1
|
Gómez-Gaviria M, Contreras-López LM, Aguilera-Domínguez JI, Mora-Montes HM. Strategies of Pharmacological Repositioning for the Treatment of Medically Relevant Mycoses. Infect Drug Resist 2024; 17:2641-2658. [PMID: 38947372 PMCID: PMC11214559 DOI: 10.2147/idr.s466336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/14/2024] [Indexed: 07/02/2024] Open
Abstract
Fungal infections represent a worldwide concern for public health, due to their prevalence and significant increase in cases each year. Among the most frequent mycoses are those caused by members of the genera Candida, Cryptococcus, Aspergillus, Histoplasma, Pneumocystis, Mucor, and Sporothrix, which have been treated for years with conventional antifungal drugs, such as flucytosine, azoles, polyenes, and echinocandins. However, these microorganisms have acquired the ability to evade the mechanisms of action of these drugs, thus hindering their treatment. Among the most common evasion mechanisms are alterations in sterol biosynthesis, modifications of drug transport through the cell wall and membrane, alterations of drug targets, phenotypic plasticity, horizontal gene transfer, and chromosomal aneuploidies. Taking into account these problems, some research groups have sought new therapeutic alternatives based on drug repositioning. Through repositioning, it is possible to use existing pharmacological compounds for which their mechanism of action is already established for other diseases, and thus exploit their potential antifungal activity. The advantage offered by these drugs is that they may be less prone to resistance. In this article, a comprehensive review was carried out to highlight the most relevant repositioning drugs to treat fungal infections. These include antibiotics, antivirals, anthelmintics, statins, and anti-inflammatory drugs.
Collapse
Affiliation(s)
- Manuela Gómez-Gaviria
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Gto, México
| | - Luisa M Contreras-López
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Gto, México
| | - Julieta I Aguilera-Domínguez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Gto, México
| | - Héctor M Mora-Montes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Gto, México
| |
Collapse
|
2
|
Chen J, Fan S, Guo J, Yang J, Pan L, Xia Y. Discovery of anticancer function of Febrifugine: Inhibition of cell proliferation, induction of apoptosis and suppression steroid synthesis in bladder cancer cells. Toxicol Appl Pharmacol 2024; 484:116878. [PMID: 38431229 DOI: 10.1016/j.taap.2024.116878] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/18/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
Bladder cancer is a prevalent malignancy affecting the urinary system, which presents a significant global health concern. Although there are many treatments for bladder cancer, identifying more effective drugs and methods remains an urgent problem. As a pivotal component of contemporary medical practice, traditional Chinese medicine (TCM) assumes a crucial role in the realm of anti-tumor therapy, especially with the identification of active ingredients and successful exploration of pharmacological effects. Febrifugine, identified as a quinazoline-type alkaloid compound extracted from the Cytidiaceae family plant Huangchangshan, exhibits heightened sensitivity to bladder cancer cells in comparison to control cells (non-cancer cells) group. The proliferation growth of bladder cancer cells T24 and SW780 was effectively inhibited by Febrifugine, and the IC50 was 0.02 and 0.018 μM respectively. Febrifugine inhibits cell proliferation by suppressing DNA synthesis and induces cell death by reducing steroidogenesis and promoting apoptosis. Combined with transcriptome analysis, Febrifugine was found to downregulate low density lipoprotein receptor-associated protein, lanosterol synthase, cholesterol biosynthesis second rate-limiting enzyme, 7-dehydrocholesterol reductase, flavin adenine dinucleotide dependent oxidoreductase and other factors to inhibit the production of intracellular steroids in bladder cancer T24 cells. The results of animal experiments showed that Febrifugine could inhibit tumor growth. In summary, the effect of Febrifugine on bladder cancer is mainly through reducing steroid production and apoptosis. Therefore, this study contributes to the elucidation of Febrifugine's potential as an inhibitor of bladder cancer and establishes a solid foundation for the future development of novel therapeutic agents targeting bladder cancer.
Collapse
Affiliation(s)
- Jingyuan Chen
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumqi 830052, China; Precision Medicine Laboratory for Chronic Non-communicable Diseases of Shandong Province, Jining 272067, China
| | - Shuhao Fan
- Precision Medicine Laboratory for Chronic Non-communicable Diseases of Shandong Province, Jining 272067, China
| | - Jianhua Guo
- Precision Medicine Laboratory for Chronic Non-communicable Diseases of Shandong Province, Jining 272067, China
| | - Jian Yang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Le Pan
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumqi 830052, China.
| | - Yong Xia
- Precision Medicine Laboratory for Chronic Non-communicable Diseases of Shandong Province, Jining 272067, China.
| |
Collapse
|
3
|
von Krusenstiern AN, Robson RN, Qian N, Qiu B, Hu F, Reznik E, Smith N, Zandkarimi F, Estes VM, Dupont M, Hirschhorn T, Shchepinov MS, Min W, Woerpel KA, Stockwell BR. Identification of essential sites of lipid peroxidation in ferroptosis. Nat Chem Biol 2023; 19:719-730. [PMID: 36747055 PMCID: PMC10238648 DOI: 10.1038/s41589-022-01249-3] [Citation(s) in RCA: 168] [Impact Index Per Article: 84.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 12/21/2022] [Indexed: 02/08/2023]
Abstract
Ferroptosis, an iron-dependent form of cell death driven by lipid peroxidation, provides a potential treatment avenue for drug-resistant cancers and may play a role in the pathology of some degenerative diseases. Identifying the subcellular membranes essential for ferroptosis and the sequence of their peroxidation will illuminate drug discovery strategies and ferroptosis-relevant disease mechanisms. In this study, we employed fluorescence and stimulated Raman scattering imaging to examine the structure-activity-distribution relationship of ferroptosis-modulating compounds. We found that, although lipid peroxidation in various subcellular membranes can induce ferroptosis, the endoplasmic reticulum (ER) membrane is a key site of lipid peroxidation. Our results suggest an ordered progression model of membrane peroxidation during ferroptosis that accumulates initially in the ER membrane and later in the plasma membrane. Thus, the design of ER-targeted inhibitors and inducers of ferroptosis may be used to optimally control the dynamics of lipid peroxidation in cells undergoing ferroptosis.
Collapse
Affiliation(s)
| | - Ryan N Robson
- Department of Chemistry, New York University, New York, NY, USA
| | - Naixin Qian
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Baiyu Qiu
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Fanghao Hu
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Eduard Reznik
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Nailah Smith
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | | | - Verna M Estes
- Department of Chemistry, New York University, New York, NY, USA
| | - Marcel Dupont
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Tal Hirschhorn
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | | | - Wei Min
- Department of Chemistry, Columbia University, New York, NY, USA.
| | - K A Woerpel
- Department of Chemistry, New York University, New York, NY, USA.
| | - Brent R Stockwell
- Department of Biological Sciences, Columbia University, New York, NY, USA.
- Department of Chemistry, Columbia University, New York, NY, USA.
| |
Collapse
|
4
|
Traughber CA, Iacano AJ, Neupane K, Khan MR, Opoku E, Nunn T, Prince A, Sangwan N, Hazen SL, Smith JD, Gulshan K. Impavido attenuates inflammation, reduces atherosclerosis, and alters gut microbiota in hyperlipidemic mice. iScience 2023; 26:106453. [PMID: 37020959 PMCID: PMC10067757 DOI: 10.1016/j.isci.2023.106453] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/14/2022] [Accepted: 03/15/2023] [Indexed: 04/03/2023] Open
Abstract
Impavido (Miltefosine) is an FDA-approved drug for treating leishmaniasis and primary amebic meningoencephalitis. We have shown previously that Miltefosine increased cholesterol release and dampened Nlrp3 inflammasome assembly in macrophages. Here, we show that Miltefosine reduced LPS-induced choline uptake by macrophages, and attenuated Nlrp3 inflammasome assembly in mice. Miltefosine-fed mice showed reduced plasma IL-1β in a polymicrobial cecal slurry model of systemic inflammation. Miltefosine-fed mice showed increased reverse cholesterol transport to the plasma, liver, and feces. Hyperlipidemic apoE-/- mice fed with WTD + Miltefosine showed significantly reduced weight gain and markedly reduced atherosclerotic lesions versus mice fed with WTD. The 16S rDNA sequencing and analysis of gut microbiota showed marked alterations in the microbiota profile of Miltefosine-fed hyperlipidemic apoE-/- versus control, with the most notable changes in Romboutsia and Bacteriodes species. Taken together, these data indicate that Miltefosine causes pleiotropic effects on lipid metabolism, inflammasome activity, atherosclerosis, and the gut microbiota.
Collapse
|
5
|
Zhang X, Huang C, Yuan Y, Jin S, Zhao J, Zhang W, Liang H, Chen X, Zhang B. FOXM1-mediated activation of phospholipase D1 promotes lipid droplet accumulation and reduces ROS to support paclitaxel resistance in metastatic cancer cells. Free Radic Biol Med 2022; 179:213-228. [PMID: 34808333 DOI: 10.1016/j.freeradbiomed.2021.11.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 12/25/2022]
Abstract
Chemoresistance is a major challenge for the treatment of cancer with metastasis. We investigated the mechanisms of lipid metabolites involved in drug resistance. Here, metastatic cancer cells isolated from mouse models were resistant to paclitaxel treatment in vitro and in vivo when compared with parental cancer cells. FOXM1, an oncogenic transcriptional factor, was highly expressed in metastatic cancer cells, and overexpression of FOXM1 conferred parental cancer cells resistance to paclitaxel. Lipidomic analysis showed that FOXM1 increased unsaturated triglyceride (TG) and phosphatidylcholine (PC) abundance, which are the main components of lipid droplet (LD). Inhibition of LD formation sensitized cells to paclitaxel. Mechanistically, the enzyme phospholipase D1 (PLD1) was identified as a potential effector target of FOXM1. PLD1 promoted LD accumulation, which reduced the level of reactive oxygen species (ROS) and maintained endoplasmic reticulum (ER) homeostasis in resistant cells with the treatment of paclitaxel. Moreover, inhibition of PLD1 reversed FOXM1-conferred paclitaxel resistance in vitro and in vivo. This study, for the first time, reveals the role of FOXM1-mediated PLD1 in LD accumulation and paclitaxel resistance. Targeting PLD1 or LD formation may help reverse chemoresistance in metastatic cancer cells. Generally, our results identified FOXM1 as a driver of paclitaxel resistance via activation of PLD1 to promote of LD accumulation, which contributes to the maintenace of ER homeostasis when metastatic cancer cells are confronted with ROS induced by paclitaxel.
Collapse
Affiliation(s)
- Xin Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chao Huang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yue Yuan
- Division of Gastroenterology, Department of Internal Medicine at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Sanshan Jin
- Department of Traditional Chinese Medicine, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430070, China
| | - Jianping Zhao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wei Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Huifang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Hepato-Pancreato-Biliary Disease, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, 430030, China.
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Hepato-Pancreato-Biliary Disease, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, 430030, China.
| |
Collapse
|
6
|
Arya R, Dhembla C, Makde RD, Sundd M, Kundu S. An overview of the fatty acid biosynthesis in the protozoan parasite Leishmania and its relevance as a drug target against leishmaniasis. Mol Biochem Parasitol 2021; 246:111416. [PMID: 34555376 DOI: 10.1016/j.molbiopara.2021.111416] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/08/2021] [Accepted: 09/15/2021] [Indexed: 02/07/2023]
Abstract
Leishmaniasis is one of the fast-growing parasitic diseases worldwide. The treatment of this fatal disease presents a daunting challenge because of its adverse effects, necessity for long-term treatment regime, unavailability of functional drugs, emergence of drug resistance and the related expenditure. This calls for an urgent need for novel drugs and the evaluation of new targets. Proteins of the fatty acid biosynthetic pathway are validated as drug targets in pathogenic bacteria and certain viruses. Likewise, this pathway has been speculated as a suitable target against parasite infections. Fatty acid synthesis in parasites seems to be very complex and distinct from the counterpart mammalian host due to the presence of unique mechanisms for fatty acid biosynthesis and acquisition. In recent times, there have been few evidences of the existence of this pathway in the bloodstream form of some pathogens. The fatty acid biosynthesis thus presents a viable and attractive target for emerging therapeutics. Understanding the mechanisms underlying fatty acid metabolism is key to identifying a potential drug target. However, investigations in this direction are still limited and this article attempts to outline the existing knowledge, while highlighting the scope and relevance of the fatty acid biosynthetic pathway as a drug target. This review highlights the advances in the treatment of leishmaniasis, the importance of lipids in the pathogen, known facts about the fatty acid biosynthesis in Leishmania and how this pathway can be manipulated to combat leishmaniasis, suggesting novel drug targets.
Collapse
Affiliation(s)
- Richa Arya
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India.
| | - Chetna Dhembla
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India.
| | - Ravindra D Makde
- High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Mumbai, 400085, India.
| | - Monica Sundd
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Suman Kundu
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India.
| |
Collapse
|
7
|
Rollin-Pinheiro R, Almeida YDC, Rochetti VP, Xisto MIDDS, Borba-Santos LP, Rozental S, Barreto-Bergter E. Miltefosine Against Scedosporium and Lomentospora Species: Antifungal Activity and Its Effects on Fungal Cells. Front Cell Infect Microbiol 2021; 11:698662. [PMID: 34368017 PMCID: PMC8343104 DOI: 10.3389/fcimb.2021.698662] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/05/2021] [Indexed: 01/03/2023] Open
Abstract
Scedosporium and Lomentospora species are filamentous fungi responsible for a wide range of infections in humans and are frequently associated with cystic fibrosis and immunocompromising conditions. Because they are usually resistant to many antifungal drugs available in clinical settings, studies of alternative targets in fungal cells and therapeutic approaches are necessary. In the present work, we evaluated the in vitro antifungal activity of miltefosine against Scedosporium and Lomentospora species and how this phospholipid analogue affects the fungal cell. Miltefosine inhibited different Scedosporium and Lomentospora species at 2–4 µg/ml and reduced biofilm formation. The loss of membrane integrity in Scedosporium aurantiacum caused by miltefosine was demonstrated by leakage of intracellular components and lipid raft disorganisation. The exogenous addition of glucosylceramide decreased the inhibitory activity of miltefosine. Reactive oxygen species production and mitochondrial activity were also affected by miltefosine, as well as the susceptibility to fluconazole, caspofungin and myoricin. The data obtained in the present study contribute to clarify the dynamics of the interaction between miltefosine and Scedosporium and Lomentospora cells, highlighting its potential use as new antifungal drug in the future.
Collapse
Affiliation(s)
- Rodrigo Rollin-Pinheiro
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Yuri de Castro Almeida
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Victor Pereira Rochetti
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mariana Ingrid Dutra da Silva Xisto
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luana Pereira Borba-Santos
- Programa de Biologia Celular e Parasitologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sonia Rozental
- Programa de Biologia Celular e Parasitologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eliana Barreto-Bergter
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
8
|
Parab AR, Thomas D, Lostracco-Johnson S, Siqueira-Neto JL, McKerrow JH, Dorrestein PC, McCall LI. Dysregulation of Glycerophosphocholines in the Cutaneous Lesion Caused by Leishmania major in Experimental Murine Models. Pathogens 2021; 10:593. [PMID: 34068119 PMCID: PMC8152770 DOI: 10.3390/pathogens10050593] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/06/2021] [Accepted: 05/10/2021] [Indexed: 01/21/2023] Open
Abstract
Cutaneous leishmaniasis (CL) is the most common disease form caused by a Leishmania parasite infection and considered a neglected tropical disease (NTD), affecting 700,000 to 1.2 million new cases per year in the world. Leishmania major is one of several different species of the Leishmania genus that can cause CL. Current CL treatments are limited by adverse effects and rising resistance. Studying disease metabolism at the site of infection can provide knowledge of new targets for host-targeted drug development. In this study, tissue samples were collected from mice infected in the ear or footpad with L. major and analyzed by untargeted liquid chromatography-tandem mass spectrometry (LC-MS/MS). Significant differences in overall metabolite profiles were noted in the ear at the site of the lesion. Interestingly, lesion-adjacent, macroscopically healthy sites also showed alterations in specific metabolites, including selected glycerophosphocholines (PCs). Host-derived PCs in the lower m/z range (m/z 200-799) showed an increase with infection in the ear at the lesion site, while those in the higher m/z range (m/z 800-899) were decreased with infection at the lesion site. Overall, our results expanded our understanding of the mechanisms of CL pathogenesis through host metabolism and may lead to new curative measures against infection with Leishmania.
Collapse
Affiliation(s)
- Adwaita R. Parab
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, USA;
- Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, OK 73019, USA
| | - Diane Thomas
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA; (D.T.); (S.L.-J.); (J.L.S.-N.); (J.H.M.); (P.C.D.)
| | - Sharon Lostracco-Johnson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA; (D.T.); (S.L.-J.); (J.L.S.-N.); (J.H.M.); (P.C.D.)
| | - Jair L. Siqueira-Neto
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA; (D.T.); (S.L.-J.); (J.L.S.-N.); (J.H.M.); (P.C.D.)
| | - James H. McKerrow
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA; (D.T.); (S.L.-J.); (J.L.S.-N.); (J.H.M.); (P.C.D.)
| | - Pieter C. Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA; (D.T.); (S.L.-J.); (J.L.S.-N.); (J.H.M.); (P.C.D.)
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA 92093, USA
- Collaborative Mass Spectrometry Innovation Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Laura-Isobel McCall
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, USA;
- Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, OK 73019, USA
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA
| |
Collapse
|
9
|
Cho YY, Kwon OH, Chung S. Preferred Endocytosis of Amyloid Precursor Protein from Cholesterol-Enriched Lipid Raft Microdomains. Molecules 2020; 25:molecules25235490. [PMID: 33255194 PMCID: PMC7727664 DOI: 10.3390/molecules25235490] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/20/2022] Open
Abstract
Amyloid precursor protein (APP) at the plasma membrane is internalized via endocytosis and delivered to endo/lysosomes, where neurotoxic amyloid-β (Aβ) is produced via β-, γ-secretases. Hence, endocytosis plays a key role in the processing of APP and subsequent Aβ generation. β-, γ-secretases as well as APP are localized in cholesterol-enriched lipid raft microdomains. However, it is still unclear whether lipid rafts are the site where APP undergoes endocytosis and whether cholesterol levels affect this process. In this study, we found that localization of APP in lipid rafts was increased by elevated cholesterol level. We also showed that increasing or decreasing cholesterol levels increased or decreased APP endocytosis, respectively. When we labeled cell surface APP, APP localized in lipid rafts preferentially underwent endocytosis compared to nonraft-localized APP. In addition, APP endocytosis from lipid rafts was regulated by cholesterol levels. Our results demonstrate for the first time that cholesterol levels regulate the localization of APP in lipid rafts affecting raft-dependent APP endocytosis. Thus, regulating the microdomain localization of APP could offer a new therapeutic strategy for Alzheimer’s disease.
Collapse
|
10
|
Tzoneva R, Stoyanova T, Petrich A, Popova D, Uzunova V, Momchilova A, Chiantia S. Effect of Erufosine on Membrane Lipid Order in Breast Cancer Cell Models. Biomolecules 2020; 10:E802. [PMID: 32455962 PMCID: PMC7277205 DOI: 10.3390/biom10050802] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/15/2020] [Accepted: 05/19/2020] [Indexed: 12/11/2022] Open
Abstract
Alkylphospholipids are a novel class of antineoplastic drugs showing remarkable therapeutic potential. Among them, erufosine (EPC3) is a promising drug for the treatment of several types of tumors. While EPC3 is supposed to exert its function by interacting with lipid membranes, the exact molecular mechanisms involved are not known yet. In this work, we applied a combination of several fluorescence microscopy and analytical chemistry approaches (i.e., scanning fluorescence correlation spectroscopy, line-scan fluorescence correlation spectroscopy, generalized polarization imaging, as well as thin layer and gas chromatography) to quantify the effect of EPC3 in biophysical models of the plasma membrane, as well as in cancer cell lines. Our results indicate that EPC3 affects lipid-lipid interactions in cellular membranes by decreasing lipid packing and increasing membrane disorder and fluidity. As a consequence of these alterations in the lateral organization of lipid bilayers, the diffusive dynamics of membrane proteins are also significantly increased. Taken together, these findings suggest that the mechanism of action of EPC3 could be linked to its effects on fundamental biophysical properties of lipid membranes, as well as on lipid metabolism in cancer cells.
Collapse
Affiliation(s)
- Rumiana Tzoneva
- Bulgarian Academy of Sciences, Institute of Biophysics and Biomedical Engineering, 1113 Sofia, Bulgaria; (R.T.); (T.S.); (D.P.); (V.U.); (A.M.)
| | - Tihomira Stoyanova
- Bulgarian Academy of Sciences, Institute of Biophysics and Biomedical Engineering, 1113 Sofia, Bulgaria; (R.T.); (T.S.); (D.P.); (V.U.); (A.M.)
| | - Annett Petrich
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Street 24-25, 14476 Potsdam, Germany;
| | - Desislava Popova
- Bulgarian Academy of Sciences, Institute of Biophysics and Biomedical Engineering, 1113 Sofia, Bulgaria; (R.T.); (T.S.); (D.P.); (V.U.); (A.M.)
| | - Veselina Uzunova
- Bulgarian Academy of Sciences, Institute of Biophysics and Biomedical Engineering, 1113 Sofia, Bulgaria; (R.T.); (T.S.); (D.P.); (V.U.); (A.M.)
| | - Albena Momchilova
- Bulgarian Academy of Sciences, Institute of Biophysics and Biomedical Engineering, 1113 Sofia, Bulgaria; (R.T.); (T.S.); (D.P.); (V.U.); (A.M.)
| | - Salvatore Chiantia
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Street 24-25, 14476 Potsdam, Germany;
| |
Collapse
|
11
|
Kaleağasıoğlu F, Zaharieva MM, Konstantinov SM, Berger MR. Alkylphospholipids are Signal Transduction Modulators with Potential for Anticancer Therapy. Anticancer Agents Med Chem 2019; 19:66-91. [PMID: 30318001 DOI: 10.2174/1871520618666181012093056] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 03/19/2018] [Accepted: 06/12/2018] [Indexed: 12/26/2022]
Abstract
BACKGROUND Alkylphospholipids (APLs) are synthetically derived from cell membrane components, which they target and thus modify cellular signalling and cause diverse effects. This study reviews the mechanism of action of anticancer, antiprotozoal, antibacterial and antiviral activities of ALPs, as well as their clinical use. METHODS A literature search was used as the basis of this review. RESULTS ALPs target lipid rafts and alter phospholipase D and C signalling cascades, which in turn will modulate the PI3K/Akt/mTOR and RAS/RAF/MEK/ERK pathways. By feedback coupling, the SAPK/JNK signalling chain is also affected. These changes lead to a G2/M phase cell cycle arrest and subsequently induce programmed cell death. The available knowledge on inhibition of AKT phosphorylation, mTOR phosphorylation and Raf down-regulation renders ALPs as attractive candidates for modern medical treatment, which is based on individualized diagnosis and therapy. Corresponding to their unusual profile of activities, their side effects result from cholinomimetic activity mainly and focus on the gastrointestinal tract. These aspects together with their bone marrow sparing features render APCs well suited for modern combination therapy. Although the clinical success has been limited in cancer diseases so far, the use of miltefosine against leishmaniosis is leading the way to better understanding their optimized use. CONCLUSION Recent synthetic programs generate congeners with the increased therapeutic ratio, liposomal formulations, as well as diapeutic (or theranostic) derivatives with optimized properties. It is anticipated that these innovative modifications will pave the way for the further successful development of ALPs.
Collapse
Affiliation(s)
- Ferda Kaleağasıoğlu
- Toxicology and Chemotherapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Pharmacology, Faculty of Medicine, Near East University, Mersin 10, Turkey
| | - Maya M Zaharieva
- Toxicology and Chemotherapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Infectious Microbiology, The "Stephan Angeloff" Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Spiro M Konstantinov
- Toxicology and Chemotherapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University Sofia, Sofia, Bulgaria
| | - Martin R Berger
- Toxicology and Chemotherapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
12
|
Barrias E, Reignault LC, Calogeropoulou T, de Souza W. In vitro activities of adamantylidene-substituted alkylphosphocholine TCAN26 against Trypanosoma cruzi: Antiproliferative and ultrastructural effects. Exp Parasitol 2019; 206:107730. [PMID: 31494215 DOI: 10.1016/j.exppara.2019.107730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 07/09/2019] [Accepted: 07/22/2019] [Indexed: 01/17/2023]
Abstract
Phospholipids are the main component of membranes and are responsible for cell integrity. Alkylphospholipid analogues (APs) were first designed as antitumoral agents and were later tested against different cell types. Trypanosoma cruzi, the Chagas disease etiological agent, is sensitive to APs (edelfosine, miltefosine and ilmofosine) in vitro. We investigated the effect of synthetic ring substituted AP against epimastigotes, amastigotes and trypomastigotes. TCAN26, could inhibit the in vitro growth of epimastigotes and amastigotes with the 50% inhibitory concentrations (IC50) in the nanomolar range. Trypomastigotes lysis was also induced with 24-h treatment and a LC50 of 2.3 μM. Ultrastructural analysis by electron microscopy demonstrated that TCAN26 mainly affected the parasite's membranes leading to mitochondrial and Golgi cisternae swelling, membrane blebs, and autophagic figures in the different parasite developmental stages. While the Golgi of the parasites was significantly affected, the Golgi complex of the host cells remained normal suggesting a specific mechanism of action. In summary, our results suggest that TCAN 26 is a potent and selective inhibitor of T. cruzi growth probably due to disturbances of phospholipid biosynthesis.
Collapse
Affiliation(s)
- Emile Barrias
- Laboratório de Microscopia Aplicada a Ciencias da Vida, Diretoria de Metrologia Aplicada a Ciências da Vida, Instituto Nacional de Metrologia, Qualidade e Tecnologia -INMETRO, Xerém, Avenida Nossa Senhora das Graças, 50/ 27, 25250- 020, Duque de Caxias, Rio de Janeiro, Brazil
| | - Lissa Catherine Reignault
- Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, Bloco K, 21944-970, Rio de Janeiro, Brazil; Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, CCS, UFRJ, Av. Carlos Chagas 373, CCS, Ilha do Fundão, Rio de Janeiro, 21941-902, Brazil
| | - Theodora Calogeropoulou
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635, Athens, Greece
| | - Wanderley de Souza
- Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, Bloco K, 21944-970, Rio de Janeiro, Brazil; Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, CCS, UFRJ, Av. Carlos Chagas 373, CCS, Ilha do Fundão, Rio de Janeiro, 21941-902, Brazil.
| |
Collapse
|
13
|
Miltefosine increases macrophage cholesterol release and inhibits NLRP3-inflammasome assembly and IL-1β release. Sci Rep 2019; 9:11128. [PMID: 31366948 PMCID: PMC6668382 DOI: 10.1038/s41598-019-47610-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 06/18/2019] [Indexed: 01/24/2023] Open
Abstract
Miltefosine is an FDA approved oral drug for treating cutaneous and visceral leishmaniasis. Leishmania is a flagellated protozoa, which infects and differentiates in macrophages. Here, we studied the effects of Miltefosine on macrophage's lipid homeostasis, autophagy, and NLRP3 inflammasome assembly/activity. Miltefosine treatment conferred multiple effects on macrophage lipid homeostasis leading to increased cholesterol release from cells, increased lipid-raft disruption, decreased phosphatidylserine (PS) flip from the cell-surface, and redistribution of phosphatidylinositol 4,5-bisphosphate (PIP2) from the plasma membrane to actin rich regions in the cells. Enhanced basal autophagy, lipophagy and mitophagy was observed in cells treated with Miltefosine vs. control. Miltefosine treated cells showed marked increased in phosphorylation of kinases involved in autophagy induction such as; Adenosine monophosphate-activated protein kinase (AMPK) and Unc-51 like autophagy activating kinase (ULK1). The Toll like receptor (TLR) signaling pathway was blunted by Miltefosine treatment, resulting in decreased TLR4 recruitment to cell-surface and ~75% reduction in LPS induced pro-IL-1β mRNA levels. Miltefosine reduced endotoxin-mediated mitochondrial reactive oxygen species and protected the mitochondrial membrane potential. Miltefosine treatment induced mitophagy and dampened NLRP3 inflammasome assembly. Collectively, our data shows that Miltefosine induced ABCA1 mediated cholesterol release, induced AMPK phosphorylation and mitophagy, while dampening NLRP3 inflammasome assembly and IL-1β release.
Collapse
|
14
|
Laffitte MCN, Leprohon P, Légaré D, Ouellette M. Deep-sequencing revealing mutation dynamics in the miltefosine transporter gene in Leishmania infantum selected for miltefosine resistance. Parasitol Res 2016; 115:3699-703. [PMID: 27457482 DOI: 10.1007/s00436-016-5195-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 07/07/2016] [Indexed: 12/30/2022]
Abstract
Miltefosine is the first oral drug used in chemotherapy against leishmaniasis. In vitro studies found that resistance to miltefosine in Leishmania is often associated with the acquisition of point mutations in the miltefosine transporter, leading to a decrease in drug uptake. In this study, the dynamics of mutations upon miltefosine selection was studied by deep-sequencing of the miltefosine transporter gene. Deep-sequencing data revealed that no mutation was detected in the miltefosine transporter at sub-inhibitory concentrations of miltefosine. We show that the prevalence of mutated alleles was increasing when the drug pressure heightened, that more mutations were observed in highly resistant mutants, and that most mutations remained when parasites were cultured for a few passages in the absence of miltefosine.
Collapse
Affiliation(s)
- Marie-Claude N Laffitte
- Centre de Recherche en Infectiologie, CRCHU de Québec, 2705 Boul. Laurier, Québec, Qc, G1V 4G2, Canada
| | - Philippe Leprohon
- Centre de Recherche en Infectiologie, CRCHU de Québec, 2705 Boul. Laurier, Québec, Qc, G1V 4G2, Canada
| | - Danielle Légaré
- Centre de Recherche en Infectiologie, CRCHU de Québec, 2705 Boul. Laurier, Québec, Qc, G1V 4G2, Canada
| | - Marc Ouellette
- Centre de Recherche en Infectiologie, CRCHU de Québec, 2705 Boul. Laurier, Québec, Qc, G1V 4G2, Canada.
| |
Collapse
|
15
|
The antileishmanial drug miltefosine (Impavido(®)) causes oxidation of DNA bases, apoptosis, and necrosis in mammalian cells. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2016; 806:34-9. [PMID: 27476333 DOI: 10.1016/j.mrgentox.2016.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 06/09/2016] [Indexed: 11/23/2022]
Abstract
Miltefosine was developed to treat skin cancer; further studies showed that the drug also has activity against Leishmania. Miltefosine is the first oral agent for treating leishmaniasis. However, its mechanism of action is not completely understood. We have evaluated the induction of DNA damage by miltefosine. Cytotoxicity and genotoxicity (comet assay) tests were performed on human leukocytes exposed to the drug in vitro. Apoptosis and necrosis were also evaluated. In vivo tests were conducted in Swiss male mice (Mus musculus) treated orally with miltefosine. Oxidation of DNA bases in peripheral blood cells was measured using the comet assay followed by digestion with formamidopyrimidine glycosylase (FPG), which removes oxidized guanine bases. The micronucleus test was performed on bone marrow erythrocytes. Miltefosine caused DNA damage, apoptosis, and necrosis in vitro. Mice treated with miltefosine showed an increase in the DNA damage score, which was further increased following FPG digestion. The micronucleus test was also positive.
Collapse
|
16
|
Skinner-Adams TS, Sumanadasa SD, Fisher GM, Davis RA, Doolan DL, Andrews KT. Defining the targets of antiparasitic compounds. Drug Discov Today 2016; 21:725-39. [DOI: 10.1016/j.drudis.2016.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 12/04/2015] [Accepted: 01/07/2016] [Indexed: 10/22/2022]
|
17
|
Luna ACDL, Saraiva GKV, Filho OMR, Chierice GO, Neto SC, Cuccovia IM, Maria DA. Potential antitumor activity of novel DODAC/PHO-S liposomes. Int J Nanomedicine 2016; 11:1577-91. [PMID: 27143880 PMCID: PMC4841408 DOI: 10.2147/ijn.s90850] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In recent studies, we showed that synthetic phosphoethanolamine (PHO-S) has a great potential for inducing cell death in several tumor cell lines without damage to normal cells. However, its cytotoxic effect and selectivity against tumor cells could increase with encapsulation in cationic liposomes, such as dioctadecyldimethylammonium chloride (DODAC), due to electrostatic interactions between these liposomes and tumor cell membranes. Our aim was to use cationic liposomes to deliver PHO-S and to furthermore maximize the therapeutic effect of this compound. DODAC liposomes containing PHO-S (DODAC/PHO-S), at concentrations of 0.3-2.0 mM, prepared by ultrasonication, were analyzed by scanning electron microscopy (SEM) and dynamic light scattering. The cytotoxic effect of DODAC/PHO-S on B16F10 cells, Hepa1c1c7 cells, and human umbilical vein endothelial cells (HUVECs) was assessed by MTT assay. Cell cycle phases of B16F10 cells were analyzed by flow cytometry and the morphological changes by SEM, after treatment. The liposomes were spherical and polydisperse in solution. The liposomes were stable, presenting an average of ∼ 50% of PHO-S encapsulation, with a small reduction after 40 days. DODAC demonstrated efficient PHO-S delivery, with the lowest values of IC50% (concentration that inhibits 50% of the growth of cells) for tumor cells, compared with PHO-S alone, with an IC50% value of 0.8 mM for B16F10 cells and 0.2 mM for Hepa1c1c7 cells, and without significant effects on endothelial cells. The Hepa1c1c7 cells showed greater sensitivity to the DODAC/PHO-S formulation when compared to B16F10 cells and HUVECs. The use of DODAC/PHO-S on B16F10 cells induced G2/M-phase cell cycle arrest, with the proportion significantly greater than that treated with PHO-S alone. The morphological analysis of B16F10 cells by SEM showed changes such as "bleb" formation, cell detachment, cytoplasmic retraction, and apoptotic bodies after DODAC/PHO-S treatment. Cationic liposomal formulation for PHO-S delivery promoted cytotoxicity more selectively and effectively against B16F10 and Hepa1c1c7 cells. Thus, the DODAC/PHO-S liposomal formulation presents great potential for preclinical studies.
Collapse
Affiliation(s)
- Arthur Cássio de Lima Luna
- Biochemistry and Biophysical Laboratory, Butantan Institute, University of Sao Paulo, Sao Paulo, Brazil; Department of Medical Sciences, Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | | | | | | | - Salvador Claro Neto
- Department of Chemistry and Molecular Physics, University of Sao Paulo, Sao Carlos, Brazil
| | - Iolanda Midea Cuccovia
- Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo, Brazil
| | - Durvanei Augusto Maria
- Biochemistry and Biophysical Laboratory, Butantan Institute, University of Sao Paulo, Sao Paulo, Brazil; Department of Medical Sciences, Medical School, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
18
|
Kostadinova A, Topouzova-Hristova T, Momchilova A, Tzoneva R, Berger MR. Antitumor Lipids--Structure, Functions, and Medical Applications. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2015; 101:27-66. [PMID: 26572975 DOI: 10.1016/bs.apcsb.2015.08.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cell proliferation and metastasis are considered hallmarks of tumor progression. Therefore, efforts have been made to develop novel anticancer drugs that inhibit both the proliferation and the motility of tumor cells. Synthetic antitumor lipids (ATLs), which are chemically divided into two main classes, comprise (i) alkylphospholipids (APLs) and (ii) alkylphosphocholines (APCs). They represent a new entity of drugs with distinct antiproliferative properties in tumor cells. These compounds do not interfere with the DNA or mitotic spindle apparatus of the cell, instead, they incorporate into cell membranes, where they accumulate and interfere with lipid metabolism and lipid-dependent signaling pathways. Recently, it has been shown that the most commonly studied APLs inhibit proliferation by inducing apoptosis in malignant cells while leaving normal cells unaffected and are potent sensitizers of conventional chemo- and radiotherapy, as well as of electrical field therapy. APLs resist catabolic degradation to a large extent, therefore accumulate in the cell and interfere with lipid-dependent survival signaling pathways, notably PI3K-Akt and Raf-Erk1/2, and de novo phospholipid biosynthesis. They are internalized in the cell membrane via raft domains and cause downstream reactions as inhibition of cell growth and migration, cell cycle arrest, actin stress fibers collapse, and apoptosis. This review summarizes the in vitro, in vivo, and clinical trials of most common ATLs and their mode of action at molecular and biochemical levels.
Collapse
Affiliation(s)
- Aneliya Kostadinova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| | | | - Albena Momchilova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Rumiana Tzoneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| | - Martin R Berger
- German Cancer Research Center, Toxicology and Chemotherapy Unit, Heidelberg, Germany
| |
Collapse
|
19
|
Borba-Santos LP, Gagini T, Ishida K, de Souza W, Rozental S. Miltefosine is active against Sporothrix brasiliensis isolates with in vitro low susceptibility to amphotericin B or itraconazole. J Med Microbiol 2015; 64:415-422. [PMID: 25681323 DOI: 10.1099/jmm.0.000041] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 02/09/2015] [Indexed: 01/02/2023] Open
Abstract
Sporotrichosis is a common mycosis caused by dimorphic fungi from the Sporothrix schenckii complex. In recent years, sporotrichosis incidence rates have increased in the Brazilian state of Rio de Janeiro, where Sporothrix brasiliensis is the species more frequently isolated from patients. The standard antifungals itraconazole and amphotericin B are recommended as first-line therapy for cutaneous/lymphocutaneous and disseminated sporotrichosis, respectively, although decreased sensitivity to these drugs in vitro was reported for clinical isolates of S. brasiliensis. Here, we evaluated the activity of the phospholipid analogue miltefosine - already in clinical use against leishmaniasis - towards the pathogenic yeast form of S. brasiliensis isolates with low sensitivity to itraconazole or amphotericin B in vitro. Miltefosine had fungicidal activity, with minimum inhibitory concentration (MIC) values of 1-2 µg ml(-1). Miltefosine exposure led to loss of plasma membrane integrity, and transmission electron microscopy (TEM) analysis revealed a decrease in cytoplasmic electron density, alterations in the thickness of cell wall layers and accumulation of an electron-dense material in the cell wall. Flow cytometry analysis using an anti-melanin antibody revealed an increase in cell wall melanin in yeasts treated with miltefosine, when compared with control cells. The cytotoxicity of miltefosine was comparable to those of amphotericin B, but miltefosine showed a higher selectivity index towards the fungus. Our results suggest that miltefosine could be an effective alternative for the treatment of S. brasiliensis sporotrichosis, when standard treatment fails. Nevertheless, in vivo studies are required to confirm the antifungal potential of miltefosine for the treatment of sporotrichosis.
Collapse
Affiliation(s)
- Luana Pereira Borba-Santos
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thalita Gagini
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Kelly Ishida
- Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Wanderley de Souza
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Metrologia, Qualidade e Tecnologia, Inmetro, Duque de Caxias, Brazil
| | - Sonia Rozental
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
20
|
Hildmann A, Danker K. Modified phospholipids: From detergents towards small molecular response modifiers. EUR J LIPID SCI TECH 2014. [DOI: 10.1002/ejlt.201300374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
21
|
Verhaar AP, Wildenberg ME, Peppelenbosch MP, Hommes DW, van den Brink GR. Repurposing miltefosine for the treatment of immune-mediated disease? J Pharmacol Exp Ther 2014; 350:189-95. [PMID: 24833702 DOI: 10.1124/jpet.113.212654] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Miltefosine is an ether lipid that was initially developed for cancer treatment in the early 1980s. Miltefosine largely failed development for oncology, although it was approved for the topical treatment of breast cancer metastasis. It was subsequently discovered that miltefosine is a highly effective treatment of visceral Leishmaniasis, a parasitic disease that affects millions worldwide and causes an estimated 30,000 fatalities each year. Oral treatment with miltefosine is generally well tolerated and has relatively few adverse effects. The exact mechanism of action of miltefosine treatment is still under investigation. Its close resemblance to phospholipids allows it to be quickly taken up by cell membranes and affect related processes, such as lipid metabolism and signaling through lipid rafts. These processes play an important role in the immune response and it comes as no surprise that miltefosine has been successfully tested for the treatment of a number of immune-mediated diseases in preclinical models of disease. Drug repurposing of miltefosine for immune-mediated diseases may provide an opportunity to expand the limited number of drugs that are currently available for therapeutic use.
Collapse
Affiliation(s)
- Auke P Verhaar
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands (A.P.V., M.E.W., G.R.v.d.B.); Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands (A.P.V., D.W.H.); Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands (M.P.P.); and Center for Inflammatory Bowel Diseases, University of California Los Angeles, Los Angeles, California (D.W.H.)
| | - Manon E Wildenberg
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands (A.P.V., M.E.W., G.R.v.d.B.); Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands (A.P.V., D.W.H.); Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands (M.P.P.); and Center for Inflammatory Bowel Diseases, University of California Los Angeles, Los Angeles, California (D.W.H.)
| | - Maikel P Peppelenbosch
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands (A.P.V., M.E.W., G.R.v.d.B.); Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands (A.P.V., D.W.H.); Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands (M.P.P.); and Center for Inflammatory Bowel Diseases, University of California Los Angeles, Los Angeles, California (D.W.H.)
| | - Daniel W Hommes
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands (A.P.V., M.E.W., G.R.v.d.B.); Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands (A.P.V., D.W.H.); Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands (M.P.P.); and Center for Inflammatory Bowel Diseases, University of California Los Angeles, Los Angeles, California (D.W.H.)
| | - Gijs R van den Brink
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands (A.P.V., M.E.W., G.R.v.d.B.); Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands (A.P.V., D.W.H.); Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands (M.P.P.); and Center for Inflammatory Bowel Diseases, University of California Los Angeles, Los Angeles, California (D.W.H.)
| |
Collapse
|
22
|
Canuto GAB, Castilho-Martins EA, Tavares MFM, Rivas L, Barbas C, López-Gonzálvez Á. Multi-analytical platform metabolomic approach to study miltefosine mechanism of action and resistance in Leishmania. Anal Bioanal Chem 2014; 406:3459-76. [PMID: 24722876 DOI: 10.1007/s00216-014-7772-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 03/03/2014] [Accepted: 03/17/2014] [Indexed: 12/26/2022]
Abstract
Miltefosine (MT) (hexadecylphosphocholine) was implemented to cope with resistance against antimonials, the classical treatment in Leishmaniasis. Given the scarcity of anti- Leishmania (L) drugs and the increasing appearance of resistance, there is an obvious need for understanding the mechanism of action and development of such resistance. Metabolomics is an increasingly popular tool in the life sciences due to it being a relatively fast and accurate technique that can be applied either with a particular focus or in a global manner to reveal new knowledge about biological systems. Three analytical platforms, gas chromatography (GC), liquid chromatography (LC) and capillary electrophoresis (CE) have been coupled to mass spectrometry (MS) to obtain a broad picture of metabolic changes in the parasite. Impairment of the polyamine metabolism from arginine (Arg) to trypanothione in susceptible parasites treated with MT was in some way expected, considering the reactive oxygen species (ROS) production described for MT. Importantly, in resistant parasites an increase in the levels of amino acids was the most outstanding feature, probably related to the adaptation of the resistant strain for its survival inside the parasitophorous vacuole.
Collapse
Affiliation(s)
- Gisele A B Canuto
- Centro de Metabolómica y Bioanálisis (CEMBIO), Unidad Metabolómica, Interacciones y Bioanálisis (UMIB), Facultad de Farmacia, Universidad CEU San Pablo, Campus Monteprincipe, Boadilla del Monte, 28668, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
23
|
Ghosh M, Roy K, Roy S. Immunomodulatory effects of antileishmanial drugs. J Antimicrob Chemother 2013; 68:2834-8. [PMID: 23833177 DOI: 10.1093/jac/dkt262] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVES The commonly used antileishmanial drugs are sodium antimony gluconate (SAG), amphotericin B, miltefosine and paromomycin. There are a number of reports that antileishmanial drugs show immunomodulatory properties. Here, we attempt to understand how the innate arm of the immune system is modulated in response to these antileishmanial drugs. METHODS BALB/c peritoneal macrophages were treated with miltefosine, SAG, amphotericin B or paromomycin. The membrane fluidity of macrophages following drug treatment was studied in terms of fluorescence anisotropy. The T cell-stimulating ability, production of cytokines and nitrogen and oxygen metabolite production in drug-treated macrophages were also studied. The study was also carried out using peritoneal macrophages from drug-treated BALB/c mice. RESULTS The antileishmanial drugs altered macrophage membrane fluidity, except amphotericin B. The drug-treated macrophages showed enhanced T cell-stimulating ability and generation of reactive oxygen species, nitrite, interleukin-12 and tumour necrosis factor-α. CONCLUSIONS Antileishmanial drugs can stimulate the innate arm of the immune system, which may have a significant bearing on the cellular arm of the immune system.
Collapse
Affiliation(s)
- Moumita Ghosh
- Department of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | | | | |
Collapse
|
24
|
Castro BM, Fedorov A, Hornillos V, Delgado J, Acuña AU, Mollinedo F, Prieto M. Edelfosine and miltefosine effects on lipid raft properties: membrane biophysics in cell death by antitumor lipids. J Phys Chem B 2013; 117:7929-40. [PMID: 23738749 DOI: 10.1021/jp401407d] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Edelfosine (1-O-octadecyl-2-O-methyl-sn-glycero-phosphocholine) and miltefosine (hexadecylphosphocholine) are synthetic alkylphospholipids (ALPs) that are reported to selectively accumulate in tumor cell membranes, inducing Fas clustering and activation on lipid rafts, triggering apoptosis. However, the exact mechanism by which these lipids elicit these events is still not fully understood. Recent studies propose that their mode of action might be related with alterations of lipid rafts biophysical properties caused by these lipid drugs. To achieve a clear understanding of this mechanism, we studied the effects of pharmacologically relevant amounts of edelfosine and miltefosine in the properties of model and cellular membranes. The influence of these molecules on membrane order, lateral organization, and lipid rafts molar fraction and size were studied by steady-state and time-resolved fluorescence methods, Förster resonance energy transfer (FRET), confocal and fluorescence lifetime imaging microscopy (FLIM). We found that the global membrane and lipid rafts biophysical properties of both model and cellular membranes were not significantly affected by both the ALPs. Nonetheless, in model membranes, a mild increase in membrane fluidity induced by both alkyl lipids was detected, although this effect was more noticeable for edelfosine than miltefosine. This absence of drastic alterations shows for the first time that ALPs mode of action is unlikely to be directly linked to alterations of lipid rafts biophysical properties caused by these drugs. The biological implications of this result are discussed in the context of ALPs effects on lipid metabolism, mitochondria homeostasis modulation, and their relationship with tumor cell death.
Collapse
Affiliation(s)
- Bruno M Castro
- Centro de Química Física-Molecular and Institute of Nanoscience and Nanotechnology, IST, Universidade Técnica de Lisboa , Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | | | | | | | | | | | | |
Collapse
|
25
|
Anchisi L, Dessì S, Pani A, Mandas A. Cholesterol homeostasis: a key to prevent or slow down neurodegeneration. Front Physiol 2013; 3:486. [PMID: 23316166 PMCID: PMC3539713 DOI: 10.3389/fphys.2012.00486] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 12/12/2012] [Indexed: 11/29/2022] Open
Abstract
Neurodegeneration, a common feature for many brain disorders, has severe consequences on the mental and physical health of an individual. Typically human neurodegenerative diseases are devastating illnesses that predominantly affect elderly people, progress slowly, and lead to disability and premature death; however they may occur at all ages. Despite extensive research and investments, current therapeutic interventions against these disorders treat solely the symptoms. Therefore, since the underlying mechanisms of damage to neurons are similar, in spite of etiology and background heterogeneous, it will be of interest to identify possible trigger point of neurodegeneration enabling development of drugs and/or prevention strategies that target many disorders simultaneously. Among the factors that have been identified so far to cause neurodegeneration, failures in cholesterol homeostasis are indubitably the best investigated. The aim of this review is to critically discuss some of the main results reported in the recent years in this field mainly focusing on the mechanisms that, by recovering perturbations of cholesterol homeostasis in neuronal cells, may correct clinically relevant features occurring in different neurodegenerative disorders and, in this regard, also debate the current potential therapeutic interventions.
Collapse
Affiliation(s)
- Laura Anchisi
- Child Neuropsychiatry Unit, Azienda Sanitaria Locale (ASL) n°5 Oristano, Italy ; Department of Clinical and Experimental Medicine and Pharmacology, University of Messina Messina, Italy
| | | | | | | |
Collapse
|
26
|
Un K, Sakai-Kato K, Oshima Y, Kawanishi T, Okuda H. Intracellular trafficking mechanism, from intracellular uptake to extracellular efflux, for phospholipid/cholesterol liposomes. Biomaterials 2012; 33:8131-41. [DOI: 10.1016/j.biomaterials.2012.07.030] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 07/15/2012] [Indexed: 01/27/2023]
|
27
|
Vila TVM, Ishida K, de Souza W, Prousis K, Calogeropoulou T, Rozental S. Effect of alkylphospholipids on Candida albicans biofilm formation and maturation. J Antimicrob Chemother 2012; 68:113-25. [DOI: 10.1093/jac/dks353] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
28
|
Ponte CB, Alves ÉAR, Sampaio RNR, Urdapilleta AAA, Kückelhaus CDS, Muniz-Junqueira MI, Kückelhaus SAS. Miltefosine enhances phagocytosis but decreases nitric oxide production by peritoneal macrophages of C57BL/6 mice. Int Immunopharmacol 2012; 13:114-9. [DOI: 10.1016/j.intimp.2012.03.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 02/27/2012] [Accepted: 03/20/2012] [Indexed: 11/24/2022]
|
29
|
Lange Y, Ye J, Steck TL. Activation mobilizes the cholesterol in the late endosomes-lysosomes of Niemann Pick type C cells. PLoS One 2012; 7:e30051. [PMID: 22276143 PMCID: PMC3262792 DOI: 10.1371/journal.pone.0030051] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 12/12/2011] [Indexed: 11/18/2022] Open
Abstract
A variety of intercalating amphipaths increase the chemical activity of plasma membrane cholesterol. To test whether intracellular cholesterol can be similarly activated, we examined NPC1 and NPC2 fibroblasts, since they accumulate large amounts of cholesterol in their late endosomes and lysosomes (LE/L). We gauged the mobility of intracellular sterol from its appearance at the surface of the intact cells, as determined by its susceptibility to cholesterol oxidase and its isotope exchange with extracellular 2-(hydroxypropyl)-β-cyclodextrin-cholesterol. The entire cytoplasmic cholesterol pool in these cells was mobile, exchanging with the plasma membrane with an apparent half-time of ∼3–4 hours, ∼4–5 times slower than that for wild type human fibroblasts (half-time ∼0.75 hours). The mobility of the intracellular cholesterol was increased by the membrane-intercalating amphipaths chlorpromazine and 1-octanol. Chlorpromazine also promoted the net transfer of LE/L cholesterol to serum and cyclodextrin. Surprisingly, the mobility of LE/L cholesterol was greatly stimulated by treating intact NPC cells with glutaraldehyde or formaldehyde. Similar effects were seen with wild type fibroblasts in which the LE/L cholesterol pool had been expanded using U18666A. We also showed that the cholesterol in the intracellular membranes of fixed wild-type fibroblasts was mobile; it was rapidly oxidized by cholesterol oxidase and was rapidly replenished by exogenous sterol. We conclude that a) the cholesterol in NPC cells can exit the LE/L (and the extensive membranous inclusions therein) over a few hours; b) this mobility is stimulated by the activation of the cholesterol with intercalating amphipaths; c) intracellular cholesterol is even more mobile in fixed cells; and d) amphipaths that activate cholesterol might be useful in treating NPC disease.
Collapse
Affiliation(s)
- Yvonne Lange
- Department of Pathology, Rush University Medical Center, Chicago, Illinois, United States of America.
| | | | | |
Collapse
|
30
|
Ultrastructural analysis of miltefosine-induced surface membrane damage in adult Schistosoma mansoni BH strain worms. Parasitol Res 2012; 110:2465-73. [DOI: 10.1007/s00436-011-2786-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 12/13/2011] [Indexed: 02/07/2023]
|
31
|
Evaluating rational non-cross-resistant combination therapy in advanced clear cell renal cell carcinoma: combined mTOR and AKT inhibitor therapy. Cancer Chemother Pharmacol 2011; 69:185-94. [PMID: 21644050 DOI: 10.1007/s00280-011-1684-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 05/22/2011] [Indexed: 10/18/2022]
Abstract
PURPOSE Inhibition of the mammalian target of rapamycin (mTOR), a regulator of hypoxia inducible factor (HIF), is an established therapy for advanced renal cell cancer (RCC). Inhibition of mTOR results in compensatory AKT activation, a likely resistance mechanism. We evaluated whether addition of the Akt inhibitor perifosine to the mTOR inhibitor rapamycin would synergistically inhibit RCC. METHODS Select RCC cell lines were studied [786-O, A498 (VHL mutant), CAKI-1 (VHL wild type), and 769-P (VHL methylated)] with single agent and combination therapy. Growth inhibition was assessed by MTT and cell cycling by flow cytometry. Phospho-AKT (S473) and HIF-2α were assessed by Western blot. Total RNA was isolated from 786-O cells subjected to single agent and combination treatments. In these cells, genome-wide expression profiles were assessed, and real-time PCR was used to confirm a limited set of expression results. RESULTS Three out of four cell lines (CAKI-1, 769-P, and 786-O) were sensitive to single-agent perifosine with 50% inhibitory concentrations ranging from 5 to 10 μM. Perifosine blocked phosphorylation of AKT induced by rapamycin and inhibited HIF-2α expression in 786-O and CAKI-1. Combined treatment resulted in sub-additive growth inhibition. GeneChip analysis and pathway modeling revealed inhibition of the IL-8 pathway by these agents, concomitant with up-regulation of the KLF2 gene, a known suppressor of HIF1α. CONCLUSIONS Perifosine is active in select RCC lines, abrogating the induction of AKT phosphorylation mediated by mTOR inhibition. Combined mTOR and AKT inhibition resulted in the modulation of pro-angiogenesis pathways, providing a basis for future investigations.
Collapse
|
32
|
Lim SC, Duong HQ, Choi JE, Lee TB, Kang JH, Oh SH, Han SI. Lipid raft-dependent death receptor 5 (DR5) expression and activation are critical for ursodeoxycholic acid-induced apoptosis in gastric cancer cells. Carcinogenesis 2011; 32:723-731. [PMID: 21362627 DOI: 10.1093/carcin/bgr038] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Ursodeoxycholic acid (UDCA) is known as a suppressor of cholestatic liver diseases and colorectal cancer development. Here, we demonstrate that UDCA induces apoptosis without necrotic features in SNU601, SNU638, SNU1 and SNU216 human gastric cancer cells, implying its possible use as an effective chemotherapeutic agent in treatment of gastric cancer. UDCA-induced apoptosis was dominantly mediated by an extrinsic pathway dependent on caspase-8, -6 and -3. UDCA increased expression of death receptor 5 [(DR5), also known as tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor 2], and this DR appeared to be responsible for UDCA-induced apoptosis, as evidenced by DR5 knockdown. UDCA triggered formation of lipid rafts that played crucial roles in UDCA-induced apoptotic actions. Lipid rafts were required not only for provision of a proper site for DR5 action but also for mediation of DR5 expression. In addition, reactive oxygen species (ROS) and protein kinase C (PKC) δ appeared to be implicated in UDCA-induced raft-dependent DR5 expression. Our results indicate that UDCA-induced apoptosis is mediated by DR5 expression, which is regulated by the raft formation/ROS production/PKCδ activation pathway and DR5 localization into lipid rafts in gastric cancer cells. Tumor-suppressive activity of UDCA was confirmed in an in vivo system: UDCA (120 mg/kg/day) significantly decreased tumor growth in gastric cancer xenograft mice. Taken together, our results demonstrate that UDCA can be used as a potent chemotherapeutic agent for treatment of gastric cancer.
Collapse
Affiliation(s)
- Sung-Chul Lim
- Research Center for Resistant Cells, Chosun University, Gwangju, Korea
| | | | | | | | | | | | | |
Collapse
|
33
|
Ríos-Marco P, Jiménez-López JM, Marco C, Segovia JL, Carrasco MP. Antitumoral alkylphospholipids induce cholesterol efflux from the plasma membrane in HepG2 cells. J Pharmacol Exp Ther 2011; 336:866-73. [PMID: 21148684 DOI: 10.1124/jpet.110.172890] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2025] Open
Abstract
Alkylphospholipid (APL) analogs are promising candidates in the search for treatments of cancer. Previous studies conducted in our laboratory indicate that, after prolonged treatment, they alter cholesterol homeostasis in HepG2 cells. Here we describe the effects that different APLs exert upon this cell line after a 1-h exposure in a serum-free medium, including 1) a rapid, significant increase in cholesterol efflux into the extracellular medium, which consequently provoked a depletion of cholesterol in the plasma membrane (further assays conducted in an attempt to return to control cholesterol levels were only partially successful); 2) use of methyl-β-cyclodextrin, which indicated that APLs acted in a way similar to this agent that is used frequently to modulate membrane cholesterol levels; 3) the phosphorylation of Akt that showed that this critical regulator for cell survival was modulated by changes in cholesterol levels induced in the plasma membrane by APLs; and 4) membrane cholesterol depletion that is not related to the impairment of cholesterol traffic produced by APLs. Thus, we have found that antitumoral APLs efficiently deplete membrane cholesterol, which may be one important factor in determining the early biological actions of APLs.
Collapse
Affiliation(s)
- Pablo Ríos-Marco
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Granada, Spain
| | | | | | | | | |
Collapse
|
34
|
Schmidt-Hieber M, Dabrowski R, Weimann A, Aicher B, Lohneis P, Busse A, Thiel E, Blau IW. In vitro cytotoxicity of the novel antimyeloma agents perifosine, bortezomib and lenalidomide against different cell lines. Invest New Drugs 2010; 30:480-9. [PMID: 21080211 DOI: 10.1007/s10637-010-9576-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Accepted: 10/28/2010] [Indexed: 12/16/2022]
Abstract
The novel AKT inhibitor perifosine, a synthetic alkylphospholipid, is currently being investigated in clinical trials for the treatment of different hematological and oncological malignancies. The in vitro cytotoxicity of perifosine, bortezomib and lenalidomide against 6 cell lines derived from hematological malignancies was investigated using trypan blue staining, flow cytometry-based detection of activated caspases, Annexin V assays, immunohistochemistry studies (KI-67 and caspase-3 staining) and the immature-myeloid-information (IMI) technique. Perifosine and bortezomib induced concentration- and time-dependent cytotoxicity in all cell lines tested. Perifosine together with bortezomib largely exerted additive or synergistic effects with combination indices ranging from 1.13 to 0.22 for combined efficacies of 25% to 75% after 24-hour incubation. Lenalidomide-triggered cytotoxicity was low in all cell lines tested with any assay (less than 10% compared to the negative control). Finally, perifosine, but not bortezomib or lenalidomide, significantly increased the number of cells detected in the IMI channel. Perifosine and bortezomib- but not lenalidomide- trigger substantial cytotoxicity by caspase activation and mainly act additively or synergistically. The IMI technique might be a useful tool for studying cytotoxicity of agents like perifosine that interact mainly with the cellular membrane.
Collapse
Affiliation(s)
- Martin Schmidt-Hieber
- Medizinische Klinik III, Hämatologie, Onkologie und Transfusionsmedizin, Charité Campus Benjamin Franklin, Hindenburgdamm 30, 12200 Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|