1
|
Dias Da Silva I, Wuidar V, Zielonka M, Pequeux C. Unraveling the Dynamics of Estrogen and Progesterone Signaling in the Endometrium: An Overview. Cells 2024; 13:1236. [PMID: 39120268 PMCID: PMC11312103 DOI: 10.3390/cells13151236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/25/2024] [Accepted: 07/19/2024] [Indexed: 08/10/2024] Open
Abstract
The endometrium is crucial for the perpetuation of human species. It is a complex and dynamic tissue lining the inner wall of the uterus, regulated throughout a woman's life based on estrogen and progesterone fluctuations. During each menstrual cycle, this multicellular tissue undergoes cyclical changes, including regeneration, differentiation in order to allow egg implantation and embryo development, or shedding of the functional layer in the absence of pregnancy. The biology of the endometrium relies on paracrine interactions between epithelial and stromal cells involving complex signaling pathways that are modulated by the variations of estrogen and progesterone levels across the menstrual cycle. Understanding the complexity of estrogen and progesterone receptor signaling will help elucidate the mechanisms underlying normal reproductive physiology and provide fundamental knowledge contributing to a better understanding of the consequences of hormonal imbalances on gynecological conditions and tumorigenesis. In this narrative review, we delve into the physiology of the endometrium, encompassing the complex signaling pathways of estrogen and progesterone.
Collapse
Grants
- J.0165.24, 7.6529.23, J.0153.22, 7.4580.21F, 7.6518.21, J.0131.19 Fund for Scientific Research
- FSR-F-2023-FM, FSR-F-2022-FM, FSR-F-2021-FM, FSR-F-M-19/6761 University of Liège
- 2020, 2021, 2022 Fondation Léon Fredericq
Collapse
Affiliation(s)
| | | | | | - Christel Pequeux
- Tumors and Development, Estrogen-Sensitive Tissues and Cancer Team, GIGA-Cancer, Laboratory of Biology, University of Liège, 4000 Liège, Belgium; (I.D.D.S.); (V.W.); (M.Z.)
| |
Collapse
|
2
|
Begum MIA, Chuan L, Hong ST, Chae HS. The Pathological Role of miRNAs in Endometriosis. Biomedicines 2023; 11:3087. [PMID: 38002087 PMCID: PMC10669455 DOI: 10.3390/biomedicines11113087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/13/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Association studies investigating miRNA in relation to diseases have consistently shown significant alterations in miRNA expression, particularly within inflammatory pathways, where they regulate inflammatory cytokines, transcription factors (such as NF-κB, STAT3, HIF1α), and inflammatory proteins (including COX-2 and iNOS). Given that endometriosis (EMS) is characterized as an inflammatory disease, albeit one influenced by estrogen levels, it is natural to speculate about the connection between EMS and miRNA. Recent research has indeed confirmed alterations in the expression levels of numerous microRNAs (miRNAs) in both endometriotic lesions and the eutopic endometrium of women with EMS, when compared to healthy controls. The undeniable association of miRNAs with EMS hints at the emergence of a new era in the study of miRNA in the context of EMS. This article reviews the advancements made in understanding the pathological role of miRNA in EMS and its association with EMS-associated infertility. These findings contribute to the ongoing pursuit of developing miRNA-based therapeutics and diagnostic markers for EMS.
Collapse
Affiliation(s)
- Mst Ismat Ara Begum
- Department of Biomedical Sciences, Institute for Medical Science, Jeonbuk National University Medical School, Jeonju 54907, Republic of Korea; (M.I.A.B.); (L.C.)
| | - Lin Chuan
- Department of Biomedical Sciences, Institute for Medical Science, Jeonbuk National University Medical School, Jeonju 54907, Republic of Korea; (M.I.A.B.); (L.C.)
| | - Seong-Tshool Hong
- Department of Biomedical Sciences, Institute for Medical Science, Jeonbuk National University Medical School, Jeonju 54907, Republic of Korea; (M.I.A.B.); (L.C.)
| | - Hee-Suk Chae
- Department of Obstetrics and Gynecology, Research Institute of Clinical Medicine, Jeonbuk National University, Jeonju 54907, Republic of Korea
- Biomedical Research Institute, Jeonbuk National University Hospital, Jeonbuk National University Medical School, Jeonju 54907, Republic of Korea
| |
Collapse
|
3
|
Shan J, Li DJ, Wang XQ. Towards a Better Understanding of Endometriosis-Related Infertility: A Review on How Endometriosis Affects Endometrial Receptivity. Biomolecules 2023; 13:biom13030430. [PMID: 36979365 PMCID: PMC10046640 DOI: 10.3390/biom13030430] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/16/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Endometriosis is the most common cause of infertility. Endometrial receptivity has been suggested to contribute to infertility and poor reproductive outcomes in affected women. Even though experimental and clinical data suggest that the endometrium differs in women with endometriosis, the pathogenesis of impaired endometrial receptivity remains incomplete. Therefore, this review summarizes the potential mechanisms that affect endometrial function and contribute to implantation failure. Contemporary data regarding hormone imbalance, inflammation, and immunoregulatory dysfunction will be reviewed here. In addition, genetic, epigenetic, glycosylation, metabolism and microRNA in endometriosis-related infertility/subfertility will be summarized. We provide a brief discussion and perspectives on their future clinical implications in the diagnosis and therapy to improve endometrial function in affected women.
Collapse
Affiliation(s)
- Jing Shan
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
| | - Da-Jin Li
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
- Department of Obstetrics and Gynecology, Hainan Medical College Affiliated Hospital, Haikou 571100, China
- Correspondence: (D.-J.L.); (X.-Q.W.)
| | - Xiao-Qiu Wang
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
- Correspondence: (D.-J.L.); (X.-Q.W.)
| |
Collapse
|
4
|
The Mechanism of Wnt Pathway Regulated by Telocytes to Promote the Regeneration and Repair of Intrauterine Adhesions. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:3809792. [PMID: 35844454 PMCID: PMC9279088 DOI: 10.1155/2022/3809792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/31/2022] [Accepted: 06/17/2022] [Indexed: 12/05/2022]
Abstract
Background Telocytes (TCs), a novel interstitial cell type in the reproductive tract, participating in pathophysiology of intrauterine adhesions (IUA). This study further investigates the hypothesis that TCs, a source of Wnt, promote the regeneration and repair of IUA. Methods RNA sequencing datasets of IUA patient (GSE160633) and mouse intestine mesenchymal cells (GSE94072) in GEO database were analyzed for differentially expressed genes (DEGs), and quantitative real-time PCR (qRT-PCR) measured indicated gene expression in TC-educated endometrial stromal cells (ESCs) and noneducated ESCs and verified the results of data mining from GEO database. Results The expression levels of Wnt genes were downregulated in IUA compared to the control and were upregulated in TCs. In particular, the changes of Wnt5a expression level were the most significant (logFC = 4.0314 and adjusted P value = 0.0023), and the relative Wnt5a expression level was remarkably higher in TC-educated ESCs than noneducated ESCs verified by qRT-PCR (P = 0.0027). Conclusions TCs may enhance the regeneration and repair of IUA through the Wnt signaling pathway.
Collapse
|
5
|
Heidari-Khoei H, Esfandiari F, Moini A, Yari S, Saber M, Novin MG, Piryaei A, Baharvand H. Derivation of hormone-responsive human endometrial organoids and stromal cells from cryopreserved biopsies. Exp Cell Res 2022; 417:113205. [PMID: 35568073 DOI: 10.1016/j.yexcr.2022.113205] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/28/2022] [Accepted: 05/08/2022] [Indexed: 11/04/2022]
Abstract
The human endometrium is a dynamic tissue that undergoes cyclic changes in response to sex steroid hormones to provide a receptive status for embryo implantation. Disruptions in this behavior may lead to implantation failure and infertility; therefore, it is essential to develop an appropriate in vitro model to study endometrial changes in response to sex hormones. In this regard, the first choice would be human endometrial cells isolated from biopsies that could be used as monolayer cell sheets or to generate endometrial organoids. However, the need for fresh samples and short-time viability of harvested endometrial biopsy limits these approaches. In order to overcome these limitations, we sought to develop an efficient, simple, robust and reproducible method to cryopreserve human endometrial biopsies that could be stored and/or shipped frozen and later thawed to generate endometrial organoids and endometrial stromal cells (EnSCs). These cryopreserved biopsies could be thawed and used to generate simple endometrial organoids or organoids for co-culture with matched stromal cells that are functionally responsive to sex hormones as similar as the organoids generated from fresh biopsy. An optimal endometrial tissue cryopreservation method would allow the possibility for endometrial tissue biobanking to enable future organoid generation from both healthy tissues and pathological conditions, and open new venues for generate endometrial assembloids, consisting of epithelial organoids and primary stromal cells.
Collapse
Affiliation(s)
- Heidar Heidari-Khoei
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Fereshteh Esfandiari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Ashraf Moini
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran; Department of Obstetrics and Gynecology, Arash Women's Hospital, Tehran University of Medical Sciences, Tehran, Iran; Breast Disease Research Center (BDRS), Tehran University of Medical Sciences, Tehran, Iran
| | - Simin Yari
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Maryam Saber
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Marefat Ghaffari Novin
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Piryaei
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Developmental Biology, School of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran.
| |
Collapse
|
6
|
Griffiths RM, Pru CA, Behura SK, Cronrath AR, McCallum ML, Kelp NC, Winuthayanon W, Spencer TE, Pru JK. AMPK is required for uterine receptivity and normal responses to steroid hormones. Reproduction 2021; 159:707-717. [PMID: 32191914 DOI: 10.1530/rep-19-0402] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 03/19/2020] [Indexed: 12/11/2022]
Abstract
We previously demonstrated that 5'-AMP-activated protein kinase (AMPK) is essential for normal reproductive functions in female mice. Conditional ablation of Prkaa1 and Prkaa2, genes that encode the α1 and α2 catalytic domains of AMPK, resulted in early reproductive senescence, faulty artificial decidualization, uterine inflammation and fibrotic postparturient endometrial regeneration. We also noted a delay in the timing of embryo implantation in Prkaa1/2d/d female mice, suggesting a role for AMPK in establishing uterine receptivity. As outlined in new studies here, conditional uterine ablation of Prkaa1/2 led to an increase in ESR1 in the uteri of Prkaa1/2d/d mice, resulting in prolonged epithelial cell proliferation and retention of E2-induced gene expression (e.g. Msx1, Muc1, Ltf) through the implantation window. Within the stromal compartment, stromal cell proliferation was reduced by five-fold in Prkaa1/2d/d mice, and this was accompanied by a significant decrease in cell cycle regulatory genes and aberrant expression of decidualization marker genes such as Hand2, Bmp2, Fst and Inhbb. This phenotype is consistent with our prior study, demonstrating a failure of the Prkaa1/2d/d uterus to undergo decidualization. Despite these uterine defects, ovarian function seemed to be normal following ablation of Prkaa1/2 from peri-ovulatory follicles in which ovulation, luteinization and serum progesterone levels were not different on day 5 of pregnancy or pseudopregnancy between Prkaa1/2fl/fl and Prkaa1/2d/d mice. These cumulative findings demonstrate that AMPK activity plays a prominent role in mediating several steroid hormone-dependent events such as epithelial cell proliferation, uterine receptivity and decidualization as pregnancy is established.
Collapse
Affiliation(s)
- Richard M Griffiths
- Department of Animal Sciences, School of Molecular Biosciences, and Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - Cindy A Pru
- Department of Animal Sciences, School of Molecular Biosciences, and Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - Susanta K Behura
- Division of Animal Sciences and Department of Obstetrics, Gynecology, and Women's Health, University of Missouri, Columbia, Missouri, USA
| | - Andrea R Cronrath
- Department of Animal Sciences, School of Molecular Biosciences, and Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - Melissa L McCallum
- Department of Animal Sciences, School of Molecular Biosciences, and Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - Nicole C Kelp
- Department of Animal Sciences, School of Molecular Biosciences, and Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - Wipawee Winuthayanon
- Department of Animal Sciences, School of Molecular Biosciences, and Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - Thomas E Spencer
- Division of Animal Sciences and Department of Obstetrics, Gynecology, and Women's Health, University of Missouri, Columbia, Missouri, USA
| | - James K Pru
- Department of Animal Sciences, School of Molecular Biosciences, and Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| |
Collapse
|
7
|
Chi RPA, Wang T, Huang CL, Wu SP, Young SL, Lydon JP, DeMayo FJ. WNK1 regulates uterine homeostasis and its ability to support pregnancy. JCI Insight 2020; 5:141832. [PMID: 33048843 PMCID: PMC7710275 DOI: 10.1172/jci.insight.141832] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/08/2020] [Indexed: 12/11/2022] Open
Abstract
WNK1 (with no lysine [K] kinase 1) is an atypical kinase protein ubiquitously expressed in humans and mice. A mutation in its encoding gene causes hypertension in humans, which is associated with abnormal ion homeostasis. WNK1 is critical for in vitro decidualization in human endometrial stromal cells, thereby demonstrating its importance in female reproduction. Using a mouse model, WNK1 was ablated in the female reproductive tract to define its in vivo role in uterine biology. Loss of WNK1 altered uterine morphology, causing endometrial epithelial hyperplasia, adenomyotic features, and a delay in embryo implantation, ultimately resulting in compromised fertility. Combining transcriptomic, proteomic, and interactomic analyses revealed a potentially novel regulatory pathway whereby WNK1 represses AKT phosphorylation through protein phosphatase 2A (PP2A) in endometrial cells from both humans and mice. We show that WNK1 interacted with PPP2R1A, the alpha isoform of the PP2A scaffold subunit. This maintained the levels of PP2A subunits and stabilized its activity, which then dephosphorylated AKT. Therefore, loss of WNK1 reduced PP2A activity, causing AKT hypersignaling. Using FOXO1 as a readout of AKT activity, we demonstrate that there was escalated FOXO1 phosphorylation and nuclear exclusion, leading to a disruption in the expression of genes that are crucial for embryo implantation.
Collapse
Affiliation(s)
| | - Tianyuan Wang
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, NIH, Durham, North Carolina, USA
| | - Chou-Long Huang
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa, Iowa, USA
| | - San-pin Wu
- Reproductive and Developmental Biology Laboratory and
| | - Steven L. Young
- Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - John P. Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | | |
Collapse
|
8
|
Role of Slit2 upregulation in recurrent miscarriage through regulation of stromal decidualization. Placenta 2020; 103:1-9. [PMID: 33068960 DOI: 10.1016/j.placenta.2020.10.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/15/2020] [Accepted: 10/09/2020] [Indexed: 11/23/2022]
Abstract
INTRODUCTION Knockout mouse model has shown a relationship between Slit2/Robo1 signalling and altered fertility. Altered expression by endometrial epithelium and trophoblast and is associated with the pathogenesis of pregnancy complications but few studies have investigated the expression of decidual Slit2 in miscarriage. METHODS Expression profiles of Slit2 and Robo1 were measured in human endometrial tissues during the menstrual cycle phases (n = 30), in decidua tissues from recurrent miscarriage (n = 20) and healthy control (n = 20) at 6-8 weeks of gestation. The hormonal regulation of Slit2/Robo1 expression and the role of Slit2/Robo1 signalling in decidualization was investigated in vitro, along with its effects on β-catenin and MET expression. RESULTS In human endometrium, Slit2 and Robo1 protein expression in stromal cells were decreased between the late-proliferative and early-secretory phase. In recurrent miscarriage patients, decidual expression Slit2 was increased and associated with lower expression of E-cadherin and higher level vimentin compared to controls. In vitro, the expression of Slit2 was downregulated by cAMP and progesterone in hESCs. Upregulation of Slit2 resulted in inhibition of cell decidualization and β-catenin translocation to nucleus. DISCUSSION This study indicates a functional role for Slit2 in endometrial stromal cell decidualization and the pathogenesis of recurrent miscarriage. Aberrant Increase in Slit2 expression may impairs decidualization of endometrial stromal cells leading to recurrent in recurrent miscarriage.
Collapse
|
9
|
Kaloğlu C, Bulut HE, Hamutoğlu R, Korkmaz EM, Önder O, Dağdeviren T, Aydemir MN. Wingless ligands and beta-catenin expression in the rat endometrium: The role of Wnt3 and Wnt7a/beta-catenin pathway at the embryo-uterine interface. Mol Reprod Dev 2020; 87:1159-1172. [PMID: 32949181 DOI: 10.1002/mrd.23423] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/26/2020] [Accepted: 08/31/2020] [Indexed: 11/05/2022]
Abstract
Wnt/beta-catenin signaling may play an essential role in endometrial decidualization, placentation, and the establishment of pregnancy. We investigate here the possible roles, immunolocalizations, and synthesis of the Wnt3, Wnt7a, and beta-catenin proteins in the rat endometrium during the estrous cycle and early postimplantation period. Wnt3 and Wnt7a had a similar localization and dynamic expression relative to the endometrial stages. Wnt7a immunostaining was not limited only to the luminal epithelial cells, but also to strong stainings in the stromal and endothelial cells. Wnt3, Wnt7a, and beta-catenin were highly synthesized and colocalized at the trophoblast-decidual interface; and were more obvious in the primary decidual zone, the GTCs, and the ectoplacental cone. Beta-catenin was strongly localized at the borders of the mature decidual cells; however, Wnt3 and Wnt7a immunolocalizations were decreased in those cells. As such, the immunolocalization of Wnt3, Wnt7a, and beta-catenin shifted with decidualization and placentation. The expression level of Wnt3, Wnt7a, and beta-catenin messenger RNAs increased in early pregnancy, and especially between Days 8.5 and 9.5. The dramatic changes in the expression of Wnt3, Wnt7a, and beta-catenin observed during the early days of pregnancy and the estrous cycle may indicate their roles in decidualization, stromal cell proliferation, and trophoblast invasion.
Collapse
Affiliation(s)
- Celal Kaloğlu
- Assisted Reproduction Technology (ART) Center, Faculty of Medicine, Sivas-Cumhuriyet University, Sivas, Turkey.,Department of Histology and Embryology, Faculty of Medicine, Sivas-Cumhuriyet University, Sivas, Turkey
| | - Hüseyin E Bulut
- Department of Histology and Embryology, Faculty of Medicine, Sivas-Cumhuriyet University, Sivas, Turkey
| | - Rasim Hamutoğlu
- Department of Histology and Embryology, Faculty of Medicine, Sivas-Cumhuriyet University, Sivas, Turkey
| | - Ertan M Korkmaz
- Department of Molecular Biology and Genetics, Faculty of Science, Sivas-Cumhuriyet University, Sivas, Turkey
| | - Ozan Önder
- Department of Histology and Embryology, Faculty of Medicine, Sivas-Cumhuriyet University, Sivas, Turkey
| | - Tuğba Dağdeviren
- Department of Histology and Embryology, Faculty of Medicine, Sivas-Cumhuriyet University, Sivas, Turkey
| | - Merve N Aydemir
- Department of Molecular Biology and Genetics, Faculty of Science, Sivas-Cumhuriyet University, Sivas, Turkey
| |
Collapse
|
10
|
Zhang FL, Huang YL, Zhou XY, Tang XL, Yang XJ. Telocytes enhanced in vitro decidualization and mesenchymal-epithelial transition in endometrial stromal cells via Wnt/β-catenin signaling pathway. Am J Transl Res 2020; 12:4384-4396. [PMID: 32913513 PMCID: PMC7476159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 07/04/2020] [Indexed: 06/11/2023]
Abstract
Decidualization of endometrial stromal cells (ESCs) is essential for preparing endometrium for embryo implantation. Telocytes (TCs), a novel type of interstitial cell, exist in the female reproductive tract and participate in the pathophysiology of diseases. This study further investigates the hypothesis that TCs, a source of Wnt, modulates decidualization and MET in ESCs. We had observed differential expression of Wnt ligands in primary mice ESCs and TCs by qPCR. TCM-induced decidualization and MET was assessed in ESCs. Changes in markers for decidualization (cyclin-D3, desmin, d/tPRP), stromal cells (N-cadherin), epithelial cells (E-cadherin), and the Wnt/β-catenin pathway (β-catenin, FOXO1) were quantified by western blot and RT-PCR. β-catenin knockdown in ESCs decreased the degree of TCM-induced decidualization and MET, with significantly reversed expression profiles (P < 0.05). This is the first study to show that TCs can enhance decidualization and MET in ESCs through the Wnt/β-catenin signaling-pathway. Therefore, we describe a promising cell therapy for gynecological conditions and related reproductive problems associated with defective decidualization.
Collapse
Affiliation(s)
- Fei-Lei Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University Suzhou 215006, Jiangsu Province, PR China
| | - Yue-Lin Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University Suzhou 215006, Jiangsu Province, PR China
| | - Xiao-Ye Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University Suzhou 215006, Jiangsu Province, PR China
| | - Xue-Ling Tang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University Suzhou 215006, Jiangsu Province, PR China
| | - Xiao-Jun Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University Suzhou 215006, Jiangsu Province, PR China
| |
Collapse
|
11
|
Owusu-Akyaw A, Krishnamoorthy K, Goldsmith LT, Morelli SS. The role of mesenchymal-epithelial transition in endometrial function. Hum Reprod Update 2020; 25:114-133. [PMID: 30407544 DOI: 10.1093/humupd/dmy035] [Citation(s) in RCA: 172] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 10/13/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The human uterine endometrium undergoes significant remodeling and regeneration on a rapid and repeated basis, after parturition, menstruation, and in some cases, injury. The ability of the adult endometrium to undergo cyclic regeneration and differentiation/decidualization is essential for successful human reproduction. Multiple key physiologic functions of the endometrium require the cells of this tissue to transition between mesenchymal and epithelial phenotypes, processes known as mesenchymal-epithelial transition (MET) and epithelial-mesenchymal transition (EMT). Although MET/EMT processes have been widely characterized in embryonic development and in the context of malignancy, mounting evidence demonstrates the importance of MET/EMT in allowing the endometrium the phenotypic and functional flexibility necessary for successful decidualization, regeneration/re-epithelialization and embryo implantation. OBJECTIVE AND RATIONALE The objective of this review is to provide a comprehensive summary of the observations concerning MET and EMT and their regulation in physiologic uterine functions, specifically in the context of endometrial regeneration, decidualization and embryo implantation. SEARCH METHODS Using variations of the search terms 'mesenchymal-epithelial transition', 'mesenchymal-epithelial transformation', 'epithelial-mesenchymal transition', 'epithelial-mesenchymal transformation', 'uterus', 'endometrial regeneration', 'endometrial decidualization', 'embryo implantation', a search of the published literature between 1970 and 2018 was conducted using the PubMed database. In addition, we searched the reference lists of all publications included in this review for additional relevant original studies. OUTCOMES Multiple studies demonstrate that endometrial stromal cells contribute to the regeneration of both the stromal and epithelial cell compartments of the uterus, implicating a role for MET in mechanisms responsible for endometrial regeneration and re-epithelialization. During decidualization, endometrial stromal cells undergo morphologic and functional changes consistent with MET in order to accommodate embryo implantation. Under the influence of estradiol, progesterone and multiple other factors, endometrial stromal fibroblasts acquire epithelioid characteristics, such as expanded cytoplasm and rough endoplasmic reticulum required for greater secretory capacity, rounded nuclei, increased expression of junctional proteins which allow for increased cell-cell communication, and a reorganized actin cytoskeleton. During embryo implantation, in response to both maternal and embryonic-derived signals, the maternal luminal epithelium as well as the decidualized stromal cells acquire the mesenchymal characteristics of increased migration/motility, thus undergoing EMT in order to accommodate the invading trophoblast. WIDER IMPLICATIONS Overall, the findings support important roles for MET/EMT in multiple endometrial functions required for successful reproduction. The endometrium may be considered a unique wound healing model, given its ability to repeatedly undergo repair without scarring or loss of function. Future studies to elucidate how MET/EMT mechanisms may contribute to scar-free endometrial repair will have considerable potential to advance studies of wound healing mechanisms in other tissues.
Collapse
Affiliation(s)
- Amma Owusu-Akyaw
- Department of Obstetrics, Gynecology, and Women's Health, Rutgers-New Jersey Medical School, Newark, NJ, USA
| | - Kavitha Krishnamoorthy
- Department of Obstetrics, Gynecology, and Women's Health, Rutgers-New Jersey Medical School, Newark, NJ, USA
| | - Laura T Goldsmith
- Department of Obstetrics, Gynecology, and Women's Health, Rutgers-New Jersey Medical School, Newark, NJ, USA
| | - Sara S Morelli
- Department of Obstetrics, Gynecology, and Women's Health, Rutgers-New Jersey Medical School, Newark, NJ, USA
| |
Collapse
|
12
|
Zhou X, Xu B, Zhang D, Jiang X, Chang HM, Leung PCK, Xia X, Zhang A. Loss of CDYL Results in Suppression of CTNNB1 and Decreased Endometrial Receptivity. Front Cell Dev Biol 2020; 8:105. [PMID: 32158757 PMCID: PMC7051920 DOI: 10.3389/fcell.2020.00105] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/10/2020] [Indexed: 11/16/2022] Open
Abstract
Impaired endometrial receptivity is one of the major causes of recurrent implantation failure (RIF), although the underlying molecular mechanism has not been fully elucidated. In the present study, we demonstrated that chromodomain Y like (CDYL) was highly expressed in the endometrium at mid-secretory phase during the normal menstrual cycles. However, the expression of CDYL was downregulated in the endometrial tissues obtained from women with RIF, consistently with the protein level of LIF, which is a marker of endometrial receptivity. In CDYL-knockdown human endometrial Ishikawa cells, we identified 1738 differentially expressed genes (DEGs). Importantly, the catenin beta 1 (CTNNB1) expression was dramatically reduced responding to the CDYL inhibition, both in Ishikawa cells as well as the primary endometrial epithelial and stromal cells. In addition, the expression of CTNNB1was decreased in the endometrium from RIF patients as well. These results suggested that the expression of CTNNB1 was regulated by CDYL in endometrium. The cell migration was impaired by CDYL-knockdown in Ishikawa cells and primary endometrial stromal cells (ESCs), which could be rescued by CDYL or CTNNB1 overexpression. Collectively, our findings indicated that the decreased expression of CDYL may suppress endometrial cell migration capability by affecting CTNNB1 expression, which would contribute to poor endometrial receptivity in women with RIF.
Collapse
Affiliation(s)
- Xiaowei Zhou
- Department of Reproductive Medical Center, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bufang Xu
- Department of Reproductive Medical Center, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Dan Zhang
- Department of Reproductive Medical Center, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoping Jiang
- Department of Obstetrics and Gynecology, Chinese People's Armed Police Force Shanghai Corps Hospital, Shanghai, China
| | - Hsun-Ming Chang
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, The University of British Columbia, Vancouver, BC, Canada
| | - Peter C K Leung
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, The University of British Columbia, Vancouver, BC, Canada
| | - Xiaoyu Xia
- Department of Histoembryology, Genetics and Developmental Biology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Aijun Zhang
- Department of Reproductive Medical Center, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
13
|
Zhang Y, Yan L, Liu J, Cui S, Qiu J. cGMP-dependent protein kinase II determines β-catenin accumulation that is essential for uterine decidualization in mice. Am J Physiol Cell Physiol 2019; 317:C1115-C1127. [PMID: 31509448 DOI: 10.1152/ajpcell.00208.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In the early phase of pregnancy, decidualization is an indispensable event after mammal embryo implantation, accompanied by proliferation and differentiation of uterine stromal cells. Type II cGMP-dependent protein kinase (Prkg2) belongs to the family of serine/threonine kinase, which plays multiple roles in cellular signaling pathways to control proliferation and differentiation. However, the regulatory function and molecular mechanism of Prkg2 in decidualization are still unknown. In this study, we show that Prkg2 has a gradually increased expression pattern during peri-implantation and artificial decidualization, and the expression of Prkg2 is induced by estrogen and progesterone in the ovariectomized mouse uteri and primary cultured uterine stromal cells, the process of which is blocked by treating with estrogen receptor (ER) antagonist (ICI-182,780) and progesterone receptor (PR) antagonist (RU-486). Inhibition of Prkg2 activity by HA-100 promotes uterine stromal cell proliferation but compromises decidualization with decreased expression of prolactin family 8, subfamily a, member 2. In addition, the functional regulation of decidualization by Prkg2 is accomplished by its induced phosphorylation of glycogen synthase kinase-3β (GSK-3β) at serine-9, which results in accumulation of β-catenin in the decidual cells. Taken together, our findings demonstrate that estrogen and progesterone upregulate the expression of Prkg2 in uterine stromal cells depending on ER and PR; Prkg2 promotes phosphorylation of GSK-3β at serine-9 and inactivates it, leading to the accumulation of β-catenin and promoting the process of decidualization. In addition to revealing the regulatory mechanism of Prkg2 that ensures the success of uterine decidualization, our findings will contribute to the understanding in the maintenance of early pregnancy.
Collapse
Affiliation(s)
- Yang Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People's Republic of China.,State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Lu Yan
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Jiali Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Sheng Cui
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People's Republic of China.,State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Jingtao Qiu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People's Republic of China
| |
Collapse
|
14
|
Marquardt RM, Kim TH, Shin JH, Jeong JW. Progesterone and Estrogen Signaling in the Endometrium: What Goes Wrong in Endometriosis? Int J Mol Sci 2019; 20:E3822. [PMID: 31387263 PMCID: PMC6695957 DOI: 10.3390/ijms20153822] [Citation(s) in RCA: 256] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/30/2019] [Accepted: 08/01/2019] [Indexed: 02/07/2023] Open
Abstract
In the healthy endometrium, progesterone and estrogen signaling coordinate in a tightly regulated, dynamic interplay to drive a normal menstrual cycle and promote an embryo-receptive state to allow implantation during the window of receptivity. It is well-established that progesterone and estrogen act primarily through their cognate receptors to set off cascades of signaling pathways and enact large-scale gene expression programs. In endometriosis, when endometrial tissue grows outside the uterine cavity, progesterone and estrogen signaling are disrupted, commonly resulting in progesterone resistance and estrogen dominance. This hormone imbalance leads to heightened inflammation and may also increase the pelvic pain of the disease and decrease endometrial receptivity to embryo implantation. This review focuses on the molecular mechanisms governing progesterone and estrogen signaling supporting endometrial function and how they become dysregulated in endometriosis. Understanding how these mechanisms contribute to the pelvic pain and infertility associated with endometriosis will open new avenues of targeted medical therapies to give relief to the millions of women suffering its effects.
Collapse
Affiliation(s)
- Ryan M Marquardt
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, Grand Rapids, MI 49503, USA
- Cell and Molecular Biology Program, Michigan State University, East Lansing, MI 48824, USA
| | - Tae Hoon Kim
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, Grand Rapids, MI 49503, USA
| | - Jung-Ho Shin
- Division of Reproductive Endocrinology, Department of Obstetrics and Gynecology, Guro Hospital, Korea University Medical Center, Seoul 08318, Korea
| | - Jae-Wook Jeong
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, Grand Rapids, MI 49503, USA.
| |
Collapse
|
15
|
Shukla V, Kaushal JB, Sankhwar P, Manohar M, Dwivedi A. Inhibition of TPPP3 attenuates β-catenin/NF-κB/COX-2 signaling in endometrial stromal cells and impairs decidualization. J Endocrinol 2019; 240:417-429. [PMID: 30667362 DOI: 10.1530/joe-18-0459] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 01/03/2019] [Indexed: 12/13/2022]
Abstract
Embryo implantation and decidualization are critical events that occur during early pregnancy. Decidualization is synchronized by the crosstalk of progesterone and the cAMP signaling pathway. Previously, we confirmed the role of TPPP3 during embryo implantation in mice, but the underlying role and mechanism of TPPP3 in decidualization has not yet been understood. The current study was aimed to investigate the role of TPPP3 in decidualization in vivo and in vitro. For in vivo experiments, decidual reaction was artificially induced in the uteri of BALB/c mice. TPPP3 was found to be highly expressed during decidualization, whereas in the uteri receiving TPPP3 siRNA, decidualization was suppressed and the expression of β-catenin and decidual marker prolactin was reduced. In human endometrium, TPPP3 protein was found to be predominantly expressed in the mid-secretory phase (LH+7). In the primary culture of human endometrial stromal cells (hESCs), TPPP3 siRNA knockdown inhibited stromal-to-decidual cell transition and decreased the expression of the decidualization markers prolactin and IGFBP-1. Immunofluorescence and immunoblotting experiments revealed that TPPP3 siRNA knockdown suppressed the expression of β-catenin, NF-κB and COX-2 in hESCs during decidualization. TPPP3 inhibition also decreased NF-kB nuclear accumulation in hESCs and suppressed NF-κB transcriptional promoter activity. COX-2 expression was significantly decreased in the presence of a selective NF-kB inhibitor (QNZ) implicating that NF-kB is involved in COX-2 expression in hESCs undergoing decidualization. TUNEL assay and FACS analysis revealed that TPPP3 knockdown induced apoptosis and caused loss of mitochondrial membrane potential in hESCs. The study suggested that TPPP3 plays a significant role in decidualization and its inhibition leads to the suppression of β-catenin/NF-κB/COX-2 signaling along with the induction of mitochondria-dependent apoptosis.
Collapse
Affiliation(s)
- Vinay Shukla
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-CDRI Campus, Lucknow, India
| | - Jyoti Bala Kaushal
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-CDRI Campus, Lucknow, India
| | - Pushplata Sankhwar
- Department of Obstetrics and Gynecology, King George's Medical University, Lucknow, India
| | - Murli Manohar
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Anila Dwivedi
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-CDRI Campus, Lucknow, India
| |
Collapse
|
16
|
Stromal Clues in Endometrial Carcinoma: Loss of Expression of β-Catenin, Epithelial-Mesenchymal Transition Regulators, and Estrogen-Progesterone Receptor. Int J Gynecol Pathol 2017; 35:238-48. [PMID: 26367784 PMCID: PMC4823869 DOI: 10.1097/pgp.0000000000000233] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Supplemental Digital Content is available in the text. Epithelial-stroma interactions in the endometrium are known to be responsible for physiological functions and emergence of several pathologic lesions. Periglandular stromal cells act on endometrial cells in a paracrine manner through sex hormones. In this study, we immunohistochemically evaluated the expression of epithelial-mesenchymal transition regulators (SNAIL/SLUG, TWIST, ZEB1), adhesion molecules (β-catenin and E-cadhenin), estrogen (ER)-progesterone (PR) receptor and their correlation with each other in 30 benign, 148 hyperplastic (EH), and 101 endometrioid-type endometrial carcinoma (EC) endometria. In the epithelial component, loss of expression in E-cadherin, ER and PR, and overexpression of TWIST and ZEB1 were significantly higher in EC than in EH (P<0.01). In the periglandular stromal component, β-catenin and SNAIL/SLUG expression were significantly higher in normal endometrium and simple without atypical EH compared with complex atypical EH and EC (P<0.01). In addition, periglandular stromal TWIST expression was significantly higher in EH group compared with EC (P<0.05). There was significantly negative correlation between β-catenin and ER, TWIST and ER, and TWIST and PR in hyperplastic and carcinomatous glandular epithelium, whereas there was a significantly positive correlation between β-catenin and SNAIL-SLUG, β-catenin and TWIST, β-catenin and ER, β-catenin and PR, SNAIL-SLUG and ER, SNAIL-SLUG and PR, TWIST and ER, TWIST and PR, in periglandular/cancer-associated stromal cells (P<0.01). In conclusion, the pattern of positive and negative correlations in the expression of epithelial-mesenchymal transition regulators (SNAIL-SLUG and TWIST), sex hormone receptors (ER and PR), and β-catenin between ECs and hyperplasia, as well as between epithelium and stroma herein, is suggestive of a significant role for these proteins and their underlying molecular processes in the development of endometrial carcinomas.
Collapse
|
17
|
Liang Z, Chen Y, Zhao Y, Xu C, Zhang A, Zhang Q, Wang D, He J, Hua W, Duan P. miR-200c suppresses endometriosis by targeting MALAT1 in vitro and in vivo. Stem Cell Res Ther 2017; 8:251. [PMID: 29116025 PMCID: PMC5678601 DOI: 10.1186/s13287-017-0706-z] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/17/2017] [Accepted: 10/19/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Endometriosis is a common, benign, and estrogen-dependent disease characterized by pelvic pain and infertility. To date, the pathogenesis of endometriosis remains unclear. Recent studies have demonstrated that noncoding RNAs, including microRNAs and long noncoding RNAs, play important roles in the development of endometriosis. METHODS Expression profiling of miRNAs in endometrial tissue was characterized using microarrays. The most differentially expressed miRNAs were confirmed using quantitative reverse transcriptase-polymerase chain reaction analysis in additional ectopic endometrial (n = 27) and normal endometrial (n = 12) tissues. For in-vitro functional studies, 5-ethynyl-2'-deoxyuridine incorporation assay, Transwell assay, and dual-luciferase reporter assay were used to measure the proliferation, migration, and luciferase activity of miR-200c and the predicted targets of miR-200c in primary endometrial stromal cells (HESCs) derived from human endometrial biopsies, respectively. For in-vivo therapeutic interventions, polymeric nanoparticles of polyethylenimine-polyethylene glycol-arginine-glycine-aspartic acid were used for delivery of miR-200c mimic and inhibitor to determine the therapeutic effect of miR-200c in a rat model of endometriosis. RESULTS Exogenous overexpression of miR-200c inhibited the proliferation and migration of HESCs, which were mainly regulated by metastasis-associated lung adenocarcinoma transcript 1 (MALAT1). In contrast, inhibition of miR-200c promoted the proliferation and migration of HESCs, while the simultaneous silencing of MALAT1 expression exerted the opposite effects. We demonstrated that expression of MALAT1 in ectopic endometrial specimens was negatively correlated with that of miR-200c and that MALAT1 knockdown increased the level of miR-200c in HESCs. Moreover, the transfection of endometrial stromal cells with the miR-200c mimic or MALAT1 siRNAs decreased the protein levels of mesenchymal markers ZEB1, ZEB2, and N-cadherin and increased the protein levels of the epithelial marker E-cadherin. Furthermore, using a rat endometriosis model, we showed that local delivery of the miR-200c mimic significantly inhibited the growth of ectopic endometriotic lesions. CONCLUSIONS The MALAT1/miR-200c sponge may be a potential therapeutic target for endometriosis.
Collapse
Affiliation(s)
- Zongwen Liang
- Department of Obstetrics and Gynecology, The Second Affliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, 325027 Zhejiang China
| | - Yijie Chen
- Department of Obstetrics and Gynecology, The Second Affliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, 325027 Zhejiang China
| | - Yuan Zhao
- Department of Obstetrics and Gynecology, The Second Affliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, 325027 Zhejiang China
| | - Chaoyi Xu
- Department of Obstetrics and Gynecology, The Second Affliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, 325027 Zhejiang China
| | - Anqi Zhang
- Department of Obstetrics and Gynecology, The Second Affliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, 325027 Zhejiang China
| | - Qiong Zhang
- Department of Obstetrics and Gynecology, The Second Affliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, 325027 Zhejiang China
| | - Danhan Wang
- Department of Obstetrics and Gynecology, The Second Affliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, 325027 Zhejiang China
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, 510623 Guangdong China
| | - Wenfeng Hua
- Department of Laboratory Medicine and Central Laboratories, Guangdong Second Provincial General Hospital, Southern Medical University, Guangzhou, 510317 Guangdong China
| | - Ping Duan
- Department of Obstetrics and Gynecology, The Second Affliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, 325027 Zhejiang China
| |
Collapse
|
18
|
Kukushkina V, Modhukur V, Suhorutšenko M, Peters M, Mägi R, Rahmioglu N, Velthut-Meikas A, Altmäe S, Esteban FJ, Vilo J, Zondervan K, Salumets A, Laisk-Podar T. DNA methylation changes in endometrium and correlation with gene expression during the transition from pre-receptive to receptive phase. Sci Rep 2017. [PMID: 28634372 PMCID: PMC5478666 DOI: 10.1038/s41598-017-03682-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The inner uterine lining (endometrium) is a unique tissue going through remarkable changes each menstrual cycle. Endometrium has its characteristic DNA methylation profile, although not much is known about the endometrial methylome changes throughout the menstrual cycle. The impact of methylome changes on gene expression and thereby on the function of the tissue, including establishing receptivity to implanting embryo, is also unclear. Therefore, this study used genome-wide technologies to characterize the methylome and the correlation between DNA methylation and gene expression in endometrial biopsies collected from 17 healthy fertile-aged women from pre-receptive and receptive phase within one menstrual cycle. Our study showed that the overall methylome remains relatively stable during this stage of the menstrual cycle, with small-scale changes affecting 5% of the studied CpG sites (22,272 out of studied 437,022 CpGs, FDR < 0.05). Of differentially methylated CpG sites with the largest absolute changes in methylation level, approximately 30% correlated with gene expression measured by RNA sequencing, with negative correlations being more common in 5' UTR and positive correlations in the gene 'Body' region. According to our results, extracellular matrix organization and immune response are the pathways most affected by methylation changes during the transition from pre-receptive to receptive phase.
Collapse
Affiliation(s)
- Viktorija Kukushkina
- Competence Centre on Health Technologies, Tartu, Estonia.,Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia.,Estonian Genome Center, University of Tartu, Tartu, Estonia
| | | | - Marina Suhorutšenko
- Competence Centre on Health Technologies, Tartu, Estonia.,Women's Clinic, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Maire Peters
- Competence Centre on Health Technologies, Tartu, Estonia.,Women's Clinic, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Reedik Mägi
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - Nilufer Rahmioglu
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | - Signe Altmäe
- Competence Centre on Health Technologies, Tartu, Estonia.,Department of Women's and Children's Health, Division of Obstetrics and Gynecology, Karolinska Institutet, Stockholm, Sweden
| | | | - Jaak Vilo
- Institute of Computer Science, University of Tartu, Tartu, Estonia
| | - Krina Zondervan
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK.,Endometriosis CaRe Centre, Nuffield Department of Obstetrics & Gynaecology, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Andres Salumets
- Competence Centre on Health Technologies, Tartu, Estonia.,Women's Clinic, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia.,Institute of Bio- and Translational Medicine, University of Tartu, Tartu, Estonia.,Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Triin Laisk-Podar
- Competence Centre on Health Technologies, Tartu, Estonia. .,Women's Clinic, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia.
| |
Collapse
|
19
|
Nayeem SB, Arfuso F, Dharmarajan A, Keelan JA. Role of Wnt signalling in early pregnancy. Reprod Fertil Dev 2017; 28:525-44. [PMID: 25190280 DOI: 10.1071/rd14079] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 08/05/2014] [Indexed: 12/15/2022] Open
Abstract
The integration of a complex network of signalling molecules promotes implantation of the blastocyst and development of the placenta. These processes are crucial for a successful pregnancy and fetal growth and development. The signalling network involves both cell-cell and cell-extracellular matrix communication. The family of secreted glycoprotein ligands, the Wnts, plays a major role in regulating a wide range of biological processes, including embryonic development, cell fate, proliferation, migration, stem cell maintenance, tumour suppression, oncogenesis and tissue homeostasis. Recent studies have provided evidence that Wnt signalling pathways play an important role in reproductive tissues and in early pregnancy events. The focus of this review is to summarise our present knowledge of expression, regulation and function of the Wnt signalling pathways in early pregnancy events of human and other model systems, and its association with pathological conditions. Despite our recent progress, much remains to be learned about Wnt signalling in human reproduction. The advancement of knowledge in this area has applications in the reduction of infertility and the incidence and morbidity of gestational diseases.
Collapse
Affiliation(s)
- Sarmah B Nayeem
- School of Women's and Infant's Health, University of Western Australia, King Edward Memorial Hospital, 374 Bagot Road, Subiaco, WA 6008, Australia
| | - Frank Arfuso
- School of Anatomy, Physiology and Human Biology, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Arun Dharmarajan
- School of Anatomy, Physiology and Human Biology, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Jeffrey A Keelan
- School of Women's and Infant's Health, University of Western Australia, King Edward Memorial Hospital, 374 Bagot Road, Subiaco, WA 6008, Australia
| |
Collapse
|
20
|
Patterson AL, Pirochta J, Tufano SY, Teixeira JM. Gain-of-function β-catenin in the uterine mesenchyme leads to impaired implantation and decidualization. J Endocrinol 2017; 233:119-130. [PMID: 28183999 PMCID: PMC5436143 DOI: 10.1530/joe-16-0502] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 02/09/2017] [Indexed: 12/12/2022]
Abstract
Embryo implantation and endometrial decidualization are critical events that occur during early pregnancy in humans and mice, and perturbation in either can result in infertility. WNT signaling through the canonical β-catenin pathway plays a pivotal role in embryonic Müllerian duct development, postnatal uterine maturation and establishment of pregnancy. Loss of β-catenin in the Müllerian duct mesenchyme (MDM)-derived stroma and myometrium results in impaired decidualization and infertility, whereas gain-of-function (GOF) results in the formation of mesenchymal tumors and sub-fertility attributed to malformed oviducts. We hypothesized that GOF β-catenin further contributes to sub-fertility through improper stromal and epithelial cell signaling during embryo implantation and decidualization. We show that mice with GOF β-catenin in MDM-derived stroma and myometrium have reduced implantation sites after embryo transfer and decreased decidualization. On day 4.5 of pseudopregnancy or in mice treated with progesterone and estrogen to mimic early pregnancy, the estrogen-LIF-ERK and progesterone-IHH pathways remain predominantly intact in GOF β-catenin mice; however, JAK/STAT signaling is altered. pSTAT3 is significantly reduced in GOF β-catenin mice and expression of downstream epithelial junctional complex factors, Ctnna1 and Cldn1, is increased. We also show that purified stromal cells from GOF β-catenin uteri, when removed from epithelial cell influence and provided with the appropriate hormonal stimuli, are able to decidualize in vitro indicating that the cells are intrinsically capable of decidualization. Taken together, these results suggest that dysregulated β-catenin activity in the stroma affects epithelial cell STAT3 signaling and ultimately embryo implantation and stromal decidualization.
Collapse
Affiliation(s)
- Amanda L Patterson
- Department of ObstetricsGynecology, and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, Michigan, USA
| | - Jamieson Pirochta
- Department of ObstetricsGynecology, and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, Michigan, USA
| | - Stephanie Y Tufano
- Department of ObstetricsGynecology, and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, Michigan, USA
| | - Jose M Teixeira
- Department of ObstetricsGynecology, and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, Michigan, USA
| |
Collapse
|
21
|
Wang X, Khatri S, Broaddus R, Wang Z, Hawkins SM. Deletion of Arid1a in Reproductive Tract Mesenchymal Cells Reduces Fertility in Female Mice. Biol Reprod 2016; 94:93. [PMID: 26962117 PMCID: PMC4861168 DOI: 10.1095/biolreprod.115.133637] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 03/03/2016] [Indexed: 12/12/2022] Open
Abstract
Women with endometriosis can suffer from decreased fecundity or complete infertility via abnormal oocyte function or impaired placental-uterine interactions required for normal pregnancy establishment and maintenance. Although AT-rich interactive domain 1A (SWI-like) (ARID1A) is a putative tumor suppressor in human endometrial cancers and endometriosis-associated ovarian cancers, little is known about its role in normal uterine function. To study the potential function of ARID1A in the female reproductive tract, we generated mice with a conditional knockout of Arid1a using anti-Müllerian hormone receptor 2-Cre. Female Arid1a conditional knockout mice exhibited a progressive decrease in number of pups per litter, with a precipitous decline after the second litter. We observed no tumors in virgin mice, although one knockout mouse developed a uterine tumor after pregnancy. Unstimulated virgin female knockout mice showed normal oviductal, ovarian, and uterine histology. Uteri of Arid1a knockout mice showed a normal decidualization response and appropriate responses to estradiol and progesterone stimulation. In vitro studies using primary cultures of human endometrial stromal fibroblasts revealed that small interfering RNA knockdown of ARID1A did not affect decidualization in vitro. Timed pregnancy studies revealed the significant resorption of embryos at Embryonic Day 16.5 in knockout mice in the third pregnancy. In addition to evidence of implantation site hemorrhage, pregnant Arid1a knockout mice showed abnormal placental morphology. These results suggest that Arid1a supports successful pregnancy through its role in placental function.
Collapse
Affiliation(s)
- Xiyin Wang
- Indiana University, Department of Obstetrics and Gynecology, Indianapolis, Indiana
| | - Shikha Khatri
- Baylor College of Medicine, Department of Obstetrics and Gynecology, Houston, Texas
| | - Russell Broaddus
- University of Texas MD Anderson Cancer Center, Department of Pathology, Houston, Texas
| | - Zhong Wang
- University of Michigan, Department of Cardiac Surgery, Ann Arbor, Michigan
| | - Shannon M Hawkins
- Indiana University, Department of Obstetrics and Gynecology, Indianapolis, Indiana
| |
Collapse
|
22
|
Rosario GX, Stewart CL. The Multifaceted Actions of Leukaemia Inhibitory Factor in Mediating Uterine Receptivity and Embryo Implantation. Am J Reprod Immunol 2016; 75:246-55. [PMID: 26817565 DOI: 10.1111/aji.12474] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 12/07/2015] [Indexed: 01/08/2023] Open
Abstract
Embryo implantation is mediated by the combined actions of the ovarian hormones E2 and P4 on the uterus. In addition, the pro-inflammatory cytokine, leukaemia inhibitory factor (LIF), plays a pivotal role in regulating uterine receptivity. LIF is expressed in the endometrial glands and has a robust action on the uterine luminal epithelium (LE). In mice, LIF is induced by nidatory E2 and functions to convert the LE from a non-receptive to an embryo-responsive state. LIF mediates its actions by activating the JAK-STAT pathway specifically in the LE. Activation of JAK-STAT pathway results in the induction of many additional pathways, including some 40 + transcription factors, many of which initiate a cascade of changes affecting epithelial polarity, epithelial-mesenchymal interactions, angiogenesis, stromal cell decidualization, and inhibiting cell proliferation. This review discusses the role of LIF and the recent analysis of its action on the uterine LE in regulating endometrial receptivity and implantation.
Collapse
Affiliation(s)
- Gracy Xavier Rosario
- Developmental and Regenerative Biology, Institute of Medical Biology, Singapore City, Singapore
| | - Colin L Stewart
- Developmental and Regenerative Biology, Institute of Medical Biology, Singapore City, Singapore
| |
Collapse
|
23
|
Zhang Q, Yan J. Update of Wnt signaling in implantation and decidualization. Reprod Med Biol 2015; 15:95-105. [PMID: 29259425 DOI: 10.1007/s12522-015-0226-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/26/2015] [Indexed: 12/16/2022] Open
Abstract
Embryonic development into an implantation-competent blastocyst, synchronized uterine transformation into a receptive stage, and an intimate cross-talk between the activated blastocyst and the receptive uterus are essential for successful implantation, and therefore for subsequent pregnancy outcome. Evidence accumulating during recent years has underlined the importance of the Wnt signaling pathway in mammalian implantation and decidualization. Herein, this review focuses on the current state of knowledge regarding Wnt signaling in multiple implantation and decidualization events: pre-implantation embryo development, blastocyst activation for implantation, uterine development, and decidualization.
Collapse
Affiliation(s)
- Qian Zhang
- Center for Reproductive Medicine Shandong Provincial Hospital Affiliated to Shandong University 250021 Jinan China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics Jinan China.,The Key Laboratory for Reproductive Endocrinology of Ministry of Education Jinan China.,Shandong Provincial Key Laboratory of Reproductive Medicine Jinan China
| | - Junhao Yan
- Center for Reproductive Medicine Shandong Provincial Hospital Affiliated to Shandong University 250021 Jinan China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics Jinan China.,The Key Laboratory for Reproductive Endocrinology of Ministry of Education Jinan China.,Shandong Provincial Key Laboratory of Reproductive Medicine Jinan China
| |
Collapse
|
24
|
Choi CH, Chung JY, Park HS, Jun M, Lee YY, Kim BG, Hewitt SM. Pancreatic adenocarcinoma up-regulated factor expression is associated with disease-specific survival in cervical cancer patients. Hum Pathol 2015; 46:884-93. [PMID: 25870121 PMCID: PMC7717069 DOI: 10.1016/j.humpath.2015.02.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 02/23/2015] [Accepted: 02/26/2015] [Indexed: 12/29/2022]
Abstract
Pancreatic adenocarcinoma up-regulated factor (PAUF) is a novel soluble protein involved in tumor development and metastases. This study was to investigate the PAUF expression and its prognostic value in cervical cancer patients. The expression of PAUF was immunohistochemically determined in 345 formalin-fixed, paraffin-embedded cervical cancer tissues and 107 normal cervical epitheliums. Subsequently, its associations with clinicopathological characteristics and patient survival were assessed. PAUF protein was expressed both in cytoplasm and nucleus, and cytoplasmic expression was more frequent in cancers than normal tissues (32% versus 17%, P = .002), and the difference was prominent in glandular cells. Notably, the expression was more frequent in adenocarcinoma than in squamous cell carcinoma (57% versus 25%, respectively; P < .001), and the differential expression was also seen at the messenger RNA level (P = .014). Cox regression analysis showed that the cytoplasmic expression of PAUF protein was independently associated with poor disease-free (hazard ratio = 2.3; 95% confidence interval, 1.2-4.3; P = .008) and overall survival (hazard ratio = 2.9; 95% confidence interval, 1.2-7.5; P = .020). Detection of PAUF expression may aid current evaluation of prognosis in cervical adenocarcinoma.
Collapse
Affiliation(s)
- Chel Hun Choi
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA; Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 135-710, Republic of Korea
| | - Joon-Yong Chung
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ho-Seop Park
- Department of Pathology, Asan Medical Center, University of Ulsan School of Medicine, Seoul, 138-736, Republic of Korea
| | - Minsik Jun
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yoo-Young Lee
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 135-710, Republic of Korea
| | - Byung-Gie Kim
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 135-710, Republic of Korea.
| | - Stephen M Hewitt
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
25
|
Valdez-Morales FJ, Gamboa-Domínguez A, Vital-Reyes VS, Cruz JCH, Chimal-Monroy J, Franco-Murillo Y, Cerbón M. Changes in receptivity epithelial cell markers of endometrium after ovarian stimulation treatments: its role during implantation window. Reprod Health 2015; 12:45. [PMID: 25981399 PMCID: PMC4443517 DOI: 10.1186/s12978-015-0034-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 04/30/2015] [Indexed: 01/04/2023] Open
Abstract
Background To compare the expression of receptivity markers in epithelial and stromal cells in the endometrium of ovulatory women and infertile with hypothalamic pituitary dysfunction (HPD), untreated or treated with clomiphene citrate (CC), or with recombinant follicle stimulating hormone (rFSH). Methods Twelve control ovulatory and 32 anovulatory women, 22 of whom received ovulation induction with CC (n = 12) or rFSH (n = 10). Endometrial biopsies were obtained during the mid-secretory phase. Hormonal secretion was measured by chemiluminescence immunoassay, endometrial dating and cellular expression and distribution of receptivity proteins were evaluated by quantitative immunohistochemistry. Results CC or rFSH treatments, modified the expression of epithelial receptivity markers, such as Glycodelin A, beta-catenin, CD166/ALCAM and IGF-1R, but not in stromal markers. Also, a change in their cell distribution was observed. Conclusions Treatment of infertile women with HPD modified the expression and distribution of receptivity markers in the mid-secretory phase of the endometrium in epithelial but not stromal cells, which can help to explain changes in the receptivity of the endometrium during treatments and suggest an important role of these cells in the receptivity window. Electronic supplementary material The online version of this article (doi:10.1186/s12978-015-0034-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Francisco J Valdez-Morales
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, México, D.F., Mexico.
| | - Armando Gamboa-Domínguez
- Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México, D.F., Mexico.
| | - Victor S Vital-Reyes
- Departamento de Biología de la Reproducción, Hospital de Ginecología y Obstetricia # 3, Centro Médico Nacional La Raza, Instituto Mexicano del Seguro Social, México, D.F., Mexico.
| | - Juan C Hinojosa Cruz
- Departamento de Biología de la Reproducción, Hospital de Ginecología y Obstetricia # 3, Centro Médico Nacional La Raza, Instituto Mexicano del Seguro Social, México, D.F., Mexico.
| | - Jesús Chimal-Monroy
- Departamento de Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, UNAM, México, D.F., Mexico. .,Instituto Nacional de Perinatología, México, D.F., Mexico.
| | - Yanira Franco-Murillo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, México, D.F., Mexico.
| | - Marco Cerbón
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, México, D.F., Mexico.
| |
Collapse
|
26
|
Winuthayanon W, Hewitt SC, Korach KS. Uterine epithelial cell estrogen receptor alpha-dependent and -independent genomic profiles that underlie estrogen responses in mice. Biol Reprod 2014; 91:110. [PMID: 25210133 DOI: 10.1095/biolreprod.114.120170] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Estrogens exert their activity through estrogen receptor alpha (ERalpha) to stimulate hypertrophy and hyperplasia in the uterus. A uterine epithelial ERalpha conditional knockout mouse model (Wnt7a(Cre+);Esr1(f/f) or cKO) demonstrated that ERalpha in the epithelial cells was dispensable for an initial uterine proliferative response to 17beta-estradiol (E2) but required for subsequent uterine biological responses. This study aimed to characterize the differential gene expression patterns induced by E2 in the presence or absence of epithelial ERalpha. RNA microarray analysis revealed that approximately 20% of the genes differentially expressed at 2 h were epithelial ERalpha independent, as they were preserved in the cKO uteri. This indicates that early uterine transcripts mediated by stromal ERalpha are sufficient to promote initial proliferative responses. However, more than 90% of the differentially expressed transcripts at 24 h were not regulated in the cKO, indicating that the majority of later transcriptional regulation required epithelial ERalpha, especially those involved in mitosis. This shows that loss of regulation of these later transcripts results in blunted subsequent uterine growth after 3 days of E2 treatment. Additionally, progesterone's ability to inhibit E2-induced epithelial cell proliferation was impaired, consistent with a uterine receptivity defect that contributes to cKO infertility. These transcriptional profiles correlate with our previously observed biological responses, in which the initial proliferative response is independent of epithelial ERalpha and thus dependent on stromal ERalpha, yet epithelial ERalpha is essential for subsequent tissue responsiveness.
Collapse
Affiliation(s)
- Wipawee Winuthayanon
- Receptor Biology, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina
| | - Sylvia C Hewitt
- Receptor Biology, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina
| | - Kenneth S Korach
- Receptor Biology, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina
| |
Collapse
|
27
|
Schutte SC, James CO, Sidell N, Taylor RN. Tissue-engineered endometrial model for the study of cell-cell interactions. Reprod Sci 2014; 22:308-15. [PMID: 25031317 DOI: 10.1177/1933719114542008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Endometrial stromal and epithelial cell cross talk is known to influence many of the dynamic changes that occur during the menstrual cycle. We modified our previous model and embedded telomerase-immortalized human endometrial stromal cells and Ishikawa adenocarcinoma epithelial cells in a collagen-Matrigel hydrogel to create a tissue-engineered model of the endometrium. Comparisons of single and cocultured cells examined communication between endometrial stromal and epithelial cells, which were cultured with 0 or 10 nmol/L 17β estradiol; conditioned medium was used to look at the production of paracrine factors. Using this model, we were able to identify the changes in interleukin 6 (IL-6) and active matrix metalloproteinase 2, which appear to be due to paracrine signaling and differences in transforming growth factor β1 (TGF-β1) that do not appear to be due to paracrine signaling. Moreover, IL-6, TGF-β1, and DNA content were also affected by the presence of estradiol in many of the tissues. These results indicate that paracrine and endocrine signaling are involved in human endometrial responses and support the use of coculture models to further investigate cell-cell and cell-matrix interactions.
Collapse
Affiliation(s)
- Stacey C Schutte
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Christopher O James
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Neil Sidell
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Robert N Taylor
- Department of Obstetrics and Gynecology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
28
|
Kobayashi H, Uekuri C, Shigetomi H. Towards an understanding of the molecular mechanism of endometriosis: unbalancing epithelial-stromal genetic conflict. Gynecol Endocrinol 2014; 30:7-15. [PMID: 24000933 DOI: 10.3109/09513590.2013.831832] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVES Despite the high incidence of endometriosis, the etiology is poorly understood. Much work has been carried out to elucidate the genetic basis of endometriosis owing to the advent of genomic analysis and new network-based analysis methods. METHODS This article reviews the English literature for (epi)genome-wide profiling and association studies on the pathogenesis and pathophysiology of endometriosis. RESULTS The characteristic 82 up- and 45 down-regulated unique genes in endometriosis included genes encoding cell cycle, growth factors, signal transduction, transcription factors, hormones, cytokines, chemokines and (pro)inflammation, proteases, cell adhesion and motility, stress response and detoxification, immune response, metabolism and others. There appear to be at least two types of genes: some genes (n = 50) may evolve mainly for the benefit of the endometrial growth, and the other genes (n = 55) evolve as a protective mechanism for the endometrial decidualization. The present review has shed new light on the overlapping genetic signatures between endometriosis development and decidualization process. CONCLUSION In conclusion, insufficient decidualization due to unbalancing epithelial-stromal genetic conflict may result in future endometriosis.
Collapse
Affiliation(s)
- Hiroshi Kobayashi
- Department of Obstetrics and Gynecology, Nara Medical University , Kashihara , Japan
| | | | | |
Collapse
|
29
|
Xia HF, Cao JL, Jin XH, Ma X. MiR199a is implicated in embryo implantation by regulating Grb10 in rat. Reproduction 2013; 147:91-9. [PMID: 24149516 DOI: 10.1530/rep-13-0290] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
MiR199a was found to be differentially expressed in rat uteri between the prereceptive and receptive phase via microRNA (miRNA) microarray analysis in our previous study. However, the role of miR199a in rat embryo implantation remained unknown. In the study, northern blot results showed that the expression levels of miR199a were higher on gestation days 5 and 6 (g.d.5-6) in rat uteri than on g.d.3-4 and g.d.7-8. In situ localization of miR199a in rat uteri showed that miR199a was mainly localized in the stroma or decidua. The expression of miR199a was not significantly different in the uteri of pseudopregnant rats and evidently increased in the uteri of rats subjected to activation of delayed implantation and experimentally induced decidualization. Treatment with 17β-estradiol or both 17β-estradiol and progesterone significantly diminished miR199a levels. Gain of function of miR199a in endometrial stromal cells isolated from rat uteri inhibited cell proliferation and promoted cell apoptosis. Loss of function of miR199a displayed opposite roles on cell proliferation and apoptosis. Further investigation uncovered a significant inverse association between the expression of miR199a and growth factor receptor-bound protein 10 (Grb10), an imprinted gene, and miR199a could bind to the 3'UTR of Grb10 to inhibit Grb10 translation. In addition, in vivo analysis found that the immunostaining of GRB10 was attenuated in the stroma or decidua from g.d.4 to 6, contrary to the enhancement of miR199a. Collectively, upregulation of miR199a in rat uterus during the receptive phase is regulated by blastocyst activation and uterine decidualization. Enforced miR199a expression suppresses cell proliferation partially through targeting Grb10.
Collapse
Affiliation(s)
- Hong-Fei Xia
- Reproductive and Genetic Center of National Research Institute for Family Planning, Beijing 100081, China
| | | | | | | |
Collapse
|
30
|
Lee CH, Kim TH, Lee JH, Oh SJ, Yoo JY, Kwon HS, Kim YI, Ferguson SD, Ahn JY, Ku BJ, Fazleabas AT, Lim JM, Jeong JW. Extracellular signal-regulated kinase 1/2 signaling pathway is required for endometrial decidualization in mice and human. PLoS One 2013; 8:e75282. [PMID: 24086495 PMCID: PMC3782496 DOI: 10.1371/journal.pone.0075282] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 08/14/2013] [Indexed: 11/18/2022] Open
Abstract
Decidualization is a crucial change required for successful embryo implantation and the maintenance of pregnancy. During this process, endometrial stromal cells differentiate into decidual cells in response to the ovarian steroid hormones of early pregnancy. Extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) are known to regulate cell proliferation and apoptosis in multiple cell types, including uterine endometrial cells. Aberrant activation of ERK1/2 has recently been implicated in the pathological processes of endometriosis and endometrial cancer. However, the function of ERK1/2 signaling during implantation and decidualization is still unknown. To determine the role and regulation of ERK1/2 signaling during implantation and decidualization, we examine ERK1/2 signaling in the mouse uterus during early pregnancy using immunostaining and qPCR. Interestingly, levels of phospho-ERK1/2 were highest within decidual cells located at the implantation sites. Expression levels of ERK1/2 target genes were also significantly higher at implantation sites, when compared to either inter-implantation sites. To determine if ERK1/2 signaling is also important during human endometrial decidualization, we examined levels of phospho-ERK1/2 in cultured human endometrial stromal cells during in vitro decidualization. Following treatment with a well-established decidualization-inducing steroidogenic cocktail, levels of phospho-ERK1/2 were markedly increased. Treatment with the ERK1/2 inhibitor, U0126, significantly decreased the expression of the known decidualization marker genes, IGFBP1 and PRL as well as inhibited the induction of known ERK1/2 target genes; FOS, MSK1, STAT1, and STAT3. Interestingly, the phosphorylation level of CCAAT/ enhancer binding protein β (C/EBPβ), a protein previously shown to be critical for decidualization, was significantly reduced in this model. These results suggest that ERK1/2 signaling is required for successful decidualization in mice as well as human endometrial stromal cells and implicates C/EBPβ as a downstream target of ERK1/2.
Collapse
Affiliation(s)
- Chae Hyun Lee
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University College of Human Medicine, Grand Rapids, Michigan, United States of America
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Tae Hoon Kim
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University College of Human Medicine, Grand Rapids, Michigan, United States of America
| | - Jae Hee Lee
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University College of Human Medicine, Grand Rapids, Michigan, United States of America
| | - Seo Jin Oh
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University College of Human Medicine, Grand Rapids, Michigan, United States of America
- WCU Biomodulation Program, Seoul National University, Seoul, South Korea
| | - Jung-Yoon Yoo
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University College of Human Medicine, Grand Rapids, Michigan, United States of America
| | - Hyo Suk Kwon
- WCU Biomodulation Program, Seoul National University, Seoul, South Korea
| | - Young Im Kim
- WCU Biomodulation Program, Seoul National University, Seoul, South Korea
| | - Susan D. Ferguson
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University College of Human Medicine, Grand Rapids, Michigan, United States of America
| | - Ji Yeon Ahn
- WCU Biomodulation Program, Seoul National University, Seoul, South Korea
- Cancer Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Bon Jeong Ku
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Asgerally T. Fazleabas
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University College of Human Medicine, Grand Rapids, Michigan, United States of America
- WCU Biomodulation Program, Seoul National University, Seoul, South Korea
| | - Jeong Mook Lim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
- WCU Biomodulation Program, Seoul National University, Seoul, South Korea
- * E-mail: (JWJ); (JML)
| | - Jae-Wook Jeong
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University College of Human Medicine, Grand Rapids, Michigan, United States of America
- WCU Biomodulation Program, Seoul National University, Seoul, South Korea
- * E-mail: (JWJ); (JML)
| |
Collapse
|