1
|
Abed E, Jarrar Y, Alhawari H, Abdullah S, Zihlif M. The association of cytochrome 7A1 and ATP-binding cassette G8 genotypes with type 2 diabetes among Jordanian patients. Drug Metab Pers Ther 2021; 37:149-154. [PMID: 34845882 DOI: 10.1515/dmpt-2021-0164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/20/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Increased cholesterol levels were found to be associated with diabetes mellitus type II (DM2). The cholesterol is metabolized by cytochrome 7A1 (CYP7A1) and transported in the intestine by ATP-binding cassette G8 (ABCG8). Genetic variants in CYP7A1 and ABCG8 genes can affect the cholesterol levels. The aim of this study is to compare the frequency of CYP7A1 rs3808607 and ABCG8 rs11887534 and rs4148217 genotypes between healthy and DM2 subjects from Jordanian population. METHODS A total of 117 DM2 patients and 100 healthy controls, of Jordanian Arabic origin, were genotyped for CYP7A1 rs3808607 and ABCG8 rs11887534 and rs4148217 genetic variants using polymerase chain reaction (PCR) followed by restriction fragment length polymorphism technique. RESULTS The study showed that homozygosity of rs3808607 (A-204C) genotype in CYP7A1 was significantly higher in DM2 patients (ANOVA, p<0.05) with an odd ratio of 2.66, but rs11887534 (G55C) and rs4148217 (C1199A) genetic polymorphisms in ABCG8 were found in comparable frequencies in both healthy and DM2 subjects. CONCLUSIONS The results of this study indicate that CYP7A1 rs3808607 genetic polymorphism is associated with DM2. Further clinical studies are required to confirm this finding among DM2 patients of Jordanian origin.
Collapse
Affiliation(s)
- Eyada Abed
- Department of Pharmacology, Faculty of Medicine, University of Jordan, Amman, Jordan
| | - Yazun Jarrar
- Department of Pharmaceutical Science, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Hussam Alhawari
- Department of Internal Medicine, Faculty of Medicine, University of Jordan, Amman, Jordan
| | - Sarah Abdullah
- Department of Pharmacology, Faculty of Medicine, University of Jordan, Amman, Jordan
| | - Malek Zihlif
- Department of Pharmacology, Faculty of Medicine, University of Jordan, Amman, Jordan
| |
Collapse
|
2
|
Genes Potentially Associated with Familial Hypercholesterolemia. Biomolecules 2019; 9:biom9120807. [PMID: 31795497 PMCID: PMC6995538 DOI: 10.3390/biom9120807] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/24/2019] [Accepted: 11/26/2019] [Indexed: 12/21/2022] Open
Abstract
This review addresses the contribution of some genes to the phenotype of familial hypercholesterolemia. At present, it is known that the pathogenesis of this disease involves not only a pathological variant of low-density lipoprotein receptor and its ligands (apolipoprotein B, proprotein convertase subtilisin/kexin type 9 or low-density lipoprotein receptor adaptor protein 1), but also lipids, including sphingolipids, fatty acids, and sterols. The genetic cause of familial hypercholesterolemia is unknown in 20%–40% of the cases. The genes STAP1 (signal transducing adaptor family member 1), CYP7A1 (cytochrome P450 family 7 subfamily A member 1), LIPA (lipase A, lysosomal acid type), ABCG5 (ATP binding cassette subfamily G member 5), ABCG8 (ATP binding cassette subfamily G member 8), and PNPLA5 (patatin like phospholipase domain containing 5), which can cause aberrations of lipid metabolism, are being evaluated as new targets for the diagnosis and personalized management of familial hypercholesterolemia.
Collapse
|
3
|
Paththinige CS, Sirisena ND, Dissanayake V. Genetic determinants of inherited susceptibility to hypercholesterolemia - a comprehensive literature review. Lipids Health Dis 2017; 16:103. [PMID: 28577571 PMCID: PMC5457620 DOI: 10.1186/s12944-017-0488-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/17/2017] [Indexed: 02/08/2023] Open
Abstract
Hypercholesterolemia is a strong determinant of mortality and morbidity associated with cardiovascular diseases and a major contributor to the global disease burden. Mutations in four genes (LDLR, APOB, PCSK9 and LDLRAP1) account for the majority of cases with familial hypercholesterolemia. However, a substantial proportion of adults with hypercholesterolemia do not have a mutation in any of these four genes. This indicates the probability of having other genes with a causative or contributory role in the pathogenesis of hypercholesterolemia and suggests a polygenic inheritance of this condition. Here in, we review the recent evidence of association of the genetic variants with hypercholesterolemia and the three lipid traits; total cholesterol (TC), HDL-cholesterol (HDL-C) and LDL-cholesterol (LDL-C), their biological pathways and the associated pathogenetic mechanisms. Nearly 80 genes involved in lipid metabolism (encoding structural components of lipoproteins, lipoprotein receptors and related proteins, enzymes, lipid transporters, lipid transfer proteins, and activators or inhibitors of protein function and gene transcription) with single nucleotide variants (SNVs) that are recognized to be associated with hypercholesterolemia and serum lipid traits in genome-wide association studies and candidate gene studies were identified. In addition, genome-wide association studies in different populations have identified SNVs associated with TC, HDL-C and LDL-C in nearly 120 genes within or in the vicinity of the genes that are not known to be involved in lipid metabolism. Over 90% of the SNVs in both these groups are located outside the coding regions of the genes. These findings indicates that there might be a considerable number of unrecognized processes and mechanisms of lipid homeostasis, which when disrupted, would lead to hypercholesterolemia. Knowledge of these molecular pathways will enable the discovery of novel treatment and preventive methods as well as identify the biochemical and molecular markers for the risk prediction and early detection of this common, yet potentially debilitating condition.
Collapse
Affiliation(s)
- C S Paththinige
- Human Genetics Unit, Faculty of Medicine, University of Colombo, Kynsey Road, Colombo, 00800, Sri Lanka.
| | - N D Sirisena
- Human Genetics Unit, Faculty of Medicine, University of Colombo, Kynsey Road, Colombo, 00800, Sri Lanka
| | - Vhw Dissanayake
- Human Genetics Unit, Faculty of Medicine, University of Colombo, Kynsey Road, Colombo, 00800, Sri Lanka
| |
Collapse
|
4
|
Gok O, Karaali ZE, Acar L, Kilic U, Ergen A. ABCG5 and ABCG8 gene polymorphisms in type 2 diabetes mellitus in the Turkish population. Can J Diabetes 2015; 39:405-10. [PMID: 26088706 DOI: 10.1016/j.jcjd.2015.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 03/23/2015] [Accepted: 04/09/2015] [Indexed: 01/03/2023]
Abstract
OBJECTIVE The aim of the present study was to investigate the relationship between ABCG5 and ABCG8 gene polymorphisms and plasma lipid concentrations in Turkish patients with type 2 diabetes mellitus. METHODS Included in this study were 80 patients with type 2 diabetes and 73 healthy controls. Two selected single nucleotide polymorphisms in ABC transporter genes, ABCG5 (rs6720173) and ABCG8 (rs4148211), were genotyped by using the polymerase chain reaction-restriction fragment length polymorphism technique. RESULTS The rate of having the ABCG8 AA genotype (p=0.001) was significantly higher in the patients than in the control subjects. Correspondingly, the rates of having the AG genotype (p=0.001) and the G allele (p=0.001) were significantly lower in the patients than in controls. Upon comparing the groups regarding ABCG5, the frequencies of occurrence of the GG genotype (p=0.031) and G allele (p=0.003) were considerably higher in patients than in control subjects. In the patients, the rates of having the CC genotype (p=0.003) and the C allele (p=0.031) were also significantly lower than those in control subjects. There was no significant difference between G5 and G8 polymorphism and lipid levels in the study groups. The ABCG8 AA genotype carriers had higher triglyceride (p=0.045) and very low-density-cholesterol (p=0.045) levels than the ABCG8 GG genotype carriers in all study populations. CONCLUSIONS These results indicate that the AA genotype for ABCG8 and the GG genotype and G allele for ABCG5 are risk factors for diabetes. This study reveals the first data concerning the ABCG5 and ABCG8 gene polymorphisms in Turkish patients with diabetes.
Collapse
Affiliation(s)
- Ozlem Gok
- Department of Molecular Medicine, Institute for Experimental Medicine, Istanbul University, Istanbul, Turkey; Department of Medical Biology and Regenerative and Restorative Medicine Research Center (REMER), Faculty of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Zeynep Ermis Karaali
- Department of Internal Medicine, Haseki Training and Research Hospital, Istanbul, Turkey
| | - Leyla Acar
- Department of Molecular Medicine, Institute for Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Ulkan Kilic
- Department of Medical Biology and Regenerative and Restorative Medicine Research Center (REMER), Faculty of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Arzu Ergen
- Department of Molecular Medicine, Institute for Experimental Medicine, Istanbul University, Istanbul, Turkey.
| |
Collapse
|
5
|
Wu G, Li GB, Yao M, Zhang DQ, Dai B, Ju CJ, Han M. ABCG5/8 variants are associated with susceptibility to coronary heart disease. Mol Med Rep 2014; 9:2512-20. [PMID: 24691589 DOI: 10.3892/mmr.2014.2098] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 02/13/2014] [Indexed: 11/06/2022] Open
Abstract
ATP-binding cassette sub-family G member 5 (ABCG5) and ABCG8 are members of an ATP-binding cassette transporter superfamily. ABCG5 and ABCG8 variants affected serum levels of cholesterol and were considered as risk factors for coronary heart disease (CHD). The present control study analyzed ABCG5 and ABCG8 variants in a population for association with the risk of CHD. A total of 417 CHD patients and 267 controls were recruited for genotyping of four single nucleotide polymorphisms (SNPs; i.e. i7892T>C in ABCG5 and Tyr54CysA>G, Thr400LysC>A and 5U145A>C in ABCG8) using quantitative PCR high-resolution melting (qPCR-HRM). Serum lipid levels were measured using an automatic biochemical analyzer. The association of ABCG5/8 variants with lipid levels was analyzed using a Chi-square test. The impact of candidate ABCG5/8 SNPs on CHD was evaluated in a dominant genetic model with stepwise multiple regression analysis. Subgroup analyses were performed with regard to these SNPs, tobacco smoking status, alcohol consumption and gender. Genotypic and allelic frequencies of ABCG8 Thr400LysC>A were significantly different (P<0.05) between CHD patients and controls. CC homozygotes of the ABCG8 Thr400LysC>A SNP had greater triglyceride levels than CA/AA carriers with CHD. Logistic analysis revealed CHD risk was significantly higher in CC homozygotes of ABCG8 Thr400LysC>A than in carriers of the A allele (adjusted P=0.048; OR=2.034; 95% CI=0.983-4.207). Furthermore, there was a significant gene-tobacco smoking interaction. CC homozygotes of ABCG8 Thr400LysC>A SNP had significantly higher triglyceride concentrations (P=0.012) and an increased risk of CHD than tobacco smoking carriers of the A allele. The data from the current study suggested that ABCG8 Thr400LysC>A SNP genetic variants modulated plasma triglyceride levels and thereby affected CHD risk in the population studied. The genetic variant of ABCG8 also contributed to CHD risk through interaction with tobacco smoking.
Collapse
Affiliation(s)
- Ge Wu
- Department of Pharmacy, Office of Drug Clinical Trial Institution, The Fourth Hospital of Jilin University, Changchun, Jilin 130011, P.R. China
| | - Gui-Bin Li
- Department of Orthopedics, The Fourth Hospital of Jilin University, Changchun, Jilin 130011, P.R. China
| | - Ming Yao
- Department of Pharmacy, Office of Drug Clinical Trial Institution, The Fourth Hospital of Jilin University, Changchun, Jilin 130011, P.R. China
| | - Dong-Qing Zhang
- Department of Cardiology, The Fourth Hospital of Jilin University, Changchun, Jilin 130011, P.R. China
| | - Bin Dai
- Department of Orthopedics, The Fourth Hospital of Jilin University, Changchun, Jilin 130011, P.R. China
| | - Chuan-Jing Ju
- Department of Cardiology, The Fourth Hospital of Jilin University, Changchun, Jilin 130011, P.R. China
| | - Ming Han
- Department of Pharmacy, Office of Drug Clinical Trial Institution, The Fourth Hospital of Jilin University, Changchun, Jilin 130011, P.R. China
| |
Collapse
|
6
|
Zeng XN, Yin RX, Huang P, Huang KK, Wu J, Guo T, Lin QZ, Aung LHH, Wu JZ, Wang YM. Association of the MLXIPL/TBL2 rs17145738 SNP and serum lipid levels in the Guangxi Mulao and Han populations. Lipids Health Dis 2013; 12:156. [PMID: 24160749 PMCID: PMC3818985 DOI: 10.1186/1476-511x-12-156] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 10/24/2013] [Indexed: 01/15/2023] Open
Abstract
Background The rs17145738 single nucleotide polymorphism (SNP) near MLX interacting protein-like/transducin (beta)-like 2 (MLXIPL/TBL2) loci is associated with serum lipid levels, but the results are inconsistent in diverse ethnic/racial groups. The current study was to investigate the association of MLXIPL/TBL2 rs17145738 SNP and several environmental factors with serum lipid profiles in the Guangxi Mulao and Han populations. Methods A total of 649 subjects of Mulao nationality and 712 participants of Han nationality aged 16–84 years were randomly selected from our previous stratified randomized samples. Genotyping was performed by polymerase chain reaction and restriction fragment length polymorphism combined with gel electrophoresis, and then confirmed by direct sequencing. Results Serum apolipoprotein (Apo) B levels were higher in Mulao than in Han (P < 0.001). There were no significant differences in the genotypic and allelic frequencies of the MLXIPL/TBL2 rs17145738 SNP between the two ethnic groups or between males and females. The T allele carriers had higher triglyceride (TG) and ApoB levels in Mulao, and higher total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) levels in Han than the T allele non-carriers (P < 0.05 for all). Subgroup analyses showed that the T allele carriers had higher ApoB levels in both Mulao and Han females than the T allele non-carriers, but the T allele carriers had lower ApoB levels in Han males than the T allele non-carriers (P < 0.05, respectively). The T allele carriers in Han had higher TC, high-density lipoprotein cholesterol (HDL-C) levels and ApoA1/ApoB ratio and lower TG levels in males, and higher LDL-C levels and lower ApoA1/ApoB ratio in females than the T allele non-carriers (P < 0.05 for all). Serum TC levels in the combined population of the two ethnic groups and in Han, and HDL-C levels in Han males were correlated with genotypes (P < 0.05 for all). Serum lipid parameters were also correlated with several environmental factors (P < 0.05-0.01). Conclusions The association of MLXIPL/TBL2 rs17145738 SNP and serum lipid profiles is different between the Mulao and Han populations. There is a sex-specific association in the both ethnic groups.
Collapse
Affiliation(s)
| | - Rui-Xing Yin
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, People's Republic of China.
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Jia ZF, Cao XY, Cao DH, Kong F, Kharbuja P, Jiang J. Polymorphisms of PTPN11 gene could influence serum lipid levels in a sex-specific pattern. Lipids Health Dis 2013; 12:72. [PMID: 23672255 PMCID: PMC3685535 DOI: 10.1186/1476-511x-12-72] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 05/10/2013] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Previous studies have reported that different genotypes of PTPN11 gene (protein tyrosine phosphatase, non-receptor 11) were associated with different levels of serum lipids. The aim of this study was to explore the relationship between single nucleotide polymorphisms (SNPs) of PTPN11 and serum lipids in Northeast Chinese. METHODS A total of 1003 subjects, 584 males and 419 females, were included in the study and their serum lipids were determined. Five htSNPs (rs2301756, rs12423190, rs12229892, rs7958372 and rs4767860) of PTPN11 gene were genotyped using TaqMan assay method. RESULTS All of the five SNPs were in Hardy-Weinberg equilibrium. The male subjects had higher triglyceride (TG), higher low-density lipoprotein cholesterol (LDL-C) and lower high-density lipoprotein cholesterol (HDL-C) level than females. In males, rs4767860 was found to be associated with serum TG and total cholesterol (TC) levels and rs12229892 was associated with TC level. However, these significant associations could not be observed in females. In females, rs2301756 was found to be associated with TG and rs7958372 was associated with LDL-C level. Haplotype analysis showed that the GCGTG haplotype was associated with slightly higher TG level and ATGCG with higher TC level. CONCLUSIONS SNPs of PTPN11 may play a role in serum lipids in a sex-specific pattern. However, more studies are needed to confirm the conclusion and explore the underlying mechanism.
Collapse
Affiliation(s)
- Zhi-Fang Jia
- Division of Clinical Epidemiology, First Hospital of Jilin University, Changchun 130021, China
| | - Xue-Yuan Cao
- Department of Gastrointestinal Surgery, First Hospital of Jilin University, Changchun 130021, China
| | - Dong-Hui Cao
- Division of Clinical Epidemiology, First Hospital of Jilin University, Changchun 130021, China
| | - Fei Kong
- Division of Clinical Epidemiology, First Hospital of Jilin University, Changchun 130021, China
| | - Punyaram Kharbuja
- Department of Gastrointestinal Surgery, First Hospital of Jilin University, Changchun 130021, China
| | - Jing Jiang
- Division of Clinical Epidemiology, First Hospital of Jilin University, Changchun 130021, China
| |
Collapse
|