1
|
Cao C, Zhang H, He Z, Zhang K, Qian Z, Shen J, Zheng L, Xue M, Sun S, Li C, Zhao W, Jing J, Ma R, Ge X, Yao B. Octanoic acid mitigates busulfan-induced blood-testis barrier damage by alleviating oxidative stress and autophagy. Lipids Health Dis 2024; 23:180. [PMID: 38862993 PMCID: PMC11165768 DOI: 10.1186/s12944-024-02157-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/21/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND The management of male infertility continues to encounter an array of challenges and constraints, necessitating an in-depth exploration of novel therapeutic targets to enhance its efficacy. As an eight-carbon medium-chain fatty acid, octanoic acid (OCA) shows promise for improving health, yet its impact on spermatogenesis remains inadequately researched. METHODS Mass spectrometry was performed to determine the fatty acid content and screen for a pivotal lipid component in the serum of patients with severe spermatogenesis disorders. The sperm quality was examined, and histopathological analysis and biotin tracer tests were performed to assess spermatogenesis function and the integrity of the blood-testis barrier (BTB) in vivo. Cell-based in vitro experiments were carried out to investigate the effects of OCA administration on Sertoli cell dysfunction. This research aimed to elucidate the mechanism by which OCA may influence the function of Sertoli cells. RESULTS A pronounced reduction in OCA content was observed in the serum of patients with severe spermatogenesis disorders, indicating that OCA deficiency is related to spermatogenic disorders. The protective effect of OCA on reproduction was tested in a mouse model of spermatogenic disorder induced by busulfan at a dose 30 mg/kg body weight (BW). The mice in the study were separated into distinct groups and administered varying amounts of OCA, specifically at doses of 32, 64, 128, and 256 mg/kg BW. After evaluating sperm parameters, the most effective dose was determined to be 32 mg/kg BW. In vivo experiments showed that treatment with OCA significantly improved sperm quality, testicular histopathology and BTB integrity, which were damaged by busulfan. Moreover, OCA intervention reduced busulfan-induced oxidative stress and autophagy in mouse testes. In vitro, OCA pretreatment (100 µM) significantly ameliorated Sertoli cell dysfunction by alleviating busulfan (800 µM)-induced oxidative stress and autophagy. Moreover, rapamycin (5 µM)-induced autophagy led to Sertoli cell barrier dysfunction, while OCA administration exerted a protective effect by alleviating autophagy. CONCLUSIONS This study demonstrated that OCA administration suppressed oxidative stress and autophagy to alleviate busulfan-induced BTB damage. These findings provide a deeper understanding of the toxicology of busulfan and a promising avenue for the development of novel OCA-based therapies for male infertility.
Collapse
Affiliation(s)
- Chun Cao
- Department of Reproductive Medicine, Affiliated Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, 305 Zhongshan East Road, Nanjing, 210002, China
| | - Hong Zhang
- Center of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, 305 Zhongshan East Road, Nanjing, 210002, Jiangsu, China
| | - Zhaowanyue He
- Center of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, 305 Zhongshan East Road, Nanjing, 210002, Jiangsu, China
| | - Kemei Zhang
- Reproductive Medical Center, Jinling Hospital Department, Nanjing Medical University, Nanjing, 210002, Jiangsu, China
| | - Zhang Qian
- Center of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, 305 Zhongshan East Road, Nanjing, 210002, Jiangsu, China
| | - Jiaming Shen
- Center of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, 305 Zhongshan East Road, Nanjing, 210002, Jiangsu, China
| | - Lu Zheng
- Center of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, 305 Zhongshan East Road, Nanjing, 210002, Jiangsu, China
| | - Mengqi Xue
- Reproductive Medical Center, Jinling Hospital Department, Nanjing Medical University, Nanjing, 210002, Jiangsu, China
| | - Shanshan Sun
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
| | - Chuwei Li
- Center of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, 305 Zhongshan East Road, Nanjing, 210002, Jiangsu, China
| | - Wei Zhao
- Center of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, 305 Zhongshan East Road, Nanjing, 210002, Jiangsu, China
| | - Jun Jing
- Reproductive Medical Center, Jinling Hospital Department, Nanjing Medical University, Nanjing, 210002, Jiangsu, China
| | - Rujun Ma
- Department of Reproductive Medicine, Affiliated Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, 305 Zhongshan East Road, Nanjing, 210002, China
- Center of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, 305 Zhongshan East Road, Nanjing, 210002, Jiangsu, China
| | - Xie Ge
- Department of Reproductive Medicine, Affiliated Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, 305 Zhongshan East Road, Nanjing, 210002, China.
- Center of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, 305 Zhongshan East Road, Nanjing, 210002, Jiangsu, China.
| | - Bing Yao
- Department of Reproductive Medicine, Affiliated Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, 305 Zhongshan East Road, Nanjing, 210002, China.
- Center of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, 305 Zhongshan East Road, Nanjing, 210002, Jiangsu, China.
- Reproductive Medical Center, Jinling Hospital Department, Nanjing Medical University, Nanjing, 210002, Jiangsu, China.
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, Jiangsu, China.
| |
Collapse
|
2
|
Feng YQ, Liu X, Zuo N, Yu MB, Bian WM, Han BQ, Sun ZY, De Felici M, Shen W, Li L. NAD + precursors promote the restoration of spermatogenesis in busulfan-treated mice through inhibiting Sirt2-regulated ferroptosis. Theranostics 2024; 14:2622-2636. [PMID: 38646657 PMCID: PMC11024856 DOI: 10.7150/thno.92416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/05/2024] [Indexed: 04/23/2024] Open
Abstract
Rationale: In recent years, nicotinamide adenine dinucleotide (NAD+) precursors (Npre) have been widely employed to ameliorate female reproductive problems in both humans and animal models. However, whether and how Npre plays a role in the male reproductive disorder has not been fully clarified. Methods: In the present study, a busulfan-induced non-obstructive azoospermic mouse model was used, and Npre was administered for five weeks following the drug injection, with the objective of reinstating spermatogenesis and fertility. Initially, we assessed the NAD+ level, germ cell types, semen parameters and sperm fertilization capability. Subsequently, testis tissues were examined through RNA sequencing analysis, ELISA, H&E, immunofluorescence, quantitative real-time PCR, and Western blotting techniques. Results: The results indicated that Npre restored normal level of NAD+ in blood and significantly alleviated the deleterious effects of busulfan (BU) on spermatogenesis, thereby partially reestablishing fertilization capacity. Transcriptome analysis, along with recovery of testicular Fe2+, GSH, NADPH, and MDA levels, impaired by BU, and the fact that Fer-1, an inhibitor of ferroptosis, restored spermatogenesis and semen parameters close to CTRL values, supported such possibility. Interestingly, the reduction in SIRT2 protein level by the specific inhibitor AGK2 attenuated the beneficial effects of Npre on spermatogenesis and ferroptosis by affecting PGC-1α and ACLY protein levels, thus suggesting how these compounds might confer spermatogenesis protection. Conclusion: Collectively, these findings indicate that NAD+ protects spermatogenesis against ferroptosis, probably through SIRT2 dependent mechanisms. This underscores the considerable potential of Npre supplementation as a feasible strategy for preserving or restoring spermatogenesis in specific conditions of male infertility and as adjuvant therapy to preserve male fertility in cancer patients receiving sterilizing treatments.
Collapse
Affiliation(s)
- Yan-Qin Feng
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Xuan Liu
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Ning Zuo
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Mu-Bin Yu
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Wen-Meng Bian
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Bao-Quan Han
- Department of Urology, Shenzhen University General Hospital, Shenzhen 518055, China
| | - Zhong-Yi Sun
- Department of Urology, Shenzhen University General Hospital, Shenzhen 518055, China
| | - Massimo De Felici
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome 00133, Italy
| | - Wei Shen
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Lan Li
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
3
|
Mohammadi A, Bashiri Z, Rafiei S, Asgari H, Shabani R, Hosseini S, Koruji M. Testicular niche repair after gonadotoxic treatments: Current knowledge and future directions. Biol Cell 2024; 116:e2300123. [PMID: 38470182 DOI: 10.1111/boc.202300123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/25/2024] [Indexed: 03/13/2024]
Abstract
The testicular niche, which includes the germ cells, somatic cells, and extracellular matrix, plays a crucial role in maintaining the proper functions of the testis. Gonadotoxic treatments, such as chemotherapy and radiation therapy, have significantly improved the survival rates of cancer patients but have also been shown to have adverse effects on the testicular microenvironment. Therefore, repairing the testicular niche after gonadotoxic treatments is essential to restore its function. In recent years, several approaches, such as stem cell transplantation, gene therapy, growth factor therapy, and pharmacological interventions have been proposed as potential therapeutic strategies to repair the testicular niche. This comprehensive review aims to provide an overview of the current understanding of testis damage and repair mechanisms. We will cover a range of topics, including the mechanism of gonadotoxic action, repair mechanisms, and treatment approaches. Overall, this review highlights the importance of repairing the testicular niche after gonadotoxic treatments and identifies potential avenues for future research to improve the outcomes for cancer survivors.
Collapse
Affiliation(s)
- Amirhossein Mohammadi
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Bashiri
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Endometrium and Endometriosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Omid Fertility & Infertility Clinic, Hamedan, Iran
| | - Sara Rafiei
- Department of Botany and Plant Sciences, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Hamidreza Asgari
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ronak Shabani
- Reproductive Sciences and Technology Research Center, Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - SeyedJamal Hosseini
- Biomedical Engineering Department, Amirkabir University of Technology, Tehran, Iran
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Morteza Koruji
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Kim KH, Park MJ, Park NC, Park HJ. Effect of N-acetyl-L-cysteine on Testicular Tissue in Busulfan-Induced Dysfunction in the Male Reproductive System. World J Mens Health 2023; 41:882-891. [PMID: 37118950 PMCID: PMC10523131 DOI: 10.5534/wjmh.220100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/20/2022] [Accepted: 07/24/2022] [Indexed: 01/05/2023] Open
Abstract
PURPOSE This study aimed to evaluate the protective effect of N-acetyl-L-cysteine (NAC) as an antioxidant on busulfan-induced testicular dysfunction in mice and elucidate its possible mechanism of action. MATERIALS AND METHODS Thirty-two C57BL/6 male mice were randomly divided into four groups (n=8/group) as follows: (1) control group (oral administration of saline [0.1 mL daily] for 35 days); (2) NAC group (oral administration of NAC [10 mg/kg daily] for 35 days); (3) busulfan group (double intraperitoneal injections of 20 mg/kg; total dose of 40 mg/kg); and (4) busulfan+NAC group (after double intraperitoneal injections of 20 mg/kg; total dose of 40 mg/kg, NAC administration [10 mg/kg daily] for 35 days). The testes were removed, weighed, and subjected to sperm parameter analysis and morphology assessment. Reproductive hormone, serum/testicular reactive oxygen species (ROS) level, oxidative stress and antioxidant markers were evaluated. The testicular expression of Nrf2 and HO-1 was examined using RT-qPCR. RESULTS Busulfan treatment significantly decreased testicular weight, sperm count, and serum testosterone levels. Atrophy and degeneration of germinal epithelium were observed in the busulfan group. NAC administration after busulfan treatment partially attenuated the deterioration of testis weight, sperm quality, serum hormones, histomorphometric changes, and oxidative and antioxidative status. NAC treatment resulted in a considerable improvement in Nrf2 and HO-1 mRNA expression levels. CONCLUSIONS This study provides compelling evidence that NAC as a potent antioxidant has significant protective effects against busulfan-induced male reproductive impairment possibly through modification of the Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Kyung Hwan Kim
- Department of Urology, Pusan National University School of Medicine, Busan, Korea
- Medical Research Institute of Pusan National University Hospital, Busan, Korea
| | - Min Jung Park
- The Korea Institute for Public Sperm Bank, Busan, Korea
| | - Nam Cheol Park
- Department of Urology, Pusan National University School of Medicine, Busan, Korea
- The Korea Institute for Public Sperm Bank, Busan, Korea
| | - Hyun Jun Park
- Department of Urology, Pusan National University School of Medicine, Busan, Korea
- Medical Research Institute of Pusan National University Hospital, Busan, Korea.
| |
Collapse
|
5
|
Jin C, Wang Z, Li P, Tang J, Jiao T, Li Y, Ou J, Zou D, Li M, Mang X, Liu J, Ma Y, Wu X, Shi J, Chen S, He M, Lu Y, Zhang N, Miao S, Sun F, Wang L, Li K, Yu J, Song W. Decoding the spermatogonial stem cell niche under physiological and recovery conditions in adult mice and humans. SCIENCE ADVANCES 2023; 9:eabq3173. [PMID: 37540753 PMCID: PMC10403211 DOI: 10.1126/sciadv.abq3173] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/03/2023] [Indexed: 08/06/2023]
Abstract
The intricate interaction between spermatogonial stem cell (SSC) and testicular niche is essential for maintaining SSC homeostasis; however, this interaction remains largely uncharacterized. In this study, to characterize the underlying signaling pathways and related paracrine factors, we delineated the intercellular interactions between SSC and niche cell in both adult mice and humans under physiological conditions and dissected the niche-derived regulation of SSC maintenance under recovery conditions, thus uncovering the essential role of C-C motif chemokine ligand 24 and insulin-like growth factor binding protein 7 in SSC maintenance. We also established the clinical relevance of specific paracrine factors in human fertility. Collectively, our work on decoding the adult SSC niche serves as a valuable reference for future studies on the aetiology, diagnosis, and treatment of male infertility.
Collapse
Affiliation(s)
- Cheng Jin
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University (Foshan Maternity & Child Healthcare Hospital), Foshan 528000, China
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhipeng Wang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Pengyu Li
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Jielin Tang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Tao Jiao
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Yiran Li
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Jinhuan Ou
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Dingfeng Zou
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Mengzhen Li
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Xinyu Mang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Jun Liu
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Yanni Ma
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
- Center for Stem Cell and Regeneration Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College (PUMC), Chengdu 610052, China
| | - Xiaolong Wu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Jie Shi
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Shitao Chen
- International Peace Maternity and Child Health Hospital, Shanghai Key Laboratory for Reproductive Medicine, School of Medicine, Shanghai Jiaotong University, Shanghai 200030, China
| | - Manman He
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Yan Lu
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Ning Zhang
- Center for Stem Cell and Regeneration Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College (PUMC), Chengdu 610052, China
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit (MRC-PPU), School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Shiying Miao
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Fei Sun
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Linfang Wang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Kai Li
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Jia Yu
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
- Center for Stem Cell and Regeneration Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College (PUMC), Chengdu 610052, China
| | - Wei Song
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| |
Collapse
|
6
|
Angelopoulou E, Paudel YN, Piperi C. Role of Liver Growth Factor (LGF) in Parkinson's Disease: Molecular Insights and Therapeutic Opportunities. Mol Neurobiol 2021; 58:3031-3042. [PMID: 33608826 DOI: 10.1007/s12035-021-02326-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 02/09/2021] [Indexed: 11/26/2022]
Abstract
Parkinson's disease is the most common neurodegenerative movement disorder with unclear etiology and only symptomatic treatment to date. Toward the development of novel disease-modifying agents, neurotrophic factors represent a reasonable and promising therapeutic approach. However, despite the robust preclinical evidence, clinical trials using glial-derived neurotrophic factor (GDNF) and neurturin have been unsuccessful. In this direction, the therapeutic potential of other trophic factors in PD and the elucidation of the underlying molecular mechanisms are of paramount importance. The liver growth factor (LGF) is an albumin-bilirubin complex acting as a hepatic mitogen, which also exerts regenerative effects on several extrahepatic tissues including the brain. Accumulating evidence suggests that intracerebral and peripheral administration of LGF can enhance the outgrowth of nigrostriatal dopaminergic axonal terminals; promote the survival, migration, and differentiation of neuronal stem cells; and partially protect against dopaminergic neuronal loss in the substantia nigra of PD animal models. In most studies, these effects are accompanied by improved motor behavior of the animals. Potential underlying mechanisms involve transient microglial activation, TNF-α upregulation, and activation of the extracellular signal-regulated kinases 1/2 (ERK1/2) and of the transcription factor cyclic AMP response-element binding protein (CREB), along with anti-inflammatory and antioxidant pathways. Herein, we summarize recent preclinical evidence on the potential role of LGF in PD pathogenesis, aiming to shed more light on the underlying molecular mechanisms and reveal novel therapeutic opportunities for this debilitating disease.
Collapse
Affiliation(s)
- Efthalia Angelopoulou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Yam Nath Paudel
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
7
|
Chen Z, Liu M, Hu JH, Gao Y, Deng C, Jiang MH. Substance P restores spermatogenesis in busulfan-treated mice: A new strategy for male infertility therapy. Biomed Pharmacother 2021; 133:110868. [PMID: 33181455 DOI: 10.1016/j.biopha.2020.110868] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 01/15/2023] Open
Abstract
Male infertility has become an important health problem that is primarily caused by testicular dysfunction with abnormal spermatogenesis. In this study, we demonstrated that the neuropeptide, substance P (SP), is essential for spermatogonia proliferation in a seminiferous tubule culture system. In addition, SP (5 nmol/kg) treatment markedly restored spermatogenesis, improved sperm quality, and increased the number of ZBTB16+ or LIN28+ undifferentiated spermatogonia as well as STRA8+ differentiated spermatogonia in a busulfan-induced non-obstructive azoospermic mouse model. Furthermore, 100 nM SP treatment in vitro significantly stimulated the proliferation of GC-1 spg cells (a spermatogonia cell line) via activation of the Erk1/2 signaling pathway. Moreover, the sperm quality and the number of spermatogonia were significantly reduced after treatment with RP67580, a selective NK-1 receptor antagonist, suggesting that SP-NK1R signaling plays an important role in spermatogenesis. Taken together, these results suggest that SP may be a potential therapeutic agent for male infertility by accelerating the restoration of spermatogenesis.
Collapse
Affiliation(s)
- Zhihong Chen
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
| | - Minjie Liu
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jin-Hua Hu
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, 510080, China
| | - Yong Gao
- Reproductive Medicine Center, The Key Laboratory for Reproductive Medicine of Guangdong Province, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Chunhua Deng
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Mei Hua Jiang
- Program of Stem Cells and Regenerative Medicine, Affiliated Guangzhou Women and Children's Hospital and Department of Anatomy, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China; Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
8
|
Muresanu C, Somasundaram SG, Neganova ME, Bovina EV, Vissarionov SV, Ofodile ON, Fisenko VP, Bragin V, Minyaeva NN, Chubarev VN, Klochkov SG, Tarasov VV, Mikhaleva LM, Kirkland CE, Aliev G. Updated Understanding of the Degenerative Disc Diseases - Causes Versus Effects - Treatments, Studies and Hypothesis. Curr Genomics 2020; 21:464-477. [PMID: 33093808 PMCID: PMC7536794 DOI: 10.2174/1389202921999200407082315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/20/2019] [Accepted: 03/16/2020] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND In this review we survey medical treatments and research strategies, and we discuss why they have failed to cure degenerative disc diseases or even slow down the degenerative process. OBJECTIVE We seek to stimulate discussion with respect to changing the medical paradigm associated with treatments and research applied to degenerative disc diseases. METHOD PROPOSAL We summarize a Biological Transformation therapy for curing chronic inflammations and degenerative disc diseases, as was previously described in the book Biological Transformations controlled by the Mind Volume 1. PRELIMINARY STUDIES A single-patient case study is presented that documents complete recovery from an advanced lumbar bilateral discopathy and long-term hypertrophic chronic rhinitis by application of the method proposed. CONCLUSION Biological transformations controlled by the mind can be applied by men and women in order to improve their quality of life and cure degenerative disc diseases and chronic inflammations illnesses.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Gjumrakch Aliev
- Address correspondence to this author at the GALLY International Research Institute, 7733 Louis Pasteur Drive, #330, San Antonio, TX, 78229 USA; Tel: +440-263-7461; E-mails: and
| |
Collapse
|
9
|
Ziaeipour S, Rezaei F, Piryaei A, Abdi S, Moradi A, Ghasemi A, Azad N, Abdollahifar M. Hyperthermia versus busulfan: Finding the effective method in animal model of azoospermia induction. Andrologia 2019; 51:e13438. [DOI: 10.1111/and.13438] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/26/2019] [Accepted: 08/22/2019] [Indexed: 12/15/2022] Open
Affiliation(s)
- Sanaz Ziaeipour
- Department of Biology and Anatomical Sciences School of Medicine Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Fatereh Rezaei
- Department of Biology and Anatomical Sciences School of Medicine Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Abbas Piryaei
- Urogenital Stem Cell Research Center Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Shabnam Abdi
- Department of Anatomical Sciences & Cognitive Neuroscience Faculty of Medicine Tehran Medical Sciences Islamic Azad University Tehran Iran
- Student Research Committee Department and Faculty of Medical Sciences Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Ali Moradi
- Department of Biology and Anatomical Sciences School of Medicine Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Amir Ghasemi
- Department of Biology and Anatomical Sciences School of Medicine Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Nahid Azad
- Abnormal Uterine Bleeding Research Center Semnan University of Medical Sciences Semnan Iran
| | - Mohammad‐Amin Abdollahifar
- Department of Biology and Anatomical Sciences School of Medicine Shahid Beheshti University of Medical Sciences Tehran Iran
| |
Collapse
|
10
|
Qu N, Itoh M, Sakabe K. Effects of Chemotherapy and Radiotherapy on Spermatogenesis: The Role of Testicular Immunology. Int J Mol Sci 2019; 20:E957. [PMID: 30813253 PMCID: PMC6413003 DOI: 10.3390/ijms20040957] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/20/2019] [Accepted: 02/20/2019] [Indexed: 02/06/2023] Open
Abstract
Substantial improvements in cancer treatment have resulted in longer survival and increased quality of life in cancer survivors with minimized long-term toxicity. However, infertility and gonadal dysfunction continue to be recognized as adverse effects of anticancer therapy. In particular, alkylating agents and irradiation induce testicular damage that results in prolonged azoospermia. Although damage to and recovery of spermatogenesis after cancer treatment have been extensively studied, there is little information regarding the role of differences in testicular immunology in cancer treatment-induced male infertility. In this review, we briefly summarize available rodent and human data on immunological differences in chemotherapy or radiotherapy.
Collapse
Affiliation(s)
- Ning Qu
- Department of Anatomy, Division of Basic Medical Science, Tokai University School of Medicine, Kanagawa 259-1193, Japan.
- Department of Anatomy, Tokyo Medical University, Tokyo 160-8402, Japan.
| | - Masahiro Itoh
- Department of Anatomy, Tokyo Medical University, Tokyo 160-8402, Japan.
| | - Kou Sakabe
- Department of Anatomy, Division of Basic Medical Science, Tokai University School of Medicine, Kanagawa 259-1193, Japan.
| |
Collapse
|
11
|
Ganjalikhan Hakemi S, Sharififar F, Haghpanah T, Babaee A, Eftekhar-Vaghefi SH. The Effects of Olive Leaf Extract on The Testis, Sperm Quality and Testicular Germ Cell Apoptosis in Male Rats Exposed to Busulfan. INTERNATIONAL JOURNAL OF FERTILITY & STERILITY 2019; 13:57-65. [PMID: 30644246 PMCID: PMC6334023 DOI: 10.22074/ijfs.2019.5520] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 08/05/2018] [Indexed: 12/24/2022]
Abstract
Background Busulfan (BU) has a destructive effect on the male reproductive system. The goal of this study was to
assess the effects of olive leaf extract (OLE) as a source of antioxidants and phenolic compounds, on BU-induced
damages in rat testes. Materials and Methods In this experimental study, 40 male Wistar rats were randomly divided into 5 groups. The
control group (CTL) received a single intraperitoneal (i.p.) injection of dimethyl sulfoxide (DMSO), followed by
oral administration of distilled water for 5 weeks. In BU group, BU (10 mg/kg) was administrated i.p. once. In co-
treatment groups, first, received BU (10 mg/kg, a single i.p. injection) then, OLE was administrated orally at different
doses of 250 mg/kg (BU+OLE 250), 500 mg/kg (BU+OLE 500) and 750 mg/kg (BU+OLE 750), for 5 weeks. Next,
blood and sperm samples were collected. The left testis was removed to investigate testicular parameters and apop-
tosis by using H&E and TUNEL staining, respectively. All data were analyzed by SPSS software and a P<0.05 was
considered significant. Results There was a significant decline in sperm viability (P=0.017), number of primary spermatocyte (PS) (P=0.001)
and Leydig cells (P=0.023) in the BU group versus the CTL group. OLE at three doses could repair these defects ver-
sus BU group. Increases in apoptotic spermatogonia cells (SG) due to BU were significantly reduced by OLE 250
and 500 mg/kg (P<0.01). A reduction in germinal epithelium height and an increase in apoptotic SG were observed in
BU+OLE 750 group vs. other groups (P<0.01) and alkaline phosphatase (ALP) was at the highest level, also Aspartate
aminotransferase (AST) increased markedly vs. CTL (P=0.024). Conclusion Oral administration of OLE at the doses of 250 and 500 mg/kg could be helpful in ameliorating BU-
induced toxicity in rat testes, while OLE 750 mg/kg not only did not cause positive effects, but also could exacerbate
the harmful effects.
Collapse
Affiliation(s)
- Sepideh Ganjalikhan Hakemi
- Department of Anatomy, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Fariba Sharififar
- Herbal and Traditional Medicines Research Center, Department of Pharmacognosy, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Tahereh Haghpanah
- Department of Anatomy, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran. Electronic Address:
| | - Abdolreza Babaee
- Department of Anatomy, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Seyed Hassan Eftekhar-Vaghefi
- Department of Clinical Biochemistry, Babol University of Medical Science, Babol, lran.,Department of Anatomy, Kerman Branch, Islamic Azad University, Kerman, Iran.Electronic Address:
| |
Collapse
|
12
|
Aboul Fotouh GI, Abdel-Dayem MM, Ismail DI, Mohamed HH. Histological Study on the Protective Effect of Endogenous Stem Cell Mobilization in Busulfan-Induced Testicular Injury in Albino Rats. J Microsc Ultrastruct 2018; 6:197-204. [PMID: 30464893 PMCID: PMC6206755 DOI: 10.4103/jmau.jmau_35_18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Testicular damage is one of the most hazardous effects of chemotherapy as it is frequently associated with oligozoospermia and azoospermia. AIM OF THE WORK This study aimed at evaluating the protective effect of hematopoietic stem cell mobilization by granulocyte colony-stimulating factor (G-CSF) in a rat model of busulfan-induced testicular injury. MATERIALS AND METHODS Twenty-four adult albino rats were divided into four groups: group I, the control, Group II: rats received two doses of busulfan (each 15 mg/kg) intraperitoneally (IP) with 14 days interval, Group III: rats received busulfan and left untreated, and Group IV received busulfan IP then G-CSF (70 μg/kg/day) subcutaneously for 5 consecutive days. Testicular sections were stained with H and E and immunohistochemically for CD34, proliferating cell nuclear antigen (PCNA) and caspase-3, and semithin sections were stained with toluidine blue. RESULTS Groups II and III showed loss of the normal histological architecture of the testis and spermatogenic cells, with increased apoptosis confirmed by significantly increased caspase-3 and significantly decreased PCNA immunoexpression. While Group IV revealed improved testicular histology, decreased apoptosis, and increased proliferative capacity of spermatogenic cells. This was confirmed by significantly decreased caspase-3 immunoexpression and increased PCNA immunoreaction. CONCLUSION Mobilization of stem cells with G-CSF was found to improve the testicular histology following busulfan chemotherapy in albino rats.
Collapse
Affiliation(s)
| | - Menna Mohamed Abdel-Dayem
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Dalia Ibrahim Ismail
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Hala Hassan Mohamed
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
13
|
Dehghani F, Sotoude N, Bordbar H, Panjeshahin M, Karbalay-Doust S. The use of platelet-rich plasma (PRP) to improve structural impairment of rat testis induced by busulfan. Platelets 2018; 30:513-520. [DOI: 10.1080/09537104.2018.1478400] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Farzaneh Dehghani
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Anatomy Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Narges Sotoude
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Anatomy Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Bordbar
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Anatomy Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - M.R. Panjeshahin
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saied Karbalay-Doust
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Anatomy Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
14
|
Nasimi P, Tabandeh MR, Roohi S. Busulfan-mediated oxidative stress and genotoxicity decrease in sperm of Satureja Khuzestanica essential oil-administered mice. Syst Biol Reprod Med 2018; 64:348-357. [DOI: 10.1080/19396368.2018.1449915] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Parva Nasimi
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohammad Reza Tabandeh
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
- Stem cells and Transgenic Technology Research Center, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Sayad Roohi
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| |
Collapse
|
15
|
Lei B, Zhou X, Lv D, Wan B, Wu H, Zhong L, Shu F, Mao X. Apoptotic and nonapoptotic function of caspase 7 in spermatogenesis. Asian J Androl 2017; 19:47-51. [PMID: 26643564 PMCID: PMC5227673 DOI: 10.4103/1008-682x.169563] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Recent studies have reported that caspase 7 has an apoptotic and nonapoptotic function. However, the relationship between caspase 7 and spermatogenesis remains unknown. This study aimed to investigate the possible function of caspase 7 during normal and abnormal spermatogenesis. The cleaved form of caspase 7 was detected in testis tissues at different postpartum times (5-14 weeks) by qRT-PCR, Western blot and immunohistochemistry (IHC). Then, the mice models of spermatogenic dysfunction were obtained by busulfan (30 mg kg-1 to further evaluate the potential function and mechanism of caspase 7. qRT-PCR and Western blot results showed that caspase 7 expression was gradually elevated from 5 to 14 weeks, which was not connected with apoptosis. IHC results revealed that caspase 7 was mainly located in spermatogenic cells and Leydig cells. In addition, spermatogenic dysfunction induced by busulfan gradually enhanced the apoptosis and elevated the expression of caspase 3, caspase 6, and caspase 9, but decreased the expression of caspase 7 in spermatogenic cells. However, when spermatogenic cells were mostly disappeared at the fourth week after busulfan treatment, caspase 7 expression in Leydig cells was significantly increased and positively correlated with the expression of caspase 3, caspase 6, and caspase 9. Therefore, these results indicate that caspase 7 has a nonapoptic function that participates in normal spermatogenesis, but also displays apoptotic function in spermatogenic dysfunction.
Collapse
Affiliation(s)
- Bin Lei
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China.,Department of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen, Guangdong Province, China
| | - Xuming Zhou
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Daojun Lv
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Bo Wan
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Huayan Wu
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Liren Zhong
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Fangpeng Shu
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Xiangming Mao
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China.,Department of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen, Guangdong Province, China
| |
Collapse
|
16
|
Calatrava-Ferreras L, Gonzalo-Gobernado R, Reimers D, Herranz AS, Casarejos MJ, Jiménez-Escrig A, Regadera J, Velasco-Martín J, Vallejo-Muñoz M, Díaz-Gil JJ, Bazán E. Liver Growth Factor (LGF) Upregulates Frataxin Protein Expression and Reduces Oxidative Stress in Friedreich's Ataxia Transgenic Mice. Int J Mol Sci 2016; 17:E2066. [PMID: 27941692 PMCID: PMC5187866 DOI: 10.3390/ijms17122066] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/28/2016] [Accepted: 12/06/2016] [Indexed: 01/03/2023] Open
Abstract
Friedreich's ataxia (FA) is a severe disorder with autosomal recessive inheritance that is caused by the abnormal expansion of GAA repeat in intron 1 of FRDA gen. This alteration leads to a partial silencing of frataxin transcription, causing a multisystem disorder disease that includes neurological and non-neurological damage. Recent studies have proven the effectiveness of neurotrophic factors in a number of neurodegenerative diseases. Therefore, we intend to determine if liver growth factor (LGF), which has a demonstrated antioxidant and neuroprotective capability, could be a useful therapy for FA. To investigate the potential therapeutic activity of LGF we used transgenic mice of the FXNtm1MknTg (FXN)YG8Pook strain. In these mice, intraperitoneal administration of LGF (1.6 μg/mouse) exerted a neuroprotective effect on neurons of the lumbar spinal cord and improved cardiac hypertrophy. Both events could be the consequence of the increment in frataxin expression induced by LGF in spinal cord (1.34-fold) and heart (1.2-fold). LGF also upregulated by 2.6-fold mitochondrial chain complex IV expression in spinal cord, while in skeletal muscle it reduced the relation oxidized glutathione/reduced glutathione. Since LGF partially restores motor coordination, we propose LGF as a novel factor that may be useful in the treatment of FA.
Collapse
Affiliation(s)
- Lucía Calatrava-Ferreras
- Service of Neurobiology, Ramón y Cajal Institute for Health Research (IRYCIS), 28034 Madrid, Spain.
| | - Rafael Gonzalo-Gobernado
- Service of Neurobiology, Ramón y Cajal Institute for Health Research (IRYCIS), 28034 Madrid, Spain.
| | - Diana Reimers
- Service of Neurobiology, Ramón y Cajal Institute for Health Research (IRYCIS), 28034 Madrid, Spain.
| | - Antonio S Herranz
- Service of Neurobiology, Ramón y Cajal Institute for Health Research (IRYCIS), 28034 Madrid, Spain.
| | - María J Casarejos
- Service of Neurobiology, Ramón y Cajal Institute for Health Research (IRYCIS), 28034 Madrid, Spain.
| | | | - Javier Regadera
- Departamento de Anatomía, Histología y Neurociencia Facultad de Medicina Universidad Autónoma de Madrid, 28400 Madrid, Spain.
| | - Juan Velasco-Martín
- Departamento de Anatomía, Histología y Neurociencia Facultad de Medicina Universidad Autónoma de Madrid, 28400 Madrid, Spain.
| | - Manuela Vallejo-Muñoz
- Service of Neurobiology, Ramón y Cajal Institute for Health Research (IRYCIS), 28034 Madrid, Spain.
| | - Juan José Díaz-Gil
- Service of Neurobiology, Ramón y Cajal Institute for Health Research (IRYCIS), 28034 Madrid, Spain.
| | - Eulalia Bazán
- Service of Neurobiology, Ramón y Cajal Institute for Health Research (IRYCIS), 28034 Madrid, Spain.
| |
Collapse
|
17
|
Effect of human recombinant granulocyte colony-stimulating factor on rat busulfan-induced testis injury. J Mol Histol 2015; 47:59-67. [DOI: 10.1007/s10735-015-9647-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 12/15/2015] [Indexed: 02/08/2023]
|
18
|
Gutierrez K, Glanzner WG, Chemeris RO, Rigo ML, Comim FV, Bordignon V, Gonçalves PBD. Gonadotoxic effects of busulfan in two strains of mice. Reprod Toxicol 2015; 59:31-9. [PMID: 26524245 DOI: 10.1016/j.reprotox.2015.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 08/31/2015] [Accepted: 09/15/2015] [Indexed: 02/07/2023]
Abstract
Busulfan is a chemotherapy drug that has side effects on spermatogonial stem cells (SSC). The effects of bulsufan treatment on male germ cells and fertility vary significantly between individuals. In this study, we have used molecular, cellular and histopathology approaches to investigate the effects of a single intraperitoneal dose of busulfan (40mgkg(-1)) in two mice strains, Balb/C and Swiss, at two different periods after treatment, 30 and 90 days. Testicular degeneration was observed in both Balb/C and Swiss mice after busulfan injection. Interestingly, testicular functions and fertility recovered spontaneously post busulfan treatment in Swiss mice, but not in Balb/C mice. Abnormal fertility induced by busulfan in Balb/C mice was associated with altered seminiferous tubules, sperm morphology and transcript levels of Nanos2, Nanos3, Gdnf and Plzf genes. These findings revealed that SSC of Balb/C mice are more sensitive to the toxic effects of busulfan then those of Swiss mice.
Collapse
Affiliation(s)
- Karina Gutierrez
- Laboratory of Biotechnology and Animal Reproduction-BioRep, Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| | - Werner G Glanzner
- Laboratory of Biotechnology and Animal Reproduction-BioRep, Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| | - Raiza O Chemeris
- Laboratory of Biotechnology and Animal Reproduction-BioRep, Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| | - Melânia L Rigo
- Laboratory of Biotechnology and Animal Reproduction-BioRep, Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| | - Fabio V Comim
- Laboratory of Biotechnology and Animal Reproduction-BioRep, Federal University of Santa Maria (UFSM), Santa Maria, Brazil; Department of Clinical Medicine -Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| | - Vilceu Bordignon
- Department of Animal Science, McGill University, 21,111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC, H9X3V9 Canada.
| | - Paulo B D Gonçalves
- Laboratory of Biotechnology and Animal Reproduction-BioRep, Federal University of Santa Maria (UFSM), Santa Maria, Brazil.
| |
Collapse
|
19
|
Nasimi P, Vahdati A, Tabandeh MR, Khatamsaz S. Cytoprotective and anti-apoptotic effects of Satureja khuzestanica essential oil against busulfan-mediated sperm damage and seminiferous tubules destruction in adult male mice. Andrologia 2015; 48:74-81. [PMID: 26011020 DOI: 10.1111/and.12421] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2015] [Indexed: 11/30/2022] Open
Abstract
We studied the protective effect of Satureja khuzestanica essential oil (SKEO) against damage caused by busulfan on testis in male mice. The NMRI mice (n = 40) were assigned to four groups including: G1: control, G2: treated with busulfan for 4 days (3.2 mg kg(-1)), G3: receive busulfan (4 days, 3.2 mg kg(-1)) and SKEO (28 days, 225 mg kg(-1)) at the same time, G4: pre-treated with SKEO (7 days, 225 mg kg(-1)) and subsequently cotreated with busulfan (4 days, 3.2 mg kg(-1)) and SKEO (28 days, 225 mg kg(-1)). The histological changes of testis were analysed using H&E staining. Sperm parameters, cytotoxic and apoptotic factors were also studied by computer-aided sperm analyzer, MTT and TUNEL assays respectively. Our results showed that SKEO pre-administration significantly improved all parameters of epididymal spermatozoa and decreased germinal epithelium destruction following busulfan chemotherapy. We also found lower MTT levels and TUNEL-positive cells in SKEO pre-treated groups. In conclusion, SKEO possesses beneficial effects on sperm parameters when taken before chemotherapy and continued during and after chemotherapy for a long time, than when used short-term coinciding with the chemotherapy. Our results support valuable data about the application of SKEO for protection against adverse effects of busulfan on male genital system in patients under chemotherapy.
Collapse
Affiliation(s)
- P Nasimi
- Department of Biology, Fars Science and Research Branch, Islamic Azad University, Fars, Iran.,Department of Biology, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - A Vahdati
- Department of Biology, Fars Science and Research Branch, Islamic Azad University, Fars, Iran.,Department of Biology, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - M R Tabandeh
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - S Khatamsaz
- Department of Biology, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| |
Collapse
|
20
|
Cai Y, Liu T, Fang F, Shen S, Xiong C. Involvement of ICAM-1 in impaired spermatogenesis after busulfan treatment in mice. Andrologia 2015; 48:37-44. [DOI: 10.1111/and.12414] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2015] [Indexed: 01/14/2023] Open
Affiliation(s)
- Y. Cai
- Family Planning Research Institute; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - T. Liu
- Department of Thoracic Surgery; Renmin Hospital of Wuhan University; Wuhan China
| | - F. Fang
- Family Planning Research Institute; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - S. Shen
- Zhong Shen Bioscience Inc.; Wuhan China
| | - C. Xiong
- Family Planning Research Institute; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
- Center for Reproductive Medicine; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| |
Collapse
|
21
|
Lobo MVT, Arenas MI, Huerta L, Sacristán S, Pérez-Crespo M, Gutiérrez-Adán A, Díaz-Gil JJ, Lasunción MA, Martín-Hidalgo A. Liver growth factor induces testicular regeneration in EDS-treated rats and increases protein levels of class B scavenger receptors. Am J Physiol Endocrinol Metab 2015; 308:E111-21. [PMID: 25389365 DOI: 10.1152/ajpendo.00329.2014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of the present work was to determine the effects of liver growth factor (LGF) on the regeneration process of rat testes after chemical castration induced by ethane dimethanesulfonate (EDS) by analyzing some of the most relevant proteins involved in cholesterol metabolism, such as hormone sensitive lipase (HSL), 3β-hydroxysteroid dehydrogenase (3β-HSD), scavenger receptor SR-BI, and other components of the SR family that could contribute to the recovery of steroidogenesis and spermatogenesis in the testis. Sixty male rats were randomized to nontreated (controls) and LGF-treated, EDS-treated, and EDS + LGF-treated groups. Testes were obtained on days 10 (T1), 21 (T2), and 35 (T3) after EDS treatment, embedded in paraffin, and analyzed by immunohistochemistry and Western blot. LGF improved the recovery of the seminiferous epithelia, the appearance of the mature pattern of Leydig cell interstitial distribution, and the expression of mature SR-BI. Moreover, LGF treatment resulted in partial recovery of HSL expression in Leydig cells and spermatogonia. No changes in serum testosterone were observed in control or LGF-treated rats, but in EDS-castrated animals LGF treatment induced a progressive increase in serum testosterone levels and 3β-HSD expression. Based on the pivotal role of SR-BI in the uptake of cholesteryl esters from HDL, it is suggested that the observed effects of LGF would facilitate the provision of cholesterol for sperm cell growth and Leydig cell recovery.
Collapse
Affiliation(s)
- M V T Lobo
- Departamento de Biomedicina y Biotecnología, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| | - M I Arenas
- Departamento de Biomedicina y Biotecnología, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| | - L Huerta
- Servicio de Bioquímica-Departamento Investigación, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria, CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - S Sacristán
- Servicio de Bioquímica-Departamento Investigación, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria, CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - M Pérez-Crespo
- Departamento de Reproducción Animal y Conservación de Recursos Zoogenéticos, INIA, Madrid, Spain; and
| | - A Gutiérrez-Adán
- Departamento de Reproducción Animal y Conservación de Recursos Zoogenéticos, INIA, Madrid, Spain; and
| | - J J Díaz-Gil
- Servicio de Bioquímica Experimental, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - M A Lasunción
- Servicio de Bioquímica-Departamento Investigación, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria, CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - A Martín-Hidalgo
- Servicio de Bioquímica-Departamento Investigación, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria, CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain;
| |
Collapse
|
22
|
Girón-Martínez Á, Pérez-Rial S, Terrón-Expósito R, Díaz-Gil JJ, González-Mangado N, Peces-Barba G. Proliferative activity of liver growth factor is associated with an improvement of cigarette smoke-induced emphysema in mice. PLoS One 2014; 9:e112995. [PMID: 25401951 PMCID: PMC4234533 DOI: 10.1371/journal.pone.0112995] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 10/17/2014] [Indexed: 01/06/2023] Open
Abstract
Cigarette smoke (CS)-induced emphysema is a major component of chronic obstructive pulmonary disease (COPD). COPD treatment is based on the administration of bronchodilators and corticosteroids to control symptoms and exacerbations, however, to date, there are no effective therapies to reverse disease progression. Liver growth factor (LGF) is an albumin-bilirubin complex with mitogenic properties, whose therapeutic effects have previously been reported in a model of emphysema and several rodent models of human disease. To approach the therapeutic effect of LGF in a model of previously established emphysema, morphometric and lung function parameters, matrix metalloproteinase (MMP) activity and the expression of several markers, such as VEGF, PCNA, 3NT and Nrf2, were assessed in air-exposed and CS-exposed C57BL/6J male mice with and without intraperitoneal (i.p.) injection of LGF. CS-exposed mice presented a significant enlargement of alveolar spaces, higher alveolar internal area and loss of lung function that correlated with higher MMP activity, higher expression of 3NT and lower expression of VEGF. CS-exposed mice injected with LGF, showed an amelioration of emphysema and improved lung function, which correlated with lower MMP activity and 3NT expression and higher levels of VEGF, PCNA and Nrf2. Taken together, this study suggests that LGF administration ameliorates CS-induced emphysema, highlights the ability of LGF to promote alveolar cell proliferation and may be a promising strategy to revert COPD progression.
Collapse
Affiliation(s)
- Álvaro Girón-Martínez
- Respiratory Research Group, Instituto de Investigación Sanitaria - Fundación Jiménez Díaz - CIBERES, Universidad Autónoma de Madrid (IIS-FJD-CIBERES-UAM), Madrid, Spain
- * E-mail:
| | - Sandra Pérez-Rial
- Respiratory Research Group, Instituto de Investigación Sanitaria - Fundación Jiménez Díaz - CIBERES, Universidad Autónoma de Madrid (IIS-FJD-CIBERES-UAM), Madrid, Spain
| | - Raúl Terrón-Expósito
- Respiratory Research Group, Instituto de Investigación Sanitaria - Fundación Jiménez Díaz - CIBERES, Universidad Autónoma de Madrid (IIS-FJD-CIBERES-UAM), Madrid, Spain
| | - Juan José Díaz-Gil
- Respiratory Research Group, Instituto de Investigación Sanitaria - Fundación Jiménez Díaz - CIBERES, Universidad Autónoma de Madrid (IIS-FJD-CIBERES-UAM), Madrid, Spain
| | - Nicolás González-Mangado
- Respiratory Research Group, Instituto de Investigación Sanitaria - Fundación Jiménez Díaz - CIBERES, Universidad Autónoma de Madrid (IIS-FJD-CIBERES-UAM), Madrid, Spain
| | - Germán Peces-Barba
- Respiratory Research Group, Instituto de Investigación Sanitaria - Fundación Jiménez Díaz - CIBERES, Universidad Autónoma de Madrid (IIS-FJD-CIBERES-UAM), Madrid, Spain
| |
Collapse
|
23
|
Neuroprotective role of liver growth factor "LGF" in an experimental model of cerebellar ataxia. Int J Mol Sci 2014; 15:19056-73. [PMID: 25338046 PMCID: PMC4227260 DOI: 10.3390/ijms151019056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 09/30/2014] [Accepted: 10/02/2014] [Indexed: 12/29/2022] Open
Abstract
Cerebellar ataxias (CA) comprise a heterogeneous group of neurodegenerative diseases characterized by a lack of motor coordination. They are caused by disturbances in the cerebellum and its associated circuitries, so the major therapeutic goal is to correct cerebellar dysfunction. Neurotrophic factors enhance the survival and differentiation of selected types of neurons. Liver growth factor (LGF) is a hepatic mitogen that shows biological activity in neuroregenerative therapies. We investigate the potential therapeutic activity of LGF in the 3-acetylpiridine (3-AP) rat model of CA. This model of CA consists in the lesion of the inferior olive-induced by 3-AP (40 mg/kg). Ataxic rats were treated with 5 µg/rat LGF or vehicle during 3 weeks, analyzing: (a) motor coordination by using the rota-rod test; and (b) the immunohistochemical and biochemical evolution of several parameters related with the olivo-cerebellar function. Motor coordination improved in 3-AP-lesioned rats that received LGF treatment. LGF up-regulated NeuN and Bcl-2 protein levels in the brainstem, and increased calbindin expression and the number of neurons receiving calbindin-positive projections in the cerebellum. LGF also reduced extracellular glutamate and GABA concentrations and microglia activation in the cerebellum. In view of these results, we propose LGF as a potential therapeutic agent in cerebellar ataxias.
Collapse
|
24
|
Pérez-Rial S, Del Puerto-Nevado L, Girón-Martínez A, Terrón-Expósito R, Díaz-Gil JJ, González-Mangado N, Peces-Barba G. Liver growth factor treatment reverses emphysema previously established in a cigarette smoke exposure mouse model. Am J Physiol Lung Cell Mol Physiol 2014; 307:L718-26. [PMID: 25172913 DOI: 10.1152/ajplung.00293.2013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is an inflammatory lung disease largely associated with cigarette smoke exposure (CSE) and characterized by pulmonary and extrapulmonary manifestations, including systemic inflammation. Liver growth factor (LGF) is an albumin-bilirubin complex with demonstrated antifibrotic, antioxidant, and antihypertensive actions even at extrahepatic sites. We aimed to determine whether short LGF treatment (1.7 μg/mouse ip; 2 times, 2 wk), once the lung damage was established through the chronic CSE, contributes to improvement of the regeneration of damaged lung tissue, reducing systemic inflammation. We studied AKR/J mice, divided into three groups: control (air-exposed), CSE (chronic CSE), and CSE + LGF (LGF-treated CSE mice). We assessed pulmonary function, morphometric data, and levels of various systemic inflammatory markers to test the LGF regenerative capacity in this system. Our results revealed that the lungs of the CSE animals showed pulmonary emphysema and inflammation, characterized by increased lung compliance, enlargement of alveolar airspaces, systemic inflammation (circulating leukocytes and serum TNF-α level), and in vivo lung matrix metalloproteinase activity. LGF treatment was able to reverse all these parameters, decreasing total cell count in bronchoalveolar lavage fluid and T-lymphocyte infiltration in peripheral blood observed in emphysematous mice and reversing the decrease in monocytes observed in chronic CSE mice, and tends to reduce the neutrophil population and serum TNF-α level. In conclusion, LGF treatment normalizes the physiological and morphological parameters and levels of various systemic inflammatory biomarkers in a chronic CSE AKR/J model, which may have important pathophysiological and therapeutic implications for subjects with stable COPD.
Collapse
Affiliation(s)
- Sandra Pérez-Rial
- Respiratory Research Group, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-CIBERES (IIS-FJD-CIBERES), Madrid, Spain
| | - Laura Del Puerto-Nevado
- Respiratory Research Group, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-CIBERES (IIS-FJD-CIBERES), Madrid, Spain
| | - Alvaro Girón-Martínez
- Respiratory Research Group, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-CIBERES (IIS-FJD-CIBERES), Madrid, Spain
| | - Raúl Terrón-Expósito
- Respiratory Research Group, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-CIBERES (IIS-FJD-CIBERES), Madrid, Spain
| | - Juan J Díaz-Gil
- Respiratory Research Group, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-CIBERES (IIS-FJD-CIBERES), Madrid, Spain
| | - Nicolás González-Mangado
- Respiratory Research Group, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-CIBERES (IIS-FJD-CIBERES), Madrid, Spain
| | - Germán Peces-Barba
- Respiratory Research Group, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-CIBERES (IIS-FJD-CIBERES), Madrid, Spain
| |
Collapse
|
25
|
Miranda A, López-Cardona AP, Laguna-Barraza R, Calle A, López-Vidriero I, Pintado B, Gutiérrez-Adán A. Transcriptome profiling of liver of non-genetic low birth weight and long term health consequences. BMC Genomics 2014; 15:327. [PMID: 24884990 PMCID: PMC4229907 DOI: 10.1186/1471-2164-15-327] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 04/23/2014] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND It is believed that the main factors of low prenatal growth in mammals are genetic and environmental. We used isogenic mice maintained in standard conditions to analyze how natural non-genetic microsomia (low birth weight) is produced in inbred mice and its long term effect on health. To better understand the molecular basis of non-genetic microsomia, we undertook transcriptome profiling of both male and female livers from small and normal size mice at birth. RESULTS Naturally occurring neonatal microsomia was defined as a gender-specific weanling weight under the 10th percentile of the colony. Birth weight variation was similar in inbred and outbred lines. Mice were phenotyped by weight, size, blood pressure, organ size, their response to a glucose challenge, and survival rates. Regardless of diet, adult mice born with microsomia showed a significantly lower body weight and size, and differences in the weight of several organs of microsomic adult mice compared to normal birth weight adults were found. After a high-fat diet, microsomic mice were less prone to obesity, showing a better glucose tolerance and lower blood pressure. Through a transcriptome analysis, we detected a different pattern of mRNA transcription in the liver at birth comparing male vs female and microsomic vs normal mice, noting some modifications in epigenetic regulatory genes in females and modifications in some growth factor genes in males. Finally, using embryo transfer of embryos of different quality and age, we identified a putative preimplantation origin of this non-genetic microsomia. CONCLUSIONS (1) neonatal microsomia is not always a risk factor for adult metabolic syndrome, (2) neonatal non-genetic microsomia displays changes in the expression of important epigenetic genes and changes in liver mRNA transcription profile at birth, exaggerating sexual dimorphism, and (3) random preimplantation phenotypic variability could partially explain body birth weight variation in isogenic lines.
Collapse
Affiliation(s)
- Alberto Miranda
- Dpto, de Reproducción Animal, INIA, Avda Puerta de Hierro no, 12, Local 10, Madrid 28040, Spain.
| | | | | | | | | | | | | |
Collapse
|
26
|
Gonzalo-Gobernado R, Calatrava-Ferreras L, Perucho J, Reimers D, Casarejos MJ, Herranz AS, Jiménez-Escrig A, Díaz-Gil JJ, Bazán E. Liver growth factor as a tissue regenerating factor in neurodegenerative diseases. RECENT PATENTS ON CNS DRUG DISCOVERY 2014; 9:173-80. [PMID: 25537484 PMCID: PMC4485410 DOI: 10.2174/1574889809666141224123303] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 12/17/2014] [Accepted: 12/19/2014] [Indexed: 12/30/2022]
Abstract
Liver growth factor (LGF) is a hepatic mitogen purified by our group in 1986. In the following years we demonstrated its activity both in "in vivo" and "in vitro" systems, stimulating hepatocytes mitogenesis as well as liver regeneration in several models of liver injury. Furthermore, we established its chemical composition (albumin-bilirubin complex) and its mitogenic actions in liver. From 2000 onwards we used LGF as a tissue regenerating factor in several models of extrahepatic diseases. The use of Liver growth factor as a neural tissue regenerator has been recently protected (Patent No US 2014/8,642,551 B2). LGF administration stimulates neurogenesis and neuron survival, promotes migration of newly generated neurons, and induces the outgrowth of striatal dopaminergic terminals in 6-hidroxydopamine-lesioned rats. Furthermore, LGF treatment raises striatal dopamine levels and protects dopaminergic neurons in hemiparkinsonian animals. LGF also stimulates survival of grafted foetal neural stem cells in the damaged striatum, reduces rotational behaviour and improves motor coordination. Interestingly, LGF also exerts a neuroprotective role both in an experimental model of cerebellar ataxia and in a model of Friedrich´s ataxia. Microglia seem to be the cellular target of LGF in the CNS. Moreover, the activity of the factor could be mediated by the stimulation of MAPK´s signalling pathway and by regulating critical proteins for cell survival, such as Bcl-2 and phospho-CREB. Since the factor shows neuroprotective and neurorestorative effects we propose LGF as a patented novel therapeutic tool that may be useful for the treatment of Parkinson´s disease and cerebellar ataxias. Currently, our studies have been extended to other neurological disorders such as Alzheimer's disease (Patent No: US 2014/0113859 A1).
Collapse
Affiliation(s)
- Rafael Gonzalo-Gobernado
- Servicio de Neurobiología-Investigación, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS). Madrid, 28034, Spain
| | - Lucia Calatrava-Ferreras
- Servicio de Neurobiología-Investigación, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS). Madrid, 28034, Spain
| | - Juan Perucho
- Servicio de Neurobiología-Investigación, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS). Madrid, 28034, Spain
| | - Diana Reimers
- Servicio de Neurobiología-Investigación, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS). Madrid, 28034, Spain
| | - María J. Casarejos
- Servicio de Neurobiología-Investigación, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS). Madrid, 28034, Spain
| | - Antonio S. Herranz
- Servicio de Neurobiología-Investigación, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS). Madrid, 28034, Spain
| | | | - Juan J. Díaz-Gil
- Servicio de Neurobiología-Investigación, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS). Madrid, 28034, Spain
| | - Eulalia Bazán
- Servicio de Neurobiología-Investigación, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS). Madrid, 28034, Spain
| |
Collapse
|
27
|
Dehghani F, Hassanpour A, Poost-pasand A, Noorafshan A, Karbalay-Doust S. Protective effects of L-carnitine and homogenized testis tissue on the testis and sperm parameters of busulfan-induced infertile male rats. IRANIAN JOURNAL OF REPRODUCTIVE MEDICINE 2013; 11:693-704. [PMID: 24639808 PMCID: PMC3941323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Revised: 12/17/2012] [Accepted: 03/13/2012] [Indexed: 12/02/2022]
Abstract
BACKGROUND Busulfan(Bus) is a chemotherapy drug that is widely used for cancer treatment. However, administration of busulfan may cause temporary or permanent sterility in male patients. Therefore, reduction of this side is necessary. OBJECTIVE evaluation of the protective effects of L-carnitine and testis homogenized tissue(THT) on sperm parameters and the testis structure after busulfan treatment. MATERIALS AND METHODS Twenty rats were divided four groups. Group I (Control) received a single dose of DMSO and 1mL of distilled water (I.P.). Group II (Bus) received a single of busulfan (10 mg/kg) plus 1 ml of the distilled water(I.P.). Group III (Bus+THT) received busulfan plus 1mL of THT daily by oral gavages. Group IV (Bus+L-car) received a single dose of busulfan plus 100 mg/kg/day L-carnitine(I.P.). after 48 dayst, the Stereological technique was used for the estimating volume and diameter of testis, seminiferous tubules and interstitial tissue, flagella length, germinal epithelium height and spermatoginic cell number. Semen analysis was used for the assessment of sperm parameters. RESULTS THT increased volume of testis (6.5%), seminiferous tubule and interstitial tissue volume (6.5%), 6.9% and 11.7% respectively), germinal epithelium height (13%), sperm count (7.5%), and decreased sperm with abnormal morphology (1%) in comparison with the L-carnitine in busulfan treated group. CONCLUSION It seems the use of L-carnitine and THT decreases side effects of busulfan on the male reproductive system. However, in our study, THT is more effective than L-carnitine and leads to the recovery testis structure and sperm parameters after treatment with busulfan. This article extracted from M.Sc. thesis. (Ashraf Hassanpour).
Collapse
Affiliation(s)
- Farzaneh Dehghani
- Histomorphometry and Stereology Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Anatomy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ashraf Hassanpour
- Department of Anatomy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Aghdas Poost-pasand
- Histomorphometry and Stereology Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Anatomy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ali Noorafshan
- Histomorphometry and Stereology Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Anatomy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Saeid Karbalay-Doust
- Histomorphometry and Stereology Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Anatomy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
28
|
Gonzalo-Gobernado R, Calatrava-Ferreras L, Reimers D, Herranz AS, Rodríguez-Serrano M, Miranda C, Jiménez-Escrig A, Díaz-Gil JJ, Bazán E. Neuroprotective activity of peripherally administered liver growth factor in a rat model of Parkinson's disease. PLoS One 2013; 8:e67771. [PMID: 23861803 PMCID: PMC3701531 DOI: 10.1371/journal.pone.0067771] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 05/22/2013] [Indexed: 11/19/2022] Open
Abstract
Liver growth factor (LGF) is a hepatic mitogen purified some years ago that promotes proliferation of different cell types and the regeneration of damaged tissues, including brain tissue. Considering the possibility that LGF could be used as a therapeutic agent in Parkinson’s disease, we analyzed its potential neuroregenerative and/or neuroprotective activity when peripherally administered to unilaterally 6-hydroxydopamine (6-OHDA)-lesioned rats. For these studies, rats subjected to nigrostriatal lesions were treated intraperitoneally twice a week with LGF (5 microg/rat) for 3 weeks. Animals were sacrificed 4 weeks after the last LGF treatment. The results show that LGF stimulates sprouting of tyrosine hydroxylase-positive terminals and increases tyrosine hydroxylase and dopamine transporter expression, as well as dopamine levels in the denervated striatum of 6-OHDA-lesioned rats. In this structure, LGF activates microglia and raises tumor necrosis factor-alpha protein levels, which have been reported to have a role in neuroregeneration and neuroprotection. Besides, LGF stimulates the phosphorylation of MAPK/ERK1/2 and CREB, and regulates the expression of proteins which are critical for cell survival such as Bcl2 and Akt. Because LGF partially protects dopamine neurons from 6-OHDA neurotoxicity in the substantia nigra, and reduces motor deficits in these animals, we propose LGF as a novel factor that may be useful in the treatment of Parkinson’s disease.
Collapse
Affiliation(s)
| | | | - Diana Reimers
- Servicio de Neurobiología, Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - Antonio Sánchez Herranz
- Servicio de Neurobiología, Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | | | - Cristina Miranda
- Servicio de Neurobiología, Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | | | - Juan José Díaz-Gil
- Instituto de Investigación Sanitaria Puerta de Hierro-Majadahonda, Madrid, Spain
| | - Eulalia Bazán
- Servicio de Neurobiología, Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
- * E-mail:
| |
Collapse
|
29
|
Bordbar H, Esmaeilpour T, Dehghani F, Panjehshahin MR. Stereological study of the effect of ginger's alcoholic extract on the testis in busulfan-induced infertility in rats. IRANIAN JOURNAL OF REPRODUCTIVE MEDICINE 2013; 11:467-72. [PMID: 24639780 PMCID: PMC3941314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Revised: 10/21/2012] [Accepted: 12/26/2012] [Indexed: 11/11/2022]
Abstract
BACKGROUND In traditional medicine zingiber officinale used to regulate female menstural cycle and treat male infertility. Recent studies have suggested the possible role of ginger extract in improving the testicular damage of busulfan. OBJECTIVE The aim of this study was to evaluate the effects of zingiber officinale on the sperm parameters, testosterone level and the volume of the testes and seminiferous tubules by stereological methods. MATERIALS AND METHODS Fifty rats were divided into four groups. All the rats were given a single intraperitoneally injection of 5mg/kg busulfan solution. The first group was kept as busulfan control, while the other groups were orally administrated ginger extract in graded doses of 50, 100 and 150mg/kg b.wt, for 48 consecutive days. At the end, all animals were anesthetized and their testes and vas deference were removed, fixed, embedded, and stained. The volume of testes and seminiferous tubules were estimated by cavalieri methods. RESULTS The result showed, that zingiber officinale increased the volumes of seminiferous tubule in 100mg/kg treated group compared to control group. Sperm count (706×10(5) and 682×10(5)) and the level of testosterone (50.90 ng/mL and 54.10 ng/mL) enhanced in 100 mg/kg and 150 mg/kg treated groups compared to control group (p=0.00). CONCLUSION It seems that zingiber officinale stimulate male reproductive system in induce busulfan infertility.
Collapse
Affiliation(s)
- Hossein Bordbar
- Department of Anatomy, Shiraz University of Medical Sciences, Shiraz, Iran.,Histomorphometry, Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | | | - Farzaneh Dehghani
- Department of Anatomy, Shiraz University of Medical Sciences, Shiraz, Iran.,Histomorphometry, Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | | |
Collapse
|
30
|
The effect of stem cell therapy versus melatonin on the changes induced by busulfan in the testes of adult rat. ACTA ACUST UNITED AC 2013. [DOI: 10.1097/01.ehx.0000425579.77855.ea] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
31
|
Conde MV, Gonzalez MC, Quintana-Villamandos B, Abderrahim F, Briones AM, Condezo-Hoyos L, Regadera J, Susin C, Gomez de Diego JJ, Delgado-Baeza E, Diaz-Gil JJ, Arribas SM. Liver growth factor treatment restores cell-extracellular matrix balance in resistance arteries and improves left ventricular hypertrophy in SHR. Am J Physiol Heart Circ Physiol 2011; 301:H1153-65. [PMID: 21642499 DOI: 10.1152/ajpheart.00886.2010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Liver growth factor (LGF) is an endogenous albumin-bilirubin complex with antihypertensive effects in spontaneously hypertensive rats (SHR). We assessed the actions of LGF treatment on SHR mesenteric resistance and intramyocardial arteries (MRA and IMA, respectively), heart, and vascular smooth muscle cells (VSMC). SHR and Wistar-Kyoto (WKY) rats treated with vehicle or LGF (4.5 μg LGF/rat, 4 ip injections over 12 days) were used. Intra-arterial blood pressure was measured in anesthetized rats. The heart was weighted and paraffin-embedded. Proliferation, ploidy, and fibronectin deposition were studied in carotid artery-derived VSMC by immunocytochemistry. In MRA, we assessed: 1) geometry and mechanics by pressure myography; 2) function by wire myography; 3) collagen by sirius red staining and polarized light microscopy, and 4) elastin, cell density, nitric oxide (NO), and superoxide anion by confocal microscopy. Heart sections were used to assess cell density and collagen content in IMA. Left ventricular hypertrophy (LVH) regression was assessed by echocardiography. LGF reduced blood pressure only in SHR. LGF in vitro or as treatment normalized the alterations in proliferation and fibronectin in SHR-derived VSMC with no effect on WKY cells. In MRA, LGF treatment normalized collagen, elastin, and VSMC content and passive mechanical properties. In addition, it improved NO availability through reduction of superoxide anion. In IMA, LGF treatment normalized perivascular collagen and VSMC density, improving the wall-to-lumen ratio. Paired experiments demonstrated a partial regression of SHR LVH by LGF treatment. The effective cardiovascular antifibrotic and regenerative actions of LGF support its potential in the treatment of hypertension and its complications.
Collapse
Affiliation(s)
- M Victoria Conde
- Facultad de Medicina, Departamentos de Fisiologia, Universidad Autonoma de Madrid, Madrid Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|