCL6 in 786-O and Caki-1 ccRCC cells decreased proliferation and increased apoptosis compared to controls. Our results indicate that lncRNA expression is altered in ccRCC and that decreased TCL6 expression may be an independent adverse prognostic factor in ccRCC patients.
Collapse
Affiliation(s)
- Hengchuan Su
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Tiantian Sun
- Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Hongkai Wang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Guohai Shi
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hailiang Zhang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fukang Sun
- Department of Urology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Dingwei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
10
|
Systematic expression analysis of the mitochondrial complex III subunits identifies UQCRC1 as biomarker in clear cell renal cell carcinoma. Oncotarget 2018; 7:86490-86499. [PMID: 27845902 PMCID: PMC5349929 DOI: 10.18632/oncotarget.13275] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 10/29/2016] [Indexed: 11/25/2022] Open
Abstract
Mitochondrial dysfunction is common in cancer, and the mitochondrial electron transport chain is often affected in carcinogenesis. So far, few is known about the expression of the mitochondrial complex III (ubiquinol-cytochrome c reductase complex) subunits in clear cell renal cell carcinoma (ccRCC). In this study, the NextBio database was used to determine an expression profile of the mitochondrial complex III subunits based on published microarray studies. We observed that five out of 11 subunits of the complex III were downregulated in at least three microarray studies. The decreased mRNA expression level of UQCRFS1 and UQCRC1 in ccRCC was confirmed using PCR. Low mRNA levels UQCRC1 were also correlated with a shorter period of cancer-specific and overall survival. Furthermore, UQCRFS1 and UQCRC1 were also decreased in ccRCC on the protein level as determined using Western blotting and immunohistochemistry. UQCRC1 protein expression was also lower in ccRCC than in papillary and chromophobe subtypes. Analyzing gene expression and DNA methylation in The Cancer Genome Atlas cohort revealed an inverse correlation of gene expression and DNA methylation, suggesting that DNA hypermethylation is regulating the expression of UQCRC1 and UQCRFS1. Taken together, our data implicate that dysregulated UQCRC1 and UQCRFS1 are involved in impaired mitochondrial electron transport chain function.
Collapse
|
11
|
KIAA0101 is associated with human renal cell carcinoma proliferation and migration induced by erythropoietin. Oncotarget 2017; 7:13520-37. [PMID: 26575329 PMCID: PMC4924658 DOI: 10.18632/oncotarget.5876] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 10/30/2015] [Indexed: 12/21/2022] Open
Abstract
Erythropoietin (EPO) is a frequently prescribed anti-anemic drug for patients with advanced renal carcinoma. However, recent evidence from clinical studies suggested that EPO accelerated tumor progression and jeopardized the 5-year survival. Herein, we show, starting from the in silico microarray bioinformatics analysis, that activation of Erythropoietin signaling pathway enhanced renal clear carcinoma (RCC) progression. EPO accelerated the proliferative and migratory ability in 786-O and Caki-2 cells. Moreover, comparative proteomics expression profiling suggested that exogenous EPO stimulated RCC progression via up-regulation of KIAA0101 expression. Loss of KIAA0101 impeded the undesirable propensity of EPO in RCC. Finally, low expression of KIAA0101 was associated with the excellent prognosis and prognosticated a higher 5-year survival in human patients with renal carcinoma. Overall, KIAA0101 appears to be a key promoter of RCC malignancy induced by EPO, which provide mechanistic insights into KIAA0101 functions, and pave the road to develop new therapeutics for treatment of cancer-related and chemotherapy-induced anemia in patients with RCC.
Collapse
|
12
|
Meng Y, Li Q, Li L, Ma R. The long non-coding RNA CRNDE promotes cervical cancer cell growth and metastasis. Biol Chem 2017; 399:93-100. [PMID: 29194035 DOI: 10.1515/hsz-2017-0199] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 08/18/2017] [Indexed: 01/20/2023]
Abstract
This study was intended to analyze effects of lncRNA CRNDE on cervical cancer cell growth and metastasis. Fifty pairs of cervical cancer tissues and corresponding adjacent tissues were collected. Expressions of long non-coding RNAs (lncRNAs) in tissue samples were detected by microarray analysis. Expression levels of CRNDE in cervical cancer cells and normal cells were detected by qRT-PCR. Cell-counting kit-8 (CCK-8) assay and clone formation assay were utilized to evaluate cell growth. Wound healing assay and Transwell assay were conducted to detect the migratory and invasive capability of cervical cancer cells. The expressions of CRNDE in cervical cancer tissues and cells were higher than those in normal tissues and cells. CCK-8 assay and clone formation assay showed that the knockdown of CRNDE could inhibit the cell proliferation of HeLa and C-33A cells. Wound healing assay indicated that the downregulation of CRNDE expression could suppress the cell migration. The result of a Transwell assay demonstrated that the number of invasion cells reduced in the CRNDE-si group in comparison with the Mock group. LncRNA CRNDE could promote the cell growth and stimulate the metastasis of cervical cancer cells.
Collapse
Affiliation(s)
- Yuanyuan Meng
- Department of Gynaecology, Harbin Medical University Cancer Hospital, 150 HaPing Road, Nangang District, Harbin 150001, Heilongjiang, P.R. China
| | - Qi Li
- Department of Radiotherapy for Gynaecology, Harbin Medical University Cancer Hospital, Harbin 150001, Heilongjiang, P.R. China
| | - Lianwei Li
- Department of Gynaecology, Harbin Medical University Cancer Hospital, 150 HaPing Road, Nangang District, Harbin 150001, Heilongjiang, P.R. China
| | - Rong Ma
- Department of Gynaecology, Harbin Medical University Cancer Hospital, 150 HaPing Road, Nangang District, Harbin 150001, Heilongjiang, P.R. China
| |
Collapse
|
13
|
Tran Q, Park J, Lee H, Hong Y, Hong S, Park S, Park J, Kim SH. TMEM39A and Human Diseases: A Brief Review. Toxicol Res 2017; 33:205-209. [PMID: 28744351 PMCID: PMC5523561 DOI: 10.5487/tr.2017.33.3.205] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 06/13/2017] [Accepted: 06/13/2017] [Indexed: 12/22/2022] Open
Abstract
Transmembrane Protein 39A (TMEM39A) is a member of TMEM family. The understanding about this protein is still limited. The earlier studies indicated that TMEM39A was a key mediator of autoimmune disease. TMEM39A seems to be involved in systemic lupus erythematosus and multiple sclerosis in numerous of populations. All of these works stop at insufficient information by using gene functioning methods such as: Genome-wide association studies (GWASs) and/or follow-up study. It is the fact that the less understood of TMEM39A actually is the attraction to the scientist in near future. In this review the current knowledge about TMEM39A and its possible roles in cell biology, physiology and pathology will be described.
Collapse
Affiliation(s)
- Quangdon Tran
- Department of Pharmacology and Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Research Institute for Medical Sciences, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Jisoo Park
- Department of Pharmacology and Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Research Institute for Medical Sciences, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Hyunji Lee
- Department of Pharmacology and Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Research Institute for Medical Sciences, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Youngeun Hong
- Department of Pharmacology and Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Research Institute for Medical Sciences, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Suntaek Hong
- Laboratory of Cancer Cell Biology, Department of Biochemistry, School of Medicine, Gachon University, Incheon, Korea
| | - Sungjin Park
- Department of Pharmacology and Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Research Institute for Medical Sciences, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Jongsun Park
- Department of Pharmacology and Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Research Institute for Medical Sciences, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Seon-Hwan Kim
- Department of Neurosurgery, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, Korea
| |
Collapse
|
14
|
Wang X, Cheng Y, Zhu Y, Li H, Ge W, Wu X, Zhao K, Yuan J, Li Z, Jiang S, Han Z, Jiang Q, Wu Q, Liu T, Zhang C, Yu M, Hu Y. Epigenetic silencing of ASPP1 confers 5‐FU resistance in clear cell renal cell carcinoma by preventing p53 activation. Int J Cancer 2017; 141:1422-1433. [DOI: 10.1002/ijc.30852] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 05/07/2017] [Accepted: 06/21/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Xingwen Wang
- School of Life Science and TechnologyHarbin Institute of TechnologyHarbin Heilongjiang150001 China
- Shenzhen Graduate School of Harbin Institute of TechnologyXili University CityNanshanShenzhen Guangdong518055 China
| | - Yiwei Cheng
- The First Affiliated HospitalHarbin Medical UniversityHarbin Heilongjiang150081 China
| | - YiFu Zhu
- School of Life Science and TechnologyHarbin Institute of TechnologyHarbin Heilongjiang150001 China
| | - Huayi Li
- School of Life Science and TechnologyHarbin Institute of TechnologyHarbin Heilongjiang150001 China
| | - Wenjie Ge
- School of Life Science and TechnologyHarbin Institute of TechnologyHarbin Heilongjiang150001 China
- Shenzhen Graduate School of Harbin Institute of TechnologyXili University CityNanshanShenzhen Guangdong518055 China
| | - Xiaoliang Wu
- School of Life Science and TechnologyHarbin Institute of TechnologyHarbin Heilongjiang150001 China
| | - Kunming Zhao
- School of Life Science and TechnologyHarbin Institute of TechnologyHarbin Heilongjiang150001 China
| | - Jinyang Yuan
- The First Affiliated HospitalHarbin Medical UniversityHarbin Heilongjiang150081 China
| | - Zhenglin Li
- School of Chemical Engineering and TechnologyHarbin Institute of TechnologyHarbin Heilongjiang150001 China
| | - Shijian Jiang
- School of Life Science and TechnologyHarbin Institute of TechnologyHarbin Heilongjiang150001 China
| | - Zhengbin Han
- School of Life Science and TechnologyHarbin Institute of TechnologyHarbin Heilongjiang150001 China
| | - Qinghua Jiang
- School of Life Science and TechnologyHarbin Institute of TechnologyHarbin Heilongjiang150001 China
| | - Qiong Wu
- School of Life Science and TechnologyHarbin Institute of TechnologyHarbin Heilongjiang150001 China
| | - Tao Liu
- Shenzhen Luohu People's Hospital, Shenzhen Zhongxun Precision Medicine Research InstituteShenzhen Guangdong518001 China
| | - Cheng Zhang
- The First Affiliated HospitalHarbin Medical UniversityHarbin Heilongjiang150081 China
| | - Miao Yu
- School of Chemical Engineering and TechnologyHarbin Institute of TechnologyHarbin Heilongjiang150001 China
| | - Ying Hu
- School of Life Science and TechnologyHarbin Institute of TechnologyHarbin Heilongjiang150001 China
- Shenzhen Graduate School of Harbin Institute of TechnologyXili University CityNanshanShenzhen Guangdong518055 China
| |
Collapse
|
15
|
Yang FY, Wang Y, Wu JG, Song SL, Huang G, Xi WM, Tan LL, Wang J, Cao Q. Analysis of long non-coding RNA expression profiles in clear cell renal cell carcinoma. Oncol Lett 2017; 14:2757-2764. [PMID: 28928816 PMCID: PMC5588171 DOI: 10.3892/ol.2017.6563] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 06/26/2017] [Indexed: 12/20/2022] Open
Abstract
To investigate the expression patterns of long non-coding RNAs (lncRNAs) in clear cell renal cell carcinoma (ccRCC) and in metastatic renal cell carcinoma (RCC), the present study downloaded three human exon arrays available from the public Gene Expression Omnibus. The probes of the human exon arrays were re-annotated and the probes uniquely mapping to lncRNAs were retained at the gene level. Following the analysis of GSE53757 and GSE46699, which contained paired ccRCC cancer and normal adjacent tissue samples, 32 differentially expressed lncRNAs (adjusted P<0.01) in ccRCC were identified. Various lncRNAs, including ENSG00000177133, NR_024418, T-cell leukemia/lymphoma 6 (TCL6), growth arrest-specific transcript 5, deleted in lymphocytic leukemia 2, colorectal neoplasia differentially expressed (CRNDE) and MIR155HG, have been reported to be abnormally expressed in cancers. Of these genes, NR_24418 and TCL6 have been reported to be associated with ccRCC. Following analysis of GSE47352, which contained 4 primary metastatic and 5 non-metastatic tumor samples, the 50 top differentially expressed lncRNAs were identified in metastatic ccRCC (Mann-Whitney U test, P<0.05). Comparison with the ccRCC associated lncRNAs revealed that the lncRNA CRNDE demonstrated an increased expression in ccRCC and metastatic ccRCC samples, which suggested that CRNDE is important in the progression of ccRCC. The lncRNA ENSG00000244020 was decreased in ccRCC and metastatic ccRCC, suggesting that silencing of ENSG00000244020 may be important in ccRCC development. Overall, a set of lncRNAs was identified as differentially expressed in ccRCC and metastatic ccRCC, providing potential candidates for the discovery of novel cancer biomarkers and therapeutic targets to improve diagnosis and therapy in RCC.
Collapse
Affiliation(s)
- Fei Yan Yang
- Department of Nuclear Medicine, Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yan Wang
- Department of Nuclear Medicine, Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jian Guo Wu
- Department of Nuclear Medicine, Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Shao Li Song
- Department of Nuclear Medicine, Ren Ji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200127, P.R. China
| | - Gang Huang
- Department of Nuclear Medicine, Ren Ji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200127, P.R. China
| | - Wei Min Xi
- Department of Nuclear Medicine, Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Li Ling Tan
- Department of Nuclear Medicine, Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jian Wang
- Department of Nuclear Medicine, Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Qing Cao
- Jiangxi Key Laboratory of Molecular Medicine, Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
16
|
Ramsden DB, Waring RH, Barlow DJ, Parsons RB. Nicotinamide N-Methyltransferase in Health and Cancer. Int J Tryptophan Res 2017; 10:1178646917691739. [PMID: 35185340 PMCID: PMC8851132 DOI: 10.1177/1178646917691739] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 01/11/2017] [Indexed: 12/19/2022] Open
Abstract
Over the past decade, the roles of nicotinamide N-methyltransferase and its product 1-methyl nicotinamide have emerged from playing merely minor roles in phase 2 xenobiotic metabolism as actors in some of the most important scenes of human life. In this review, the structures of the gene, messenger RNA, and protein are discussed, together with the role of the enzyme in many of the common cancers that afflict people today.
Collapse
Affiliation(s)
- David B Ramsden
- Institute of Metabolism and Systems Research, The Medical School, University of Birmingham, Birmingham, UK
| | | | - David J Barlow
- Institute of Pharmaceutical Science, King’s College London, London, UK
| | - Richard B Parsons
- Institute of Pharmaceutical Science, King’s College London, London, UK
| |
Collapse
|
17
|
Thiesen HJ, Steinbeck F, Maruschke M, Koczan D, Ziems B, Hakenberg OW. Stratification of clear cell renal cell carcinoma (ccRCC) genomes by gene-directed copy number alteration (CNA) analysis. PLoS One 2017; 12:e0176659. [PMID: 28486536 PMCID: PMC5423597 DOI: 10.1371/journal.pone.0176659] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 04/14/2017] [Indexed: 11/18/2022] Open
Abstract
Tumorigenic processes are understood to be driven by epi-/genetic and genomic alterations from single point mutations to chromosomal alterations such as insertions and deletions of nucleotides up to gains and losses of large chromosomal fragments including products of chromosomal rearrangements e.g. fusion genes and proteins. Overall comparisons of copy number alterations (CNAs) presented in 48 clear cell renal cell carcinoma (ccRCC) genomes resulted in ratios of gene losses versus gene gains between 26 ccRCC Fuhrman malignancy grades G1 (ratio 1.25) and 20 G3 (ratio 0.58). Gene losses and gains of 15762 CNA genes were mapped to 795 chromosomal cytoband loci including 280 KEGG pathways. CNAs were classified according to their contribution to Fuhrman tumour gradings G1 and G3. Gene gains and losses turned out to be highly structured processes in ccRCC genomes enabling the subclassification and stratification of ccRCC tumours in a genome-wide manner. CNAs of ccRCC seem to start with common tumour related gene losses flanked by CNAs specifying Fuhrman grade G1 losses and CNA gains favouring grade G3 tumours. The appearance of recurrent CNA signatures implies the presence of causal mechanisms most likely implicated in the pathogenesis and disease-outcome of ccRCC tumours distinguishing lower from higher malignant tumours. The diagnostic quality of initial 201 genes (108 genes supporting G1 and 93 genes G3 phenotypes) has been successfully validated on published Swiss data (GSE19949) leading to a restricted CNA gene set of 171 CNA genes of which 85 genes favour Fuhrman grade G1 and 86 genes Fuhrman grade G3. Regarding these gene sets overall survival decreased with the number of G3 related gene losses plus G3 related gene gains. CNA gene sets presented define an entry to a gene-directed and pathway-related functional understanding of ongoing copy number alterations within and between individual ccRCC tumours leading to CNA genes of prognostic and predictive value.
Collapse
Affiliation(s)
- H.-J. Thiesen
- Institute of Immunology, University of Rostock, Rostock, Germany
- * E-mail:
| | - F. Steinbeck
- Institute of Immunology, University of Rostock, Rostock, Germany
| | - M. Maruschke
- Department of Urology, University of Rostock, Rostock, Germany
- Department of Urology, HELIOS Hanseklinikum Stralsund, Germany
| | - D. Koczan
- Institute of Immunology, University of Rostock, Rostock, Germany
| | - B. Ziems
- Steinbeis Center for Proteome Analysis, Rostock, Germany
| | - O. W. Hakenberg
- Department of Urology, University of Rostock, Rostock, Germany
| |
Collapse
|
18
|
Han P, Li JW, Zhang BM, Lv JC, Li YM, Gu XY, Yu ZW, Jia YH, Bai XF, Li L, Liu YL, Cui BB. The lncRNA CRNDE promotes colorectal cancer cell proliferation and chemoresistance via miR-181a-5p-mediated regulation of Wnt/β-catenin signaling. Mol Cancer 2017; 16:9. [PMID: 28086904 PMCID: PMC5237133 DOI: 10.1186/s12943-017-0583-1] [Citation(s) in RCA: 402] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 01/03/2017] [Indexed: 12/18/2022] Open
Abstract
Background With more than 600,000 mortalities each year, colorectal cancer (CRC) is the third most commonly diagnosed type of cancer worldwide. Recently, mechanisms involving noncoding RNAs have been implicated in the development of CRC. Methods We examined expression levels of lncRNA CRNDE and miR-181a-5p in 64 cases of CRC tissues and cell lines by qRT-PCR. Gain-of-function and loss-of-function assays were performed to examine the effect of CRNDE and miR-181a-5p on proliferation and chemoresistance of CRC cells. Using fluorescence reporter and western blot assays, we also explored the possible mechanisms of CRNDE in CRC cells. Results In this study, we found that the expression levels of the CRNDE were upregulated in CRC clinical tissue samples. We identified microRNA miR-181a-5p as an inhibitory target of CRNDE. Both CRNDE knockdown and miR-181a-5p overexpression in CRC cell lines led to inhibited cell proliferation and reduced chemoresistance. We also determined that β-catenin and TCF4 were inhibitory targets of miR-181a-5p, and that Wnt/β-catenin signaling was inhibited by both CRNDE knockdown and miR-181a-5p overexpression. Significantly, we found that the repression of cell proliferation, the reduction of chemoresistance, and the inhibition of Wnt/β-catenin signaling induced by CRNDE knockdown would require the increased expression of miR-181a-5p. Conclusions Our study demonstrated that the lncRNA CRNDE could regulate the progression and chemoresistance of CRC via modulating the expression levels of miR-181a-5p and the activity of Wnt/β-catenin signaling. Electronic supplementary material The online version of this article (doi:10.1186/s12943-017-0583-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Peng Han
- Department of Colorectal Surgery, The Affiliated Tumor Hospital of Harbin Medical University, 150 Haping Road, Harbin, 150040, People's Republic of China
| | - Jing-Wen Li
- Department of Colorectal Surgery, The Affiliated Tumor Hospital of Harbin Medical University, 150 Haping Road, Harbin, 150040, People's Republic of China
| | - Bo-Miao Zhang
- Department of Colorectal Surgery, The Affiliated Tumor Hospital of Harbin Medical University, 150 Haping Road, Harbin, 150040, People's Republic of China
| | - Jia-Chen Lv
- Department of Colorectal Surgery, The Affiliated Tumor Hospital of Harbin Medical University, 150 Haping Road, Harbin, 150040, People's Republic of China
| | - Yong-Min Li
- Department of Colorectal Surgery, The Affiliated Tumor Hospital of Harbin Medical University, 150 Haping Road, Harbin, 150040, People's Republic of China
| | - Xin-Yue Gu
- Department of Colorectal Surgery, The Affiliated Tumor Hospital of Harbin Medical University, 150 Haping Road, Harbin, 150040, People's Republic of China
| | - Zhi-Wei Yu
- Department of Colorectal Surgery, The Affiliated Tumor Hospital of Harbin Medical University, 150 Haping Road, Harbin, 150040, People's Republic of China
| | - Yun-He Jia
- Department of Colorectal Surgery, The Affiliated Tumor Hospital of Harbin Medical University, 150 Haping Road, Harbin, 150040, People's Republic of China
| | - Xue-Feng Bai
- Department of Colorectal Surgery, The Affiliated Tumor Hospital of Harbin Medical University, 150 Haping Road, Harbin, 150040, People's Republic of China
| | - Li Li
- Department of Colorectal Surgery, The Affiliated Tumor Hospital of Harbin Medical University, 150 Haping Road, Harbin, 150040, People's Republic of China
| | - Yan-Long Liu
- Department of Colorectal Surgery, The Affiliated Tumor Hospital of Harbin Medical University, 150 Haping Road, Harbin, 150040, People's Republic of China
| | - Bin-Bin Cui
- Department of Colorectal Surgery, The Affiliated Tumor Hospital of Harbin Medical University, 150 Haping Road, Harbin, 150040, People's Republic of China.
| |
Collapse
|
19
|
Lai CY, Chen CM, Hsu WH, Hsieh YH, Liu CJ. Overexpression of Endothelial Cell-Specific Molecule 1 Correlates with Gleason Score and Expression of Androgen Receptor in Prostate Carcinoma. Int J Med Sci 2017; 14:1263-1267. [PMID: 29104483 PMCID: PMC5666560 DOI: 10.7150/ijms.21023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/07/2017] [Indexed: 12/24/2022] Open
Abstract
Endothelial cell-specific molecule 1 (ESM1) is a major prognostic marker of several tumor types, but its value as a marker for prostate cancer is unknown. The purpose of the present study was to measure the relationship of ESM1 expression with androgen receptor (AR) expression and with Gleason score in human prostate carcinoma tissue. Expression of ESM1 and AR were determined by immunohistochemical staining of prostate tissues from healthy individuals and patients with prostate cancer. The results showed that ESM1 expression was significantly higher in prostate tumor tissues than in normal prostate tissues (p < 0.01), and that ESM1 expression in prostate tumor tissue correlated with Gleason score (p < 0.016) and Gleason grade (p < 0.013). ESM1 expression was also greater in prostate tissues with higher Gleason score and Gleason grade (p < 0.001 for both comparisons), and also correlated with AR expression (R = 0.727, p < 0.001). In conclusion, our results demonstrated that ESM1 should be considered as a marker for the diagnosis of prostate cancer.
Collapse
Affiliation(s)
- Chung-Yu Lai
- Department of Surgery, Chung-Kang Branch, Cheng-Ching General Hospital, Taichung, Taiwan.,Institute of Medicine, School of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Center for General Education, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chien-Min Chen
- Division of Neurosurgery, Department of Surgery, Changhua Christian Hospital, Changhua, Taiwan.,School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wen-Hung Hsu
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Hsien Hsieh
- Department of Biochemistry, School of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Clinical laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chung-Jung Liu
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Center for Stem Cell Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
20
|
Ellinger J, Poss M, Brüggemann M, Gromes A, Schmidt D, Ellinger N, Tolkach Y, Dietrich D, Kristiansen G, Müller SC. Systematic Expression Analysis of Mitochondrial Complex I Identifies NDUFS1 as a Biomarker in Clear-Cell Renal-Cell Carcinoma. Clin Genitourin Cancer 2016; 15:e551-e562. [PMID: 28063846 DOI: 10.1016/j.clgc.2016.11.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/15/2016] [Accepted: 11/20/2016] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Mitochondrial dysfunction is common in cancer, and the mitochondrial electron transport chain is often affected in carcinogenesis. So far, little is known about the expression of the mitochondrial complex I (NADH:ubiquinone oxidoreductase) subunits in clear-cell renal-cell carcinoma (ccRCC). MATERIALS AND METHODS An expression profile of the mitochondrial complex I subunits was determined using the NextBio database. Subsequently, the expression of selected subunits was experimentally validated on mRNA (quantitative real-time polymerase chain reaction) and protein (Western blot analysis, immunohistochemistry) level. RESULTS We observed that 7 subunits of the complex I were down-regulated in at least 3 microarray studies. Deregulated mRNA expression was confirmed for NDUFA3, NDUFA, NDUFB1, NDUFB9, NDUFS1, NDUFS8, and NDUFV1. Low NDUFS1 mRNA expression was a significant and independent adverse predictor of a shorter overall survival in our mRNA cohort and the ccRCC cohort of The Cancer Genome Atlas project. NDUFS1 expression was furthermore analyzed on the protein level, and a distinct down-regulation was observed in ccRCC as well as in the chromophobe and the sarcomatoid subtype compared to normal renal tissue. CONCLUSION Expression alterations occur in only a few subunits of the mitochondrial complex I subunits in ccRCC, and altered mRNA and protein expression levels of NDUFS1 may be useful to distinguish between renal-cell carcinoma and normal renal tissue.
Collapse
Affiliation(s)
- Jörg Ellinger
- Department of Urology, University Hospital Bonn, Bonn, Germany.
| | - Mirjam Poss
- Department of Urology, University Hospital Bonn, Bonn, Germany
| | | | - Arabella Gromes
- Department of Urology, University Hospital Bonn, Bonn, Germany
| | - Doris Schmidt
- Department of Urology, University Hospital Bonn, Bonn, Germany
| | - Nadja Ellinger
- Department of Anesthesiology and Intensive Care, University Hospital Bonn, Bonn, Germany
| | - Yuri Tolkach
- Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - Dimo Dietrich
- Institute of Pathology, University Hospital Bonn, Bonn, Germany; Department of Otorhinolaryngology/Head and Neck Surgery, University Hospital Bonn, Bonn, Germany
| | | | - Stefan C Müller
- Department of Urology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
21
|
Ezzat WM, Amr KS. Insights for hepatitis C virus related hepatocellular carcinoma genetic biomarkers: Early diagnosis and therapeutic intervention. World J Hepatol 2016; 8:1251-1261. [PMID: 27843535 PMCID: PMC5084054 DOI: 10.4254/wjh.v8.i30.1251] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 07/15/2016] [Accepted: 09/08/2016] [Indexed: 02/06/2023] Open
Abstract
The current review explores the role of emerging molecular contributing factors in liver carcinogenesis on top of hepatitis C virus (HCV). Here we will try to discuss the role genetic and epigenetic factors in pathogenesis of hepatocellular carcinoma. Understanding the role of these factors will help in discovering the mystery of liver carcinogenesis on top of chronic HCV infection. Moreover, use of the studied molecular factors will provide the hepatologists with tailored diagnostic promising biomarkers and flatten the way for establishment of emerging molecular treatment based on exploring the molecular subscription of this aggressive liver cancer.
Collapse
|
22
|
Major Action of Endogenous Lysyl Oxidase in Clear Cell Renal Cell Carcinoma Progression and Collagen Stiffness Revealed by Primary Cell Cultures. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:2473-85. [PMID: 27449199 DOI: 10.1016/j.ajpath.2016.05.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 04/27/2016] [Accepted: 05/23/2016] [Indexed: 11/20/2022]
Abstract
Human clear cell renal cell carcinoma (ccRCC) is therapy resistant; therefore, it is worthwhile studying in depth the molecular aspects of its progression. In ccRCC the biallelic inactivation of the VHL gene leads to stabilization of hypoxia-inducible factors (HIFs). Among the targets of HIF-1α transcriptional activity is the LOX gene, which codes for the inactive proenzyme (Pro-Lox) from which, after extracellular secretion and proteolysis, derives the active enzyme (Lox) and the propeptide (Lox-PP). By increasing stiffness of extracellular matrix by collagen crosslinking, Lox promotes tumor progression and metastasis. Lox and Lox-PP can reenter the cells where Lox promotes cell proliferation and invasion, whereas Lox-PP acts as tumor suppressor because of its Ras recision and apoptotic activity. Few data are available concerning LOX in ccRCC. Using an in vitro model of ccRCC primary cell cultures, we performed, for the first time in ccRCC, a detailed study of endogenous LOX and also investigated their transcriptomic profile. We found that endogenous LOX is overexpressed in ccRCC, is involved in a positive-regulative loop with HIF-1α, and has a major action on ccRCC progression through cellular adhesion, migration, and collagen matrix stiffness increment; however, the oncosuppressive action of Lox-PP was not found to prevail. These findings may suggest translational approaches for new therapeutic strategies in ccRCC.
Collapse
|
23
|
Liu T, Zhang X, Yang YM, Du LT, Wang CX. Increased expression of the long noncoding RNA CRNDE-h indicates a poor prognosis in colorectal cancer, and is positively correlated with IRX5 mRNA expression. Onco Targets Ther 2016; 9:1437-48. [PMID: 27042112 PMCID: PMC4795576 DOI: 10.2147/ott.s98268] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background The long noncoding RNA (lncRNA) colorectal neoplasia differentially expressed – h (CRNDE-h) plays important roles in the early stages of human development and cancer progression. We investigated the expression and clinical significance of lncRNA CRNDE-h in colorectal cancer (CRC). Methods The expression level of lncRNA CRNDE-h was analyzed in 142 CRC tissues and 142 paired adjacent nontumorous tissues, along with 21 inflammatory bowel diseases, 69 hyperplastic polyp, and 73 colorectal adenoma samples, using quantitative real-time polymerase chain reaction. The association between lncRNA CRNDE-h, and Iroquois homeobox protein 5 (IRX5) mRNA was examined in the same 142 CRC tissues. Results We found that lncRNA CRNDE-h level was elevated in the CRC and adenoma groups compared with the other groups (all at P<0.001). In CRC, upregulation of lncRNA CRNDE-h was significantly correlated with large tumor size, positive regional lymph node metastasis, and distant metastasis (all at P<0.05). Area under the curve for lncRNA CRNDE-h showed diagnostic capability for distinguishing CRC from other groups. Patients with CRC with high lncRNA CRNDE-h expression level had poorer overall survival than those with low lncRNA CRNDE-h expression (log-rank test, P<0.001). Further, multivariable Cox regression analysis suggested that increased expression of lncRNA CRNDE-h was an independent prognostic indicator for CRC (hazard ratio [HR]=2.173; 95% confidence interval [CI], 1.282–3.684, P=0.004). Furthermore, lncRNA CRNDE-h expression was positively correlated with IRX5 mRNA in CRC tissues. Conclusions Our data offers convincing evidence for the first time that lncRNA CRNDE-h is associated with adverse clinical characteristics and poor prognosis, which suggests that it might play an important role in CRC development and progression and might have clinical potential as a useful prognostic predictor.
Collapse
Affiliation(s)
- Tong Liu
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Jinan, People's Republic of China
| | - Xin Zhang
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Jinan, People's Republic of China
| | - Yong-Mei Yang
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Jinan, People's Republic of China
| | - Lu-Tao Du
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Jinan, People's Republic of China
| | - Chuan-Xin Wang
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Jinan, People's Republic of China
| |
Collapse
|
24
|
Specific genomic aberrations predict survival, but low mutation rate in cancer hot spots, in clear cell renal cell carcinoma. Appl Immunohistochem Mol Morphol 2016; 23:334-42. [PMID: 24992170 PMCID: PMC4431677 DOI: 10.1097/pai.0000000000000087] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Supplemental Digital Content is available in the text. Detailed genetic profiling of clear cell renal cell carcinoma (ccRCC) has revealed genomic regions commonly affected by structural changes and a general genetic heterogeneity. VHL and PBRM1, both located at chromosome 3p, are 2 major genes mutated at high frequency but apart from these aberrations, the mutational landscape in ccRCC is largely undefined. Potential prognostic information given by the genomic changes appears to depend on the particular cohort studied. We analyzed a Swedish ccRCC cohort of 74 patients and found common changes (loss or gain occurring in >20% of the tumors) in 12 chromosomal regions (1p, 3p, 3q, 5q, 6q, 7p, 7q 8p, 9p, 9q, 10q, and 14q). A poor outcome was associated with gain of 7q and losses on 9p, 9q, and 14q. These aberrations were more frequent in metastasized tumors, suggesting alterations of genes important for tumor progression. Sequencing of 48 genes implicated in cancer revealed that only VHL, TP53, and PTEN were mutated at a noticeable frequency (51%, 9%, and 9%, respectively). Shorter relative telomere length (RTL) has been associated with loss of specific chromosomal regions in ccRCC tumors, but we could not verify this finding. However, a significantly lower tumor/nontumor (T/N) RTL ratio was detected for tumors with losses in 4q or 9p. In conclusion, poor outcome in ccRCC was associated with gain of 7q and loss on 9p, 9q, and 14q, whereas the mutation rate overall was low in a screen of cancer-associated genes.
Collapse
|
25
|
Wrzesiński T, Szelag M, Cieślikowski WA, Ida A, Giles R, Zodro E, Szumska J, Poźniak J, Kwias Z, Bluyssen HAR, Wesoly J. Expression of pre-selected TMEMs with predicted ER localization as potential classifiers of ccRCC tumors. BMC Cancer 2015; 15:518. [PMID: 26169495 PMCID: PMC5015219 DOI: 10.1186/s12885-015-1530-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 07/01/2015] [Indexed: 11/24/2022] Open
Abstract
Background VHL inactivation is the most established molecular characteristic of clear cell renal cell carcinoma (ccRCC), with only a few additional genes implicated in development of this kidney tumor. In recently published ccRCC gene expression meta-analysis study we identified a number of deregulated genes with limited information available concerning their biological role, represented by gene transcripts belonging to transmembrane proteins family (TMEMs). TMEMs are predicted to be components of cellular membranes, such as mitochondrial membranes, ER, lysosomes and Golgi apparatus. Interestingly, the function of majority of TMEMs remains unclear. Here, we analyzed expression of ten TMEM genes in the context of ccRCC progression and development, and characterized these proteins bioinformatically. Methods The expression of ten TMEMs (RTP3, SLC35G2, TMEM30B, TMEM45A, TMEM45B, TMEM61, TMEM72, TMEM116, TMEM207 and TMEM213) was measured by qPCR. T-test, Pearson correlation, univariate and multivariate logistic and Cox regression were used in statistical analysis. The topology of studied proteins was predicted with Metaserver, together with PSORTII, Pfam and Localizome tools. Results We observed significant deregulation of expression of 10 analyzed TMEMs in ccRCC tumors. Cluster analysis of expression data suggested the down-regulation of all tested TMEMs to be a descriptor of the most advanced tumors. Logistic and Cox regression potentially linked TMEM expression to clinical parameters such as: metastasis, Fuhrman grade and overall survival. Topology predictions classified majority of analyzed TMEMs as type 3 and type 1 transmembrane proteins, with predicted localization mainly in ER. Conclusions The massive down-regulation of expression of TMEM family members suggests their importance in the pathogenesis of ccRCC and the bioinformatic analysis of TMEM topology implies a significant involvement of ER proteins in ccRCC pathology. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1530-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tomasz Wrzesiński
- Laboratory of High Throughput Technologies, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614, Poznan, Poland.
| | - Malgorzata Szelag
- Department of Human Molecular Genetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614, Poznan, Poland.
| | - Wojciech A Cieślikowski
- Department of Urology and Urological Oncology, Poznan University of Medical Sciences, Szwajcarska 3, 61-285, Poznan, Poland.
| | - Agnieszka Ida
- Department of Urology and Urological Oncology, Poznan University of Medical Sciences, Szwajcarska 3, 61-285, Poznan, Poland.
| | - Rachel Giles
- Department of Nephrology and Hypertension, University Medical Center, Postbus 85500, 3508 GA, Utrecht, Netherlands.
| | - Elżbieta Zodro
- Laboratory of High Throughput Technologies, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614, Poznan, Poland.
| | - Joanna Szumska
- Laboratory of High Throughput Technologies, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614, Poznan, Poland.
| | - Joanna Poźniak
- Laboratory of High Throughput Technologies, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614, Poznan, Poland.
| | - Zbigniew Kwias
- Department of Urology and Urological Oncology, Poznan University of Medical Sciences, Szwajcarska 3, 61-285, Poznan, Poland.
| | - Hans A R Bluyssen
- Department of Human Molecular Genetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614, Poznan, Poland.
| | - Joanna Wesoly
- Laboratory of High Throughput Technologies, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614, Poznan, Poland.
| |
Collapse
|
26
|
Biomarkers for Renal Cell Carcinoma. KIDNEY CANCER 2015. [DOI: 10.1007/978-3-319-17903-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
27
|
Urinary signatures of Renal Cell Carcinoma investigated by peptidomic approaches. PLoS One 2014; 9:e106684. [PMID: 25202906 PMCID: PMC4159280 DOI: 10.1371/journal.pone.0106684] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 07/31/2014] [Indexed: 01/16/2023] Open
Abstract
Renal Cell Carcinoma (RCC) is typically asymptomatic and surgery usually increases patient's lifespan only for early stage tumours. Moreover, solid renal masses cannot be confidently differentiated from RCC. Therefore, markers to distinguish malignant kidney tumours and for their detection are needed. Two different peptide signatures were obtained by a MALDI-TOF profiling approach based on urine pre-purification by C8 magnetic beads. One cluster of 12 signals could differentiate malignant tumours (n = 137) from benign renal masses and controls (n = 153) with sensitivity of 76% and specificity of 87% in the validation set. A second cluster of 12 signals distinguished clear cell RCC (n = 118) from controls (n = 137) with sensitivity and specificity values of 84% and 91%, respectively. Most of the peptide signals used in the two models were observed at higher abundance in patient urines and could be identified as fragments of proteins involved in tumour pathogenesis and progression. Among them: the Meprin 1α with a pro-angiogenic activity, the Probable G-protein coupled receptor 162, belonging to the GPCRs family and known to be associated with several key functions in cancer, the Osteopontin that strongly correlates to tumour stages and invasiveness, the Phosphorylase b kinase regulatory subunit alpha and the SeCreted and TransMembrane protein 1.
Collapse
|
28
|
von Roemeling CA, Radisky DC, Marlow LA, Cooper SJ, Grebe SK, Anastasiadis PZ, Tun HW, Copland JA. Neuronal pentraxin 2 supports clear cell renal cell carcinoma by activating the AMPA-selective glutamate receptor-4. Cancer Res 2014; 74:4796-810. [PMID: 24962026 DOI: 10.1158/0008-5472.can-14-0210] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common subtype of kidney cancer and has the highest propensity to manifest as metastatic disease. Recent characterizations of the genetic signature of ccRCC have revealed several factors correlated with tumor cell migration and invasion; however, the specific events driving malignancy are not well defined. Furthermore, there remains a lack of targeted therapies that result in long-term, sustainable response in patients with metastatic disease. We show here that neuronal pentraxin 2 (NPTX2) is overexpressed specifically in ccRCC primary tumors and metastases, and that it contributes to tumor cell viability and promotes cell migration through its interaction with the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor subunit GluR4. We propose NPTX2 as a novel molecular target for therapy for patients with ccRCC diagnosed with or at risk of developing metastatic disease.
Collapse
Affiliation(s)
| | - Derek C Radisky
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida
| | - Laura A Marlow
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida
| | - Simon J Cooper
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida
| | - Stefan K Grebe
- Division of Clinical Biochemistry and Immunology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | | | - Han W Tun
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida. Division of Hematology and Oncology, Mayo Clinic, Jacksonville, Florida
| | - John A Copland
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida.
| |
Collapse
|
29
|
Girgis H, Masui O, White NM, Scorilas A, Rotondo F, Seivwright A, Gabril M, Filter ER, Girgis AH, Bjarnason GA, Jewett MA, Evans A, Al-Haddad S, Siu KM, Yousef GM. Lactate dehydrogenase A is a potential prognostic marker in clear cell renal cell carcinoma. Mol Cancer 2014; 13:101. [PMID: 24885701 PMCID: PMC4022787 DOI: 10.1186/1476-4598-13-101] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 04/22/2014] [Indexed: 12/17/2022] Open
Abstract
Background Over 90% of cancer-related deaths in clear cell renal cell carcinoma (RCC) are caused by tumor relapse and metastasis. Thus, there is an urgent need for new molecular markers that can potentiate the efficacy of the current clinical-based models of prognosis assessment. The objective of this study is to evaluate the potential significance of lactate dehydrogenase A (LDHA), assessed by immunohistochemical staining, as a prognostic marker in clear cell renal cell carcinoma in relation to clinicopathological features and clinical outcome. Methods We assessed the expression of LDHA at the protein level, by immunohistochemistry, and correlated its expression with multiple clinicopathological features including tumor size, clinical stage, histological grade, disease-free and overall survival in 385 patients with primary clear cell renal cell carcinoma. We also correlated the LDHA expression with overall survival, at mRNA level, in an independent data set of 170 clear cell renal cell carcinoma cases from The Cancer Genome Atlas databases. Cox proportional hazards models adjusted for the potential clinicopathological factors were used to test for associations between the LDHA expression and both disease-free survival and overall survival. Results There is statistically significant positive correlation between LDHA level of expression and tumor size, clinical stage and histological grade. Moreover, LDHA expression shows significantly inverse correlation with both disease-free survival and overall survival in patients with clear cell renal cell carcinoma. Our results are validated by examining LDHA expression, at the mRNA level, in the independent data set of clear cell renal cell carcinoma cases from The Cancer Genome Atlas databases which also shows that higher lactate dehydrogenase A expression is associated with significantly shorter overall survival. Conclusion Our results indicate that LDHA up-regulation can be a predictor of poor prognosis in clear cell renal cell carcinoma. Thus, it represents a potential prognostic biomarker that can boost the accuracy of other prognostic models in patients with clear cell renal cell carcinoma.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - George M Yousef
- The Keenan Research Center in the Li Ka Shing Knowledge Institute, St, Michael's Hospital, Toronto M5B 1 W8, Canada.
| |
Collapse
|
30
|
Kim Y, Choi JW, Lee JH, Kim YS. Loss of CDC14B expression in clear cell renal cell carcinoma: meta-analysis of microarray data sets. Am J Clin Pathol 2014; 141:551-8. [PMID: 24619757 DOI: 10.1309/ajcp4pe4jpsrgbqs] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES To discover significant differentially expressed genes (DEGs) in clear cell renal cell carcinoma (ccRCC) that might be unidentified by single microarray analysis. METHODS The effect sizes of five ccRCC microarray data sets were combined using a random-effects model. The most downregulated gene was validated in paired 80 ccRCC tissues by immunohistochemistry. RESULTS CDC14B was the most downregulated gene among 1,761 DEGs. CDC14B was strongly expressed in the apical proximal tubules in the nonneoplastic tissues, while it was completely absent in 10 (12.5%) of 80 or downregulated in 70 (87.5%) of 80 ccRCC cases. The complete loss of CDC14B correlated with high T stage (P = .038), advanced TNM stage (P = .027), tumor recurrence (P = .038), and shorter recurrence-free survival (P = .046) compared with the partial loss of CDC14B. CONCLUSIONS Microarray meta-analysis is a useful tool for pathologists. CDC14B expression is downregulated in ccRCC, suggesting its role in renal carcinogenesis.
Collapse
Affiliation(s)
- Younghye Kim
- Department of Pathology, Korea University Ansan Hospital, Ansan, Republic of Korea
| | - Jung-Woo Choi
- Department of Pathology, Korea University Ansan Hospital, Ansan, Republic of Korea
| | - Ju-Han Lee
- Department of Pathology, Korea University Ansan Hospital, Ansan, Republic of Korea
| | - Young-Sik Kim
- Department of Pathology, Korea University Ansan Hospital, Ansan, Republic of Korea
| |
Collapse
|
31
|
FUT11 as a potential biomarker of clear cell renal cell carcinoma progression based on meta-analysis of gene expression data. Tumour Biol 2013; 35:2607-17. [PMID: 24318988 PMCID: PMC3967067 DOI: 10.1007/s13277-013-1344-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 10/17/2013] [Indexed: 01/28/2023] Open
Abstract
In this paper, we provide a comprehensive summary of available clear cell renal cell carcinoma (ccRCC) microarray data in the form of meta-analysis of genes differentially regulated in tumors as compared to healthy tissue, using effect size to measure the strength of a relationship between the disease and gene expression. We identified 725 differentially regulated genes, with a number of interesting targets, such as TMEM213, SMIM5, or ATPases: ATP6V0A4 and ATP6V1G3, of which limited or no information is available in terms of their function in ccRCC pathology. Downregulated genes tended to represent pathways related to tissue remodeling, blood clotting, vasodilation, and energy metabolism, while upregulated genes were classified into pathways generally deregulated in cancers: immune system response, inflammatory response, angiogenesis, and apoptosis. One hundred fifteen deregulated genes were included in network analysis, with EGLN3, AP-2, NR3C1, HIF1A, and EPAS1 (gene encoding HIF2-α) as points of functional convergence, but, interestingly, 610 genes failed to join previously identified molecular networks. Furthermore, we validated the expression of 14 top deregulated genes in independent sample set of 32 ccRCC tumors by qPCR and tested if it could serve as a marker of disease progression. We found a correlation of high fucosyltransferase 11 (FUT11) expression with non-symptomatic course of the disease, which suggests that FUT11's expression might be potentially used as a biomarker of disease progression.
Collapse
|
32
|
Peri S, Devarajan K, Yang DH, Knudson AG, Balachandran S. Meta-analysis identifies NF-κB as a therapeutic target in renal cancer. PLoS One 2013; 8:e76746. [PMID: 24116146 PMCID: PMC3792024 DOI: 10.1371/journal.pone.0076746] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 08/23/2013] [Indexed: 01/12/2023] Open
Abstract
OBJECTIVE To determine the expression patterns of NF-κB regulators and target genes in clear cell renal cell carcinoma (ccRCC), their correlation with von Hippel Lindau (VHL) mutational status, and their association with survival outcomes. METHODS Meta-analyses were carried out on published ccRCC gene expression datasets by RankProd, a non-parametric statistical method. DEGs with a False Discovery Rate of < 0.05 by this method were considered significant, and intersected with a curated list of NF-κB regulators and targets to determine the nature and extent of NF-κB deregulation in ccRCC. RESULTS A highly-disproportionate fraction (~40%; p < 0.001) of NF-κB regulators and target genes were found to be up-regulated in ccRCC, indicative of elevated NF-κB activity in this cancer. A subset of these genes, comprising a key NF-κB regulator (IKBKB) and established mediators of the NF-κB cell-survival and pro-inflammatory responses (MMP9, PSMB9, and SOD2), correlated with higher relative risk, poorer prognosis, and reduced overall patient survival. Surprisingly, levels of several interferon regulatory factors (IRFs) and interferon target genes were also elevated in ccRCC, indicating that an 'interferon signature' may represent a novel feature of this disease. Loss of VHL gene expression correlated strongly with the appearance of NF-κB- and interferon gene signatures in both familial and sporadic cases of ccRCC. As NF-κB controls expression of key interferon signaling nodes, our results suggest a causal link between VHL loss, elevated NF-κB activity, and the appearance of an interferon signature during ccRCC tumorigenesis. CONCLUSIONS These findings identify NF-κB and interferon signatures as clinical features of ccRCC, provide strong rationale for the incorporation of NF-κB inhibitors and/or and the exploitation of interferon signaling in the treatment of ccRCC, and supply new NF-κB targets for potential therapeutic intervention in this currently-incurable malignancy.
Collapse
Affiliation(s)
- Suraj Peri
- Department of Biostatistics and Bioinformatics, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Karthik Devarajan
- Department of Biostatistics and Bioinformatics, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Dong-Hua Yang
- Biosample Repository Core Facility, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Alfred G. Knudson
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Siddharth Balachandran
- Immune Cell Development and Host Defense Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
33
|
Sintupisut N, Liu PL, Yeang CH. An integrative characterization of recurrent molecular aberrations in glioblastoma genomes. Nucleic Acids Res 2013; 41:8803-21. [PMID: 23907387 PMCID: PMC3799430 DOI: 10.1093/nar/gkt656] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and malignant primary brain tumor in adults. Decades of investigations and the recent effort of the Cancer Genome Atlas (TCGA) project have mapped many molecular alterations in GBM cells. Alterations on DNAs may dysregulate gene expressions and drive malignancy of tumors. It is thus important to uncover causal and statistical dependency between ‘effector’ molecular aberrations and ‘target’ gene expressions in GBMs. A rich collection of prior studies attempted to combine copy number variation (CNV) and mRNA expression data. However, systematic methods to integrate multiple types of cancer genomic data—gene mutations, single nucleotide polymorphisms, CNVs, DNA methylations, mRNA and microRNA expressions and clinical information—are relatively scarce. We proposed an algorithm to build ‘association modules’ linking effector molecular aberrations and target gene expressions and applied the module-finding algorithm to the integrated TCGA GBM data sets. The inferred association modules were validated by six tests using external information and datasets of central nervous system tumors: (i) indication of prognostic effects among patients; (ii) coherence of target gene expressions; (iii) retention of effector–target associations in external data sets; (iv) recurrence of effector molecular aberrations in GBM; (v) functional enrichment of target genes; and (vi) co-citations between effectors and targets. Modules associated with well-known molecular aberrations of GBM—such as chromosome 7 amplifications, chromosome 10 deletions, EGFR and NF1 mutations—passed the majority of the validation tests. Furthermore, several modules associated with less well-reported molecular aberrations—such as chromosome 11 CNVs, CD40, PLXNB1 and GSTM1 methylations, and mir-21 expressions—were also validated by external information. In particular, modules constituting trans-acting effects with chromosome 11 CNVs and cis-acting effects with chromosome 10 CNVs manifested strong negative and positive associations with survival times in brain tumors. By aligning the information of association modules with the established GBM subclasses based on transcription or methylation levels, we found each subclass possessed multiple concurrent molecular aberrations. Furthermore, the joint molecular characteristics derived from 16 association modules had prognostic power not explained away by the strong biomarker of CpG island methylator phenotypes. Functional and survival analyses indicated that immune/inflammatory responses and epithelial-mesenchymal transitions were among the most important determining processes of prognosis. Finally, we demonstrated that certain molecular aberrations uniquely recurred in GBM but were relatively rare in non-GBM glioma cells. These results justify the utility of an integrative analysis on cancer genomes and provide testable characterizations of driver aberration events in GBM.
Collapse
Affiliation(s)
- Nardnisa Sintupisut
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan, ROC and Institute of Information Science, Academia Sinica, Taipei, Taiwan, ROC
| | | | | |
Collapse
|
34
|
Raimondo F, Morosi L, Corbetta S, Chinello C, Brambilla P, Della Mina P, Villa A, Albo G, Battaglia C, Bosari S, Magni F, Pitto M. Differential protein profiling of renal cell carcinoma urinary exosomes. MOLECULAR BIOSYSTEMS 2013; 9:1220-33. [PMID: 23511837 DOI: 10.1039/c3mb25582d] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Renal cell carcinoma (RCC) accounts for about 3% of all human malignancies and its incidence is increasing. There are no standard biomarkers currently used in the clinical management of patients with renal cell carcinoma. A promising strategy for new biomarker detection is comparative proteomics of urinary exosomes (UE), nanovesicles released by every epithelial cell facing the urinary space, enriched in renal proteins and excluding high-abundance plasmatic proteins, such as albumin. Aim of the work is to establish the protein profile of exosomes isolated from urines of RCC patient compared with control subjects. We enrolled 29 clear cell RCC patients and 23 control healthy subjects (CTRL), age and sex-matched, for urine collection and vesicle isolation by differential centrifugation. Such vesicles were morphologically and biochemically characterized and proved to share exosome properties. Proteomic analysis, performed on 9 urinary exosome (UE) pooled samples by gel based digestion followed by LC-MS/MS, led to the identification of 261 proteins from CTRL subject UE and 186 from RCC patient UE, and demonstrated that most of the identified proteins are membrane associated or cytoplasmic. Moreover, about a half of identified proteins are not shared between RCC and control UE. Starting from these observations, and from the literature, we selected a panel of 10 proteins, whose UE differential content was subjected to immunoblotting validation. Results show for the first time that RCC UE protein content is substantially and reproducibly different from control UE, and that these differences may provide clues for new RCC biomarker discovery.
Collapse
Affiliation(s)
- F Raimondo
- Department of Health Sciences, Univ. of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Ellis BC, Molloy PL, Graham LD. CRNDE: A Long Non-Coding RNA Involved in CanceR, Neurobiology, and DEvelopment. Front Genet 2012; 3:270. [PMID: 23226159 PMCID: PMC3509318 DOI: 10.3389/fgene.2012.00270] [Citation(s) in RCA: 182] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 11/07/2012] [Indexed: 12/25/2022] Open
Abstract
CRNDE is the gene symbol for Colorectal Neoplasia Differentially Expressed (non-protein-coding), a long non-coding RNA (lncRNA) gene that expresses multiple splice variants and displays a very tissue-specific pattern of expression. CRNDE was initially identified as a lncRNA whose expression is highly elevated in colorectal cancer, but it is also upregulated in many other solid tumors and in leukemias. Indeed, CRNDE is the most upregulated lncRNA in gliomas and here, as in other cancers, it is associated with a "stemness" signature. CRNDE is expressed in specific regions within the human and mouse brain; the mouse ortholog is high in induced pluripotent stem cells and increases further during neuronal differentiation. We suggest that CRNDE is a multifunctional lncRNA whose different splice forms provide specific functional scaffolds for regulatory complexes, such as the polycomb repressive complex 2 (PRC2) and CoREST chromatin-modifying complexes, which CRNDE helps pilot to target genes.
Collapse
Affiliation(s)
- Blake C Ellis
- CSIRO Animal, Food and Health Sciences, Preventative Health Flagship, Commonwealth Scientific and Industrial Research Organisation Sydney, NSW, Australia
| | | | | |
Collapse
|
36
|
Girgis AH, Iakovlev VV, Beheshti B, Bayani J, Squire JA, Bui A, Mankaruos M, Youssef Y, Khalil B, Khella H, Pasic M, Yousef GM. Multilevel whole-genome analysis reveals candidate biomarkers in clear cell renal cell carcinoma. Cancer Res 2012; 72:5273-84. [PMID: 22926558 DOI: 10.1158/0008-5472.can-12-0656] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Renal cell carcinoma (RCC) is the most common neoplasm of the kidney. We conducted an integrated analysis of copy number, gene expression (mRNA and miRNA), protein expression, and methylation changes in clear cell renal cell carcinoma (ccRCC). We used a stepwise approach to identify the most significant copy number aberrations (CNA) and identified regions of peak and broad copy number gain and loss, including peak gains (3q21, 5q32, 5q34-q35, 7p11, 7q21, 8q24, 11q13, and 12q14) and deletions (1p36, 2q34-q37, 3p25, 4q33-q35, 6q23-q27, and 9p21). These regions harbor novel tumor-related genes and miRNAs not previously reported in renal carcinoma. Integration of genome-wide expression data and gene set enrichment analysis revealed 75 gene sets significantly altered in tumors with CNAs compared with tumors without aberration. We also identified genes located in peak CNAs with concordant methylation changes (hypomethylated in copy number gains such as STC2 and CCND1 and hypermethylated in deletions such as CLCNKB, VHL, and CDKN2A/2B). For other genes, such as CA9, expression represents the net outcome of opposing forces (deletion and hypomethylation) that also significantly influences patient survival. We also validated the prognostic value of miRNA let-7i in RCCs. miR-138, located in chromosome 3p deletion, was also found to have suppressive effects on tumor proliferation and migration abilities. Our findings provide a significant advance in the delineation of the ccRCC genome by better defining the impact of CNAs in conjunction with methylation changes on the expression of cancer-related genes, miRNAs, and proteins and their influence on patient survival.
Collapse
Affiliation(s)
- Andrew H Girgis
- Department of Laboratory Medicine, and the Keenan Research Centre in the Li Ka Shing Knowledge Institute St. Michael's Hospital, Toronto, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Depontieu F, de Freitas Caires N, Gourcerol D, Giordano J, Grigoriu B, Delehedde M, Lassalle P. Development of monoclonal antibodies and ELISA specific for the mouse vascular endocan. J Immunol Methods 2012; 378:88-94. [PMID: 22370430 DOI: 10.1016/j.jim.2012.02.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 02/09/2012] [Accepted: 02/09/2012] [Indexed: 12/12/2022]
Abstract
Human vascular endocan is a proteoglycan exhibiting tumorigenic activity through both its glycan and protein cores. Endocan mRNA is identified as being one of the most significant molecular signatures defining a poor prognosis in lung, breast, kidney, prostate, and thyroid malignancies. The survival inversely correlates with endocan expression in tumor tissue from hepatocarcinoma, and in serum from lung cancer. In mouse, endocan mRNA is also increased in tumor vessels. However, mouse endocan has not yet been fully characterized. Here, we produced a panel of rat monoclonal antibodies directed against mouse endocan, leading to the development of a specific mouse/rat endocan ELISA. Mouse endocan serum level was measured at a median of 0.96 ng/mL and 1.08 ng/mL in 129Sv mice and C57bl6, respectively. These results also provide new tools to characterize and explore the role of endocan in mouse and rat models of human diseases. These results present mouse vascular endocan as a circulating molecule similar to human endocan.
Collapse
|
38
|
Raimondo F, Salemi C, Chinello C, Fumagalli D, Morosi L, Rocco F, Ferrero S, Perego R, Bianchi C, Sarto C, Pitto M, Brambilla P, Magni F. Proteomic analysis in clear cell renal cell carcinoma: identification of differentially expressed protein by 2-D DIGE. MOLECULAR BIOSYSTEMS 2012; 8:1040-51. [PMID: 22315040 DOI: 10.1039/c2mb05390j] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Renal cell carcinoma (RCC), the most common neoplasm affecting the adult kidney, is characterised by heterogeneity of histological subtypes, drug resistance, and absence of molecular markers. Two-dimensional difference gel electrophoresis (2-D DIGE) technology in combination with mass spectrometry (MS) was applied to detect differentially expressed proteins in 20 pairs of RCC tissues and matched adjacent normal kidney cortex (ANK), in order to search for RCC markers. After gel analysis by DeCyder 6.5 and EDA software, differentially expressed protein spots were excised from Deep Purple stained preparative 2DE gel. A total of 100 proteins were identified by MS out of 2500 spots, 23 and 77 of these were, respectively, over- and down-expressed in RCC. The Principal Component Analysis applied to gels and protein spots exactly separated the two sample classes in two groups: RCC and ANK. Moreover, some spots, including ANXA2, PPIA, FABP7 and LEG1, resulted highly differential. The DIGE data were also confirmed by immunoblotting analysis for these proteins. In conclusion, we suggest that applying 2-D DIGE to RCC may provide the basis for a better molecular characterization and for the discovery of candidate biomarkers.
Collapse
Affiliation(s)
- Francesca Raimondo
- Department of Experimental Medicine, Univ. of Milano-Bicocca, Via Cadore 48, 20052 Monza, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Li M, Rathmell WK. Biomarkers for Renal Cell Carcinoma. KIDNEY CANCER 2012. [DOI: 10.1007/978-3-642-21858-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
40
|
Li SD, Tagami T, Ho YF, Yeang CH. Deciphering causal and statistical relations of molecular aberrations and gene expressions in NCI-60 cell lines. BMC SYSTEMS BIOLOGY 2011; 5:186. [PMID: 22051105 PMCID: PMC3259106 DOI: 10.1186/1752-0509-5-186] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 11/04/2011] [Indexed: 12/02/2022]
Abstract
BACKGROUND Cancer cells harbor a large number of molecular alterations such as mutations, amplifications and deletions on DNA sequences and epigenetic changes on DNA methylations. These aberrations may dysregulate gene expressions, which in turn drive the malignancy of tumors. Deciphering the causal and statistical relations of molecular aberrations and gene expressions is critical for understanding the molecular mechanisms of clinical phenotypes. RESULTS In this work, we proposed a computational method to reconstruct association modules containing driver aberrations, passenger mRNA or microRNA expressions, and putative regulators that mediate the effects from drivers to passengers. By applying the module-finding algorithm to the integrated datasets of NCI-60 cancer cell lines, we found that gene expressions were driven by diverse molecular aberrations including chromosomal segments' copy number variations, gene mutations and DNA methylations, microRNA expressions, and the expressions of transcription factors. In-silico validation indicated that passenger genes were enriched with the regulator binding motifs, functional categories or pathways where the drivers were involved, and co-citations with the driver/regulator genes. Moreover, 6 of 11 predicted MYB targets were down-regulated in an MYB-siRNA treated leukemia cell line. In addition, microRNA expressions were driven by distinct mechanisms from mRNA expressions. CONCLUSIONS The results provide rich mechanistic information regarding molecular aberrations and gene expressions in cancer genomes. This kind of integrative analysis will become an important tool for the diagnosis and treatment of cancer in the era of personalized medicine.
Collapse
Affiliation(s)
- Shyh-Dar Li
- Ontario Institute for Cancer Research, 101 College Street, Toronto, Canada
| | | | - Ying-Fu Ho
- Institute of Statistical Science, Academia Sinica, Academia Road, Sec 2, Taipei, Taiwan
| | - Chen-Hsiang Yeang
- Institute of Statistical Science, Academia Sinica, Academia Road, Sec 2, Taipei, Taiwan
| |
Collapse
|
41
|
Cifola I, Bianchi C, Mangano E, Bombelli S, Frascati F, Fasoli E, Ferrero S, Di Stefano V, Zipeto MA, Magni F, Signorini S, Battaglia C, Perego RA. Renal cell carcinoma primary cultures maintain genomic and phenotypic profile of parental tumor tissues. BMC Cancer 2011; 11:244. [PMID: 21668985 PMCID: PMC3141767 DOI: 10.1186/1471-2407-11-244] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 06/13/2011] [Indexed: 12/16/2022] Open
Abstract
Background Clear cell renal cell carcinoma (ccRCC) is characterized by recurrent copy number alterations (CNAs) and loss of heterozygosity (LOH), which may have potential diagnostic and prognostic applications. Here, we explored whether ccRCC primary cultures, established from surgical tumor specimens, maintain the DNA profile of parental tumor tissues allowing a more confident CNAs and LOH discrimination with respect to the original tissues. Methods We established a collection of 9 phenotypically well-characterized ccRCC primary cell cultures. Using the Affymetrix SNP array technology, we performed the genome-wide copy number (CN) profiling of both cultures and corresponding tumor tissues. Global concordance for each culture/tissue pair was assayed evaluating the correlations between whole-genome CN profiles and SNP allelic calls. CN analysis was performed using the two CNAG v3.0 and Partek software, and comparing results returned by two different algorithms (Hidden Markov Model and Genomic Segmentation). Results A very good overlap between the CNAs of each culture and corresponding tissue was observed. The finding, reinforced by high whole-genome CN correlations and SNP call concordances, provided evidence that each culture was derived from its corresponding tissue and maintained the genomic alterations of parental tumor. In addition, primary culture DNA profile remained stable for at least 3 weeks, till to third passage. These cultures showed a greater cell homogeneity and enrichment in tumor component than original tissues, thus enabling a better discrimination of CNAs and LOH. Especially for hemizygous deletions, primary cultures presented more evident CN losses, typically accompanied by LOH; differently, in original tissues the intensity of these deletions was weaken by normal cell contamination and LOH calls were missed. Conclusions ccRCC primary cultures are a reliable in vitro model, well-reproducing original tumor genetics and phenotype, potentially useful for future functional approaches aimed to study genes or pathways involved in ccRCC etiopathogenesis and to identify novel clinical markers or therapeutic targets. Moreover, SNP array technology proved to be a powerful tool to better define the cell composition and homogeneity of RCC primary cultures.
Collapse
Affiliation(s)
- Ingrid Cifola
- Institute for Biomedical Technologies (ITB), National Research Council (CNR), via Fratelli Cervi 93, 20090 Segrate, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
|
43
|
Shuib S, Wei W, Sur H, Morris MR, McMullan D, Rattenberry E, Meyer E, Maxwell PH, Kishida T, Yao M, Latif F, Maher ER. Copy number profiling in von hippel-lindau disease renal cell carcinoma. Genes Chromosomes Cancer 2011; 50:479-88. [DOI: 10.1002/gcc.20865] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Accepted: 02/08/2011] [Indexed: 01/22/2023] Open
|
44
|
Wierinckx A, Roche M, Raverot G, Legras-Lachuer C, Croze S, Nazaret N, Rey C, Auger C, Jouanneau E, Chanson P, Trouillas J, Lachuer J. Integrated genomic profiling identifies loss of chromosome 11p impacting transcriptomic activity in aggressive pituitary PRL tumors. Brain Pathol 2011; 21:533-43. [PMID: 21251114 DOI: 10.1111/j.1750-3639.2011.00476.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Integrative genomics approaches associating DNA structure and transcriptomic analysis should allow the identification of cascades of events relating to tumor aggressiveness. While different genome alterations have been identified in pituitary tumors, none have ever been correlated with the aggressiveness. This study focused on one subtype of pituitary tumor, the prolactin (PRL) pituitary tumors, to identify molecular events associated with the aggressive and malignant phenotypes. We combined a comparative genomic hybridization and transcriptomic analysis of 13 PRL tumors classified as nonaggressive or aggressive. Allelic loss within the p arm region of chromosome 11 was detected in five of the aggressive tumors. Allelic loss in the 11q arm was observed in three of these five tumors, all three of which were considered as malignant based on the occurrence of metastases. Comparison of genomic and transcriptomic data showed that allelic loss impacted upon the expression of genes located in the imbalanced region. Data filtering allowed us to highlight five deregulated genes (DGKZ, CD44, TSG101, GTF2H1, HTATIP2), within the missing 11p region, potentially responsible for triggering the aggressive and malignant phenotypes of PRL tumors. Our combined genomic and transcriptomic analysis underlines the importance of chromosome allelic loss in determining the aggressiveness and malignancy of tumors.
Collapse
|
45
|
Ortiz-Estevez M, De Las Rivas J, Fontanillo C, Rubio A. Segmentation of genomic and transcriptomic microarrays data reveals major correlation between DNA copy number aberrations and gene–loci expression. Genomics 2011; 97:86-93. [DOI: 10.1016/j.ygeno.2010.10.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 10/20/2010] [Accepted: 10/22/2010] [Indexed: 11/26/2022]
|
46
|
Pal SK, Kortylewski M, Yu H, Figlin RA. Breaking through a plateau in renal cell carcinoma therapeutics: development and incorporation of biomarkers. Mol Cancer Ther 2010; 9:3115-25. [PMID: 21078774 DOI: 10.1158/1535-7163.mct-10-0873] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
With the Food and Drug Administration approval of 6 novel targeted agents since December 2005 and limited comparative trials to discern relative efficacy, the treatment of metastatic renal cell carcinoma (RCC) has become immensely complex. The research community must look to novel ways in which to identify appropriate candidates for selected targeted therapies; one potential strategy is the use of clinical and molecular biomarkers. A growing body of knowledge-related von Hippel Lindau-driven pathways in this disease has highlighted the potential role of hypoxia-inducible factor subtypes in distinguishing RCC patients clinically. Techniques applied in other malignancies, such as gene expression and proteomic profiling, may also ultimately allow for clinical stratification. An emerging understanding of immunologic phenomena that may affect cancer progression (i.e., tumor infiltration by CD68 lymphocytes, memory T-cells, etc.) has unveiled a number of other potential biomarkers of response. Several vascular endothelial growth factor receptor-directed therapies classically thought to function as antiangiogenics may also have complex effects upon the tumor microenvironment including the associated immune cell milieu. As such, immunologic parameters could potentially predict response to current therapies. Finally, clinical biomarkers, such as hypertension, may predict the efficacy of several currently available targeted agents, although implementation of such biomarkers remains challenging. Herein, the clinical relevance of putative RCC biomarkers is examined in detail.
Collapse
Affiliation(s)
- Sumanta Kumar Pal
- Division of Genitourinary Malignancies, Department of Medical Oncology & Experimental Therapeutics, City of Hope Comprehensive Cancer Center, 1500 East Duarte Road, Duarte, CA 91010, USA.
| | | | | | | |
Collapse
|
47
|
Yeang CH. An integrated analysis of molecular aberrations in NCI-60 cell lines. BMC Bioinformatics 2010; 11:495. [PMID: 20925909 PMCID: PMC2984587 DOI: 10.1186/1471-2105-11-495] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2010] [Accepted: 10/06/2010] [Indexed: 11/26/2022] Open
Abstract
Background Cancer is a complex disease where various types of molecular aberrations drive the development and progression of malignancies. Large-scale screenings of multiple types of molecular aberrations (e.g., mutations, copy number variations, DNA methylations, gene expressions) become increasingly important in the prognosis and study of cancer. Consequently, a computational model integrating multiple types of information is essential for the analysis of the comprehensive data. Results We propose an integrated modeling framework to identify the statistical and putative causal relations of various molecular aberrations and gene expressions in cancer. To reduce spurious associations among the massive number of probed features, we sequentially applied three layers of logistic regression models with increasing complexity and uncertainty regarding the possible mechanisms connecting molecular aberrations and gene expressions. Layer 1 models associate gene expressions with the molecular aberrations on the same loci. Layer 2 models associate expressions with the aberrations on different loci but have known mechanistic links. Layer 3 models associate expressions with nonlocal aberrations which have unknown mechanistic links. We applied the layered models to the integrated datasets of NCI-60 cancer cell lines and validated the results with large-scale statistical analysis. Furthermore, we discovered/reaffirmed the following prominent links: (1)Protein expressions are generally consistent with mRNA expressions. (2)Several gene expressions are modulated by composite local aberrations. For instance, CDKN2A expressions are repressed by either frame-shift mutations or DNA methylations. (3)Amplification of chromosome 6q in leukemia elevates the expression of MYB, and the downstream targets of MYB on other chromosomes are up-regulated accordingly. (4)Amplification of chromosome 3p and hypo-methylation of PAX3 together elevate MITF expression in melanoma, which up-regulates the downstream targets of MITF. (5)Mutations of TP53 are negatively associated with its direct target genes. Conclusions The analysis results on NCI-60 data justify the utility of the layered models for the incoming flow of cancer genomic data. Experimental validations on selected prominent links and application of the layered modeling framework to other integrated datasets will be carried out subsequently.
Collapse
|
48
|
Abstract
Inactivation of the von Hippel-Lindau tumor suppressor protein (pVHL) causes the most common form of kidney cancer. pVHL is part of a complex that polyubiquitinates the alpha subunit of the heterodimeric transcription factor HIF. In the presence of oxygen, HIF1α is prolyl hydroxylated by EglN1 (also called PHD2); this modification recruits pVHL, which then targets HIF1α for proteasomal degradation. In hypoxic or pVHL-defective cells, HIF1α accumulates, binds to HIF1β, and transcriptionally activates genes such as VEGF. VEGF inhibitors and mTOR inhibitors, which indirectly affect HIF, are now approved for the treatment of kidney cancer. EglN1 is a 2-oxoglutarate-dependent dioxygenase; such enzymes can be inhibited with drug-like small molecules and EglN1 inhibitors are currently being tested for the treatment of anemia. EglN2 (PHD1) and EglN3 (PHD3), which are EglN1 paralogs, appear to play HIF-independent roles in cell proliferation and apoptosis, respectively, and are garnering interest as potential cancer targets. A number of JmjC-containing proteins, including RBP2 and PLU-1, are 2-oxoglutarate-dependent dioxygenases that demethylate histones. Preclinical data suggest that inhibition of RBP2 or PLU-1 would suppress tumor growth.
Collapse
Affiliation(s)
- William G Kaelin
- Howard Hughes Medical Institute, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.
| |
Collapse
|
49
|
Pei J, Feder MM, Al-Saleem T, Liu Z, Liu A, Hudes GR, Uzzo RG, Testa JR. Combined classical cytogenetics and microarray-based genomic copy number analysis reveal frequent 3;5 rearrangements in clear cell renal cell carcinoma. Genes Chromosomes Cancer 2010; 49:610-9. [PMID: 20461753 DOI: 10.1002/gcc.20771] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Karyotypic analysis and genomic copy number analysis with single nucleotide polymorphism (SNP)-based microarrays were compared with regard to the detection of recurrent genomic imbalances in 20 clear cell renal cell carcinomas (ccRCCs). Genomic imbalances were identified in 19 of 20 tumors by DNA copy number analysis and in 15 tumors by classical cytogenetics. A statistically significant correlation was observed between the number of genomic imbalances and tumor stage. The most common genomic imbalances were loss of 3p and gain of 5q. Other recurrent genomic imbalances seen in at least 15% of tumors included losses of 1p32.3-p33, 6q23.1-qter and 14q and gain of chromosome 7. The SNP-based arrays revealed losses of 3p in 16 of 20 tumors, with the highest frequency being at 3p21.31-p22.1 and 3p24.3-p25.3, the latter encompassing the VHL locus. One other tumor showed uniparental disomy of chromosome 3. Thus, altogether loss of 3p was identified in 17 of 20 (85%) cases. Fourteen tumors showed both overlapping losses of 3p and overlapping gains of 5q, and the karyotypic assessment performed in parallel revealed that these imbalances arose via unbalanced 3;5 translocations. Among the latter, there were common regions of loss at 3p21.3-pter and gain at 5q34-qter. These data suggest that DNA copy number analysis will supplant karyotypic analysis of tumor types such as ccRCC that are characterized by recurrent genomic imbalances, rather than balanced rearrangements. These findings also suggest that the 5q duplication/3p deficiency resulting from unbalanced 3;5 translocations conveys a proliferative advantage of particular importance in ccRCC tumorigenesis.
Collapse
Affiliation(s)
- Jianming Pei
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Colak D, Chishti MA, Al-Bakheet AB, Al-Qahtani A, Shoukri MM, Goyns MH, Ozand PT, Quackenbush J, Park BH, Kaya N. Integrative and comparative genomics analysis of early hepatocellular carcinoma differentiated from liver regeneration in young and old. Mol Cancer 2010; 9:146. [PMID: 20540791 PMCID: PMC2898705 DOI: 10.1186/1476-4598-9-146] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Accepted: 06/12/2010] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the third-leading cause of cancer-related deaths worldwide. It is often diagnosed at an advanced stage, and hence typically has a poor prognosis. To identify distinct molecular mechanisms for early HCC we developed a rat model of liver regeneration post-hepatectomy, as well as liver cells undergoing malignant transformation and compared them to normal liver using a microarray approach. Subsequently, we performed cross-species comparative analysis coupled with copy number alterations (CNA) of independent early human HCC microarray studies to facilitate the identification of critical regulatory modules conserved across species. RESULTS We identified 35 signature genes conserved across species, and shared among different types of early human HCCs. Over 70% of signature genes were cancer-related, and more than 50% of the conserved genes were mapped to human genomic CNA regions. Functional annotation revealed genes already implicated in HCC, as well as novel genes which were not previously reported in liver tumors. A subset of differentially expressed genes was validated using quantitative RT-PCR. Concordance was also confirmed for a significant number of genes and pathways in five independent validation microarray datasets. Our results indicated alterations in a number of cancer related pathways, including p53, p38 MAPK, ERK/MAPK, PI3K/AKT, and TGF-beta signaling pathways, and potential critical regulatory role of MYC, ERBB2, HNF4A, and SMAD3 for early HCC transformation. CONCLUSIONS The integrative analysis of transcriptional deregulation, genomic CNA and comparative cross species analysis brings new insights into the molecular profile of early hepatoma formation. This approach may lead to robust biomarkers for the detection of early human HCC.
Collapse
Affiliation(s)
- Dilek Colak
- Department of Biostatistics, Epidemiology and Scientific Computing, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|