1
|
Cho MO, Kim S, Back S, Jang W, Choi JH, Kang B, Lim SH. Monolithic Integration of Ultraslim Flow Sensor and Medical Guidewire by Laser Filament Scanning Sintering for In Vivo Diagnostics of Cardiovascular Diseases. ACS Sens 2024; 9:602-614. [PMID: 38060197 DOI: 10.1021/acssensors.3c01262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
In this study, an ultraslim thermal flow sensor system integrated onto a 340 μm diameter medical guidewire was developed using a laser filament scanning sintering method for the early diagnosis of cardiovascular diseases. The proposed system is a calorimetric-based micro thermal flow sensor comprising a microheater and two thermistors. Prior to fabrication, the sensor design was optimized through flow simulation, and the patterned sensor was successfully implemented on a thin and curved surface of the medical guidewire using a laser patterning method with Ag nanoparticles. The performance of the ultraslim thermal flow sensor-on-guidewire system (SoW) was evaluated under pulsatile flow by using an artificial heartbeat simulator with differentially induced fluid flow velocities of up to 60 cm/s. The resulting electrical signals generated by the temperature difference between the two thermistors caused by the fluid flow were measured across different velocity ranges. Based on the obtained data, a calibration curve was derived to establish the relationship between the fluid velocity and the sensor output voltage. Furthermore, the SoW was tested on living animals, whereby the measured blood flow velocities were 60-90 cm/s in the left coronary artery of pigs. This research demonstrates the potential of ultraslim microsensors, such as the developed thermal flow sensor system, for various industries, particularly in the medical field.
Collapse
Affiliation(s)
- Myoung-Ock Cho
- Department of Mechanical Systems Engineering, Graduate School, Kookmin University, Seoul 02707, Korea
| | - Sunyoung Kim
- Department of Mechanical Systems Engineering, Graduate School, Kookmin University, Seoul 02707, Korea
| | - Seunghyun Back
- Department of Mechanical Systems Engineering, Graduate School, Kookmin University, Seoul 02707, Korea
| | - Woojin Jang
- Department of Mechanical Systems Engineering, Graduate School, Kookmin University, Seoul 02707, Korea
| | - Jin-Ho Choi
- Department of Emergency Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81, Irwonro, Gangnamgu, Seoul 06351, Republic of Korea
| | - Bongchul Kang
- Kookmin University, School of Mechanical Engineering, Kookmin University, Seoul 02707, Korea
| | - Si-Hyung Lim
- Kookmin University, School of Mechanical Engineering, Kookmin University, Seoul 02707, Korea
| |
Collapse
|
2
|
Murai T, Hikita H, van de Hoef TP, Kanno Y, Abe F, Hishikari K, Iiya M, Ito N, Yoshikawa H, Yano H, Tsuno W, Takahashi A, Yonetsu T, Kakuta T, Sasano T. Impact of the downstream myocardial mass on values of coronary microvascular resistance. Physiol Rep 2022; 10:e15503. [PMID: 36324285 PMCID: PMC9630753 DOI: 10.14814/phy2.15503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 10/08/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023] Open
Abstract
The assessment of hyperemic microvascular resistance (HMR) may be dependent on the assessment location in the coronary artery and the amount of partial myocardial mass (PMM) distal to the assessment locations. The aim of this study was to investigate the differences in HMR values between the distal and proximal sites in the same coronary arteries as well as the relationship between HMR and PMM. Twenty-nine vessels from 26 patients who had undergone intracoronary physiological assessments including Doppler flow velocity at the distal third part and the proximal third part in the same vessels were assessed. The mean values of HMR and PMM at the distal sites were 2.08 ± 0.75 mmHg/cm/sec and 22.2 ± 10.4 g, respectively. At the proximal sites, the values of HMR and PMM were 1.19 ± 0.33 mmHg/cm/sec and 59.9 ± 18.3 g, respectively. All HMR values at the distal sites were significantly higher than those at the proximal sites (p < 0.001). Smaller PMM at the distal sites was significantly associated with higher HMR (r = -0.544, p = 0.002) and was the strongest factor affecting the HMR values (p = 0.009), while this relationship was not observed at the proximal sites (r = -0.262, p = 0.17). The impact of PMM on HMR was diminished at assessment locations where PMM was greater than 35 g. In conclusion, a small amount of downstream myocardial mass could be related to high HMR values. The assessment location around the proximal coronary artery with over 35 g of myocardium would be appropriate to assess HMR because it minimizes the influence of the assessment location.
Collapse
Affiliation(s)
- Tadashi Murai
- Cardiovascular CenterYokosuka Kyosai HospitalYokosukaJapan
| | | | | | - Yoshinori Kanno
- Department of Cardiovascular MedicineTokyo Medical Dental University HospitalTokyoJapan
| | - Fumiyuki Abe
- Department of CardiologyOme Municipal General HospitalTokyoJapan
| | | | - Munehiro Iiya
- Cardiovascular CenterYokosuka Kyosai HospitalYokosukaJapan
| | - Naruhiko Ito
- Cardiovascular CenterYokosuka Kyosai HospitalYokosukaJapan
| | | | - Hirotaka Yano
- Cardiovascular CenterYokosuka Kyosai HospitalYokosukaJapan
| | - Wataru Tsuno
- Cardiovascular CenterYokosuka Kyosai HospitalYokosukaJapan
| | | | - Taishi Yonetsu
- Department of Cardiovascular MedicineTokyo Medical Dental University HospitalTokyoJapan
| | - Tsunekazu Kakuta
- Department of Cardiovascular MedicineTsuchiura Kyodo General HospitalTsuchiuraJapan
| | - Tetsuo Sasano
- Department of Cardiovascular MedicineTokyo Medical Dental University HospitalTokyoJapan
| |
Collapse
|
3
|
Costa RP, Simplice Talla Nwotchouang B, Yao J, Biswas D, Casey D, McKenzie R, Steinman DA, Loth F. Transition to Turbulence Downstream of a Stenosis for Whole Blood and a Newtonian Analog Under Steady Flow Conditions. J Biomech Eng 2022; 144:1119455. [PMID: 34505131 DOI: 10.1115/1.4052370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Indexed: 11/08/2022]
Abstract
Blood, a multiphase fluid comprised of plasma, blood cells, and platelets, is known to exhibit a shear-thinning behavior at low shear rates and near-Newtonian behavior at higher shear rates. However, less is known about the impact of its multiphase nature on the transition to turbulence. In this study, we experimentally determined the critical Reynolds number at which the flow began to transition to turbulence downstream of eccentric stenosis for whole porcine blood and a Newtonian blood analog (water-glycerin mixture). Velocity profiles for both fluids were measured under steady-state flow conditions using an ultrasound Doppler probe placed 12 diameters downstream of eccentric stenosis. Velocity was recorded at 21 locations along the diameter at 11 different flow rates. Normalized turbulent kinetic energy was used to determine the critical Reynolds number for each fluid. Blood rheology was measured before and after each experiment. Tests were conducted on five samples of each fluid inside a temperature-controlled in vitro flow system. The viscosity at a shear rate of 1000 s-1 was used to define the Reynolds number for each fluid. The mean critical Reynolds numbers for blood and water-glycerin were 470 ± 27.5 and 395 ± 10, respectively, indicating a ∼19% delay in transition to turbulence for whole blood compared to the Newtonian fluid. This finding is consistent with a previous report for steady flow in a straight pipe, suggesting some aspect of blood rheology may serve to suppress, or at least delay, the onset of turbulence in vivo.
Collapse
Affiliation(s)
- Rayanne Pinto Costa
- Department of Mechanical Engineering, The University of Akron, Akron, OH 44325
| | | | - Junyao Yao
- Department of Mechanical Engineering, The University of Akron, Akron, OH 44325
| | - Dipankar Biswas
- Department of Neurosurgery, Johns Hopkins Medical Institutions, Baltimore, MD 21205
| | - David Casey
- Department of Mechanical Engineering, The University of Akron, Akron, OH 44325
| | - Ruel McKenzie
- Department of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH 44325
| | - David A Steinman
- Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
| | - Francis Loth
- Department of Biomedical Engineering, The University of Akron, Akron, OH 44325; Department of Mechanical Engineering, The University of Akron, Akron, OH 44325
| |
Collapse
|
4
|
Abuouf Y, AlBadawi M, Ookawara S, Ahmed M. Effect of guidewire insertion in fractional flow reserve procedure for real geometry using computational fluid dynamics. Biomed Eng Online 2021; 20:95. [PMID: 34583689 PMCID: PMC8479905 DOI: 10.1186/s12938-021-00935-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 09/15/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Coronary artery disease is an abnormal contraction of the heart supply blood vessel. It limits the oxygenated blood flow to the heart. Thus, diagnosing its severity helps physicians to select the appropriate treatment plan. Fractional flow reserve (FFR) is the most accurate method to pinpoint the stenosis severity. However, inserting the guidewire across stenosis may cause a false overestimation of severity. METHODS To estimate the errors due to guidewire insertion, reconstructed three-dimensional coronary artery geometry from a patient-specific scan is used. A comprehensive three-dimensional blood flow model is developed. Blood is considered non-Newtonian and the flow is pulsatile. The model is numerically simulated using realistic boundary conditions. RESULTS The FFR value is calculated and compared with the actual flow ratio. Additionally, the ratio between pressure drop and distal dynamic pressure (CDP) is studied. The obtained results for each case are compared and analyzed with the case without a guidewire. It was found that placing the guidewire leads to overestimating the severity of moderate stenosis. It reduces the FFR value from 0.43 to 0.33 with a 23.26% error compared to 0.44 actual flow ratio and the CDP increases from 5.31 to 7.2 with a 35.6% error. FFR value in mild stenosis does not have a significant change due to placing the guidewire. The FFR value decreases from 0.83 to 0.82 compared to the 0.83 actual flow ratio. CONCLUSION Consequently, physicians should consider these errors while deciding the treatment plan.
Collapse
Affiliation(s)
- Yasser Abuouf
- Department of Energy Resources Engineering, Egypt-Japan University of Science and Technology (E-JUST), Postal Code 21934, New Borg El-Arab City, P.O. Box 179, Alexandria, Egypt. .,Mechanical Engineering Department, Faculty of Engineering, Alexandria University, Alexandria, Egypt.
| | - Muhamed AlBadawi
- Department of Energy Resources Engineering, Egypt-Japan University of Science and Technology (E-JUST), Postal Code 21934, New Borg El-Arab City, P.O. Box 179, Alexandria, Egypt.,Engineering Mathematics and Physics Department, Faculty of Engineering, Alexandria University, Alexandria, Egypt
| | - Shinichi Ookawara
- Department of Chemical Engineering, Graduate School of Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8552, Japan
| | - Mahmoud Ahmed
- Department of Energy Resources Engineering, Egypt-Japan University of Science and Technology (E-JUST), Postal Code 21934, New Borg El-Arab City, P.O. Box 179, Alexandria, Egypt.,Mechanical Engineering Department, Assiut University, Assiut, 71516, Egypt
| |
Collapse
|
5
|
Yong ASC, Pargaonkar VS, Wong CCY, Javadzdegan A, Yamada R, Tanaka S, Kimura T, Rogers IS, Sen I, Kritharides L, Schnittger I, Tremmel JA. Abnormal shear stress and residence time are associated with proximal coronary atheroma in the presence of myocardial bridging. Int J Cardiol 2021; 340:7-13. [PMID: 34375705 DOI: 10.1016/j.ijcard.2021.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/12/2021] [Accepted: 08/04/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Atheromatous plaques tend to form in the coronary segments proximal to a myocardial bridge (MB), but the mechanism of this occurrence remains unclear. This study evaluates the relationship between blood flow perturbations and plaque formation in patients with an MB. METHODS AND RESULTS A total of 92 patients with an MB in the mid left anterior descending artery (LAD) and 20 patients without an MB were included. Coronary angiography, intravascular ultrasound, and coronary physiology measurements were performed. A moving-boundary computational fluid dynamics algorithm was used to derive wall shear stress (WSS) and peak residence time (PRT). Patients with an MB had lower WSS (0.46 ± 0.21 vs. 0.96 ± 0.33 Pa, p < 0.001) and higher maximal plaque burden (33.6 ± 15.0 vs. 14.2 ± 5.8%, p < 0.001) within the proximal LAD compared to those without. Plaque burden in the proximal LAD correlated significantly with proximal WSS (r = -0.51, p < 0.001) and PRT (r = 0.60, p < 0.001). In patients with an MB, the site of maximal plaque burden occurred 23.4 ± 13.3 mm proximal to the entrance of the MB, corresponding to the site of PRT. CONCLUSIONS Regions of low WSS and high PRT occur in arterial segments proximal to an MB, and this is associated with the degree and location of coronary atheroma formation.
Collapse
Affiliation(s)
- Andy S C Yong
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia; Department of Cardiology, Concord Hospital, The University of Sydney, Sydney, Australia
| | | | - Christopher C Y Wong
- Department of Cardiology, Concord Hospital, The University of Sydney, Sydney, Australia
| | - Ashkan Javadzdegan
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Ryotaro Yamada
- Department of Medicine, Stanford School of Medicine, Stanford, CA, USA
| | - Shigemitsu Tanaka
- Department of Medicine, Stanford School of Medicine, Stanford, CA, USA
| | - Takumi Kimura
- Department of Medicine, Stanford School of Medicine, Stanford, CA, USA
| | - Ian S Rogers
- Department of Medicine, Stanford School of Medicine, Stanford, CA, USA
| | - Itsu Sen
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Leonard Kritharides
- Department of Cardiology, Concord Hospital, The University of Sydney, Sydney, Australia
| | - Ingela Schnittger
- Department of Medicine, Stanford School of Medicine, Stanford, CA, USA
| | | |
Collapse
|
6
|
Murai T, van de Hoef TP, van den Boogert TP, Wijntjens GW, Stegehuis VE, Echavarria-Pinto M, Hoshino M, Yonetsu T, Planken RN, Henriques JP, Escaned J, Kakuta T, Piek JJ. Quantification of Myocardial Mass Subtended by a Coronary Stenosis Using Intracoronary Physiology. Circ Cardiovasc Interv 2019; 12:e007322. [DOI: 10.1161/circinterventions.118.007322] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Background:
In patients with stable coronary artery disease, the amount of myocardium subtended by coronary stenoses constitutes a major determinant of prognosis, as well as of the benefit of coronary revascularization. We devised a novel method to estimate partial myocardial mass (PMM; ie, the amount of myocardium subtended by a stenosis) during physiological stenosis interrogation. Subsequently, we validated the index against equivalent PMM values derived from applying the Voronoi algorithm on coronary computed tomography angiography.
Methods:
Based on the myocardial metabolic demand and blood supply, PMM was calculated as follows: PMM (g)=APV×D
2
×π/(1.24×10
−
3
×HR×sBP+1.6), where APV indicates average peak blood flow velocity; D, vessel diameter; HR, heart rate; and sBP, systolic blood pressure. We calculated PMM to 43 coronary vessels (32 patients) interrogated with pressure and Doppler guidewires, and compared it with computed tomography–based PMM.
Results:
Median PMM was 15.8 g (Q1, Q3: 11.7, 28.4 g) for physiology-based PMM, and 17.0 g (Q1, Q3: 12.5, 25.9 g) for computed tomography–based PMM (
P
=0.84). Spearman rank correlation coefficient was 0.916 (
P
<0.001), and Passing-Bablok analysis revealed absence of both constant and proportional differences (coefficient A: −0.9; 95% CI, −4.5 to 0.9; and coefficient B, 1.00; 95% CI, 0.91 to 1.25]. Bland-Altman analysis documented a mean bias of 0.5 g (limit of agreement: −9.1 to 10.2 g).
Conclusions:
Physiology-based calculation of PMM in the catheterization laboratory is feasible and can be accurately performed as part of functional stenosis assessment.
Collapse
Affiliation(s)
- Tadashi Murai
- Heart Center, Amsterdam UMC, the Netherlands (T.M., T.P.v.d.H., T.P.W.v.d.B., G.W.M.W., V.E.S., J.P.S.H., J.J.P.)
| | - Tim P. van de Hoef
- Heart Center, Amsterdam UMC, the Netherlands (T.M., T.P.v.d.H., T.P.W.v.d.B., G.W.M.W., V.E.S., J.P.S.H., J.J.P.)
| | - Thomas P.W. van den Boogert
- Heart Center, Amsterdam UMC, the Netherlands (T.M., T.P.v.d.H., T.P.W.v.d.B., G.W.M.W., V.E.S., J.P.S.H., J.J.P.)
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, the Netherlands (T.P.W.v.d.B., R.N.P.)
| | - Gilbert W.M. Wijntjens
- Heart Center, Amsterdam UMC, the Netherlands (T.M., T.P.v.d.H., T.P.W.v.d.B., G.W.M.W., V.E.S., J.P.S.H., J.J.P.)
| | - Valérie E. Stegehuis
- Heart Center, Amsterdam UMC, the Netherlands (T.M., T.P.v.d.H., T.P.W.v.d.B., G.W.M.W., V.E.S., J.P.S.H., J.J.P.)
| | | | - Masahiro Hoshino
- Department of Cardiovascular Medicine, Tsuchiura Kyodo General Hospital, Ibaraki, Japan (M.H., T.Y., T.K.)
| | - Taishi Yonetsu
- Department of Cardiovascular Medicine, Tsuchiura Kyodo General Hospital, Ibaraki, Japan (M.H., T.Y., T.K.)
| | - R. Nils Planken
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, the Netherlands (T.P.W.v.d.B., R.N.P.)
| | - José P.S. Henriques
- Heart Center, Amsterdam UMC, the Netherlands (T.M., T.P.v.d.H., T.P.W.v.d.B., G.W.M.W., V.E.S., J.P.S.H., J.J.P.)
| | - Javier Escaned
- Department of Cardiology, Hospital Clinico San Carlos IDISSC, Universidad Complutense de Madrid, Spain (J.E.)
| | - Tsunekazu Kakuta
- Department of Cardiovascular Medicine, Tsuchiura Kyodo General Hospital, Ibaraki, Japan (M.H., T.Y., T.K.)
| | - Jan J. Piek
- Heart Center, Amsterdam UMC, the Netherlands (T.M., T.P.v.d.H., T.P.W.v.d.B., G.W.M.W., V.E.S., J.P.S.H., J.J.P.)
| |
Collapse
|
7
|
Javadzadegan A, Moshfegh A, Mohammadi M, Askarian M, Mohammadi M. Haemodynamic impacts of myocardial bridge length: A congenital heart disease. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2019; 175:25-33. [PMID: 31104712 DOI: 10.1016/j.cmpb.2019.03.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 02/09/2019] [Accepted: 03/27/2019] [Indexed: 06/09/2023]
Abstract
OBJECTIVES There is an association between long and thick myocardial bridging (MB), haemodynamic perturbations and increased risk of myocardial infarction. This study aims to investigate the alteration in coronary haemodynamics with increasing the length of MB. METHODS Angiography and intravascular ultrasound were performed in 10 patients with varying length of MB in the left anterior descending (LAD) artery. In silico models of MB were developed based on the reconstructed three-dimensional model of the LAD. The entire LAD was divided into 3 segments, proximal (pre-bridge), bridge and distal (post-bridge). Transient computational fluid dynamics simulations were performed to derive distribution of blood residence time and wall shear stress (WSS) over entire vessel including proximal, bridge and distal segments. RESULTS With increasing the length of MB, a decreasing trend was observed in the WSS over proximal segment whereas an increasing trend was found in the WSS over bridge segment. When patients were divided into 2 groups based on the average length of MB in the whole cohort (Lave = 23.92 mm), patients with bridges longer than Lave had smaller WSS and higher residence time in the proximal segment compared to those with bridges shorter than Lave (0.59 ± 0.31 vs 0.21 ± 0.14 Pa and 0.0021 ± 0.0015 vs 0.0045 ± 0.0021 s). In contrast, patients with bridges longer than Lave had greater WSS in the bridge segment compared to those with bridges shorter than Lave (1.37 ± 1.66 vs 2.53 ± 3.14 Pa). No significant difference was found in the distal WSS of patients with short and long bridges. CONCLUSION Our findings revealed a direct relationship between the length of MB and haemodynamic perturbations in the proximal segment such that the increased length of MB is associated with decreased WSS and increased residence time.
Collapse
Affiliation(s)
- Ashkan Javadzadegan
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia; ANZAC Research Institute, The University of Sydney, Sydney, NSW 2139, Australia
| | - Abouzar Moshfegh
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia; ANZAC Research Institute, The University of Sydney, Sydney, NSW 2139, Australia.
| | - Maryam Mohammadi
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Mahsa Askarian
- Department of Community Health, School of Nursing and Midwifery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahsa Mohammadi
- Department of Medicinal Chemistry, Pharmaceutical Sciences Research Center, Pharmaceutical Sciences Branch, Azad University, Tehran, Iran
| |
Collapse
|
8
|
Mahmoodian N, Schaufler A, Pashazadeh A, Boese A, Friebe M, Illanes A. Proximal detection of guide wire perforation using feature extraction from bispectral audio signal analysis combined with machine learning. Comput Biol Med 2019; 107:10-17. [DOI: 10.1016/j.compbiomed.2019.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/25/2019] [Accepted: 02/02/2019] [Indexed: 11/26/2022]
|
9
|
Javadzadegan A, Moshfegh A, Hassanzadeh Afrouzi H. Relationship between myocardial bridge compression severity and haemodynamic perturbations. Comput Methods Biomech Biomed Engin 2019; 22:752-763. [DOI: 10.1080/10255842.2019.1589458] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Ashkan Javadzadegan
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
- ANZAC Research Institute, The University of Sydney, Sydney, NSW, Australia
| | - Abouzar Moshfegh
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
- ANZAC Research Institute, The University of Sydney, Sydney, NSW, Australia
- Sydney Local Health District, Concord Repatriation General Hospital, Sydney, NSW, Australia
| | - Hamid Hassanzadeh Afrouzi
- Faculty of Mechanical Engineering, Babol Noshirvani University of Technology, Babol, Iran
- Tehran Heart Center, Medical Sciences/University of Tehran, Tehran, Iran
| |
Collapse
|
10
|
Javadzadegan A, Moshfegh A, Qian Y, Kritharides L, Yong AS. Myocardial bridging and endothelial dysfunction – Computational fluid dynamics study. J Biomech 2019; 85:92-100. [DOI: 10.1016/j.jbiomech.2019.01.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 12/14/2018] [Accepted: 01/08/2019] [Indexed: 12/26/2022]
|
11
|
The relationship between coronary lesion characteristics and pathologic shear in human coronary arteries. Clin Biomech (Bristol, Avon) 2018; 60:177-184. [PMID: 30384262 DOI: 10.1016/j.clinbiomech.2018.10.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 10/06/2018] [Accepted: 10/26/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Pathological shear stress is associated with distinct pathogenic biological pathways relevant to coronary thrombosis and atherogenesis. Although the individual effects of lesion characteristics including stenosis severity, eccentricity and lesion length on coronary haemodynamics is known, their relative importance remains poorly understood. METHODS Computational fluid dynamics (CFD) was implemented for haemodynamic analysis of 104 coronary arteries. For each coronary artery, maximum shear stress at the site of maximal stenosis, average shear stress over the sites of maximal stenosis segment, average shear stress in the proximal segments and average shear stress in the distal segments were determined. In addition, the area of low wall shear stress (ALWSS) sites in post-stenotic regions were quantified as a proportion of the vessel segment. RESULTS With increasing stenosis severity, eccentricity and lesion length, maximal and average shear stress over the sites of maximal stenosis and ALWSS increased whereas average shear stress in the proximal segments decreased. Two-way ANCOVA analysis revealed that stenosis severity and lesion length were both independent predictors of maximum shear at the site of maximal stenosis [F (1, 104) = 10.94, P = 0.001 for diameter stenosis and F (1, 104) = 6.21, P = 0.014 for lesion length] and ALWSS [F (1, 104) = 66.10, P = 0.001 for diameter stenosis and F (1, 104) = 4.23, P = 0.047 for lesion length]. CONCLUSION Our findings demonstrate that although all lesion characteristics correlate with abnormal shear stress, only stenosis severity and lesion length are independent predictors of pathogenic physiological processes.
Collapse
|
12
|
Javadzadegan A, Moshfegh A, Afrouzi HH, Omidi M. Magnetohydrodynamic blood flow in patients with coronary artery disease. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2018; 163:111-122. [PMID: 30119846 DOI: 10.1016/j.cmpb.2018.06.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 05/26/2018] [Accepted: 06/05/2018] [Indexed: 06/08/2023]
Abstract
OBJECTIVES We aim to investigate the effect of a magnetic field with varying intensities on haemodynamic perturbations in a cohort of patients with coronary artery disease. METHODS Transient computational fluid dynamics (CFD) simulations were performed in three-dimensional (3D) models of coronary arteries reconstructed from 3D quantitative coronary angiography. The effect of magnetic field on wall shear stress (WSS) derived parameters including maximum wall shear stress (MWSS) and size of regions with low wall shear stress (ALWSS) as well as length of flow recirculation zones were determined. RESULTS The results showed a substantial reduction in MWSS, ALWSS and length of flow recirculation zones in the presence of magnetic field, in particular for coronaries with moderate to severe stenoses. When the whole cohort examined, time-averaged wall shear stress (TAWSS), ALWSS and the length of flow recirculation zones in the absence of magnetic field were approximately 1.71, 4.69 and 8.46 times greater than those in the presence of magnetic field, respectively. CONCLUSION Our findings imply that an externally applied magnetic field can improve haemodynamic perturbations in human coronary arteries.
Collapse
Affiliation(s)
- Ashkan Javadzadegan
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia; ANZAC Research Institute, The University of Sydney, Sydney, NSW 2139, Australia; Concord Repatriation General Hospital, Sydney Local Health District, NSW 2139, Australia.
| | - Abouzar Moshfegh
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia; ANZAC Research Institute, The University of Sydney, Sydney, NSW 2139, Australia; Concord Repatriation General Hospital, Sydney Local Health District, NSW 2139, Australia
| | | | - Mohammad Omidi
- Faculty of Mechanical Engineering, Babol Noshirvani University of Technology, Babol, Iran
| |
Collapse
|
13
|
Illanes A, Boese A, Maldonado I, Pashazadeh A, Schaufler A, Navab N, Friebe M. Novel clinical device tracking and tissue event characterization using proximally placed audio signal acquisition and processing. Sci Rep 2018; 8:12070. [PMID: 30104613 PMCID: PMC6089924 DOI: 10.1038/s41598-018-30641-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 08/02/2018] [Indexed: 11/24/2022] Open
Abstract
We propose a new and complementary approach to image guidance for monitoring medical interventional devices (MID) with human tissue interaction and surgery augmentation by acquiring acoustic emission data from the proximal end of the MID outside the patient to extract dynamical characteristics of the interaction between the distal tip and the tissue touched or penetrated by the MID. We conducted phantom based experiments (n = 955) to show dynamic tool/tissue interaction during tissue needle passage (a) and vessel perforation caused by guide wire artery perforation (b). We use time-varying auto-regressive (TV-AR) modelling to characterize the dynamic changes and time-varying maximal energy pole (TV-MEP) to compute subsequent analysis of MID/tissue interaction characterization patterns. Qualitative and quantitative analysis showed that the TV-AR spectrum and the TV-MEP indicated the time instants of the needle path through different phantom objects (a) and clearly showed a perforation versus other generated artefacts (b). We demonstrated that audio signals acquired from the proximal part of an MID could provide valuable additional information to surgeons during minimally invasive procedures.
Collapse
Affiliation(s)
- Alfredo Illanes
- Otto-von-Guericke-Universität, INKA Intelligente Katheter, Magdeburg, Germany.
| | - Axel Boese
- Otto-von-Guericke-Universität, INKA Intelligente Katheter, Magdeburg, Germany
| | - Iván Maldonado
- Otto-von-Guericke-Universität, INKA Intelligente Katheter, Magdeburg, Germany
| | - Ali Pashazadeh
- Otto-von-Guericke-Universität, INKA Intelligente Katheter, Magdeburg, Germany
| | - Anna Schaufler
- Otto-von-Guericke-Universität, INKA Intelligente Katheter, Magdeburg, Germany
| | - Nassir Navab
- Technische Universität München, Fakultät für Informatik, München, Germany
| | - Michael Friebe
- Otto-von-Guericke-Universität, INKA Intelligente Katheter, Magdeburg, Germany
| |
Collapse
|
14
|
Javadzadegan A, Moshfegh A, Fulker D, Barber T, Qian Y, Kritharides L, Yong ASC. Development of a Computational Fluid Dynamics Model for Myocardial Bridging. J Biomech Eng 2018; 140:2681003. [DOI: 10.1115/1.4040127] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Indexed: 01/08/2023]
Abstract
Computational fluid dynamics (CFD) modeling of myocardial bridging (MB) remains challenging due to its dynamic and phasic nature. This study aims to develop a patient-specific CFD model of MB. There were two parts to this study. The first part consisted of developing an in silico model of the left anterior descending (LAD) coronary artery of a patient with MB. In this regard, a moving-boundary CFD algorithm was developed to simulate the patient-specific muscle compression caused by MB. A second simulation was also performed with the bridge artificially removed to determine the hemodynamics in the same vessel in the absence of MB. The second part of the study consisted of hemodynamic analysis of three patients with mild and moderate and severe MB in their LAD by means of the developed in silico model in the first part. The average shear stress in the proximal and bridge segments for model with MB were significantly different from those for model without MB (proximal segment: 0.32 ± 0.14 Pa (with MB) versus 0.97 ± 0.39 Pa (without MB), P < 0.0001 — bridge segment: 2.60 ± 0.94 Pa (with MB) versus 1.50 ± 0.64 Pa (without MB), P < 0.0001). When all three patients were evaluated, increasing the degree of vessel compression shear stress in the proximal segment decreased, whereas the shear stress in the bridge segment increased. The presence of MB resulted in hemodynamic abnormalities in the proximal segment, whereas segments within the bridge exhibited hemodynamic patterns which tend to discourage atheroma development.
Collapse
Affiliation(s)
- Ashkan Javadzadegan
- Faculty of Medicine and Health Sciences, Macquarie University, Level 1, 75 Talavera Road, Sydney 2109, NSW, Australia
- ANZAC Research Institute, The University of Sydney, Sydney 2139, NSW, Australia e-mail:
| | - Abouzar Moshfegh
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney 2109, NSW, Australia
- ANZAC Research Institute, The University of Sydney, Sydney 2139, NSW, Australia
| | - David Fulker
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney 2052, Australia
| | - Tracie Barber
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney 2052, Australia
| | - Yi Qian
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney 2109, NSW, Australia
| | - Leonard Kritharides
- ANZAC Research Institute, The University of Sydney, Sydney 2139, NSW, Australia
- Department of Cardiology, Concord Hospital, The University of Sydney, Sydney 2139, NSW, Australia
| | - Andy S. C. Yong
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney 2109, NSW, Australia
- ANZAC Research Institute, The University of Sydney, Sydney 2139, NSW, Australia
- Department of Cardiology, Concord Hospital, The University of Sydney, Sydney 2139, NSW, Australia
| |
Collapse
|
15
|
Javadzadegan A, Moshfegh A, Behnia M. Effect of magnetic field on haemodynamic perturbations in atherosclerotic coronary arteries. J Med Eng Technol 2018; 42:148-156. [DOI: 10.1080/03091902.2018.1447034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Ashkan Javadzadegan
- Macquarie University, Sydney, Australia
- ANZAC Research Institute, The University of Sydney, Sydney, Australia
| | - Abouzar Moshfegh
- Macquarie University, Sydney, Australia
- ANZAC Research Institute, The University of Sydney, Sydney, Australia
| | - Masud Behnia
- School of Management, Macquarie University, Sydney, Australia
| |
Collapse
|
16
|
Non-invasive coronary physiology based on computational analysis of intracoronary transluminal attenuation gradient. Sci Rep 2018; 8:4692. [PMID: 29549347 PMCID: PMC5856794 DOI: 10.1038/s41598-018-23134-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 03/06/2018] [Indexed: 01/01/2023] Open
Abstract
Invasive procedure is a prerequisite for studying coronary physiology. We established the measurement of non-invasive physiological parameters including coronary blood flow (CBF), flow velocity, and microvascular resistance using coronary computed tomography angiography (CCTA). Vessel-specific CBF was derived from transluminal attenuation flow encoding (TAFE) and then tested using three separate datasets consisted of computational simulation, human perfusion CT, and human CCTA. TAFE-derived CBF correlated well with measured vessel-specific myocardial blood flow and CBF. TAFE-derived CBF per myocardial mass consistently decreased with the progressive severity of stenosis, and it was found to better to detect significant stenosis than transluminal attenuation gradient (TAG). With the addition of vessel anatomy, TAFE-derived CBF could calculate flow velocity and microvascular resistance. The results of non-invasively acquired parameters according to the severity of stenosis were similar to those obtained through invasive physiology studies. Our study demonstrated that non-invasive comprehensive coronary physiology parameters can be derived from CCTA without any pre-specified condition or performing complex heavy computational processes. Our findings are expected to expand the clinical coverage of CCTA and coronary physiology.
Collapse
|
17
|
Galassi F, Alkhalil M, Lee R, Martindale P, Kharbanda RK, Channon KM, Grau V, Choudhury RP. 3D reconstruction of coronary arteries from 2D angiographic projections using non-uniform rational basis splines (NURBS) for accurate modelling of coronary stenoses. PLoS One 2018; 13:e0190650. [PMID: 29298341 PMCID: PMC5752011 DOI: 10.1371/journal.pone.0190650] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 12/18/2017] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Assessment of coronary stenosis severity is crucial in clinical practice. This study proposes a novel method to generate 3D models of stenotic coronary arteries, directly from 2D coronary images, and suitable for immediate assessment of the stenosis severity. METHODS From multiple 2D X-ray coronary arteriogram projections, 2D vessels were extracted. A 3D centreline was reconstructed as intersection of surfaces from corresponding branches. Next, 3D luminal contours were generated in a two-step process: first, a Non-Uniform Rational B-Spline (NURBS) circular contour was designed and, second, its control points were adjusted to interpolate computed 3D boundary points. Finally, a 3D surface was generated as an interpolation across the control points of the contours and used in the analysis of the severity of a lesion. To evaluate the method, we compared 3D reconstructed lesions with Optical Coherence Tomography (OCT), an invasive imaging modality that enables high-resolution endoluminal visualization of lesion anatomy. RESULTS Validation was performed on routine clinical data. Analysis of paired cross-sectional area discrepancies indicated that the proposed method more closely represented OCT contours than conventional approaches in luminal surface reconstruction, with overall root-mean-square errors ranging from 0.213mm2 to 1.013mm2, and maximum error of 1.837mm2. Comparison of volume reduction due to a lesion with corresponding FFR measurement suggests that the method may help in estimating the physiological significance of a lesion. CONCLUSION The algorithm accurately reconstructed 3D models of lesioned arteries and enabled quantitative assessment of stenoses. The proposed method has the potential to allow immediate analysis of the stenoses in clinical practice, thereby providing incremental diagnostic and prognostic information to guide treatments in real time and without the need for invasive techniques.
Collapse
Affiliation(s)
- Francesca Galassi
- Radcliffe Department of Medicine, Oxford Acute Vascular Imaging Centre, University of Oxford, Oxford, United Kingdom
| | - Mohammad Alkhalil
- Radcliffe Department of Medicine, Division of Cardiovascular Medicine, University of Oxford, Oxford, United Kingdom
| | - Regent Lee
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Philip Martindale
- Oxford Heart Centre, NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Rajesh K. Kharbanda
- Radcliffe Department of Medicine, Division of Cardiovascular Medicine, University of Oxford, Oxford, United Kingdom
| | - Keith M. Channon
- Radcliffe Department of Medicine, Division of Cardiovascular Medicine, University of Oxford, Oxford, United Kingdom
| | - Vicente Grau
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - Robin P. Choudhury
- Radcliffe Department of Medicine, Oxford Acute Vascular Imaging Centre, University of Oxford, Oxford, United Kingdom
- Radcliffe Department of Medicine, Division of Cardiovascular Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
18
|
Biswas D, Casey DM, Crowder DC, Steinman DA, Yun YH, Loth F. Characterization of Transition to Turbulence for Blood in a Straight Pipe Under Steady Flow Conditions. J Biomech Eng 2017; 138:2517983. [PMID: 27109010 DOI: 10.1115/1.4033474] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Indexed: 11/08/2022]
Abstract
Blood is a complex fluid that, among other things, has been established to behave as a shear thinning, non-Newtonian fluid when exposed to low shear rates (SR). Many hemodynamic investigations use a Newtonian fluid to represent blood when the flow field of study has relatively high SR (>200 s-1). Shear thinning fluids have been shown to exhibit differences in transition to turbulence (TT) compared to that of Newtonian fluids. Incorrect prediction of the transition point in a simulation could result in erroneous hemodynamic force predictions. The goal of the present study was to compare velocity profiles near TT of whole blood and Newtonian blood analogs in a straight rigid pipe with a diameter 6.35 mm under steady flow conditions. Rheology was measured for six samples of whole porcine blood and three samples of a Newtonian fluid, and the results show blood acts as a shear thinning non-Newtonian fluid. Measurements also revealed that blood viscosity at SR = 200 s-1 is significantly larger than at SR = 1000 s-1 (13.8%, p < 0.001). Doppler ultrasound (DUS) was used to measure velocity profiles for blood and Newtonian samples at different flow rates to produce Reynolds numbers (Re) ranging from 1000 to 3300 (based on viscosity at SR = 1000 s-1). Two mathematically defined methods, based on the velocity profile shape change and turbulent kinetic energy (TKE), were used to detect TT. Results show similar parabolic velocity profiles for both blood and the Newtonian fluid for Re < 2200. However, differences were observed between blood and Newtonian fluid velocity profiles for larger Re. The Newtonian fluid had blunt-like velocity profiles starting at Re = 2403 ± 8 which indicated transition. In contrast, blood did not show this velocity profile change until Re = 2871 ± 104. The Newtonian fluid had large velocity fluctuations (root mean square (RMS) > 20%) with a maximum TKE near the pipe center at Re = 2316 ± 34 which indicated transition. In contrast, blood results showed the maximum TKE at Re = 2806 ± 109. Overall, the critical Re was delayed by ∼20% (p < 0.001) for blood compared to the Newtonian fluid. Thus, a Newtonian assumption for blood at flow conditions near transition could lead to large errors in velocity prediction for steady flow in a straight pipe. However, these results are specific to this pipe diameter and not generalizable since SR is highly dependent on pipe diameter. Further research is necessary to understand this relation in different pipe sizes, more complex geometries, and under pulsatile flow conditions.
Collapse
|
19
|
The relationship between coronary artery distensibility and fractional flow reserve. PLoS One 2017; 12:e0181824. [PMID: 28742827 PMCID: PMC5526528 DOI: 10.1371/journal.pone.0181824] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/09/2017] [Indexed: 11/27/2022] Open
Abstract
Discordance between angiography-based anatomical assessment of coronary stenosis severity and fractional flow reserve (FFR) has been attributed to several factors including lesion length and irregularity, and the myocardial territory supplied by the target vessel. We sought to examine if coronary arterial distensibility is an independent contributor to this discordance. There were two parts to this study. The first consisted of “in silico” models of 26 human coronary arteries. Computational fluid dynamics-derived FFR was calculated for fully rigid, partially distensible and fully distensible models of the 26 arteries. The second part of the study consisted of 104 patients who underwent coronary angiography and FFR measurement. Distensibility at the lesion site (DistensibilityMLA) and for the reference vessel (DistensibilityRef) was determined by analysing three-dimensional angiography images during end-systole and end-diastole. Computational fluid dynamics-derived FFR was 0.67±0.19, 0.70±0.18 and 0.75±0.17 (P<0.001) in the fully rigid, partially distensible and fully distensible models respectively. FFR correlated with both DistensibilityMLA (r = 0.36, P<0.001) and DistensibilityRef (r = 0.44, P<0.001). Two-way ANCOVA analysis revealed that DistensibilityMLA (F (1, 100) = 4.17, p = 0.031) and percentage diameter stenosis (F (1, 100) = 60.30, p < 0.01) were both independent predictors of FFR. Coronary arterial distensibility is a novel, independent determinant of FFR, and an important factor contributing to the discordance between anatomical and functional assessment of stenosis severity.
Collapse
|
20
|
Pagiatakis C, Tardif JC, L'Allier PL, Mongrain R. Effect of stenosis eccentricity on the functionality of coronary bifurcation lesions-a numerical study. Med Biol Eng Comput 2017; 55:2079-2095. [PMID: 28500478 DOI: 10.1007/s11517-017-1653-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 04/25/2017] [Indexed: 01/10/2023]
Abstract
Interventional cardiologists still rely heavily on angiography for the evaluation of coronary lesion severity, despite its poor correlation with the presence of ischemia. In order to improve the accuracy of the current diagnostic procedures, an understanding of the relative influence of geometric characteristics on the induction of ischemia is required. This idea is especially important for coronary bifurcation lesions (CBLs), whose treatment is complex and is associated with high rates of peri- and post-procedural clinical events. Overall, it is unclear which geometric and morphological parameters of CBLs influence the onset of ischemia. More specifically, the effect of stenosis eccentricity is unknown. Computational fluid dynamic simulations, under a geometric multiscale framework, were executed for seven CBL configurations within the left main coronary artery bifurcation. Both concentric and eccentric stenosis profiles of mild to severe constriction were considered. By using a geometric multiscale framework, the fractional flow reserve, which is the gold-standard clinical diagnostic index, could be calculated and was compared between the eccentric and concentric profiles for each case. The results suggested that for configurations where the supplying vessel is stenosed, eccentricity could have a notable effect on and therefore be an important factor that influences configuration functionality.
Collapse
Affiliation(s)
- Catherine Pagiatakis
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke Street West, Montreal, Quebec, H3A 0C3, Canada. .,Montreal Heart Institute, 5000 Belanger Street, Montreal, Quebec, H1T 1C8, Canada.
| | - Jean-Claude Tardif
- Montreal Heart Institute, 5000 Belanger Street, Montreal, Quebec, H1T 1C8, Canada.,Faculty of Medicine, Université de Montréal - Pavillon Roger-Gaudry, 2900 Edouard-Montpetit Boulevard, Montreal, Quebec, H3T 1J4, Canada
| | - Philippe L L'Allier
- Montreal Heart Institute, 5000 Belanger Street, Montreal, Quebec, H1T 1C8, Canada.,Faculty of Medicine, Université de Montréal - Pavillon Roger-Gaudry, 2900 Edouard-Montpetit Boulevard, Montreal, Quebec, H3T 1J4, Canada
| | - Rosaire Mongrain
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke Street West, Montreal, Quebec, H3A 0C3, Canada.,Montreal Heart Institute, 5000 Belanger Street, Montreal, Quebec, H1T 1C8, Canada
| |
Collapse
|
21
|
Javadzadegan A, Yong ASC, Chang M, Ng MKC, Behnia M, Kritharides L. Haemodynamic assessment of human coronary arteries is affected by degree of freedom of artery movement. Comput Methods Biomech Biomed Engin 2016; 20:260-272. [DOI: 10.1080/10255842.2016.1215439] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
22
|
Sommer K, Bernat D, Schmidt R, Breit HC, Schreiber LM. Resting myocardial blood flow quantification using contrast-enhanced magnetic resonance imaging in the presence of stenosis: A computational fluid dynamics study. Med Phys 2015; 42:4375-84. [PMID: 26133634 DOI: 10.1118/1.4922708] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE The extent to which atherosclerotic plaques affect contrast agent (CA) transport in the coronary arteries and, hence, quantification of myocardial blood flow (MBF) using magnetic resonance imaging (MRI) is unclear. The purpose of this work was to evaluate the influence of plaque induced stenosis both on CA transport and on the accuracy of MBF quantification. METHODS Computational fluid dynamics simulations in a high-detailed realistic vascular model were employed to investigate CA bolus transport in the coronary arteries. The impact of atherosclerosis was analyzed by inserting various medium- to high-grade stenoses in the vascular model. The influence of stenosis morphology was examined by varying the stenosis shapes but keeping the area reduction constant. Errors due to CA bolus transport were analyzed using the tracer-kinetic model MMID4. RESULTS Dispersion of the CA bolus was found in all models and for all outlets, but with a varying magnitude. The impact of stenosis was complex: while high-grade stenoses amplified dispersion, mild stenoses reduced the effect. Morphology was found to have a marked influence on dispersion for a small number of outlets in the post-stenotic region. Despite this marked influence on the concentration-time curves, MBF errors were less affected by stenosis. In total, MBF was underestimated by -7.9% to -44.9%. CONCLUSIONS The presented results reveal that local hemodynamics in the coronary vasculature appears to have a direct impact on CA bolus dispersion. Inclusion of atherosclerotic plaques resulted in a complex alteration of this effect, with both degree of area reduction and stenosis morphology affecting the amount of dispersion. This strong influence of vascular transport effects impairs the accuracy of MRI-based MBF quantification techniques and, potentially, other bolus-based perfusion measurement techniques like computed tomography perfusion imaging.
Collapse
Affiliation(s)
- Karsten Sommer
- Section of Medical Physics, Department of Radiology, Johannes Gutenberg University Medical Center, Mainz 55131, Germany and Max Planck Graduate Center with the Johannes Gutenberg University Mainz, Mainz 55128, Germany
| | - Dominik Bernat
- Section of Medical Physics, Department of Radiology, Johannes Gutenberg University Medical Center, Mainz 55131, Germany
| | - Regine Schmidt
- Section of Medical Physics, Department of Radiology, Johannes Gutenberg University Medical Center, Mainz 55131, Germany
| | - Hanns-Christian Breit
- Section of Medical Physics, Department of Radiology, Johannes Gutenberg University Medical Center, Mainz 55131, Germany
| | - Laura M Schreiber
- Comprehensive Heart Failure Center, Department of Cardiovascular Imaging, Würzburg University Hospital, Würzburg 97078, Germany
| |
Collapse
|
23
|
Ilsar R, Chawantanpipat C, Chan KH, Waugh R, Hennessy A, Celermajer DS, Ng MKC. MEASUREMENT OF PULMONARY FLOW RESERVE IN HIGHER PRIMATES. Clin Exp Pharmacol Physiol 2009; 36:797-802. [DOI: 10.1111/j.1440-1681.2009.05160.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|