1
|
Zhu L, Li HD, Xu JJ, Li JJ, Cheng M, Meng XM, Huang C, Li J. Advancements in the Alcohol-Associated Liver Disease Model. Biomolecules 2022; 12:biom12081035. [PMID: 36008929 PMCID: PMC9406170 DOI: 10.3390/biom12081035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 02/06/2023] Open
Abstract
Alcohol-associated liver disease (ALD) is an intricate disease that results in a broad spectrum of liver damage. The presentation of ALD can include simple steatosis, steatohepatitis, liver fibrosis, cirrhosis, and even hepatocellular carcinoma (HCC). Effective prevention and treatment strategies are urgently required for ALD patients. In previous decades, numerous rodent models were established to investigate the mechanisms of alcohol-associated liver disease and explore therapeutic targets. This review provides a summary of the latest developments in rodent models, including those that involve EtOH administration, which will help us to understand the characteristics and causes of ALD at different stages. In addition, we discuss the pathogenesis of ALD and summarize the existing in vitro models. We analyse the pros and cons of these models and their translational relevance and summarize the insights that have been gained regarding the mechanisms of alcoholic liver injury.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiao-Ming Meng
- Correspondence: (X.-M.M.); (C.H.); (J.L.); Tel.: +86-551-65161001 (J.L.); Fax: +86-551-65161001 (J.L.)
| | - Cheng Huang
- Correspondence: (X.-M.M.); (C.H.); (J.L.); Tel.: +86-551-65161001 (J.L.); Fax: +86-551-65161001 (J.L.)
| | - Jun Li
- Correspondence: (X.-M.M.); (C.H.); (J.L.); Tel.: +86-551-65161001 (J.L.); Fax: +86-551-65161001 (J.L.)
| |
Collapse
|
2
|
Feng L, Chen J, Yan W, Ye Z, Yu J, Yao G, Wu Y, Zhang J, Yang D. Preparation of Active Peptides from Camellia vietnamensis and Their Metabolic Effects in Alcohol-Induced Liver Injury Cells. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27061790. [PMID: 35335153 PMCID: PMC8951368 DOI: 10.3390/molecules27061790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 11/16/2022]
Abstract
Liver damage seriously affects human health. Over 35% of cases of acute liver damage are caused by alcohol damage. Thus, finding drugs that can inhibit and effectively treat this disease is necessary. This article mainly focuses on the effect of the metabolome physical activity of active peptides in Camellia vietnamensis active peptide (CMAP) and improving liver protection. DEAE Sepharose FF ion-exchange column chromatography was used in separating and purifying crude peptides from Camellia vietnamensis Two components, A1 and A2, were obtained, and the most active A1 was selected. Sephadex G-100 gel column chromatography was used in A1 separation and purification. Three components, Al-1, Al-2, and Al-3, were obtained. Through antioxidant activity in vitro as an index of inspection, the relatively active component A1-2 was removed. Reverse-phase high-performance liquid chromatography showed that the purity of component A1-2 was 93.45%. The extracted CMAPs acted on alcoholic liver injury cells. Metabolomics studies revealed that the up-regulated metabolites were ribothymidine and xanthine; the down-regulated metabolites were hydroxyphenyllactic acid, creatinine, stearoylcarnitine, and inosine. This study provides an effective theoretical support for subsequent research.
Collapse
Affiliation(s)
- Lu Feng
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, College of Food Science and Technology, Hainan University, Haikou 570228, China; (L.F.); (J.C.)
| | - Jian Chen
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, College of Food Science and Technology, Hainan University, Haikou 570228, China; (L.F.); (J.C.)
| | - Wuping Yan
- College of Horticulture, Hainan University, Haikou 570228, China; (W.Y.); (Z.Y.); (J.Y.); (J.Z.); (D.Y.)
| | - Zhouchen Ye
- College of Horticulture, Hainan University, Haikou 570228, China; (W.Y.); (Z.Y.); (J.Y.); (J.Z.); (D.Y.)
| | - Jing Yu
- College of Horticulture, Hainan University, Haikou 570228, China; (W.Y.); (Z.Y.); (J.Y.); (J.Z.); (D.Y.)
| | - Guanglong Yao
- College of Horticulture, Hainan University, Haikou 570228, China; (W.Y.); (Z.Y.); (J.Y.); (J.Z.); (D.Y.)
- Correspondence: (G.Y.); (Y.W.); Tel./Fax: +86-153-4886-9654 (G.Y.); +86-136-3769-0969 (Y.W.)
| | - Yougen Wu
- College of Horticulture, Hainan University, Haikou 570228, China; (W.Y.); (Z.Y.); (J.Y.); (J.Z.); (D.Y.)
- Correspondence: (G.Y.); (Y.W.); Tel./Fax: +86-153-4886-9654 (G.Y.); +86-136-3769-0969 (Y.W.)
| | - Junfeng Zhang
- College of Horticulture, Hainan University, Haikou 570228, China; (W.Y.); (Z.Y.); (J.Y.); (J.Z.); (D.Y.)
| | - Dongmei Yang
- College of Horticulture, Hainan University, Haikou 570228, China; (W.Y.); (Z.Y.); (J.Y.); (J.Z.); (D.Y.)
| |
Collapse
|
3
|
Enzyme-Treated Zizania latifolia Extract Protects against Alcohol-Induced Liver Injury by Regulating the NRF2 Pathway. Antioxidants (Basel) 2021; 10:antiox10060960. [PMID: 34203789 PMCID: PMC8232714 DOI: 10.3390/antiox10060960] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/12/2022] Open
Abstract
Binge drinking patterns easily produce a state of oxidative stress that disturbs liver function. Eventually, this leads to alcoholic liver disease. A safe and effective therapy for alcoholic liver disease remains elusive. Enzyme-treated Z. latifolia extract (ETZL) was studied as a potential agent for treating alcohol-induced liver disease. In addition, its underlying mechanisms were elucidated. In the binge model, ETZL was pretreated with alcohol (5 g/kg) three times at 12-h intervals. Our results showed that ETZL pretreatment decreased the serum levels of ALT, AST, ALP, and TG. ETZL treatment appeared to prevent an increase in hepatic TG and MDA levels, and there was a decrease in total GSH following alcohol treatment. Histopathological examination showed that lipid droplets were significantly reduced in the ETZL group compared to the control group. ETZL also exhibited radical scavenging activity. It significantly reduced t-BHP-induced cytotoxicity and the production of reactive oxygen species (ROS) in HepG2 cells. ETZL also enhanced NRF2 nuclear translocation and increased expression of the downstream target genes HO-1, NQO1, and GCLC as an antioxidant defense. Finally, ETZL treatment significantly reduced cell death. Our study suggests that ETZL ameliorates binge ethanol-induced liver injury by upregulating the antioxidant defense mechanism.
Collapse
|
4
|
Yin L, Zhang Y, Shi H, Feng Y, Zhang Z, Zhang L. Proteomic profiling of hepatic stellate cells in alcohol liver fibrosis reveals proteins involved in collagen production. Alcohol 2020; 86:81-91. [PMID: 32171770 DOI: 10.1016/j.alcohol.2020.02.167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 01/17/2020] [Accepted: 02/28/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Hepatic stellate cell (HSC) activation has central functions in alcohol-induced liver fibrosis. Proteins of HSCs in alcoholic liver fibrosis (ALF) are still not completely understood. Here, we performed a proteomic study to discover proteins related to ALF using HSCs isolated from a rat model. METHODS Sprague-Dawley rats were fed with ethanol for 2 or 6 weeks. Liver histology was assessed using Sirius red and Oil red O staining. HSCs were enriched by using Percoll density gradient centrifugation, and analyzed using flow cytometry. Proteins extracted from HSCs were separated using two-dimensional electrophoresis (2DE). Differentially expressed proteins were identified using liquid chromatography-mass spectrometry (LC-MS). The characteristics of the differentially expressed proteins were analyzed using the UniProtKB database and STRING software. The mRNA levels of two differentially expressed proteins were analyzed using real-time RT-PCR, of which NADH dehydrogenase (ubiquinone) flavoprotein 2, mitochondrial (Ndufv2) was further investigated using Western blot (WB) and immunohistochemical analysis in the ALF model and human liver tissues. The relationship between Ndufv2 and alcohol stimulation was evaluated using WB. Next, Ndufv2 was knocked-down by shRNA in the HSC-T6 cell line. Three genes (encoding collagen, metalloproteinase inhibitor 1 [TIMP-1], and α-smooth muscle actin [a-SMA]) related to HSC activation were detected. RESULTS An ALF model was successfully established, with a liver fibrosis score of 1-2 (S1-2), and some big fat vacuoles development. Twenty-one non-abundant proteins with more than a 2-fold difference were identified using mass spectrometry, including 7 upregulated and 14 downregulated proteins. These differential proteins are a response to antigen presentation, mitochondrial metabolism, ethanol, and collagen degradation. Among them, two upregulated proteins (Ndufv2 and ATP synthase subunit alpha, mitochondrial [ATP5a1]) were involved in mitochondrial metabolism in ALF, and showed concurrent changes in mRNA and protein levels. Ndufv2 was upregulated in HSCs, as shown by WB, in non-parenchymal cells (NPCs) in the rat model and human liver tissues, and detected using immunohistochemistry. Ndufv2 was also upregulated after alcohol stimulation. Following Ndufv2 knockdown, collagen, TIMP-1, and α-SMA were downregulated compared with that in the controls. CONCLUSIONS A proteomic study was performed to discover proteins related to ALF in HSCs isolated from a rat model. Twenty-one differentially expressed proteins were identified, including proteins involved in mitochondrial metabolism and antigen presentation. Ndufv2, an upregulated protein in ALF, might be involved in ALF through regulating the production of fibrosis factors.
Collapse
|
5
|
Shukla SD, Restrepo R, Aroor AR, Liu X, Lim RW, Franke JD, Ford DA, Korthuis RJ. Binge Alcohol Is More Injurious to Liver in Female than in Male Rats: Histopathological, Pharmacologic, and Epigenetic Profiles. J Pharmacol Exp Ther 2019; 370:390-398. [PMID: 31262967 PMCID: PMC6695503 DOI: 10.1124/jpet.119.258871] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/19/2019] [Indexed: 12/20/2022] Open
Abstract
Binge alcohol consumption is a health problem, but differences between the sexes remain poorly defined. We have examined the in vivo effects of three acute, repeat binge alcohol administration on the liver in male and female rats. Sprague-Dawley rats were gavaged with alcohol (5 g/kg body weight) three times at 12-hour intervals. Blood and liver tissues were collected 4 hours after the last binge ethanol. Subsequently, several variables were analyzed. Compared with male rats, females had higher levels of blood alcohol, alanine aminotransferase, and triglycerides. Liver histology showed increased lipid vesicles that were larger in females. Protein levels of liver cytochrome P4502E1 were higher in the liver of females than in the liver of males after binge. Hepatic phospho-extracellular signal-regulated kinase 1/2 and phosph-p38 mitogen-activated protein kinase levels were lower in females compared with males after binge alcohol, but no differences were found in the phospho-C-jun N-terminal kinase levels. Peroxisome proliferator-activated receptor γ-coactivator 1α and cyclic AMP response element binding (CREB) protein levels increased more in female than in male livers; however, increases in phospho-CREB levels were lower in females. Remarkably, c-fos was reduced substantially in the livers of females, but no differences in c-myc protein were found. Binge ethanol caused elevation in acetylated (H3AcK9) and phosphoacetylated (H3AcK9PS10) histone H3 in both sexes but without any difference. Binge alcohol caused differential alterations in the levels of various species of phosphatidylethanol and a larger increase in the diacylglycerol kinase-α protein levels in the liver of female rats compared with male rats. These data demonstrate, for the first time, similarities and differences in the sex-specific responses to repeat binge alcohol leading to an increased susceptibility of female rats to have liver injury in vivo. SIGNIFICANCE STATEMENT: This study examines the molecular responses of male and female rat livers to acute binge alcohol in vivo and demonstrates significant differences in the susceptibility between sexes.
Collapse
Affiliation(s)
- Shivendra D Shukla
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia (S.D.S.,R.R.,A.R.A.,X.L.,R.W.L.,R.J.K.), and Department of Biochemistry and Molecular Biology and Center for Cardiovascular Research, Saint Louis University, St. Louis (J.D.F.,D.A.F.), Missouri
| | - Ricardo Restrepo
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia (S.D.S.,R.R.,A.R.A.,X.L.,R.W.L.,R.J.K.), and Department of Biochemistry and Molecular Biology and Center for Cardiovascular Research, Saint Louis University, St. Louis (J.D.F.,D.A.F.), Missouri
| | - Annayya R Aroor
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia (S.D.S.,R.R.,A.R.A.,X.L.,R.W.L.,R.J.K.), and Department of Biochemistry and Molecular Biology and Center for Cardiovascular Research, Saint Louis University, St. Louis (J.D.F.,D.A.F.), Missouri
| | - Xuanyou Liu
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia (S.D.S.,R.R.,A.R.A.,X.L.,R.W.L.,R.J.K.), and Department of Biochemistry and Molecular Biology and Center for Cardiovascular Research, Saint Louis University, St. Louis (J.D.F.,D.A.F.), Missouri
| | - Robert W Lim
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia (S.D.S.,R.R.,A.R.A.,X.L.,R.W.L.,R.J.K.), and Department of Biochemistry and Molecular Biology and Center for Cardiovascular Research, Saint Louis University, St. Louis (J.D.F.,D.A.F.), Missouri
| | - Jacob D Franke
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia (S.D.S.,R.R.,A.R.A.,X.L.,R.W.L.,R.J.K.), and Department of Biochemistry and Molecular Biology and Center for Cardiovascular Research, Saint Louis University, St. Louis (J.D.F.,D.A.F.), Missouri
| | - David A Ford
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia (S.D.S.,R.R.,A.R.A.,X.L.,R.W.L.,R.J.K.), and Department of Biochemistry and Molecular Biology and Center for Cardiovascular Research, Saint Louis University, St. Louis (J.D.F.,D.A.F.), Missouri
| | - Ronald J Korthuis
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia (S.D.S.,R.R.,A.R.A.,X.L.,R.W.L.,R.J.K.), and Department of Biochemistry and Molecular Biology and Center for Cardiovascular Research, Saint Louis University, St. Louis (J.D.F.,D.A.F.), Missouri
| |
Collapse
|
6
|
Knecht C, Balaban CL, Rodríguez JV, Ceccarelli EA, Guibert EE, Rosano GL. Proteome variation of the rat liver after static cold storage assayed in an ex vivo model. Cryobiology 2018; 85:47-55. [PMID: 30296410 DOI: 10.1016/j.cryobiol.2018.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 10/03/2018] [Accepted: 10/03/2018] [Indexed: 12/28/2022]
Abstract
Cold storage is a common procedure for liver preservation in a transplant setting. However, during cold ischemia, the liver suffers molecular alterations that can affect its performance. Also, deleterious mechanisms set forth in the storage phase are exacerbated during reperfusion. This study aimed to identify liver proteins associated with injury during cold storage and/or normothermic reperfusion using the isolated perfused rat liver model. Livers from male rats were subjected to either (1) cold storage for 24 h, (2) ex vivo normothermic reperfusion for 90 min or (3) cold storage for 24 h followed by ex vivo normothermic reperfusion for 90 min. Then, the livers were homogenized and proteins were extracted. Protein expression between each experimental group and the control (freshly resected livers) was compared by two-dimensional (2D) gel electrophoresis. Protein identification was carried out by matrix-assisted laser desorption/ionization time-of-flight spectrometry (MALDI-TOF/TOF) using MASCOT as the search engine. 23 proteins were detected with significantly altered levels of expression among the different treatments, including molecular chaperones, antioxidant enzymes, and proteins involved in energy metabolism. Some of them have been postulated as biomarkers for liver damage while others had been identified in other organs subjected to ischemia and reperfusion injury. The whole data set will be a useful resource for studying deleterious molecular mechanisms that result in diminished liver function during storage and subsequent reperfusion.
Collapse
Affiliation(s)
- Camila Knecht
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, 2000, Argentina; Centro Binacional (Argentina-Italia) de Investigaciones en Criobiología Clínica y Aplicada (CAIC), Universidad Nacional de Rosario, Rosario, 2000, Argentina.
| | - Cecilia L Balaban
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, 2000, Argentina; Centro Binacional (Argentina-Italia) de Investigaciones en Criobiología Clínica y Aplicada (CAIC), Universidad Nacional de Rosario, Rosario, 2000, Argentina.
| | - Joaquín V Rodríguez
- Centro Binacional (Argentina-Italia) de Investigaciones en Criobiología Clínica y Aplicada (CAIC), Universidad Nacional de Rosario, Rosario, 2000, Argentina.
| | - Eduardo A Ceccarelli
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, 2000, Argentina.
| | - Edgardo E Guibert
- Centro Binacional (Argentina-Italia) de Investigaciones en Criobiología Clínica y Aplicada (CAIC), Universidad Nacional de Rosario, Rosario, 2000, Argentina.
| | - Germán L Rosano
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, 2000, Argentina.
| |
Collapse
|
7
|
Kriss CL, Gregory-Lott E, Storey AJ, Tackett AJ, Wahls WP, Stevens SM. In Vivo Metabolic Tracing Demonstrates the Site-Specific Contribution of Hepatic Ethanol Metabolism to Histone Acetylation. Alcohol Clin Exp Res 2018; 42:1909-1923. [PMID: 30030934 PMCID: PMC6208134 DOI: 10.1111/acer.13843] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 07/17/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Epigenetic dysregulation through ethanol (EtOH)-induced changes in DNA methylation and histone modifications has been implicated in several alcohol-related disorders such as alcoholic liver disease. EtOH metabolism in the liver results in the formation of acetate, a metabolite that can be converted to acetyl-CoA, which can then be used by histone acetyltransferases to acetylate lysine residues. EtOH metabolism in the liver can also indirectly influence lysine acetylation through NAD+ -dependent sirtuin activity that is altered due to increases in NADH. As a proof-of-concept study to determine the direct influence of hepatic EtOH metabolism on histone acetylation changes, we used heavy-labeled EtOH (13 C2 ) and mass spectrometry (MS) to site specifically characterize lysine acetylation on histone proteins. METHODS Eight-week-old male C57BL/6J mice were gavaged using a bolus dose of either 13 C2 -labeled EtOH (5 g/kg) or maltose dextrin. Blood and livers were collected at 0, 4, and 24 hours followed by histone protein enrichment and derivatization using acid extraction and propionylation, respectively. Metabolic tracing and relative quantitation of acetylated histone proteins were performed using a hybrid quadrupole-orbitrap mass spectrometer. Data were analyzed using MaxQuant, Xcalibur Qual Browser, and the Bioconductor package "mzR." The contribution of EtOH to histone acetylation was quantified using the change in relative abundance of stable isotope incorporation in acetylated peptides detected by MS. RESULTS Data show significant incorporation of the EtOH-derived 13 C2 -label into N-terminal lysine acetylation sites on histones H3 and H4 after 4 hours, with rapid turnover of labeled histone acetylation sites and return to endogenous levels at 24 hours postgavage. Moreover, site-specific selectivity was observed in regard to label incorporation into certain lysine acetylation sites as determined by tandem mass spectrometry and comparison to isotope simulations. CONCLUSIONS These data provide the first quantitative evidence of how hepatic EtOH metabolism directly influences histone lysine acetylation in a site-specific manner and may influence EtOH-induced gene expression through these transcriptionally activating chromatin marks.
Collapse
Affiliation(s)
- Crystina L. Kriss
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, 4202 E. Fowler Ave., Tampa, Florida, 33620, USA
| | - Emily Gregory-Lott
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, 4202 E. Fowler Ave., Tampa, Florida, 33620, USA
| | - Aaron J. Storey
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (slot 516), Little Rock, Arkansas, 72205
| | - Alan J. Tackett
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (slot 516), Little Rock, Arkansas, 72205
| | - Wayne P. Wahls
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (slot 516), Little Rock, Arkansas, 72205
| | - Stanley M. Stevens
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, 4202 E. Fowler Ave., Tampa, Florida, 33620, USA
| |
Collapse
|
8
|
Parira T, Figueroa G, Granado S, Napuri J, Castillo-Chabeco B, Nair M, Agudelo M. Trichostatin A Shows Transient Protection from Chronic Alcohol-Induced Reactive Oxygen Species (ROS) Production in Human Monocyte-Derived Dendritic Cells. JOURNAL OF ALCOHOLISM AND DRUG DEPENDENCE 2018; 6:316. [PMID: 30596124 PMCID: PMC6309403 DOI: 10.4172/2329-6488.1000316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE The objective of this study was to understand whether histone deacetylase (HDACs) inhibitor Trichostatin A or TSA can block and/or reverse chronic alcohol exposure-induced ROS in human monocyte-derived dendritic cells (MDDCs). Additionally, since nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is a known regulator of antioxidant responses, we studied the effects of alcohol and TSA on ROS production and modulation of Nrf2 by MDDCs. METHODS Intra-cellular, extra-cellular, and total ROS levels were measured in MDDCs treated chronically with alcohol (0.1 and 0.2 % EtOH) using 2',7'-dichlorofluorescin diacetate (DCF-DA) followed by detection of ROS in microplate reader and imaging flow cytometer. Nrf2 expression was analyzed by qRT- PCR and western blot. In addition, NFE2L2 (Nrf2), class I HDAC genes HDAC1, HDAC2, and histone acetyltransferase genes KAT5 were analyzed in silico using the GeneMania prediction server. RESULTS Our results confirmed alcohol's ability to increase intracellular ROS levels in MDDCs within minutes of treatment. Our findings have also demonstrated, for the first time, that TSA has a transient protective effect on MDDCs treated chronically with alcohol since the ability of TSA to reduce intracellular ROS levels is only detected up to 15 minutes post-chronic alcohol treatment with no significant protective effects by 10 hours. In addition, chronic alcohol treatment was able to increase the expression of the antioxidant regulator Nrf2 in a dose dependent manner, and the effect of the higher amount of alcohol (0.2%) on Nrf2 gene expression was significantly enhanced by TSA. CONCLUSION This study demonstrates that TSA has a transient protective effect against ROS induced by chronic alcohol exposure of human MDDCs and chronic long-term exposure of MDDCs with alcohol and TSA induces cellular toxicity. It also highlights imaging flow cytometry as a novel tool to detect intracellular ROS levels. Overall, the effect of TSA might be mediated through Nrf2; however, further studies are needed to fully understand the molecular mechanisms.
Collapse
Affiliation(s)
- Tiyash Parira
- Department of Immunology and Nano-Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Gloria Figueroa
- Department of Immunology and Nano-Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Sherly Granado
- Department of Immunology and Nano-Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Jacqueline Napuri
- Department of Immunology and Nano-Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Boris Castillo-Chabeco
- Department of Immunology and Nano-Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Madhavan Nair
- Department of Immunology and Nano-Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Marisela Agudelo
- Department of Immunology and Nano-Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| |
Collapse
|
9
|
Elevated Nrf-2 responses are insufficient to mitigate protein carbonylation in hepatospecific PTEN deletion mice. PLoS One 2018; 13:e0198139. [PMID: 29799837 PMCID: PMC5969769 DOI: 10.1371/journal.pone.0198139] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 05/14/2018] [Indexed: 12/20/2022] Open
Abstract
Objective In the liver, a contributing factor in the pathogenesis of non-alcoholic fatty liver disease (NASH) is oxidative stress, which leads to the accumulation of highly reactive electrophilic α/β unsaturated aldehydes. The objective of this study was to determine the impact of NASH on protein carbonylation and antioxidant responses in a murine model. Methods Liver-specific phosphatase and tensin homolog (PTEN)-deletion mice (PTENLKO) or control littermates were fed a standard chow diet for 45–55 weeks followed by analysis for liver injury, oxidative stress and inflammation. Results Histology and Picrosirius red-staining of collagen deposition within the extracellular matrix revealed extensive steatosis and fibrosis in the PTENLKO mice but no steatosis or fibrosis in controls. Increased steatosis and fibrosis corresponded with significant increases in inflammation. PTEN-deficient livers showed significantly increased cell-specific oxidative damage, as detected by 4-hydroxy-2-nonenal (4-HNE) and acrolein staining. Elevated staining correlated with an increase in nuclear DNA repair foci (γH2A.X) and cellular proliferation index (Ki67) within zones 1 and 3, indicating oxidative damage was zonally restricted and was associated with increased DNA damage and cell proliferation. Immunoblots showed that total levels of antioxidant response proteins induced by nuclear factor erythroid-2-like-2 (Nrf2), including GSTμ, GSTπ and CBR1/3, but not HO-1, were elevated in PTENLKO as compared to controls, and IHC showed this response also occurred only in zones 1 and 3. Furthermore, an analysis of autophagy markers revealed significant elevation of p62 and LC3II expression. Mass spectrometric (MS) analysis identified significantly more carbonylated proteins in whole cell extracts prepared from PTENLKO mice (966) as compared to controls (809). Pathway analyses of identified proteins did not uncover specific pathways that were preferentially carbonylated in PTENLKO livers but, did reveal specific strongly increased carbonylation of thioredoxin reductase and of glutathione-S-transferases (GST) M6, O1, and O2. Conclusions Results show that disruption of PTEN resulted in steatohepatitis, fibrosis and caused hepatic induction of the Nrf2-dependent antioxidant system at least in part due to elevation of p62. This response was both cell-type and zone specific. However, these responses were insufficient to mitigate the accumulation of products of lipid peroxidation.
Collapse
|
10
|
Wang F, Zhou RJ, Zhao X, Ye H, Xie ML. Apigenin inhibits ethanol-induced oxidative stress and LPS-induced inflammatory cytokine production in cultured rat hepatocytes. J Appl Biomed 2018. [DOI: 10.1016/j.jab.2017.11.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
11
|
Ghosh Dastidar S, Warner JB, Warner DR, McClain CJ, Kirpich IA. Rodent Models of Alcoholic Liver Disease: Role of Binge Ethanol Administration. Biomolecules 2018; 8:biom8010003. [PMID: 29342874 PMCID: PMC5871972 DOI: 10.3390/biom8010003] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/09/2018] [Accepted: 01/11/2018] [Indexed: 12/14/2022] Open
Abstract
Both chronic and acute (binge) alcohol drinking are important health and economic concerns worldwide and prominent risk factors for the development of alcoholic liver disease (ALD). There are no FDA-approved medications to prevent or to treat any stage of ALD. Therefore, discovery of novel therapeutic strategies remains a critical need for patients with ALD. Relevant experimental animal models that simulate human drinking patterns and mimic the spectrum and severity of alcohol-induced liver pathology in humans are critical to our ability to identify new mechanisms and therapeutic targets. There are several animal models currently in use, including the most widely utilized chronic ad libitum ethanol (EtOH) feeding (Lieber–DeCarli liquid diet model), chronic intragastric EtOH administration (Tsukamoto–French model), and chronic-plus-binge EtOH challenge (Bin Gao—National Institute on Alcohol Abuse and Alcoholism (NIAAA) model). This review provides an overview of recent advances in rodent models of binge EtOH administration which help to recapitulate different features and etiologies of progressive ALD. These models include EtOH binge alone, and EtOH binge coupled with chronic EtOH intake, a high fat diet, or endotoxin challenge. We analyze the strengths, limitations, and translational relevance of these models, as well as summarize the liver injury outcomes and mechanistic insights. We further discuss the application(s) of binge EtOH models in examining alcohol-induced multi-organ pathology, sex- and age-related differences, as well as circadian rhythm disruption.
Collapse
Affiliation(s)
- Shubha Ghosh Dastidar
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| | - Jeffrey B Warner
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| | - Dennis R Warner
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| | - Craig J McClain
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA.
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA.
- Robley Rex Veterans Medical Center, Louisville, KY 40202, USA.
- University of Louisville Alcohol Research Center and Hepatobiology & Toxicology COBRE, University of Louisville, Louisville, KY 40202, USA.
| | - Irina A Kirpich
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA.
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA.
- University of Louisville Alcohol Research Center and Hepatobiology & Toxicology COBRE, University of Louisville, Louisville, KY 40202, USA.
| |
Collapse
|
12
|
Renner SW, Walker LM, Forsberg LJ, Sexton JZ, Brenman JE. Carbonic anhydrase III (Car3) is not required for fatty acid synthesis and does not protect against high-fat diet induced obesity in mice. PLoS One 2017; 12:e0176502. [PMID: 28437447 PMCID: PMC5402959 DOI: 10.1371/journal.pone.0176502] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 04/11/2017] [Indexed: 12/31/2022] Open
Abstract
Carbonic anhydrases are a family of enzymes that catalyze the reversible condensation of water and carbon dioxide to carbonic acid, which spontaneously dissociates to bicarbonate. Carbonic anhydrase III (Car3) is nutritionally regulated at both the mRNA and protein level. It is highly enriched in tissues that synthesize and/or store fat: liver, white adipose tissue, brown adipose tissue, and skeletal muscle. Previous characterization of Car3 knockout mice focused on mice fed standard diets, not high-fat diets that significantly alter the tissues that highly express Car3. We observed lower protein levels of Car3 in high-fat diet fed mice treated with niclosamide, a drug published to improve fatty liver symptoms in mice. However, it is unknown if Car3 is simply a biomarker reflecting lipid accumulation or whether it has a functional role in regulating lipid metabolism. We focused our in vitro studies toward metabolic pathways that require bicarbonate. To further determine the role of Car3 in metabolism, we measured de novo fatty acid synthesis with in vitro radiolabeled experiments and examined metabolic biomarkers in Car3 knockout and wild type mice fed high-fat diet. Specifically, we analyzed body weight, body composition, metabolic rate, insulin resistance, serum and tissue triglycerides. Our results indicate that Car3 is not required for de novo lipogenesis, and Car3 knockout mice fed high-fat diet do not have significant differences in responses to various diets to wild type mice.
Collapse
Affiliation(s)
- Sarah W. Renner
- Genetics and Molecular Biology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| | - Lauren M. Walker
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Lawrence J. Forsberg
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jonathan Z. Sexton
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, North Carolina, United States of America
| | - Jay E. Brenman
- Genetics and Molecular Biology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
13
|
Bliss E, Heywood WE, Benatti M, Sebire NJ, Mills K. An optimised method for the proteomic profiling of full thickness human skin. Biol Proced Online 2016; 18:15. [PMID: 27445641 PMCID: PMC4955162 DOI: 10.1186/s12575-016-0045-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 06/24/2016] [Indexed: 12/23/2022] Open
Abstract
Background The skin is the largest organ of the human body and is the first line barrier defence against trauma, microbial infiltration and radiation. Skin diseases can be a result of multi-systemic disease or an isolated condition. Due to its proteolysis resistant properties there are relatively few human skin proteomic datasets published compared with other human organs or body fluids. Skin is a challenging tissue to analyse using traditional proteomic techniques due to its high lipid content, insolubility and extensive cross-linking of proteins. This can complicate the isolation and digestion of proteins for analysis using mass spectrometry techniques. Results We have optimised a sample preparation procedure to improve solubilisation and mass spectral compatibility of full thickness skin samples. Using this technique, we were able to obtain data for the proteome profile of full thickness human skin using on-line two-dimensional liquid chromatography, followed by ultra-high definition label-free mass spectrometry analysis (UDMSE). We were able to identify in excess of 2000 proteins from a full thickness skin sample. Conclusions The adoption of on-line fractionation and optimised acquisition protocols utilising ion mobility separation (IMS) technology has significantly increased the scope for protein identifications ten-fold. Electronic supplementary material The online version of this article (doi:10.1186/s12575-016-0045-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Emily Bliss
- Centre for Translational Omics, UCL Institute of Child Health, 30 Guilford Street, London, WC1N 1EH UK
| | - Wendy E Heywood
- Centre for Translational Omics, UCL Institute of Child Health, 30 Guilford Street, London, WC1N 1EH UK
| | - Malika Benatti
- Histopathology Department, Great Ormond Street Hospital, London, WC1N 3JH UK
| | - Neil J Sebire
- Histopathology Department, Great Ormond Street Hospital, London, WC1N 3JH UK
| | - Kevin Mills
- Centre for Translational Omics, UCL Institute of Child Health, 30 Guilford Street, London, WC1N 1EH UK
| |
Collapse
|
14
|
Shearn CT, Fritz KS, Shearn AH, Saba LM, Mercer KE, Engi B, Galligan JJ, Zimniak P, Orlicky DJ, Ronis MJ, Petersen DR. Deletion of GSTA4-4 results in increased mitochondrial post-translational modification of proteins by reactive aldehydes following chronic ethanol consumption in mice. Redox Biol 2015; 7:68-77. [PMID: 26654979 PMCID: PMC4683459 DOI: 10.1016/j.redox.2015.11.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 11/23/2015] [Accepted: 11/25/2015] [Indexed: 12/21/2022] Open
Abstract
Chronic alcohol consumption induces hepatic oxidative stress resulting in production of highly reactive electrophilic α/β-unsaturated aldehydes that have the potential to modify proteins. A primary mechanism of reactive aldehyde detoxification by hepatocytes is through GSTA4-driven enzymatic conjugation with GSH. Given reports that oxidative stress initiates GSTA4 translocation to the mitochondria, we hypothesized that increased hepatocellular damage in ethanol (EtOH)-fed GSTA4−/− mice is due to enhanced mitochondrial protein modification by reactive aldehydes. Chronic ingestion of EtOH increased hepatic protein carbonylation in GSTA4−/− mice as evidenced by increased 4-HNE and MDA immunostaining in the hepatic periportal region. Using mass spectrometric analysis of biotin hydrazide conjugated carbonylated proteins, a total of 829 proteins were identified in microsomal, cytosolic and mitochondrial fractions. Of these, 417 were novel to EtOH models. Focusing on mitochondrial fractions, 1.61-fold more carbonylated proteins were identified in EtOH-fed GSTA4−/− mice compared to their respective WT mice ingesting EtOH. Bioinformatic KEGG pathway analysis of carbonylated proteins from the mitochondrial fractions revealed an increased propensity for modification of proteins regulating oxidative phosphorylation, glucose, fatty acid, glutathione and amino acid metabolic processes in GSTA4−/− mice. Additional analysis revealed sites of reactive aldehyde protein modification on 26 novel peptides/proteins isolated from either SV/GSTA4−/− PF or EtOH fed mice. Among the peptides/proteins identified, ACSL, ACOX2, MTP, and THIKB contribute to regulation of fatty acid metabolism and ARG1, ARLY, and OAT, which regulate nitrogen and ammonia metabolism having direct relevance to ethanol-induced liver injury. These data define a role for GSTA4-4 in buffering hepatic oxidative stress associated with chronic alcohol consumption and that this GST isoform plays an important role in protecting against carbonylation of mitochondrial proteins. We demonstrate increased mitochondrial carbonylation in GSTA4-4 KO mice chronically fed EtOH. Using LC-MS we identify 829 total carbonylated proteins (417 novel to murine ALD). Pathway analysis revealed a propensity for adduction of fatty acid metabolic and electron transport proteins. Using MS/MS, 26 novel adducted peptides were identified. Reactive aldehyde modification of proteins contributes to pathogenesis of ALD.
Collapse
Affiliation(s)
- Colin T Shearn
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.
| | - Kristofer S Fritz
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | | | - Laura M Saba
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Kelly E Mercer
- Department of Pediatrics, Arkansas Children's Nutrition Center, Little Rock, AR, United States
| | - Bridgette Engi
- Department of Pediatrics, Arkansas Children's Nutrition Center, Little Rock, AR, United States
| | - James J Galligan
- Department of Biochemistry, Vanderbilt, Nashville, TN, United States
| | - Piotr Zimniak
- Department of Pediatrics, Arkansas Children's Nutrition Center, Little Rock, AR, United States
| | - David J Orlicky
- Department of Pathology, School of Medicine, University of Colorado Anschutz Medical Center, Aurora, CO, United States
| | - Martin J Ronis
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Dennis R Petersen
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
15
|
In Vivo Acute on Chronic Ethanol Effects in Liver: A Mouse Model Exhibiting Exacerbated Injury, Altered Metabolic and Epigenetic Responses. Biomolecules 2015; 5:3280-94. [PMID: 26610587 PMCID: PMC4693278 DOI: 10.3390/biom5043280] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/17/2015] [Indexed: 01/06/2023] Open
Abstract
Chronic alcoholics who also binge drink (i.e., acute on chronic) are prone to an exacerbated liver injury but its mechanism is not understood. We therefore investigated the in vivo effects of chronic and binge ethanol ingestion and compared to chronic ethanol followed by three repeat binge ethanol on the liver of male C57/BL6 mice fed ethanol in liquid diet (4%) for four weeks followed by binge ethanol (intragastric administration, 3.5 g/kg body weight, three doses, 12h apart). Chronic followed by binge ethanol exacerbated fat accumulation, necrosis, decrease in hepatic SAM and SAM:SAH ratio, increase in adenosine levels, and elevated CYP2E1 levels. Histone H3 lysine acetylation (H3AcK9), dually modified phosphoacetylated histone H3 (H3AcK9/PS10), and phosphorylated H2AX increased after binge whereas phosphorylation of histone H3 ser 10 (H3S10) and H3 ser 28 (H3S28) increased after chronic ethanol-binge. Histone H3 lysine 4 and 9 dimethylation increased with a marked dimethylation in H3K9 in chronic ethanol binge group. Trimethylated histone H3 levels did not change. Nuclear levels of histone acetyl transferase GCN5 and histone deacetylase HDAC3 were elevated whereas phospho-CREB decreased in a distinctive manner. Taken together, acute on chronic ethanol ingestion caused amplification of liver injury and elicited characteristic profiles of histone modifications, metabolic alterations, and changes in nuclear protein levels. These findings demonstrate that chronic ethanol exposure renders liver more susceptible to repeat acute/binge ethanol induced acceleration of alcoholic liver disease.
Collapse
|
16
|
Carter WG, Vigneswara V, Newlaczyl A, Wayne D, Ahmed B, Saddington S, Brewer C, Raut N, Gerdes HK, Erdozain AM, Tooth D, Bolt EL, Osna NA, Tuma DJ, Kharbanda KK. Isoaspartate, carbamoyl phosphate synthase-1, and carbonic anhydrase-III as biomarkers of liver injury. Biochem Biophys Res Commun 2015; 458:626-631. [PMID: 25684186 PMCID: PMC4355035 DOI: 10.1016/j.bbrc.2015.01.158] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 01/28/2015] [Indexed: 02/08/2023]
Abstract
We had previously shown that alcohol consumption can induce cellular isoaspartate protein damage via an impairment of the activity of protein isoaspartyl methyltransferase (PIMT), an enzyme that triggers repair of isoaspartate protein damage. To further investigate the mechanism of isoaspartate accumulation, hepatocytes cultured from control or 4-week ethanol-fed rats were incubated in vitro with tubercidin or adenosine. Both these agents, known to elevate intracellular S-adenosylhomocysteine levels, increased cellular isoaspartate damage over that recorded following ethanol consumption in vivo. Increased isoaspartate damage was attenuated by treatment with betaine. To characterize isoaspartate-damaged proteins that accumulate after ethanol administration, rat liver cytosolic proteins were methylated using exogenous PIMT and (3)H-S-adenosylmethionine and proteins resolved by gel electrophoresis. Three major protein bands of ∼ 75-80 kDa, ∼ 95-100 kDa, and ∼ 155-160 kDa were identified by autoradiography. Column chromatography used to enrich isoaspartate-damaged proteins indicated that damaged proteins from ethanol-fed rats were similar to those that accrued in the livers of PIMT knockout (KO) mice. Carbamoyl phosphate synthase-1 (CPS-1) was partially purified and identified as the ∼ 160 kDa protein target of PIMT in ethanol-fed rats and in PIMT KO mice. Analysis of the liver proteome of 4-week ethanol-fed rats and PIMT KO mice demonstrated elevated cytosolic CPS-1 and betaine homocysteine S-methyltransferase-1 when compared to their respective controls, and a significant reduction of carbonic anhydrase-III (CA-III) evident only in ethanol-fed rats. Ethanol feeding of rats for 8 weeks resulted in a larger (∼ 2.3-fold) increase in CPS-1 levels compared to 4-week ethanol feeding indicating that CPS-1 accumulation correlated with the duration of ethanol consumption. Collectively, our results suggest that elevated isoaspartate and CPS-1, and reduced CA-III levels could serve as biomarkers of hepatocellular injury.
Collapse
Affiliation(s)
- Wayne G Carter
- School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, DE22 3DT, UK.
| | - Vasanthy Vigneswara
- School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, DE22 3DT, UK
| | - Anna Newlaczyl
- School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, DE22 3DT, UK
| | - Declan Wayne
- School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, DE22 3DT, UK
| | - Bilal Ahmed
- School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, DE22 3DT, UK
| | - Stephen Saddington
- School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, DE22 3DT, UK
| | - Charlotte Brewer
- School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, DE22 3DT, UK
| | - Nikhilesh Raut
- School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, DE22 3DT, UK
| | - Henry K Gerdes
- School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, DE22 3DT, UK
| | - Amaia M Erdozain
- School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, DE22 3DT, UK; Department of Pharmacology, University of the Basque Country, and Centro de Investigación Biomédica en Red de Salud Mental, Spain
| | - David Tooth
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | - Edward L Bolt
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | - Natalie A Osna
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, USA; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA; Department of Biochemistry, University of Nebraska Medical Center, Omaha, NE, USA
| | - Dean J Tuma
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, USA; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA; Department of Biochemistry, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kusum K Kharbanda
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, USA; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA; Department of Biochemistry, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
17
|
Theis WS, Andringa KK, Millender-Swain T, Dickinson DA, Postlethwait EM, Bailey SM. Ozone inhalation modifies the rat liver proteome. Redox Biol 2014; 2:52-60. [PMID: 25544660 PMCID: PMC4297937 DOI: 10.1016/j.redox.2013.11.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 11/18/2013] [Accepted: 11/18/2013] [Indexed: 02/06/2023] Open
Abstract
Ozone (O3) is a serious public health concern. Recent findings indicate that the damaging health effects of O3 extend to multiple systemic organ systems. Herein, we hypothesize that O3 inhalation will cause downstream alterations to the liver. To test this, male Sprague-Dawley rats were exposed to 0.5 ppm O3 for 8 h/day for 5 days. Plasma liver enzyme measurements showed that 5 day O3 exposure did not cause liver cell death. Proteomic and mass spectrometry analysis identified 10 proteins in the liver that were significantly altered in abundance following short-term O3 exposure and these included several stress responsive proteins. Glucose-regulated protein 78 and protein disulfide isomerase increased, whereas glutathione S-transferase M1 was significantly decreased by O3 inhalation. In contrast, no significant changes were detected for the stress response protein heme oxygenase-1 or cytochrome P450 2E1 and 2B in liver of O3 exposed rats compared to controls. In summary, these results show that an environmentally-relevant exposure to inhaled O3 can alter the expression of select proteins in the liver. We propose that O3 inhalation may represent an important unrecognized factor that can modulate hepatic metabolic functions. Rats were exposed to filtered air (FA) or 0.5 ppm ozone (O3) 8 h/day for 5 days. Using this exposure protocol, O3 caused no detectable lung injury or liver cell death. O3 altered the expression of some drug metabolism and stress proteins in liver.
Collapse
Affiliation(s)
- Whitney S Theis
- Department of Environmental Health Sciences, University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, AL 35294, USA.
| | - Kelly K Andringa
- Department of Environmental Health Sciences, University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, AL 35294, USA.
| | - Telisha Millender-Swain
- Department of Environmental Health Sciences, University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, AL 35294, USA; Department of Pathology, University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, AL 35294, USA.
| | - Dale A Dickinson
- Department of Environmental Health Sciences, University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, AL 35294, USA; Center for Free Radical Biology, University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, AL 35294, USA.
| | - Edward M Postlethwait
- Department of Environmental Health Sciences, University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, AL 35294, USA; Center for Free Radical Biology, University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, AL 35294, USA.
| | - Shannon M Bailey
- Department of Environmental Health Sciences, University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, AL 35294, USA; Department of Pathology, University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, AL 35294, USA; Center for Free Radical Biology, University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, AL 35294, USA.
| |
Collapse
|
18
|
Aroor AR, Restrepo RJ, Kharbanda KK, Shukla SD. Epigenetic histone modifications in a clinically relevant rat model of chronic ethanol-binge-mediated liver injury. Hepatol Int 2014. [PMID: 26201320 DOI: 10.1007/s12072-014-9546-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
PURPOSE Ethanol binge augments liver injury after chronic ethanol consumption in humans, but the mechanism behind the enhanced liver injury by ethanol binge is not known. In this study we used a clinically relevant rat model in which liver injury is amplified by binge after chronic ethanol treatment and investigated the importance of histone modifications. METHODS Eight-week-old Sprague-Dawley rats were fed ethanol in a liquid diet for 4 weeks. Control rats were fed an isocaloric liquid diet. This was followed by three binge administrations of ethanol (intragastric 5 g/kg body weight, 12 h apart). In the control, ethanol was replaced by water. Four hours after the last binge administration, liver samples were analyzed for histone modifications and parameters of liver injury. RESULTS Chronic ethanol administration alone caused an increase in histone H3 ser10 and ser28 (H3S10 or S28) phosphorylation, and binge ethanol reduced their levels. Levels of dually modified phosphoacetylated histone H3 (H3AcK9/PS10) increased after acute binge ethanol and remained same after chronic ethanol binge. In contrast, histone H3 lysine-9 acetylation (H3AcK9) was not increased after chronic ethanol but increased significantly after acute binge and chronic ethanol binge. Increase in histone acetylation was accompanied by increased phospho-ERK1/2 in the nuclear extracts. Increased acetylation after chronic ethanol binge was also accompanied by increased protein levels of GCN5 histone acetyl transferase and a modest increase in HDAC3 in the nucleus. Histone lysine-9 dimethylation was significantly increased after chronic ethanol binge. Chronic ethanol binge also resulted in a decrease in the SAM:SAH ratio with a relative decrease of SAM levels and a corresponding increase in SAH levels. CONCLUSIONS Ethanol binge after chronic ethanol altered the profile of site-specific histone modifications and may underlie the mechanism of augmented liver injury by chronic-ethanol-binge-treated rats.
Collapse
Affiliation(s)
- Annayya R Aroor
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Ricardo J Restrepo
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Kusum K Kharbanda
- Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, 68105, USA
| | - Shivendra D Shukla
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO, 65212, USA.
| |
Collapse
|
19
|
Wang XY, Luo JP, Chen R, Zha XQ, Wang H. The effects of daily supplementation of Dendrobium huoshanense polysaccharide on ethanol-induced subacute liver injury in mice by proteomic analysis. Food Funct 2014; 5:2020-35. [DOI: 10.1039/c3fo60629e] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
20
|
Wang Y, Kou Y, Wang X, Cederbaum A, Wang R. Multifactorial comparative proteomic study of cytochrome P450 2E1 function in chronic alcohol administration. PLoS One 2014; 9:e92504. [PMID: 24658151 PMCID: PMC3962406 DOI: 10.1371/journal.pone.0092504] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Accepted: 02/17/2014] [Indexed: 12/16/2022] Open
Abstract
With the use of iTRAQ technique, a multifactorial comparative proteomic study can be performed. In this study, to obtain an overview of ethanol, CYP2E1 and gender effects on liver injury and gain more insight into the underlying molecular mechanism, mouse liver proteomes were quantitatively analyzed using iTRAQ under eight conditions including mice of different genders, wild type versus CYP2E1 knockout, and normal versus alcohol diet. A series of statistical and bioinformatic analyses were explored to simplify and clarify multifactorial comparative proteomic data. First, with the Principle Component analysis, six proteins, CYP2E1, FAM25, CA3, BHMT, HIBADH and ECHS1, involved in oxidation reduction, energy and lipid metabolism and amino acid metabolism, were identified as the most differentially expressed gene products across all of the experimental conditions of our chronic alcoholism model. Second, hierarchical clustering analysis showed CYP2E1 knockout played a primary role in the overall differential protein expression compared with ethanol and gender factors. Furthermore, pair-wise multiple comparisons have revealed that the only significant expression difference lied in wild-type and CYP2E1 knockout mice both treated with ethanol. Third, K-mean clustering analysis indicated that the CYP2E1 knockout had the reverse effect on ethanol induced oxidative stress and lipid oxidation. More importantly, IPA analysis of proteomic data inferred that the gene expressions of two upstream regulators, NRF2 and PPARα, regulated by chronic alcohol feeding and CYP2E1 knockout, are involved in ethanol induced oxidative stress and lipid oxidation. The present study provides an effectively comprehensive data analysis strategy to compare multiple biological factors, contributing to biochemical effects of alcohol on the liver. The mass spectrometry proteomics data have been deposited to the ProteomeXchange with data set identifier of PXD000635.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Yan Kou
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Xiaodong Wang
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Arthur Cederbaum
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Rong Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
21
|
Proteome analysis of hepatic non-parenchymal cells of immune liver fibrosis rats. SCIENCE CHINA-LIFE SCIENCES 2014; 57:303-314. [PMID: 24562544 DOI: 10.1007/s11427-014-4619-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 11/20/2013] [Indexed: 12/31/2022]
Abstract
Elucidation of the mechanisms of liver fibrogenesis is important to treat liver fibrosis. In this study, we established rat models of liver fibrosis with stages from 0-1, 2, and 3-4 to 4 at 2, 4, 6, and 8 weeks, respectively, by injection of pig serum. Liver fibrogenesis was detected by Masson's trichrome staining. Rat non-parenchymal cells (NPCs) were enriched 4-fold by Percoll density gradient centrifugation. Protein extracts from NPCs were prepared at 4 and 8 weeks, separated by two-dimensional electrophoresis, and then stained with Coomassie Blue G-250. At 4 weeks, we identified 18 non-redundant differentially expressed proteins of which protein disulfide-isomerase associated protein 3 (PDIA3) and NDUV showed consistent expression at protein and mRNA levels from 4 to 8 weeks. PDIA3 was found to be down-regulated by Western blotting in the rat model and immunohistochemically in human liver. Our results revealed important aspects of the pathogenesis/progression of liver fibrosis and demonstrated important changes in protein expression levels of NPCs at various stages of liver fibrosis.
Collapse
|
22
|
Sid B, Verrax J, Calderon PB. Role of oxidative stress in the pathogenesis of alcohol-induced liver disease. Free Radic Res 2013; 47:894-904. [PMID: 23800214 DOI: 10.3109/10715762.2013.819428] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Chronic alcohol consumption is a well-known risk factor for liver disease, which represents a major cause of morbidity and mortality worldwide. The pathological process of alcohol-induced liver disease is characterized by a broad spectrum of morphological changes ranging from steatosis with minimal injury to more advanced liver damage, including steato-hepatitis and fibrosis/cirrhosis. Experimental and clinical studies increasingly show that the oxidative damage induced by ethanol contribute in many ways to the pathogenesis of alcohol hepatotoxicity. This article describes the contribution of oxidative mechanisms to liver damage by alcohol.
Collapse
Affiliation(s)
- B Sid
- Université Catholique de Louvain, Louvain Drug Research Institute, Toxicology and Cancer Biology Research Group (GTOX) , Brussels , Belgium
| | | | | |
Collapse
|
23
|
Mikkat S, Kischstein T, Kreutzer M, Glocker MO. Mass spectrometric peptide analysis of 2DE-separated mouse spinal cord and rat hippocampus proteins suggests an NGxG motif of importance for in vivo deamidation. Electrophoresis 2013; 34:1610-8. [DOI: 10.1002/elps.201200682] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Revised: 02/11/2013] [Accepted: 02/20/2013] [Indexed: 12/16/2022]
Affiliation(s)
| | - Timo Kischstein
- Oscar Langendorff Institute of Physiology; University Medicine Rostock; Rostock; Germany
| | - Michael Kreutzer
- Proteome Center Rostock; University Medicine Rostock; Rostock; Germany
| | | |
Collapse
|
24
|
Zhao DQ, Zhang SY, Yu HY, Ma JJ, Wei H, Liu H, Wei DM, Kang YX, Zhou XY. Metformin and pioglitazone reduce CYP2E1 expression in the liver of rats with nonalcoholic fatty liver disease. Shijie Huaren Xiaohua Zazhi 2013; 21:1102-1108. [DOI: 10.11569/wcjd.v21.i12.1102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To observe the preventive effects of metformin and pioglitazone on nonalcoholic fatty liver disease (NAFLD) and their influence on CYP2E1 expression in the liver.
METHODS: SD rats were randomly divided into four groups: normal control group (fed a normal diet), NAFLD group (fed a fat-rich diet), metformin group [fed a fat-rich diet and intragastrically given metformin 500 mg/(kg•d)], pioglitazone group [fed a fat-rich diet and intragastrically given pioglitazone 15 mg/(kg•d)]. The rats were killed at the end of 12 wk. The contents of alanine transferase (ALT), aspartate aminotransferase (AST), bioactive alkaline phosphatase (ALP), total cholesterol (TC), total glyceride (TG), and floating free acid (FFA) were determined. Fasting blood sugar (FBG) level and insulin (FINS) level were measured to calculate the insulin resistance index (HOMA-IR). HE staining and Masson staining were carried out to observe the pathological changes in the liver. The expression levels of CYP2E1 mRNA and protein in the liver were determined by RT-PCR and immunohistochemistry, respectively.
RESULTS: Compared to the NAFLD group, treatment with metformin significantly reduced the bioactivity of ALT (79.86 U/L ± 10.40 U/L vs 143.80 U/L ± 26.34 U/L), AST (221.30 U/L ± 34.21 U/L vs 358.76 U/L ± 97.20 U/L), and ALP (153.32 U/L ± 24.20 U/L vs 207.47 U/L ± 35.39 U/L), the contents of TC (1.70 mmol/L ± 0.34 mmol/L vs 2.76 mmol/L ± 0.28 mmol/L), TG (3.96 mmol/L ± 0.23 mmol/L vs 5.67 mmol/L ± 0.54 mmol/L), and FFA (493.19 μmol/L ± 38.89 μmol/L vs 654.40 μmol/L ± 71.74 μmol/L), FBG (5.47 mmol/L ± 0.42 mmol/L vs 8.05 mmol/L ± 0.48 mmol/L), FINS (20.89 mU/L ± 3.12 mU/L vs 27.51 mU/L ± 4.02 mU/L), and HOMA-IR (5.08 ± 1.20 vs 9.84 ± 2.11) (all P < 0.05); treatment with pioglitazone significantly reduced the bioactivity of ALT (84.73 U/L ± 9.18 U/L vs 143.80 U/L ± 26.34 U/L), AST (235.23 U/L ± 33.62 U/L vs 358.76 U/L ± 97.20 U/L), and ALP (160.02 U/L ± 25.32 U/L vs 207.47 U/L ± 35.39 U/L), the contents of TC (1.68 mmol/L ± 0.26 mmol/L vs 2.76 mmol/L ± 0.28 mmol/L), TG (3.60 mmol/L ± 0.30 mmol/L vs 5.67 mmol/L ± 0.54 mmol/L), and FFA (495.21 μmol/L ± 43.67 μmol/L vs 654.40 μmol/L ± 71.74 μmol/L), FBG (5.32 mmol/L ± 0.37 mmol/L vs 8.05 mmol/L ± 0.48 mmol/L), FINS (21.01 mU/L ± 2.86 mU/L vs 27.51 mU/L ± 4.02 mU/L), and HOMA-IR (4.97 ± 0.97 vs 9.84 ± 2.11) (all P < 0.05). Treatment with both metformin and pioglitazone ameliorated pathological changes in the liver and reduced the expression levels of CYP2E1 mRNA and protein in the liver (both P < 0.05). However, there were no significant differences in the above parameters between the two treatment groups (all P > 0.05).
CONCLUSION: Both metformin and pioglitazone can prevent the occurrence of NAFLD by reducing the expression of CYP2E1.
Collapse
|
25
|
Shukla SD, Pruett SB, Szabo G, Arteel GE. Binge ethanol and liver: new molecular developments. Alcohol Clin Exp Res 2013; 37:550-7. [PMID: 23347137 DOI: 10.1111/acer.12011] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 08/10/2012] [Indexed: 02/06/2023]
Abstract
Binge consumption of alcohol is an alarming global health problem. Binge (acute) ethanol (EtOH) is implicated in the pathophysiology of alcoholic liver disease (ALD). New studies from experimental animals and from humans indicate that binge EtOH has profound effects on immunological, signaling, and epigenetic parameters of the liver. This is in addition to the known metabolic effects of acute EtOH. Binge EtOH alters the levels of several cellular components and dramatically amplifies liver injury in chronically EtOH exposed liver. These studies highlight the importance of molecular investigations into binge effects of EtOH for a better understanding of ALD and also to develop therapeutic strategies to control it. This review summarizes these recent developments.
Collapse
Affiliation(s)
- Shivendra D Shukla
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO 65202, USA.
| | | | | | | |
Collapse
|