1
|
Liu A, Liu Z, Shen H, Du W, Jiang Y, Wang L, Zhang R, Jin P, Zhang X. Potential mechanism prediction of indole-3-propionic acid against diminished ovarian reserve via network pharmacology, molecular docking and experimental verification. BMC Complement Med Ther 2024; 24:316. [PMID: 39192219 PMCID: PMC11348684 DOI: 10.1186/s12906-024-04611-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/13/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND Oxidative stress (OS) is one of the major causes of ovarian aging and dysfunction. Indole-3-propionic acid (IPA) is an indole compound derived from tryptophan with free radical scavenging and antioxidant properties, and thus may have potential applications in protecting ovarian function, although the exact mechanisms are unknown. This study aims to preliminarily elucidate the potential mechanisms of IPA that benefit ovarian reserve function through network pharmacology, molecular docking, and experimental verification. METHODS The related protein targets of IPA were searched on SwissTargetPrediction, TargetNet, BATMAN-TCM, and PharmMapper databases. The potential targets of diminished ovarian reserve (DOR) were identified from OMIM, GeneCards, DrugBank, and DisGeNET databases. The common targets were uploaded directly to the STRING database to construct PPI networks. We then performed GO and KEGG enrichment analysis on the targets. Subsequently, molecular docking and molecular dynamics simulation were used to validate the binding conformation of IPA to candidate targets. Furthermore, we carried out in vitro experiments to validate the prediction results of network pharmacology. RESULTS We identified a total of 61 potential targets for the interaction of IPA with DOR. The PPI network topological parameter analysis yielded 13 hub genes for DOR treatment. The GO biological process enrichment analysis identified 293 entries, mainly enriched in aging, signal transduction, response to hypoxia, negative regulation of apoptotic process, and positive regulation of cell proliferation. The KEGG enrichment analysis mainly included lipid and atherosclerosis, progesterone-mediated oocyte maturation, AGE-RAGE, relaxin, estrogen, and other signaling pathways. The molecular docking further revealed the direct binding of IPA with six hub proteins including NOS3, AKT1, EGFR, PPARA, SRC, and TNF. In vitro experiments showed that IPA pretreatment attenuated H2O2-induced cellular oxidative stress damage, while IPA exerted cytoprotective and antioxidant damage effects by regulating the six hub genes and antioxidant proteins. CONCLUSION We systematically illustrated the potential protective effects of IPA against DOR through multiple targets and pathways using network pharmacology, and further verified the cytoprotective effect and antioxidant properties of IPA through in vitro experiments. These findings provide new insights into the targets and molecular mechanisms whereby IPA improves DOR.
Collapse
Affiliation(s)
- Ahui Liu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China
- Reproductive Medicine Center, The First Hospital of Lanzhou University, Chengguan District, No. 1 Dong Gang Xi Road, Lanzhou, Gansu, 730000, China
| | - Zhijun Liu
- The Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Haofei Shen
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China
- Reproductive Medicine Center, The First Hospital of Lanzhou University, Chengguan District, No. 1 Dong Gang Xi Road, Lanzhou, Gansu, 730000, China
- Key Laboratory for Reproductive Medicine and Embryo, Lanzhou, Gansu, China
| | - Wenjing Du
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China
- Reproductive Medicine Center, The First Hospital of Lanzhou University, Chengguan District, No. 1 Dong Gang Xi Road, Lanzhou, Gansu, 730000, China
- Key Laboratory for Reproductive Medicine and Embryo, Lanzhou, Gansu, China
| | - Yanbiao Jiang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China
- Reproductive Medicine Center, The First Hospital of Lanzhou University, Chengguan District, No. 1 Dong Gang Xi Road, Lanzhou, Gansu, 730000, China
| | - Liyan Wang
- Reproductive Medicine Center, The First Hospital of Lanzhou University, Chengguan District, No. 1 Dong Gang Xi Road, Lanzhou, Gansu, 730000, China
- Key Laboratory for Reproductive Medicine and Embryo, Lanzhou, Gansu, China
| | - Rui Zhang
- Reproductive Medicine Center, The First Hospital of Lanzhou University, Chengguan District, No. 1 Dong Gang Xi Road, Lanzhou, Gansu, 730000, China
- Key Laboratory for Reproductive Medicine and Embryo, Lanzhou, Gansu, China
| | - Panpan Jin
- Reproductive Medicine Center, The First Hospital of Lanzhou University, Chengguan District, No. 1 Dong Gang Xi Road, Lanzhou, Gansu, 730000, China.
- Key Laboratory for Reproductive Medicine and Embryo, Lanzhou, Gansu, China.
| | - Xuehong Zhang
- Reproductive Medicine Center, The First Hospital of Lanzhou University, Chengguan District, No. 1 Dong Gang Xi Road, Lanzhou, Gansu, 730000, China.
- Key Laboratory for Reproductive Medicine and Embryo, Lanzhou, Gansu, China.
| |
Collapse
|
2
|
Yang Y, Zhang X, Lei Y, Chang G, Zou Y, Yu S, Wu H, Rong H, Lei Z, Xu C. The effects of H22 tumor on the quality of oocytes and the development of early embryos from host mice: A single-cell RNA sequencing approach. Theriogenology 2022; 179:45-59. [PMID: 34826707 DOI: 10.1016/j.theriogenology.2021.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 10/30/2021] [Accepted: 11/13/2021] [Indexed: 10/19/2022]
Abstract
The association between cancer and female reproduction remains largely unknown. Here we investigated the quality of oocytes and the developmental potential of zygotes using H22 tumor-bearing mice model. The results showed that the number of oocytes was decreased in tumor-bearing mice compared with the control mice, and accompanied scattered chromosomes was observed. Further study revealed an abnormal epigenetic reprogramming occurred in the zygotes from the H22 tumor-bearing mice, as exemplified by the aberrant 5hmC/5mC modifications in the pronuclei. Finally, single-cell RNA sequencing was performed on the oocytes collected from the H22 tumor-bearing mice. Our data showed that 45 of the 202 differentially expressed genes in tumor-bearing group were closely associated with oocyte quality. Protein interaction analysis indicated that the potential interaction among these 45 genes. Collectively, our study uncovered that the quality of oocytes and early embryonic development were affected by H22 tumor bearing via the altered expression patterns of genes related with reproduction, providing new insights into the reproductive capability of female cancer patients.
Collapse
Affiliation(s)
- Yanhong Yang
- The First Affiliated Hospital (School of Clinical Medicine), Guangdong Pharmaceutical University, Nong-Lin-Xia Road 19#, Yue-Xiu District, Guangzhou, 510080, PR China
| | - Xueying Zhang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, PR China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China
| | - Yuting Lei
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, PR China
| | - Gang Chang
- Department of Biochemistry and Molecular Biology, Shenzhen University Health Science Center, Shenzhen, 518060, PR China
| | - Yan Zou
- The Reproductive Medical Center of Nanning Second People's Hospital, Nanning, 530031, PR China
| | - Siping Yu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, PR China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China
| | - Huijuan Wu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, PR China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China
| | - Hedong Rong
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, PR China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China
| | - Zili Lei
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, PR China.
| | - Changlong Xu
- The Reproductive Medical Center of Nanning Second People's Hospital, Nanning, 530031, PR China.
| |
Collapse
|
3
|
Rubessa M, Feugang JM, Kandel ME, Schreiber S, Hessee J, Salerno F, Meyers S, Chu I, Popescu G, Wheeler MB. High-throughput sperm assay using label-free microscopy: morphometric comparison between different sperm structures of boar and stallion spermatozoa. Anim Reprod Sci 2020; 219:106509. [PMID: 32828395 DOI: 10.1016/j.anireprosci.2020.106509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 05/15/2020] [Accepted: 05/16/2020] [Indexed: 10/24/2022]
Abstract
The capacity for microscopic evaluation of sperm is useful for assisted reproductive technologies (ART), because this can allow for specific selection of sperm cells for in vitro fertilization (IVF). The objective of this study was to analyze the same sperm samples using two high-resolution methods: spatial light interference microscopy (SLIM) and atomic force microscopy (AFM) to determine if with one method there was more timely and different information obtained than the other. To address this objective, there was evaluation of sperm populations from boars and stallions. To the best of our knowledge, this is the first reported comparison when using AFM and high-sensitivity interferometric microscopy (such as SLIM) to evaluate spermatozoa. Results indicate that with the use of SLIM microscopy there is similar nanoscale sensitivity as with use of AFM while there is approximately 1,000 times greater throughput with use of SLIM. With SLIM, there is also allowace for the measurement of the dry mass (non-aqueous content) of spermatozoa, which may be a new label-free marker for sperm viability. In the second part of this study, there was analysis of two sperm populations. There were interesting correlations between the different compartments of the sperm and the dry mass in both boars and stallions. Furthermore, there was a correlation between the dry mass of the sperm head and the length and width of the acrosome in both boars and stallions. This correlation is positive in boars while it is negative in stallions.
Collapse
Affiliation(s)
- Marcello Rubessa
- Department of Animal Science, University of Illinois, Urbana-Champaign, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, Univ. of Illinois at Urbana-Champaign, USA
| | - Jean M Feugang
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Mikhail E Kandel
- Quantitative Light Imaging Laboratory, Department of Electrical and Computer Engineering, Beckman Institute of Advanced Science and Technology, USA
| | - Sierra Schreiber
- Department of Animal Science, University of Illinois, Urbana-Champaign, IL 61801, USA
| | - Jade Hessee
- Department of Animal Science, University of Illinois, Urbana-Champaign, IL 61801, USA
| | - Francesca Salerno
- Department of Animal Science, University of Illinois, Urbana-Champaign, IL 61801, USA
| | - Sascha Meyers
- Department of Animal Science, University of Illinois, Urbana-Champaign, IL 61801, USA
| | - Iwei Chu
- Institute for Imaging & Analytical Technologies, Mississippi State University, Mississippi State, MS 39762, USA
| | - Gabriel Popescu
- Department of Bioengineering, University of Illinois, Urbana, Illinois 61801, USA; Quantitative Light Imaging Laboratory, Department of Electrical and Computer Engineering, Beckman Institute of Advanced Science and Technology, USA
| | - Matthew B Wheeler
- Department of Animal Science, University of Illinois, Urbana-Champaign, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, Univ. of Illinois at Urbana-Champaign, USA; Department of Bioengineering, University of Illinois, Urbana, Illinois 61801, USA.
| |
Collapse
|
4
|
Gérard N, Robin E. Cellular and molecular mechanisms of the preovulatory follicle differenciation and ovulation: What do we know in the mare relative to other species. Theriogenology 2019; 130:163-176. [PMID: 30921545 DOI: 10.1016/j.theriogenology.2019.03.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 02/19/2019] [Accepted: 03/14/2019] [Indexed: 02/06/2023]
Abstract
Terminal follicular differentiation and ovulation are essential steps of reproduction. They are induced by the increase in circulating LH, and lead to the expulsion from the ovary of oocytes ready to be fertilized. This review summarizes our current understanding of cellular and molecular pathways that control ovulation using a broad mammalian literature, with a specific focus to the mare, which is unique in some aspects of ovarian function in some cases. Essential steps and key factors are approached. The first part of this review concerns LH, receptors and signaling, addressing the description of the equine gonadotropin and cloning, signaling pathways that are activated following the binding of LH to its receptors, and implication of transcription factors which better known are CCAAT-enhancer-binding proteins (CEBP) and cAMP response element-binding protein (CREB). The second and major part is devoted to the cellular and molecular actors within follicular cells during preovulatory maturation. We relate to 1) molecules involved in vascular permeability and vasoconstriction, 2) involvement of neuropeptides, such as kisspeptin, neurotrophins and neuronal growth factor, neuropeptide Y (NPY), 3) the modification of steroidogenesis, steroids intrafollicular levels and enzymes activity, 4) the local inflammation, with the increase in prostaglandins synthesis, and implication of leukotrienes, cytokines and glucocorticoids, 5) extracellular matrix remodelling with involvement of proteases, antiproteases and inhibitors, as well as relaxin, and finaly 6) the implication of oxytocine, osteopontin, growth factors and reactive oxygen species. The third part describes our current knowledge on molecular aspect of in vivo cumulus-oocyte-complexe maturation, with a specific focus on signaling pathways, paracrine factors, and intracellular regulations that occur in cumulus cells during expansion, and in the oocyte during nuclear and cytoplasmic meiosis resumption. Our aim was to give an overall and comprehensive map of the regulatory mechanisms that intervene within the preovulatory follicle during differentiation and ovulation.
Collapse
Affiliation(s)
- Nadine Gérard
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France.
| | - Elodie Robin
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| |
Collapse
|
5
|
Marshall SA, Senadheera SN, Parry LJ, Girling JE. The Role of Relaxin in Normal and Abnormal Uterine Function During the Menstrual Cycle and Early Pregnancy. Reprod Sci 2016; 24:342-354. [DOI: 10.1177/1933719116657189] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Sarah A. Marshall
- School of Biosciences, University of Melbourne, Melbourne, Victoria, Australia
| | | | - Laura J. Parry
- School of Biosciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Jane E. Girling
- Department of Obstetrics and Gynaecology, Gynaecology Research Centre, The University of Melbourne and Royal Women’s Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
6
|
Elkhawagah AR, Longobardi V, Neglia G, Salzano A, Zullo G, Sosa GA, Campanile G, Gasparrini B. Effect of Relaxin on Fertility Parameters of Frozen-Thawed Buffalo (Bubalus bubalis) Sperm. Reprod Domest Anim 2016; 50:756-62. [PMID: 26372314 DOI: 10.1111/rda.12575] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 06/14/2015] [Indexed: 11/30/2022]
Abstract
The aim of this work was to evaluate the effect of relaxin on fertility parameters of buffalo frozen/thawed sperm. Sperm were incubated in the absence of capacitating agents (negative control), with a known capacitating agent such as heparin (positive control) and with 50 and 100 ng/ml relaxin for 2 and 4 h. Sperm viability, motility, capacitation and the effect of relaxin on the fertilizing ability after heterologous IVF were evaluated. Although viability was not affected, relaxin increased (p < 0.05) sperm motility compared to the negative and positive controls both after 2 h (60.0 ± 2.0, 60.0 ± 3.1, 68.3 ± 1.7 and 69.4 ± 2.7, respectively, in negative control, positive control, 50 and 100 ng/ml relaxin) and 4 h (55.0 ± 2.5, 53.3 ± 3.0, 62.2 ± 3.0 and 65.0 ± 3.2, respectively, in negative control, positive control, 50 and 100 ng/ml relaxin) incubation. When sperm were incubated with both 100 ng/ml relaxin and heparin, a decrease (p < 0.01) of pattern A, that is low capacitation level, was observed compared to the negative control both after 2 h (54.4, 34.3 and 36.4%, respectively, in negative control, positive control and 100 ng/ml relaxin) and 4 h (51.9, 35.0 and 34.3%, respectively, in negative control, positive control and 100 ng/ml relaxin). Moreover, an increase (p < 0.01) of pattern EA, that is high capacitation level, was recorded with 100 ng/ml relaxin and heparin compared to the negative control both after 2 h (44.1, 59.3 and 57.7%, respectively, in negative control, positive control and 100 ng/ml relaxin) and after 4 h (43.0, 54.4 and 56.0%, respectively, in negative control, positive control and 100 ng/ml relaxin). Finally, relaxin increased (p < 0.01) cleavage rate compared to the negative control (57.1 ± 4.4, 72.5 ± 6.0, 71.4 ± 5.5 and 73.6 ± 2.9, respectively, in negative control, positive control, 50 and 100 ng/ml relaxin). In conclusion, relaxin has a beneficial effect on motility, capacitation and fertilizing ability of frozen-thawed buffalo sperm.
Collapse
Affiliation(s)
- A R Elkhawagah
- Department of Veterinary Medicine and Animal Production, Federico II University, Naples, Italy
| | - V Longobardi
- Department of Veterinary Medicine and Animal Production, Federico II University, Naples, Italy
| | - G Neglia
- Department of Veterinary Medicine and Animal Production, Federico II University, Naples, Italy
| | - A Salzano
- Department of Veterinary Medicine and Animal Production, Federico II University, Naples, Italy
| | - G Zullo
- Department of Veterinary Medicine and Animal Production, Federico II University, Naples, Italy
| | - G A Sosa
- Theriogenology Department, Faculty of Veterinary Medicine, Benha University, Moshtohor - Toukh, Egypt
| | - G Campanile
- Department of Veterinary Medicine and Animal Production, Federico II University, Naples, Italy
| | - B Gasparrini
- Department of Veterinary Medicine and Animal Production, Federico II University, Naples, Italy
| |
Collapse
|
7
|
Santana PPB, da Silva BB, Silva TVG, Costa NN, Cordeiro MS, Santos SSD, Ohashi OM, Miranda MS. Addition of L-arginine to the fertilization medium enhances subsequent bovine embryo development rates. Theriogenology 2016; 85:1132-8. [PMID: 26733119 DOI: 10.1016/j.theriogenology.2015.11.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 11/16/2015] [Accepted: 11/27/2015] [Indexed: 12/13/2022]
Abstract
Although L-Arginine (ARG) has been reported as a promising bovine sperm capacitation agent, its effects on embryo development are still poorly understood. Herein, we compared the effects of ARG and/or heparin (HEP) addition to the fertilization medium for bovine oocytes on sperm capacitation and embryo development. We chose 10 mM ARG based on blastocyst development rates in a titration experiment. Addition of ARG and/or HEP to the fertilization medium resulted in similar rates of blastocyst development (P > 0.05). However, when ARG, but not HEP, was combined with a nitric oxide (NO) synthase inhibitor (N-Nitro-L-ARG-methyl ester, 10 mM) blastocyst development was decreased (P < 0.05). To assess the effects on capacitation, bovine sperm were incubated for 0, 3, and 6 hours in fertilization medium containing ARG and/or HEP and/or N-Nitro-L-ARG-methyl esterand acrosomal exocytosis rates were evaluated using fluorescein isothiocyanate conjugated Pisum sativum lectin (FITC-PSA) staining and flow cytometry. With HEP, acrosomal exocytosis rates were highest by 3 hours of incubation; however, by 6 hours, rates were similar for HEP and/or ARG (P > 0.05) and higher than those in control media (P < 0.05). Although both ARG and HEP increased sperm NO production (P < 0.05), combination with L-NAME only precluded acrosomal exocytosis when ARG added alone in the medium (P > 0.05). These results suggest that although both ARG and HEP supported sperm capacitation, only the effects of the former were driven via NO production. Moreover, ARG was also as effective as HEP at improving blastocyst development rates. Therefore, ARG may be used as a low-cost alternative sperm capacitation agent for bovine in vitro embryo production.
Collapse
Affiliation(s)
- Priscila P B Santana
- Department of Biology, Federal Rural University of Amazon, Capitão-Poço, Pará, Brazil.
| | - Bruno B da Silva
- Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Thiago V G Silva
- Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Nathalia N Costa
- Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Marcela S Cordeiro
- Federal Institute of Education, Science and Technology of Pará, Castanhal, Pará, Brazil
| | - Simone S D Santos
- Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Otávio M Ohashi
- Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Moysés S Miranda
- Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| |
Collapse
|
8
|
|
9
|
Feugang JM, Youngblood RC, Greene JM, Willard ST, Ryan PL. Self-illuminating quantum dots for non-invasive bioluminescence imaging of mammalian gametes. J Nanobiotechnology 2015; 13:38. [PMID: 26040273 PMCID: PMC4455054 DOI: 10.1186/s12951-015-0097-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 05/13/2015] [Indexed: 01/17/2023] Open
Abstract
Background The fertility performance of animals is still a mystery and the full comprehension of mammalian gametes maturation and early embryonic development remains to be elucidated. The recent development in nanotechnology offers a new opportunity for real-time study of reproductive cells in their physiological environments. As a first step toward that goal, we evaluated the effectiveness of a fluorescent and luminescent nanoparticle for in vitro and ex vivo imaging of porcine gametes. Methods Freshly harvested boar sperm were labeled with red-shifted (655 nm) quantum dot nanoparticles conjugated (QD+) or not (QD−) with plasminogen antibody and evaluated. Subsets of labeled spermatozoa were loaded into straws and placed within the lumen of gilt reproductive tracts for ex vivo intra-uterine imaging. Porcine cumulus-oocyte complexes (COCs) were matured in the presence of QD− or QD+. Ovarian follicles were microinjected with QD− or QD+ and placed in culture for up to 4 days. After labeling, all samples were supplemented with coelenterazine, the luciferase substrate, and immediately submitted to bioluminescence analysis, followed by fluorescence and hyperspectral imaging. Data were analyzed with ANOVA and P < 0.05 indicated significant differences. Results All labeled-samples revealed bioluminescence emission that was confirmed by fluorescence and hyperspectral imaging of the QD localization within the cells and tissues. Over 76% of spermatozoa and both immature and mature COCs were successfully labeled with QD− or QD+. The QD− fluorescence appeared homogenously distributed in the oocytes, while found in the entire sperm length with a higher accumulation within the mid-piece. Labeled-follicles exhibited a progressive migration of QD nanoparticles within the follicle wall during culture. In contrast, QD+ fluorescence signals appeared condensed and stronger in the follicle cells, sperm head, and sub-plasma membrane area of mature oocytes. Weaker QD+ signals were detected in the cumulus cells. Fluorescence and hyperspectral microscope imaging showed comparable intracellular QD localization. Ex-vivo intra-uterine bioluminescence imaging of labeled spermatozoa revealed stronger signals captured over the oviducts, with uterine body allowing the lowest signal detection. Conclusion Findings indicate that conjugated and non-conjugated fluorescent nanoparticles can be used for effective labeling of mammalian gametes for in vitro monitoring and potential in vivo targeted-imaging. Electronic supplementary material The online version of this article (doi:10.1186/s12951-015-0097-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jean M Feugang
- Department of Animal and Dairy Sciences, Facility for Organismal and Cellular Imaging (FOCI), Mississippi State University, Mississippi State, MS, 39762, USA.
| | - Ramey C Youngblood
- Department of Animal and Dairy Sciences, Facility for Organismal and Cellular Imaging (FOCI), Mississippi State University, Mississippi State, MS, 39762, USA.
| | - Jonathan M Greene
- Department of Animal and Dairy Sciences, Facility for Organismal and Cellular Imaging (FOCI), Mississippi State University, Mississippi State, MS, 39762, USA. .,Department of Pathobiology and Population Medicine, Mississippi State University, Mississippi State, MS, 39762, USA.
| | - Scott T Willard
- Department of Animal and Dairy Sciences, Facility for Organismal and Cellular Imaging (FOCI), Mississippi State University, Mississippi State, MS, 39762, USA. .,Department of Biochemistry and Molecular Biology and Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS, 39762, USA.
| | - Peter L Ryan
- Department of Animal and Dairy Sciences, Facility for Organismal and Cellular Imaging (FOCI), Mississippi State University, Mississippi State, MS, 39762, USA. .,Department of Pathobiology and Population Medicine, Mississippi State University, Mississippi State, MS, 39762, USA.
| |
Collapse
|
10
|
Feugang JM, Greene JM, Sanchez-Rodríguez HL, Stokes JV, Crenshaw MA, Willard ST, Ryan PL. Profiling of relaxin and its receptor proteins in boar reproductive tissues and spermatozoa. Reprod Biol Endocrinol 2015; 13:46. [PMID: 25990010 PMCID: PMC4445784 DOI: 10.1186/s12958-015-0043-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 05/08/2015] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Relaxin levels in seminal plasma have been associated with positive effects on sperm motility and quality, and thus having potential roles in male fertility. However, the origin of seminal relaxin, within the male reproductive tract, and the moment of its release in the vicinity of spermatozoa remain unclear. Here, we assessed the longitudinal distribution of relaxin and its receptors RXFP1 and RXFP2 in the reproductive tract, sex accessory glands, and spermatozoa of adult boars. METHODS Spermatozoa were harvested from three fertile boars and reproductive tract (testes and epididymis) and sex accessory gland (prostate and seminal vesicles) tissues were collected post-mortem from each boar. Epididymis ducts were sectioned into caput, corpus, and cauda regions, and spermatozoa were mechanically collected. All samples were subjected to immunofluorescence and/or western immunoblotting for relaxin, RXFP1, and RXFP2 detection. Immunolabeled-spermatozoa were submitted to flow cytometry analyses and data were statistically analyzed with ANOVA. RESULTS Both receptors were detected in all tissues, with a predominance of mature and immature isoforms of RXFP1 and RXFP2, respectively. Relaxin signals were found in the testes, with Leydig cells displaying the highest intensity compared to other testicular cells. The testicular immunofluorescence intensity of relaxin was greater than that of other tissues. Epithelial basal cells exhibited the highest relaxin immunofluorescence intensity within the epididymis and the vas deferens. The luminal immunoreactivity to relaxin was detected in the seminiferous tubule, epididymis, and vas deferens ducts. Epididymal and ejaculated spermatozoa were immunopositive to relaxin, RXFP1, and RXFP2, and epididymal corpus-derived spermatozoa had the highest immunoreactivities across epididymal sections. Both vas deferens-collected and ejaculated spermatozoa displayed comparable, but lowest immunofluorescence signals among groups. The entire sperm length was immunopositive to both relaxin and receptors, with relaxin signal being robust in the acrosome area and RXFP2, homogeneously distributed than RXFP1 on the head of ejaculated spermatozoa. CONCLUSIONS Immunolocalization indicates that relaxin-receptor complexes may have important roles in boar reproduction and that spermatozoa are already exposed to relaxin upon their production. The findings suggest autocrine and/or paracrine actions of relaxin on spermatozoa, either before or after ejaculation, which have possible roles on the fertilizing potential of spermatozoa.
Collapse
Affiliation(s)
- Jean M Feugang
- Department of Animal and Dairy Sciences, Facility for Organismal and Cellular Imaging (FOCI), Mississippi State University, Mississippi State, MS, 39762, USA.
| | - Jonathan M Greene
- Department of Animal and Dairy Sciences, Facility for Organismal and Cellular Imaging (FOCI), Mississippi State University, Mississippi State, MS, 39762, USA.
- Department of Pathobiology & Population Medicine, Mississippi State University, Mississippi State, MS, 39762, USA.
- Department of Pathobiological Sciences, Robert P. Hanson Biomedical Sciences Laboratories, University of Wisconsin, Madison, WI, 53706, USA.
| | - Hector L Sanchez-Rodríguez
- Department of Animal and Dairy Sciences, Facility for Organismal and Cellular Imaging (FOCI), Mississippi State University, Mississippi State, MS, 39762, USA.
- Department of Animal Science, Mayaguez Campus, University of Puerto Rico, Mayaguez, Puerto Rico.
| | - John V Stokes
- Department of Basic Sciences, Flow Cytometry facility core, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, 39762, USA.
| | - Mark A Crenshaw
- Department of Animal and Dairy Sciences, Facility for Organismal and Cellular Imaging (FOCI), Mississippi State University, Mississippi State, MS, 39762, USA.
| | - Scott T Willard
- Department of Animal and Dairy Sciences, Facility for Organismal and Cellular Imaging (FOCI), Mississippi State University, Mississippi State, MS, 39762, USA.
- Department of Biochemistry and Molecular Biology & Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS, 39762, USA.
| | - Peter L Ryan
- Department of Animal and Dairy Sciences, Facility for Organismal and Cellular Imaging (FOCI), Mississippi State University, Mississippi State, MS, 39762, USA.
- Department of Pathobiology & Population Medicine, Mississippi State University, Mississippi State, MS, 39762, USA.
| |
Collapse
|
11
|
Feugang JM, Rodríguez-Muñoz JC, Dillard DS, Crenshaw MA, Willard ST, Ryan PL. Beneficial effects of relaxin on motility characteristics of stored boar spermatozoa. Reprod Biol Endocrinol 2015; 13:24. [PMID: 25880070 PMCID: PMC4393568 DOI: 10.1186/s12958-015-0021-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 03/19/2015] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Relaxin is detected in seminal plasma of many species and its association with sperm motility may be beneficial in some aspects of assisted reproduction. Here, we immunolocalized relaxin receptors and investigated the effects of exogenous relaxin on motility characteristics, viability, and cAMP content of boar spermatozoa after storage. METHODS Commercial doses of boar semen were obtained on the collection day (Day 0) and kept in shipping containers at room temperature for up to 4 days (Day 4). On Day 0, spermatozoa were fixed for immunofluorescence detection of relaxin receptors RXFP1 and RXFP2 (Experiment 1). Semen aliquots were taken from the same dose at Day 0, Day 1, and Day 2 (Experiment 2a), and Day 2 and Day 4 (Experiment 2b) for analyses. Alive spermatozoa were purified and incubated (1 h-37°C) with 0, 50, or 100 ng relaxin/ml (Experiment 2a) and 0, 100, or 500 ng relaxin/ml (Experiment 2b). Afterward, aliquots of each treatment group were subjected to motility (Experiments 2), viability (Experiment 3) analyses, and cAMP quantification (Experiment 4). Data (3-4 independent replicates) were statistically analyzed (ANOVA followed by pairwise comparisons) and p values less or equal to 0.05 was set for significant difference. RESULTS Both RXFP1 and RXFP2 receptors were immunolocalized on the entire spermatozoon. Relaxin concentration of 100 ng/ml significantly improved the proportions of motile, progressive, and rapid spermatozoa up to Day 2. Only 500 ng relaxin/ml provided beneficial effects on Day 4. The viability of spermatozoa was not affected by relaxin (100 ng/ml) during storage, but the extent of mitochondria membrane damages was significantly decreased. Furthermore, relaxin did not affect the cAMP contents of spermatozoa during storage, in our conditions. CONCLUSIONS Relaxin could be a valuable motility booster of stored- or aged-spermatozoa for assisted reproduction techniques. However, the related-intracellular signaling cascades of relaxin in boar spermatozoa remain undetermined.
Collapse
Affiliation(s)
- Jean M Feugang
- Facility for Organismal and Cellular Imaging (FOCI), Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, Mississippi, 39762, USA.
| | - Juan C Rodríguez-Muñoz
- Facility for Organismal and Cellular Imaging (FOCI), Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, Mississippi, 39762, USA.
| | - Darby S Dillard
- Facility for Organismal and Cellular Imaging (FOCI), Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, Mississippi, 39762, USA.
| | - Mark A Crenshaw
- Facility for Organismal and Cellular Imaging (FOCI), Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, Mississippi, 39762, USA.
| | - Scott T Willard
- Facility for Organismal and Cellular Imaging (FOCI), Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, Mississippi, 39762, USA.
- Department of Biochemistry and Molecular Biology & Entomology and Plant Pathology, Mississippi State University, Mississippi State, Mississippi, 39762, USA.
| | - Peter L Ryan
- Facility for Organismal and Cellular Imaging (FOCI), Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, Mississippi, 39762, USA.
- Department of Pathobiology and Population Medicine, Mississippi State University, Mississippi State, Mississippi, 39762, USA.
| |
Collapse
|
12
|
Anand-Ivell R, Ivell R. Regulation of the reproductive cycle and early pregnancy by relaxin family peptides. Mol Cell Endocrinol 2014; 382:472-479. [PMID: 23994019 DOI: 10.1016/j.mce.2013.08.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 08/09/2013] [Accepted: 08/18/2013] [Indexed: 12/16/2022]
Abstract
The relaxin family of peptide hormones are structurally closely related to one another sharing a heterodimeric A-B structure, like that of insulin. They may also be active as unprocessed B-C-A pro-forms. Relaxin has been shown to pay a key role within the ovary, being involved in follicle growth, and ovulation. Relaxin is produced in large amounts also by the corpus luteum where it acts as an endocrine hormone positively affecting implantation, placentation and vascularization during the all-important first trimester phase of pregnancy establishment. Relaxin exerts its functions via the receptor RXFP1. Insulin-like peptide 3 (INSL3) in contrast acts through the related receptor RXFP2, and plays an essential role in the production of androgens within growing antral follicles. INSL3 is also produced in large amounts by the male fetus shortly after sex determination, where it controls the first transabdominal phase of testicular descent. However, this fetal INSL3 is also able to influence placental and maternal physiology, indicating associations with later preeclampsia and/or fetal growth restriction. Other members of this relaxin-like family of peptides, such as INSL4, INSL5 and INSL6 are less well studied, though all suggest modulatory roles in ovarian and/or placental function.
Collapse
Affiliation(s)
| | - Richard Ivell
- Leibniz Institute for Farm Animal Biology, 18196 Dummerstorf, Germany.
| |
Collapse
|
13
|
Anand-Ivell R, Tremellen K, Dai Y, Heng K, Yoshida M, Knight PG, Hale GE, Ivell R. Circulating insulin-like factor 3 (INSL3) in healthy and infertile women. Hum Reprod 2013; 28:3093-102. [DOI: 10.1093/humrep/det349] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
14
|
Feugang JM, Youngblood RC, Greene JM, Fahad AS, Monroe WA, Willard ST, Ryan PL. Application of quantum dot nanoparticles for potential non-invasive bio-imaging of mammalian spermatozoa. J Nanobiotechnology 2012; 10:45. [PMID: 23241497 PMCID: PMC3553073 DOI: 10.1186/1477-3155-10-45] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Accepted: 12/11/2012] [Indexed: 01/12/2023] Open
Abstract
Background Various obstacles are encountered by mammalian spermatozoa during their journey through the female genital tract, and only few or none will reach the site of fertilization. Currently, there are limited technical approaches for non-invasive investigation of spermatozoa migration after insemination. As the knowledge surrounding sperm behavior throughout the female genital tract still remains elusive, the recent development of self-illuminating quantum dot nanoparticles may present a potential means for real-time in vitro and in vivo monitoring of spermatozoa. Results Here, we show the ability of boar spermatozoa to harmlessly interact and incorporate bioluminescent resonance energy transfer-conjugated quantum dot (BRET-QD) nanoparticles. The confocal microscope revealed in situ fluorescence of BRET-QD in the entire spermatozoon, while the ultra-structural analysis using the transmission electron microscope indicated BRET-QD localization on the sperm plasma membrane and intracellular compartment. In controlled-in vitro assays, bioluminescent imaging demonstrated that spermatozoa incubated with BRET-QD and luciferase substrate (coelenterazine) emit light (photons/sec) above the background, which confirmed the in situ fluorescence imaging. Most importantly, sperm motility, viability, and fertilizing potential were not affected by the BRET-QD incorporation when used at an appropriated ratio. Conclusions Our results demonstrate that pig spermatozoa can incorporate BRET-QD nanoparticles without affecting their motility and capacity to interact with the oocyte when used at an appropriated balance. We anticipate that our study will enable in-depth exploration of the male components of in vivo migration, fertilization, and embryonic development at the molecular level using this novel approach.
Collapse
Affiliation(s)
- Jean M Feugang
- Facility for Cellular Imaging and Organismal Imaging, Mississippi State University, Mississippi State, MS, USA.
| | | | | | | | | | | | | |
Collapse
|
15
|
Advances on in vitro production and cryopreservation of porcine embryos. Anim Reprod Sci 2012; 132:115-22. [PMID: 22698497 DOI: 10.1016/j.anireprosci.2012.05.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 05/15/2012] [Accepted: 05/17/2012] [Indexed: 11/23/2022]
Abstract
There have been intensive attempts to establish reliable in vitro production (IVP) and cryopreservation methods of embryos in pigs. Although a great deal of progress has been made, current IVP systems and cryopreservation still suffer from insufficient cytoplasmic abilities of in vitro matured oocytes, polyspermic fertilization, poor quality of in vitro produced embryos and low efficiency of embryo cryopreservation. Compared to other mammalian species, pig oocytes and embryos are characterized by large amounts of lipid content stored mainly in the form of lipid droplets in the cytoplasm. This fact has a negative influence on biotechnological applications on porcine oocytes and embryos. In this review, we will discuss recent studies about methods and techniques for modifying porcine embryo IVP system and embryo cryopreservation that produces high quality of pig blastocysts using in vitro maturation, in vitro fertilization, in vitro culture, microsurgical manipulation, addition of protein, the use of cytoskeleton stabilizing agents and various physical methods. The presented methods and techniques make it possible to modify the characteristics of oocytes and embryos and thus may become major tools in mammalian gamete and embryo agricultural or biotechnological applications in the future.
Collapse
|