1
|
Poggiana C, Piazza AF, Catoni C, Gallingani I, Piccin L, Pellegrini S, Aneloni V, Salizzato V, Pigozzo J, Fabozzi A, Facchinetti A, Menin C, Del Fiore P, Mocellin S, Chiarion-Sileni V, Rosato A, Scaini MC. A model workflow for microfluidic enrichment and genetic analysis of circulating melanoma cells. Sci Rep 2025; 15:15329. [PMID: 40316673 PMCID: PMC12048555 DOI: 10.1038/s41598-025-99153-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 04/17/2025] [Indexed: 05/04/2025] Open
Abstract
Circulating melanoma cells (CMCs) are responsible for the hematogenous spread of melanoma and, ultimately, metastasis. However, their study has been limited by the low abundance in patient blood and the heterogeneous expression of surface markers. The FDA-approved CellSearch platform enriches CD146-positive CMCs, whose number correlates with progression-free survival and overall survival. However, a single marker may not be sufficient to identify them all. The Parsortix system allows enrichment of CMCs based on their size and deformability, keeping them viable and suitable for downstream molecular analyses. In this study, we tested the strengths, weaknesses and potential convergences of both platforms to integrate the counting of CMCs with a protocol for their genetic analysis. Samples run on Parsortix were labeled with a customized melanoma antibody cocktail, which efficiently labeled and distinguished CMCs from endothelial cells/leukocytes. The capture rate of CellSearch and Parsortix was comparable for cell lines, but Parsortix had a higher capture rate in real-life samples. Moreover, double enrichment with both CellSearch and Parsortix succeeded in removing most of the leukocyte contamination, resulting in an almost pure CMC sample suitable for genetic analysis. In this regard, a proof-of-concept analysis of CMCs from a paradigmatic case of a metastatic uveal melanoma patient led to the identification of multiple genetic alterations. In particular, the GNAQ p.Q209L was identified as homozygous, while a deletion in BAP1 exon 9 was found hemizygous. Moreover, an isochromosome 8 and a homozygous deletion of the CDKN2A gene were detected. In conclusion, we have optimized an approach to successfully enrich and retrieve viable CMCs from metastatic melanoma patients. Moreover, this study provides proof-of-principle for the feasibility of a marker-agnostic CMC enrichment followed by CMC phenotypic identification and genetic analysis.Kindly check and confirm the processed contributed equally is correctly identify We confirm.
Collapse
Affiliation(s)
- Cristina Poggiana
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | | | - Cristina Catoni
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy.
| | - Ilaria Gallingani
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy.
| | - Luisa Piccin
- Medical Oncology 2, Veneto Institute of Oncology, IOV-IRCCS, Padova, Italy
| | - Stefania Pellegrini
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Vittorio Aneloni
- UOC Immunotrasfusionale, University-Hospital of Padova, Padova, Italy
| | | | - Jacopo Pigozzo
- Medical Oncology 2, Veneto Institute of Oncology, IOV-IRCCS, Padova, Italy
| | - Alessio Fabozzi
- Oncology Unit 3, Veneto Institute of Oncology IOV-IRCCS, Padova, 35128, Italy
| | - Antonella Facchinetti
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Chiara Menin
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Paolo Del Fiore
- Soft-Tissue, Peritoneum and Melanoma Surgical Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Simone Mocellin
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
- Soft-Tissue, Peritoneum and Melanoma Surgical Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | | | - Antonio Rosato
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Maria Chiara Scaini
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| |
Collapse
|
2
|
Slusher N, Jones N, Nonaka T. Liquid biopsy for diagnostic and prognostic evaluation of melanoma. Front Cell Dev Biol 2024; 12:1420360. [PMID: 39156972 PMCID: PMC11327088 DOI: 10.3389/fcell.2024.1420360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 07/03/2024] [Indexed: 08/20/2024] Open
Abstract
Melanoma is the most aggressive form of skin cancer, and the majority of cases are associated with chronic or intermittent sun exposure. The incidence of melanoma has grown exponentially over the last 50 years, especially in populations of fairer skin, at lower altitudes and in geriatric populations. The gold standard for diagnosis of melanoma is performing an excisional biopsy with full resection or an incisional tissue biopsy. However, due to their invasiveness, conventional biopsy techniques are not suitable for continuous disease monitoring. Utilization of liquid biopsy techniques represent substantial promise in early detection of melanoma. Through this procedure, tumor-specific components shed into circulation can be analyzed for not only diagnosis but also treatment selection and risk assessment. Additionally, liquid biopsy is significantly less invasive than tissue biopsy and offers a novel way to monitor the treatment response and disease relapse, predicting metastasis.
Collapse
Affiliation(s)
- Nicholas Slusher
- School of Medicine, Louisiana State University Health Shreveport, Shreveport, LA, United States
| | - Nicholas Jones
- School of Medicine, Louisiana State University Health Shreveport, Shreveport, LA, United States
| | - Taichiro Nonaka
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, United States
- Feist-Weiller Cancer Center, Louisiana State University Health Shreveport, Shreveport, LA, United States
| |
Collapse
|
3
|
Beigi YZ, Lanjanian H, Fayazi R, Salimi M, Hoseyni BHM, Noroozizadeh MH, Masoudi-Nejad A. Heterogeneity and molecular landscape of melanoma: implications for targeted therapy. MOLECULAR BIOMEDICINE 2024; 5:17. [PMID: 38724687 PMCID: PMC11082128 DOI: 10.1186/s43556-024-00182-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 04/08/2024] [Indexed: 05/12/2024] Open
Abstract
Uveal cancer (UM) offers a complex molecular landscape characterized by substantial heterogeneity, both on the genetic and epigenetic levels. This heterogeneity plays a critical position in shaping the behavior and response to therapy for this uncommon ocular malignancy. Targeted treatments with gene-specific therapeutic molecules may prove useful in overcoming radiation resistance, however, the diverse molecular makeups of UM call for a patient-specific approach in therapy procedures. We need to understand the intricate molecular landscape of UM to develop targeted treatments customized to each patient's specific genetic mutations. One of the promising approaches is using liquid biopsies, such as circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA), for detecting and monitoring the disease at the early stages. These non-invasive methods can help us identify the most effective treatment strategies for each patient. Single-cellular is a brand-new analysis platform that gives treasured insights into diagnosis, prognosis, and remedy. The incorporation of this data with known clinical and genomics information will give a better understanding of the complicated molecular mechanisms that UM diseases exploit. In this review, we focused on the heterogeneity and molecular panorama of UM, and to achieve this goal, the authors conducted an exhaustive literature evaluation spanning 1998 to 2023, using keywords like "uveal melanoma, "heterogeneity". "Targeted therapies"," "CTCs," and "single-cellular analysis".
Collapse
Affiliation(s)
- Yasaman Zohrab Beigi
- Laboratory of System Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Hossein Lanjanian
- Software Engineering Department, Engineering Faculty, Istanbul Topkapi University, Istanbul, Turkey
| | - Reyhane Fayazi
- Laboratory of System Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Mahdieh Salimi
- Department of Medical Genetics, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Behnaz Haji Molla Hoseyni
- Laboratory of System Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | | | - Ali Masoudi-Nejad
- Laboratory of System Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
4
|
Chen H, Osman SY, Moose DL, Vanneste M, Anderson JL, Henry MD, Anand RK. Quantification of capture efficiency, purity, and single-cell isolation in the recovery of circulating melanoma cells from peripheral blood by dielectrophoresis. LAB ON A CHIP 2023; 23:2586-2600. [PMID: 37185977 PMCID: PMC10228177 DOI: 10.1039/d2lc01113a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/31/2023] [Indexed: 05/17/2023]
Abstract
This paper describes a dielectrophoretic method for selection of circulating melanoma cells (CMCs), which lack reliable identifying surface antigens and are extremely rare in blood. This platform captures CMCs individually by dielectrophoresis (DEP) at an array of wireless bipolar electrodes (BPEs) aligned to overlying nanoliter-scale chambers, which isolate each cell for subsequent on-chip single-cell analysis. To determine the best conditions to employ for CMC isolation in this DEP-BPE platform, the static and dynamic dielectrophoretic response of established melanoma cell lines, melanoma cells from patient-derived xenografts (PDX) and peripheral blood mononuclear cells (PBMCs) were evaluated as a function of frequency using two established DEP platforms. Further, PBMCs derived from patients with advanced melanoma were compared with those from healthy controls. The results of this evaluation reveal that each DEP method requires a distinct frequency to achieve capture of melanoma cells and that the distribution of dielectric properties of PBMCs is more broadly varied in and among patients versus healthy controls. Based on this evaluation, we conclude that 50 kHz provides the highest capture efficiency on our DEP-BPE platform while maintaining a low rate of capture of unwanted PBMCs. We further quantified the efficiency of single-cell capture on the DEP-BPE platform and found that the efficiency diminished beyond around 25% chamber occupancy, thereby informing the minimum array size that is required. Importantly, the capture efficiency of the DEP-BPE platform for melanoma cells when using optimized conditions matched the performance predicted by our analysis. Finally, isolation of melanoma cells from contrived (spike-in) and clinical samples on our platform using optimized conditions was demonstrated. The capture and individual isolation of CMCs, confirmed by post-capture labeling, from patient-derived samples suggests the potential of this platform for clinical application.
Collapse
Affiliation(s)
- Han Chen
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA.
| | - Sommer Y Osman
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA.
| | - Devon L Moose
- Departments of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242, USA
| | - Marion Vanneste
- Departments of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242, USA
| | - Jared L Anderson
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA.
| | - Michael D Henry
- Departments of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242, USA
- Pathology, Urology and Radiation Oncology, University of Iowa, Iowa City, IA 52242, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| | - Robbyn K Anand
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA.
| |
Collapse
|
5
|
Gui J, Guo Z, Wu D. Clinical features, molecular pathology, and immune microenvironmental characteristics of acral melanoma. J Transl Med 2022; 20:367. [PMID: 35974375 PMCID: PMC9382740 DOI: 10.1186/s12967-022-03532-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/13/2022] [Indexed: 11/10/2022] Open
Abstract
Acral melanoma (AM) has unique biology as an aggressive subtype of melanoma. It is a common subtype of melanoma in races with darker skin tones usually diagnosed at a later stage, thereby presenting a worse prognosis compared to cutaneous melanoma. The pathogenesis of acral melanoma differs from cutaneous melanoma, and trauma promotes its development. Compared to cutaneous melanomas, acral melanomas have a significantly lighter mutational burden with more copy number variants. Most acral melanomas are classified as triple wild-type. In contrast to cutaneous melanomas, acral melanomas have a suppressive immune microenvironment. Herein, we reviewed the clinical features, genetic variants, and immune microenvironmental characteristics of limbic melanomas to summarise their unique features.
Collapse
Affiliation(s)
- Jianping Gui
- Cancer Center, The First Hospital of Jilin University, 1 Xinmin St, Changchun, 130021, China
| | - Zhen Guo
- Cancer Center, The First Hospital of Jilin University, 1 Xinmin St, Changchun, 130021, China
| | - Di Wu
- Cancer Center, The First Hospital of Jilin University, 1 Xinmin St, Changchun, 130021, China.
| |
Collapse
|
6
|
Beasley AB, Isaacs TW, Vermeulen T, Freeman J, DeSousa JL, Bhikoo R, Hennessy D, Reid A, Chen FK, Bentel J, McKay D, Conway RM, Pereira MR, Mirzai B, Calapre L, Erber WN, Ziman MR, Gray ES. Analysis of Circulating Tumour Cells in Early-Stage Uveal Melanoma: Evaluation of Tumour Marker Expression to Increase Capture. Cancers (Basel) 2021; 13:5990. [PMID: 34885099 PMCID: PMC8657240 DOI: 10.3390/cancers13235990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 01/07/2023] Open
Abstract
(1) Background: The stratification of uveal melanoma (UM) patients into prognostic groups is critical for patient management and for directing patients towards clinical trials. Current classification is based on clinicopathological and molecular features of the tumour. Analysis of circulating tumour cells (CTCs) has been proposed as a tool to avoid invasive biopsy of the primary tumour. However, the clinical utility of such liquid biopsy depends on the detection rate of CTCs. (2) Methods: The expression of melanoma, melanocyte, and stem cell markers was tested in a primary tissue microarray (TMA) and UM cell lines. Markers found to be highly expressed in primary UM were used to either immunomagnetically isolate or immunostain UM CTCs prior to treatment of the primary lesion. (3) Results: TMA and cell lines had heterogeneous expression of common melanoma, melanocyte, and stem cell markers. A multi-marker panel of immunomagnetic beads enabled isolation of CTCs in 37/43 (86%) patients with UM. Detection of three or more CTCs using the multi-marker panel, but not MCSP alone, was a significant predictor of shorter progression free (p = 0.040) and overall (p = 0.022) survival. (4) Conclusions: The multi-marker immunomagnetic isolation protocol enabled the detection of CTCs in most primary UM patients. Overall, our results suggest that a multi-marker approach could be a powerful tool for CTC separation for non-invasive prognostication of UM.
Collapse
Affiliation(s)
- Aaron B. Beasley
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia; (A.B.B.); (J.F.); (A.R.); (M.R.P.); (L.C.); (M.R.Z.)
- Centre for Precision Health, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Timothy W. Isaacs
- Perth Retina, Subiaco, WA 6008, Australia;
- Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute), The University of Western Australia, Perth, WA 6000, Australia; (J.-L.D.); (R.B.); (F.K.C.)
- Department of Ophthalmology, Royal Perth Hospital, Perth, WA 6000, Australia;
| | - Tersia Vermeulen
- Anatomical Pathology, PathWest Laboratory Medicine, Fiona Stanley Hospital, Murdoch, WA 6150, Australia; (T.V.); (J.B.)
- Anatomical Pathology, PathWest Laboratory Medicine, Royal Perth Hospital, Perth, WA 6000, Australia
| | - James Freeman
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia; (A.B.B.); (J.F.); (A.R.); (M.R.P.); (L.C.); (M.R.Z.)
| | - Jean-Louis DeSousa
- Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute), The University of Western Australia, Perth, WA 6000, Australia; (J.-L.D.); (R.B.); (F.K.C.)
- Department of Ophthalmology, Royal Perth Hospital, Perth, WA 6000, Australia;
| | - Riyaz Bhikoo
- Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute), The University of Western Australia, Perth, WA 6000, Australia; (J.-L.D.); (R.B.); (F.K.C.)
- Department of Ophthalmology, Royal Perth Hospital, Perth, WA 6000, Australia;
| | - Doireann Hennessy
- Department of Ophthalmology, Royal Perth Hospital, Perth, WA 6000, Australia;
| | - Anna Reid
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia; (A.B.B.); (J.F.); (A.R.); (M.R.P.); (L.C.); (M.R.Z.)
- Centre for Precision Health, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Fred K. Chen
- Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute), The University of Western Australia, Perth, WA 6000, Australia; (J.-L.D.); (R.B.); (F.K.C.)
- Department of Ophthalmology, Royal Perth Hospital, Perth, WA 6000, Australia;
| | - Jacqueline Bentel
- Anatomical Pathology, PathWest Laboratory Medicine, Fiona Stanley Hospital, Murdoch, WA 6150, Australia; (T.V.); (J.B.)
| | - Daniel McKay
- Royal Victorian Eye & Ear Hospital, Melbourne, VIC 3000, Australia;
| | - R. Max Conway
- Ocular Oncology Unit, Sydney Eye Hospital and The Kinghorn Cancer Centre, Sydney, NSW 2000, Australia;
- Save Sight Institute, The University of Sydney, Sydney, NSW 2000, Australia
| | - Michelle R. Pereira
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia; (A.B.B.); (J.F.); (A.R.); (M.R.P.); (L.C.); (M.R.Z.)
| | - Bob Mirzai
- School of Biomedical Sciences, University of Western Australia, Perth, WA 6000, Australia; (B.M.); (W.N.E.)
| | - Leslie Calapre
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia; (A.B.B.); (J.F.); (A.R.); (M.R.P.); (L.C.); (M.R.Z.)
- Centre for Precision Health, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Wendy N. Erber
- School of Biomedical Sciences, University of Western Australia, Perth, WA 6000, Australia; (B.M.); (W.N.E.)
| | - Melanie R. Ziman
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia; (A.B.B.); (J.F.); (A.R.); (M.R.P.); (L.C.); (M.R.Z.)
- School of Biomedical Sciences, University of Western Australia, Perth, WA 6000, Australia; (B.M.); (W.N.E.)
| | - Elin S. Gray
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia; (A.B.B.); (J.F.); (A.R.); (M.R.P.); (L.C.); (M.R.Z.)
- Centre for Precision Health, Edith Cowan University, Joondalup, WA 6027, Australia
| |
Collapse
|
7
|
Wang J, Wuethrich A, Lobb RJ, Antaw F, Sina AAI, Lane RE, Zhou Q, Zieschank C, Bell C, Bonazzi VF, Aoude LG, Everitt S, Yeo B, Barbour AP, Möller A, Trau M. Characterizing the Heterogeneity of Small Extracellular Vesicle Populations in Multiple Cancer Types via an Ultrasensitive Chip. ACS Sens 2021; 6:3182-3194. [PMID: 34264628 DOI: 10.1021/acssensors.1c00358] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Identifying small extracellular vesicle (sEV) subpopulations based on their different molecular signatures could potentially reveal the functional roles in physiology and pathology. However, it is a challenge to achieve this aim due to the nano-sized dimensions of sEVs, low quantities of biological cargo each sEV carries, and our incomplete knowledge of identifying features capable of separating heterogeneous sEV subpopulations. Here, a sensitive, multiplexed, and nano-mixing-enhanced sEV subpopulation characterization platform (ESCP) is proposed to precisely determine the sEV phenotypic heterogeneity and understand the role of sEV heterogeneity in cancer progression and metastasis. The ESCP utilizes spatially patterned anti-tetraspanin-functionalized micro-arrays for sEV subpopulation sorting and nanobarcode-based surface-enhanced Raman spectroscopy for multiplexed read-outs. An ESCP has been used for investigating sEV phenotypic heterogeneity in terms of canonical sEV tetraspanin molecules and cancer-associated protein biomarkers in both cancer cell line models and cancer patient samples. Our data explicitly demonstrate the selective enrichment of tetraspanins and cancer-associated protein biomarkers, in particular sEV subpopulations. Therefore, it is believed that the ESCP could enable the evaluation and broader application of sEV subpopulations as potential diagnostic disease biomarkers.
Collapse
Affiliation(s)
- Jing Wang
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Alain Wuethrich
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Richard J. Lobb
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Fiach Antaw
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Abu Ali Ibn Sina
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Rebecca E. Lane
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Quan Zhou
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Chloe Zieschank
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Caroline Bell
- School of Cancer Medicine, Olivia Newton-John Cancer Research Institute and La Trobe University, 145 Studley Road, Heidelberg, Victoria 3084, Australia
| | - Vanessa F. Bonazzi
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Queensland 4102, Australia
| | - Lauren G. Aoude
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Queensland 4102, Australia
| | - Sarah Everitt
- Department of Radiation Therapy, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
- Sir Peter MacCallum Department of Oncology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Belinda Yeo
- School of Cancer Medicine, Olivia Newton-John Cancer Research Institute and La Trobe University, 145 Studley Road, Heidelberg, Victoria 3084, Australia
- Austin Health, Heidelberg, Victoria 3084, Australia
| | - Andrew P. Barbour
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Queensland 4102, Australia
- Queensland Melanoma Project, Princess Alexandra Hospital, Brisbane, Queensland 4102, Australia
| | - Andreas Möller
- Tumour Microenvironment Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia
| | - Matt Trau
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
8
|
Kamińska P, Buszka K, Zabel M, Nowicki M, Alix-Panabières C, Budna-Tukan J. Liquid Biopsy in Melanoma: Significance in Diagnostics, Prediction and Treatment Monitoring. Int J Mol Sci 2021; 22:9714. [PMID: 34575876 PMCID: PMC8468624 DOI: 10.3390/ijms22189714] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/25/2021] [Accepted: 09/06/2021] [Indexed: 02/06/2023] Open
Abstract
Liquid biopsy is a common term referring to circulating tumor cells and other biomarkers, such as circulating tumor DNA (ctDNA) or extracellular vesicles. Liquid biopsy presents a range of clinical advantages, such as the low invasiveness of the blood sample collection and continuous control of the tumor progression. In addition, this approach enables the mechanisms of drug resistance to be determined in various methods of cancer treatment, including immunotherapy. However, in the case of melanoma, the application of liquid biopsy in patient stratification and therapy needs further investigation. This review attempts to collect all of the relevant and recent information about circulating melanoma cells (CMCs) related to the context of malignant melanoma and immunotherapy. Furthermore, the biology of liquid biopsy analytes, including CMCs, ctDNA, mRNA and exosomes, as well as techniques for their detection and isolation, are also described. The available data support the notion that thoughtful selection of biomarkers and technologies for their detection can contribute to the development of precision medicine by increasing the efficacy of cancer diagnostics and treatment.
Collapse
Affiliation(s)
- Paula Kamińska
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (P.K.); (K.B.); (M.N.)
| | - Karolina Buszka
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (P.K.); (K.B.); (M.N.)
| | - Maciej Zabel
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Góra, 65-046 Zielona Góra, Poland;
| | - Michał Nowicki
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (P.K.); (K.B.); (M.N.)
| | - Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, 34093 Montpellier, France;
- CREEC/CANECEV, MIVEGEC (CREES), University of Montpellier, CNRS, IRD, 34000 Montpellier, France
| | - Joanna Budna-Tukan
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (P.K.); (K.B.); (M.N.)
| |
Collapse
|
9
|
Madheswaran S, Mungra N, Biteghe FAN, De la Croix Ndong J, Arowolo AT, Adeola HA, Ramamurthy D, Naran K, Khumalo NP, Barth S. Antibody-Based Targeted Interventions for the Diagnosis and Treatment of Skin Cancers. Anticancer Agents Med Chem 2021; 21:162-186. [PMID: 32723261 DOI: 10.2174/1871520620666200728123006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/19/2020] [Accepted: 04/30/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cutaneous malignancies most commonly arise from skin epidermal cells. These cancers may rapidly progress from benign to a metastatic phase. Surgical resection represents the gold standard therapeutic treatment of non-metastatic skin cancer while chemo- and/or radiotherapy are often used against metastatic tumors. However, these therapeutic treatments are limited by the development of resistance and toxic side effects, resulting from the passive accumulation of cytotoxic drugs within healthy cells. OBJECTIVE This review aims to elucidate how the use of monoclonal Antibodies (mAbs) targeting specific Tumor Associated Antigens (TAAs) is paving the way to improved treatment. These mAbs are used as therapeutic or diagnostic carriers that can specifically deliver cytotoxic molecules, fluorophores or radiolabels to cancer cells that overexpress specific target antigens. RESULTS mAbs raised against TAAs are widely in use for e.g. differential diagnosis, prognosis and therapy of skin cancers. Antibody-Drug Conjugates (ADCs) particularly show remarkable potential. The safest ADCs reported to date use non-toxic photo-activatable Photosensitizers (PSs), allowing targeted Photodynamic Therapy (PDT) resulting in targeted delivery of PS into cancer cells and selective killing after light activation without harming the normal cell population. The use of near-infrared-emitting PSs enables both diagnostic and therapeutic applications upon light activation at the specific wavelengths. CONCLUSION Antibody-based approaches are presenting an array of opportunities to complement and improve current methods employed for skin cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Suresh Madheswaran
- Medical Biotechnology & Immunotherapy Research Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Neelakshi Mungra
- Medical Biotechnology & Immunotherapy Research Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Fleury A N Biteghe
- Department of Radiation Oncology and Biomedical Sciences, Cedars-Sinai Medical, 8700 Beverly Blvd, Los Angeles, CA, United States
| | - Jean De la Croix Ndong
- Department of Orthopedic Surgery, New York University Langone Orthopedic Hospital, 301 East 17th Street, New York, NY, United States
| | - Afolake T Arowolo
- The Hair and Skin Research Lab, Division of Dermatology, Department of Medicine, Faculty of Health Sciences, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa
| | - Henry A Adeola
- The Hair and Skin Research Lab, Division of Dermatology, Department of Medicine, Faculty of Health Sciences, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa
| | - Dharanidharan Ramamurthy
- Medical Biotechnology & Immunotherapy Research Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Krupa Naran
- Medical Biotechnology & Immunotherapy Research Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Nonhlanhla P Khumalo
- The Hair and Skin Research Lab, Division of Dermatology, Department of Medicine, Faculty of Health Sciences, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa
| | - Stefan Barth
- Medical Biotechnology & Immunotherapy Research Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
10
|
Beasley AB, Acheampong E, Lin W, Gray ES. Multi-Marker Immunomagnetic Enrichment of Circulating Melanoma Cells. Methods Mol Biol 2021; 2265:213-222. [PMID: 33704717 DOI: 10.1007/978-1-0716-1205-7_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Within the last decade, circulating tumor cells (CTCs) have emerged as a promising biomarker for prognostication, treatment monitoring, and detection of markers of treatment resistance, and their isolation can be used as a minimally invasive means of profiling tumors across multiple body sites. However, CTCs represent a minuscule fraction of the total circulating cells in a patient. Therefore, sensitive isolation methods are needed for the detection and downstream analysis of these cells. Herein we describe a sensitive method for melanoma CTC isolation using a multi-marker immunomagnetic bead method. This method has been purposely optimized to detect CTCs in melanoma patients.
Collapse
Affiliation(s)
- Aaron B Beasley
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Emmanuel Acheampong
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Weitao Lin
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Elin S Gray
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.
| |
Collapse
|
11
|
Morici M, Lin W, Gray ES. Transcript-Based Detection of Circulating Melanoma Cells. Methods Mol Biol 2021; 2265:235-245. [PMID: 33704719 DOI: 10.1007/978-1-0716-1205-7_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Circulating tumor cells (CTCs) are cancer cells shed by the primary tumor or its metastases that circulate in the peripheral blood. CTCs are potential seeds for metastases, and their detection may allow early uncovering of metastatic dissemination and disease prognostication. To fully ascertain the biomarker potential of melanoma CTCs, sensitive and reliable methods are required. Melanoma-specific transcript analysis has been widely utilized as a standard approach for measuring the presence of CTCs. Here we describe a method for the analysis of CTCs through the detection of specific transcripts in CTC-enriched fractions.
Collapse
Affiliation(s)
- Michael Morici
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Weitao Lin
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Elin S Gray
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.
| |
Collapse
|
12
|
Pilla L, Alberti A, Di Mauro P, Gemelli M, Cogliati V, Cazzaniga ME, Bidoli P, Maccalli C. Molecular and Immune Biomarkers for Cutaneous Melanoma: Current Status and Future Prospects. Cancers (Basel) 2020; 12:E3456. [PMID: 33233603 PMCID: PMC7699774 DOI: 10.3390/cancers12113456] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/11/2020] [Accepted: 11/11/2020] [Indexed: 12/18/2022] Open
Abstract
Advances in the genomic, molecular and immunological make-up of melanoma allowed the development of novel targeted therapy and of immunotherapy, leading to changes in the paradigm of therapeutic interventions and improvement of patients' overall survival. Nevertheless, the mechanisms regulating either the responsiveness or the resistance of melanoma patients to therapies are still mostly unknown. The development of either the combinations or of the sequential treatment of different agents has been investigated but without a strongly molecularly motivated rationale. The need for robust biomarkers to predict patients' responsiveness to defined therapies and for their stratification is still unmet. Progress in immunological assays and genomic techniques as long as improvement in designing and performing studies monitoring the expression of these markers along with the evolution of the disease allowed to identify candidate biomarkers. However, none of them achieved a definitive role in predicting patients' clinical outcomes. Along this line, the cross-talk of melanoma cells with tumor microenvironment plays an important role in the evolution of the disease and needs to be considered in light of the role of predictive biomarkers. The overview of the relationship between the molecular basis of melanoma and targeted therapies is provided in this review, highlighting the benefit for clinical responses and the limitations. Moreover, the role of different candidate biomarkers is described together with the technical approaches for their identification. The provided evidence shows that progress has been achieved in understanding the molecular basis of melanoma and in designing advanced therapeutic strategies. Nevertheless, the molecular determinants of melanoma and their role as biomarkers predicting patients' responsiveness to therapies warrant further investigation with the vision of developing more effective precision medicine.
Collapse
Affiliation(s)
- Lorenzo Pilla
- Division of Medical Oncology, San Gerardo Hospital, University of Milano-Bicocca School of Medicine, 20900 Monza, Italy; (P.D.M.); (M.G.); (V.C.); (M.E.C.); (P.B.)
| | - Andrea Alberti
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Health Science and Public Health, University of Brescia, ASST Ospedali Civili, 25123 Brescia, Italy;
| | - Pierluigi Di Mauro
- Division of Medical Oncology, San Gerardo Hospital, University of Milano-Bicocca School of Medicine, 20900 Monza, Italy; (P.D.M.); (M.G.); (V.C.); (M.E.C.); (P.B.)
| | - Maria Gemelli
- Division of Medical Oncology, San Gerardo Hospital, University of Milano-Bicocca School of Medicine, 20900 Monza, Italy; (P.D.M.); (M.G.); (V.C.); (M.E.C.); (P.B.)
| | - Viola Cogliati
- Division of Medical Oncology, San Gerardo Hospital, University of Milano-Bicocca School of Medicine, 20900 Monza, Italy; (P.D.M.); (M.G.); (V.C.); (M.E.C.); (P.B.)
| | - Marina Elena Cazzaniga
- Division of Medical Oncology, San Gerardo Hospital, University of Milano-Bicocca School of Medicine, 20900 Monza, Italy; (P.D.M.); (M.G.); (V.C.); (M.E.C.); (P.B.)
| | - Paolo Bidoli
- Division of Medical Oncology, San Gerardo Hospital, University of Milano-Bicocca School of Medicine, 20900 Monza, Italy; (P.D.M.); (M.G.); (V.C.); (M.E.C.); (P.B.)
| | - Cristina Maccalli
- Laboratory of Immune and Biological Therapy, Research Department, Sidra Medicine, Doha 26999, Qatar;
| |
Collapse
|
13
|
Kang Y, Hadlock T, Lo T, Purcell E, Mutukuri A, Fouladdel S, Raguera MDS, Fairbairn H, Murlidhar V, Durham A, McLean SA, Nagrath S. Dual-Isolation and Profiling of Circulating Tumor Cells and Cancer Exosomes from Blood Samples with Melanoma Using Immunoaffinity-Based Microfluidic Interfaces. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001581. [PMID: 33042766 PMCID: PMC7539202 DOI: 10.1002/advs.202001581] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/05/2020] [Indexed: 05/04/2023]
Abstract
Melanoma is among the most aggressive cancers, and its rate of incidence continues to grow. Early detection of melanoma has been hampered due to the lack of promising markers for testing. Recent advances in liquid biopsy have proposed noninvasive alternatives for cancer diagnosis and monitoring. Circulating tumor cells (CTCs) and cancer-exosomes are gaining influence as promising biomarkers because of their cancer-associated molecular markers and signatures. However, technologies that offer the dual-isolation of CTCs and exosomes using a single sample have not been thoroughly developed. The dual-utilization OncoBean (DUO) device is conjugated with melanoma specific antibodies, MCAM and MCSP, enabling simultaneous CTC and exosome isolations. Using blood samples from patients, CTCs and exosomes are specifically isolated from a single sample and then undergo molecular profiling for comprehensive study. Melanoma patients have 0-17CTCs mL-1 and 299 µg exosomal protein mL-1 while healthy donors display fewer than 2CTCs and 75.6 µg of exosomes mL-1, respectively. It is also demonstrated that both markers express melanoma-associated genes using multiplex qRT-PCR to test for expression pattern of a 96 gene panel. The dual isolation and molecular characterization will allow for further research into melanoma to identify viable markers for disease progression and treatment efficacy.
Collapse
Affiliation(s)
- Yoon‐Tae Kang
- Department of Chemical Engineering and Biointerface InstituteUniversity of Michigan2800 Plymouth Road, NCRC B10‐A184Ann ArborMI48109USA
| | - Thomas Hadlock
- Department of Chemical Engineering and Biointerface InstituteUniversity of Michigan2800 Plymouth Road, NCRC B10‐A184Ann ArborMI48109USA
| | - Ting‐Wen Lo
- Department of Chemical Engineering and Biointerface InstituteUniversity of Michigan2800 Plymouth Road, NCRC B10‐A184Ann ArborMI48109USA
| | - Emma Purcell
- Department of Chemical Engineering and Biointerface InstituteUniversity of Michigan2800 Plymouth Road, NCRC B10‐A184Ann ArborMI48109USA
| | - Anusha Mutukuri
- Department of Chemical Engineering and Biointerface InstituteUniversity of Michigan2800 Plymouth Road, NCRC B10‐A184Ann ArborMI48109USA
| | - Shamileh Fouladdel
- Department of Chemical Engineering and Biointerface InstituteUniversity of Michigan2800 Plymouth Road, NCRC B10‐A184Ann ArborMI48109USA
| | - Monica De Silva Raguera
- Department of Chemical Engineering and Biointerface InstituteUniversity of Michigan2800 Plymouth Road, NCRC B10‐A184Ann ArborMI48109USA
| | - Heather Fairbairn
- Department of Chemical Engineering and Biointerface InstituteUniversity of Michigan2800 Plymouth Road, NCRC B10‐A184Ann ArborMI48109USA
| | - Vasudha Murlidhar
- Department of Chemical Engineering and Biointerface InstituteUniversity of Michigan2800 Plymouth Road, NCRC B10‐A184Ann ArborMI48109USA
| | - Alison Durham
- University of Michigan‐Michigan Medicine1910 Taubman Center1500 E. Medical Center DriveAnn ArborMI48109USA
- Roger Cancer CenterUniversity of Michigan1500 E Medical CenterAnn Arbor48109USA
| | - Scott A. McLean
- Roger Cancer CenterUniversity of Michigan1500 E Medical CenterAnn Arbor48109USA
- Michigan Medicine Otolaryngology Clinic1910 Taubman Center1500 E. Medical Center DriveAnn ArborMI48109USA
| | - Sunitha Nagrath
- Department of Chemical Engineering and Biointerface InstituteUniversity of Michigan2800 Plymouth Road, NCRC B10‐A184Ann ArborMI48109USA
- Roger Cancer CenterUniversity of Michigan1500 E Medical CenterAnn Arbor48109USA
| |
Collapse
|
14
|
Ahrens TD, Bang-Christensen SR, Jørgensen AM, Løppke C, Spliid CB, Sand NT, Clausen TM, Salanti A, Agerbæk MØ. The Role of Proteoglycans in Cancer Metastasis and Circulating Tumor Cell Analysis. Front Cell Dev Biol 2020; 8:749. [PMID: 32984308 PMCID: PMC7479181 DOI: 10.3389/fcell.2020.00749] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/17/2020] [Indexed: 12/14/2022] Open
Abstract
Circulating tumor cells (CTCs) are accessible by liquid biopsies via an easy blood draw. They represent not only the primary tumor site, but also potential metastatic lesions, and could thus be an attractive supplement for cancer diagnostics. However, the analysis of rare CTCs in billions of normal blood cells is still technically challenging and novel specific CTC markers are needed. The formation of metastasis is a complex process supported by numerous molecular alterations, and thus novel CTC markers might be found by focusing on this process. One example of this is specific changes in the cancer cell glycocalyx, which is a network on the cell surface composed of carbohydrate structures. Proteoglycans are important glycocalyx components and consist of a protein core and covalently attached long glycosaminoglycan chains. A few CTC assays have already utilized proteoglycans for both enrichment and analysis of CTCs. Nonetheless, the biological function of proteoglycans on clinical CTCs has not been studied in detail so far. Therefore, the present review describes proteoglycan functions during the metastatic cascade to highlight their importance to CTCs. We also outline current approaches for CTC assays based on targeting proteoglycans by their protein cores or their glycosaminoglycan chains. Lastly, we briefly discuss important technical aspects, which should be considered for studying proteoglycans.
Collapse
Affiliation(s)
- Theresa D. Ahrens
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Sara R. Bang-Christensen
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
- VarCT Diagnostics, Copenhagen, Denmark
| | | | - Caroline Løppke
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Charlotte B. Spliid
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Nicolai T. Sand
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Thomas M. Clausen
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Ali Salanti
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Mette Ø. Agerbæk
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
- VarCT Diagnostics, Copenhagen, Denmark
| |
Collapse
|
15
|
Vanni I, Tanda ET, Spagnolo F, Andreotti V, Bruno W, Ghiorzo P. The Current State of Molecular Testing in the BRAF-Mutated Melanoma Landscape. Front Mol Biosci 2020; 7:113. [PMID: 32695793 PMCID: PMC7338720 DOI: 10.3389/fmolb.2020.00113] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/13/2020] [Indexed: 01/19/2023] Open
Abstract
The incidence of melanoma, among the most lethal cancers, is widespread and increasing. Metastatic melanoma has a poor prognosis, representing about 90% of skin cancer mortality. The increased knowledge of tumor biology and the greater understanding of the immune system role in the anti-tumor response has allowed us to develop a more rational approach to systemic therapies. The discovery of activating BRAF mutations in half of all melanomas has led to the development of molecularly targeted therapy with BRAF and MEK inhibitors, which dramatically improved outcomes of patients with stage IV BRAF-mutant melanoma. More recently, the results of clinical phase III studies conducted in the adjuvant setting led to the combined administration of BRAF and MEK inhibitors also in patients with resected high-risk melanoma (stage III). Therefore, BRAF mutation testing has become a priority to determine the oncologist's choice and course of therapy. In this review, we will report the molecular biology-based strategies used for BRAF mutation detection with the main advantages and disadvantages of the most commonly used diagnostic strategies. The timing of such molecular assessment in patients with cutaneous melanoma will be discussed, and we will also examine considerations and approaches for accurate and effective BRAF testing.
Collapse
Affiliation(s)
- Irene Vanni
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | | | | | - Virginia Andreotti
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | - William Bruno
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | - Paola Ghiorzo
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| |
Collapse
|
16
|
Schneegans S, Lück L, Besler K, Bluhm L, Stadler JC, Staub J, Greinert R, Volkmer B, Kubista M, Gebhardt C, Sartori A, Irwin D, Serkkola E, Af Hällström T, Lianidou E, Sprenger-Haussels M, Hussong M, Mohr P, Schneider SW, Shaffer J, Pantel K, Wikman H. Pre-analytical factors affecting the establishment of a single tube assay for multiparameter liquid biopsy detection in melanoma patients. Mol Oncol 2020; 14:1001-1015. [PMID: 32246814 PMCID: PMC7191195 DOI: 10.1002/1878-0261.12669] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/11/2020] [Accepted: 03/12/2020] [Indexed: 12/18/2022] Open
Abstract
The combination of liquid biomarkers from a single blood tube can provide more comprehensive information on tumor development and progression in cancer patients compared to single analysis. Here, we evaluated whether a combined analysis of circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), and circulating cell-free microRNA (miRNA) in total plasma and extracellular vesicles (EV) from the same blood sample is feasible and how the results are influenced by the choice of different blood tubes. Peripheral blood from 20 stage IV melanoma patients and five healthy donors (HD) was collected in EDTA, Streck, and Transfix tubes. Peripheral blood mononuclear cell fraction was used for CTC analysis, whereas plasma and EV fractions were used for ctDNA mutation and miRNA analysis. Mutations in cell-free circulating DNA were detected in 67% of patients, with no significant difference between the tubes. CTC was detected in only EDTA blood and only in 15% of patients. miRNA NGS (next-generation sequencing) results were highly influenced by the collection tubes and could only be performed from EDTA and Streck tubes due to hemolysis in Transfix tubes. No overlap of significantly differentially expressed miRNA (patients versus HD) could be found between the tubes in total plasma, whereas eight miRNA were commonly differentially regulated in the EV fraction. In summary, high-quality CTCs, ctDNA, and miRNA data from a single blood tube can be obtained. However, the choice of blood collection tubes is a critical pre-analytical variable.
Collapse
Affiliation(s)
- Svenja Schneegans
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Germany
| | - Lelia Lück
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Germany
| | - Katharina Besler
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Germany
| | - Leonie Bluhm
- Centre of Dermatology, Elbe Clinics, Buxtehude, Germany
| | - Julia-Christina Stadler
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Germany.,Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Germany
| | - Janina Staub
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Germany
| | | | - Beate Volkmer
- Centre of Dermatology, Elbe Clinics, Buxtehude, Germany
| | - Mikael Kubista
- TATAA Biocenter AB, Gothenburg, Sweden.,Department of Gene Expression, Institute of Biotechnology, Czech Academy of Sciences, Vestec, Czech Republic
| | - Christoffer Gebhardt
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Germany
| | | | | | | | | | - Evi Lianidou
- Analysis of Circulating Tumor Cells, Lab of Analytical Chemistry, Department of Chemistry, University of Athens, Greece
| | | | - Melanie Hussong
- QIAGEN Inc/GmbH, Frederick, MD, USA.,QIAGEN Inc/GmbH, Hilden, Germany
| | - Peter Mohr
- Centre of Dermatology, Elbe Clinics, Buxtehude, Germany
| | - Stefan W Schneider
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Germany
| | - Jonathan Shaffer
- QIAGEN Inc/GmbH, Frederick, MD, USA.,QIAGEN Inc/GmbH, Hilden, Germany
| | - Klaus Pantel
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Germany
| | - Harriet Wikman
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Germany
| |
Collapse
|
17
|
Aya-Bonilla CA, Morici M, Hong X, McEvoy AC, Sullivan RJ, Freeman J, Calapre L, Khattak MA, Meniawy T, Millward M, Ziman M, Gray ES. Detection and prognostic role of heterogeneous populations of melanoma circulating tumour cells. Br J Cancer 2020; 122:1059-1067. [PMID: 32037400 PMCID: PMC7109152 DOI: 10.1038/s41416-020-0750-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/16/2020] [Accepted: 01/24/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Circulating tumour cells (CTCs) can be assessed through a minimally invasive blood sample with potential utility as a predictive, prognostic and pharmacodynamic biomarker. The large heterogeneity of melanoma CTCs has hindered their detection and clinical application. METHODS Here we compared two microfluidic devices for the recovery of circulating melanoma cells. The presence of CTCs in 43 blood samples from patients with metastatic melanoma was evaluated using a combination of immunocytochemistry and transcript analyses of five genes by RT-PCR and 19 genes by droplet digital PCR (ddPCR), whereby a CTC score was calculated. Circulating tumour DNA (ctDNA) from the same patient blood sample, was assessed by ddPCR targeting tumour-specific mutations. RESULTS Our analysis revealed an extraordinary heterogeneity amongst melanoma CTCs, with multiple non-overlapping subpopulations. CTC detection using our multimarker approach was associated with shorter overall and progression-free survival. Finally, we found that CTC scores correlated with plasma ctDNA concentrations and had similar pharmacodynamic changes upon treatment initiation. CONCLUSIONS Despite the high phenotypic and molecular heterogeneity of melanoma CTCs, multimarker derived CTC scores could serve as viable tools for prognostication and treatment response monitoring in patients with metastatic melanoma.
Collapse
Affiliation(s)
| | - Michael Morici
- School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia
| | - Xin Hong
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | | | - Ryan Joseph Sullivan
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - James Freeman
- School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia
| | - Leslie Calapre
- School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia
| | - Muhammad Adnan Khattak
- School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia
- Department of Medical Oncology, Fiona Stanley Hospital, Murdoch, WA, Australia
- School of Medicine, University of Western Australia, Crawley, WA, Australia
| | - Tarek Meniawy
- School of Medicine, University of Western Australia, Crawley, WA, Australia
- Department of Medical Oncology, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
| | - Michael Millward
- School of Medicine, University of Western Australia, Crawley, WA, Australia
- Department of Medical Oncology, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
| | - Mel Ziman
- School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia
- School of Biomedical Science, University of Western Australia, Crawley, WA, Australia
| | - Elin Solomonovna Gray
- School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia.
| |
Collapse
|
18
|
Anu Prathap MU, Castro-Pérez E, Jiménez-Torres JA, Setaluri V, Gunasekaran S. A flow-through microfluidic system for the detection of circulating melanoma cells. Biosens Bioelectron 2019; 142:111522. [PMID: 31336226 DOI: 10.1016/j.bios.2019.111522] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 07/03/2019] [Accepted: 07/16/2019] [Indexed: 12/19/2022]
Abstract
We report the fabrication of polyaniline nanofiber (PANI)-modified screen-printed electrode (PANI/SPE) incorporated in a poly-dimethylsiloxane (PDMS) microfluidic channel for the detection of circulating tumor cells. We employed this device to detect melanoma skin cancer cells through specific immunogenic binding of cell surface biomarker melanocortin 1 receptor (MC1R) to anti-MC1R antibody. The antibody-functionalized PANI/SPE was used in batch-continuous flow-through fashion. An aqueous cell suspension of ferri/ferrocyanide at a flow rate of 1.5 mL/min was passed over the immunosensor, which allowed for continuous electrochemical measurements. The sensor performed exceptionally well affording an ultralow limit of quantification of 1 melanoma cell/mL, both in buffer and when mixed with peripheral blood mononuclear cells, and the response was log-linear over the range of 10-9000 melanoma cells/10 mL.
Collapse
Affiliation(s)
| | - Edgardo Castro-Pérez
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin-Madison, 1300 University Avenue, Madison, WI, 53706, USA
| | - José A Jiménez-Torres
- Microtechnology, Medicine and Biology Lab Biomedical Engineering, College of Engineering University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Vijaysaradhi Setaluri
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin-Madison, 1300 University Avenue, Madison, WI, 53706, USA.
| | - Sundaram Gunasekaran
- Department of Biological Systems Engineering, University of Wisconsin-Madison, 460 Henry Mall, Madison, WI, 53706, USA.
| |
Collapse
|
19
|
Marzagalli M, Raimondi M, Fontana F, Montagnani Marelli M, Moretti RM, Limonta P. Cellular and molecular biology of cancer stem cells in melanoma: Possible therapeutic implications. Semin Cancer Biol 2019; 59:221-235. [PMID: 31265892 DOI: 10.1016/j.semcancer.2019.06.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 06/27/2019] [Indexed: 01/17/2023]
Abstract
Malignant melanoma is a tumor characterized by a very high level of heterogeneity, responsible for its malignant behavior and ability to escape from standard therapies. In this review we highlight the molecular and biological features of the subpopulation of cancer stem cells (CSCs), well known to be characterized by self-renewal properties, deeply involved in triggering the processes of tumor generation, metastasis, progression and drug resistance. From the molecular point of view, melanoma CSCs are identified and characterized by the expression of stemness markers, such as surface markers, ATP-binding cassette (ABC) transporters, embryonic stem cells and intracellular markers. These cells are endowed with different functional features. In particular, they play pivotal roles in the processes of tumor dissemination, epithelial-to-mesenchymal transition (EMT) and angiogenesis, mediated by specific intracellular signaling pathways; moreover, they are characterized by a unique metabolic reprogramming. As reported for other types of tumors, the CSCs subpopulation in melanoma is also characterized by a low immunogenic profile as well as by the ability to escape the immune system, through the expression of a negative modulation of T cell functions and the secretion of immunosuppressive factors. These biological features allow melanoma CSCs to escape standard treatments, thus being deeply involved in tumor relapse. Targeting the CSCs subpopulation is now considered an attractive treatment strategy; in particular, combination treatments, based on both CSCs-targeting and standard drugs, will likely increase the therapeutic options for melanoma patients. The characterization of CSCs in liquid biopsies from single patients will pave the way towards precision medicine.
Collapse
Affiliation(s)
- Monica Marzagalli
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Milano, Italy
| | - Michela Raimondi
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Milano, Italy
| | - Fabrizio Fontana
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Milano, Italy
| | | | - Roberta M Moretti
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Milano, Italy
| | - Patrizia Limonta
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Milano, Italy.
| |
Collapse
|
20
|
Po JW, Ma Y, Balakrishna B, Brungs D, Azimi F, de Souza P, Becker TM. Immunomagnetic isolation of circulating melanoma cells and detection of PD-L1 status. PLoS One 2019; 14:e0211866. [PMID: 30735560 PMCID: PMC6368301 DOI: 10.1371/journal.pone.0211866] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 01/23/2019] [Indexed: 11/18/2022] Open
Abstract
Personalised medicine targeted to specific biomarkers such as BRAF and c-Kit has radically improved the success of melanoma therapy. More recently, further advances have been made using therapies targeting the immune response. In particular, therapies targeting the PD-1/PD-L1 or CTLA-4 axes alone or in combination have shown more sustained responses in 30–60% of patients. However, these therapies are associated with considerable toxicities and useful biomarkers to predict responders and non-responders are slow to emerge. Here we developed a reliable melanoma circulating tumor cell (CTC) detection method with PD-L1 evaluation on CTCs. A set of melanoma cell surface markers was tested as candidates for targeted melanoma CTC isolation and a melanoma specific immunostaining-based CTC identification protocol combined with PD-L1 detection was established. In vitro testing of the effect of exposure to blood cells on melanoma cell PD-L1 expression was undertaken. Immunomagnetic targeting isolated melanoma CTCs in up to 87.5% of stage IV melanoma patient blood samples and 3 8.6% of these had some PD-L1 expressing CTCs. Our in vitro data demonstrate PD-L1 induction on melanoma cells in the blood.This study established a robust, reliable method to isolate melanoma CTCs and detect expression of PD-L1 on these cells.
Collapse
Affiliation(s)
- Joseph W. Po
- Centre for Circulating Tumor Cell Diagnostics & Research at the Ingham Institute for Applied Medical Research, Liverpool NSW, Australia
- Western Sydney University, School of Medicine, NSW, Australia
| | - Yafeng Ma
- Centre for Circulating Tumor Cell Diagnostics & Research at the Ingham Institute for Applied Medical Research, Liverpool NSW, Australia
- University of New South Wales, South Western Sydney Medical School, Liverpool NSW, Australia
| | | | - Daniel Brungs
- Centre for Circulating Tumor Cell Diagnostics & Research at the Ingham Institute for Applied Medical Research, Liverpool NSW, Australia
- Illawarra Cancer Centre, Wollongong Hospital, Wollongong, Australia
| | | | - Paul de Souza
- Centre for Circulating Tumor Cell Diagnostics & Research at the Ingham Institute for Applied Medical Research, Liverpool NSW, Australia
- Western Sydney University, School of Medicine, NSW, Australia
- University of New South Wales, South Western Sydney Medical School, Liverpool NSW, Australia
- Liverpool Hospital, Liverpool NSW, Australia
| | - Therese M. Becker
- Centre for Circulating Tumor Cell Diagnostics & Research at the Ingham Institute for Applied Medical Research, Liverpool NSW, Australia
- Western Sydney University, School of Medicine, NSW, Australia
- University of New South Wales, South Western Sydney Medical School, Liverpool NSW, Australia
- * E-mail:
| |
Collapse
|
21
|
Aya-Bonilla C, Gray ES, Manikandan J, Freeman JB, Zaenker P, Reid AL, Khattak MA, Frank MH, Millward M, Ziman M. Immunomagnetic-Enriched Subpopulations of Melanoma Circulating Tumour Cells (CTCs) Exhibit Distinct Transcriptome Profiles. Cancers (Basel) 2019; 11:cancers11020157. [PMID: 30769764 PMCID: PMC6406574 DOI: 10.3390/cancers11020157] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 01/28/2019] [Indexed: 02/06/2023] Open
Abstract
Cutaneous melanoma circulating tumour cells (CTCs) are phenotypically and molecularly heterogeneous. We profiled the gene expression of CTC subpopulations immunomagnetic-captured by targeting either the melanoma-associated marker, MCSP, or the melanoma-initiating marker, ABCB5. Firstly, the expression of a subset of melanoma genes was investigated by RT-PCR in MCSP-enriched and ABCB5-enriched CTCs isolated from a total of 59 blood draws from 39 melanoma cases. Of these, 6 MCSP- and 6 ABCB5-enriched CTC fractions were further analysed using a genome-wide gene expression microarray. The transcriptional programs of both CTC subtypes included cell survival maintenance, cell proliferation, and migration pathways. ABCB5-enriched CTCs were specifically characterised by up-regulation of genes involved in epithelial to mesenchymal transition (EMT), suggesting an invasive phenotype. These findings underscore the presence of at least two distinct melanoma CTC subpopulations with distinct transcriptional programs, which may have distinct roles in disease progression and response to therapy.
Collapse
Affiliation(s)
- Carlos Aya-Bonilla
- School of Medical and Health Sciences, Edith Cowan University, Perth, WA 6027, Australia.
| | - Elin S Gray
- School of Medical and Health Sciences, Edith Cowan University, Perth, WA 6027, Australia.
| | | | - James B Freeman
- School of Medical and Health Sciences, Edith Cowan University, Perth, WA 6027, Australia.
| | - Pauline Zaenker
- School of Medical and Health Sciences, Edith Cowan University, Perth, WA 6027, Australia.
| | - Anna L Reid
- School of Medical and Health Sciences, Edith Cowan University, Perth, WA 6027, Australia.
| | - Muhammad A Khattak
- School of Medicine, University of Western Australia, Crawley, WA 6009, Australia.
- Department of Medical Oncology, Sir Charles Gairdner Hospital, Nedlands, WA 6009, Australia.
| | - Markus H Frank
- School of Medical and Health Sciences, Edith Cowan University, Perth, WA 6027, Australia.
- Transplantation Research Program, Boston Children's Hospital and Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA.
| | - Michael Millward
- School of Medicine, University of Western Australia, Crawley, WA 6009, Australia.
- Department of Medical Oncology, Sir Charles Gairdner Hospital, Nedlands, WA 6009, Australia.
| | - Mel Ziman
- School of Medical and Health Sciences, Edith Cowan University, Perth, WA 6027, Australia.
- School of Biomedical Science, University of Western Australia, Crawley, WA 6009, Australia.
| |
Collapse
|
22
|
Dunkel Y, Reid AL, Ear J, Aznar N, Millward M, Gray E, Pearce R, Ziman M, Ghosh P. Prognostic Relevance of CCDC88C (Daple) Transcripts in the Peripheral Blood of Patients with Cutaneous Melanoma. Sci Rep 2018; 8:18036. [PMID: 30575751 PMCID: PMC6303298 DOI: 10.1038/s41598-018-36173-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 11/15/2018] [Indexed: 01/12/2023] Open
Abstract
A loss of balance between G protein activation and deactivation has been implicated in the initiation of melanomas, and non-canonical Wnt signaling via the Wnt5A/Frizzled (FZD) pathway has been shown to be critical for the switch to an invasive phenotype. Daple [CCDC88C], a cytosolic guanine nucleotide exchange modulator (GEM) which enhances non-canonical Wnt5A/FZD signaling via activation of trimeric G protein, Gαi, has been shown to serve opposing roles-as an inducer of EMT and invasiveness and a potent tumor suppressor-via two isoforms, V1 (full-length) and V2 (short spliced isoform), respectively. Here we report that the relative abundance of these isoforms in the peripheral circulation, presumably largely from circulating tumor cells (CTCs), is a prognostic marker of cutaneous melanomas. Expression of V1 is increased in both the early and late clinical stages (p < 0.001, p = 0.002, respectively); V2 is decreased exclusively in the late clinical stage (p = 0.003). The two isoforms have opposing prognostic effects: high expression of V2 increases relapse-free survival (RFS; p = 0.014), whereas high expression of V1 tends to decrease RFS (p = 0.051). Furthermore, these effects are additive, in that melanoma patients with a low V2-high V1 signature carry the highest risk of metastatic disease. We conclude that detection of Daple transcripts in the peripheral blood (i.e., liquid biopsies) of patients with melanoma may serve as a prognostic marker and an effective strategy for non-invasive long-term follow-up of patients with melanoma.
Collapse
Affiliation(s)
- Ying Dunkel
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Anna L Reid
- School of Medical Sciences, Edith Cowan University, Perth, WA, Australia
| | - Jason Ear
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Nicolas Aznar
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
- Centre de Recherche enCancérologie de Lyon (CRCL), Lyon, France
| | - Michael Millward
- School of Medicine, University of Western Australia, Crawley, Australia
- Department of Medical Oncology, Sir Charles Gairdner Hospital, Nedlands, Australia
| | - Elin Gray
- School of Medical Sciences, Edith Cowan University, Perth, WA, Australia
| | - Robert Pearce
- School of Medical Sciences, Edith Cowan University, Perth, WA, Australia
| | - Melanie Ziman
- School of Medical Sciences, Edith Cowan University, Perth, WA, Australia.
- School of Biomedical Science, University of Western Australia, Crawley, Australia.
| | - Pradipta Ghosh
- Department of Medicine, University of California, San Diego, La Jolla, California, USA.
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, USA.
- Rebecca and John Moores Cancer Center, University of California, San Diego, La Jolla, California, USA.
| |
Collapse
|
23
|
A diagnostic autoantibody signature for primary cutaneous melanoma. Oncotarget 2018; 9:30539-30551. [PMID: 30093967 PMCID: PMC6078131 DOI: 10.18632/oncotarget.25669] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 06/04/2018] [Indexed: 01/16/2023] Open
Abstract
Melanoma is an aggressive form of skin cancer that is curable by surgical excision in the majority of cases, if detected at an early stage. To improve early stage melanoma detection, the development of a highly sensitive diagnostic test is of utmost importance. Here we aimed to identify antibodies to a panel of tumour associated antigens that can differentiate primary melanoma patients and healthy individuals. A total of 245 sera from primary melanoma patients and healthy volunteers were screened against a high-throughput microarray platform containing 1627 functional proteins. Following rigorous statistical analysis, we identified a combination of 10 autoantibody biomarkers that, as a panel, displays a sensitivity of 79%, specificity of 84% and an AUC of 0.828 for primary melanoma detection. This melanoma autoantibody signature may prove valuable for the development of a diagnostic blood test for routine population screening that, when used in conjunction with current melanoma diagnostic techniques, could improve the early diagnosis of this malignancy and ultimately decrease the mortality rate of patients.
Collapse
|
24
|
Beasley A, Isaacs T, Khattak MA, Freeman JB, Allcock R, Chen FK, Pereira MR, Yau K, Bentel J, Vermeulen T, Calapre L, Millward M, Ziman MR, Gray ES. Clinical Application of Circulating Tumor Cells and Circulating Tumor DNA in Uveal Melanoma. JCO Precis Oncol 2018; 2:1700279. [PMID: 32913999 PMCID: PMC7446501 DOI: 10.1200/po.17.00279] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Purpose To evaluate the feasibility of using circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA) for the management of uveal melanoma (UM). Patients and Methods Low-coverage whole-genome sequencing was used to determine somatic chromosomal copy number alterations (SCNAs) in primary UM tumors, ctDNA, and whole-genome amplified CTCs. CTCs were immunocaptured using an antimelanoma-associated chondroitin sulfate antibody conjugated to magnetic beads and immunostained for melanoma antigen recognised by T cells 1 (MART1)/glycoprotein 100 (gp100)/S100 calcium-binding protein β (S100β). ctDNA was quantified using droplet digital polymerase chain reaction assay for mutations in the GNAQ, GNA11, PLCβ4, and CYSLTR2 genes. Results SCNA analysis of CTCs and ctDNA isolated from a patient with metastatic UM showed good concordance with the enucleated primary tumor. In a cohort of 30 patients with primary UM, CTCs were detected in 58% of patients (one to 37 CTCs per 8 mL of blood), whereas only 26% of patients had detectable ctDNA (1.6 to 29 copies/mL). The presence of CTCs or ctDNA was not associated with tumor size or other prognostic markers. However, the frequent detection of CTCs in patients with early-stage UM supports a model in which CTCs can be used to derive tumor-specific SCNA relevant for prognosis. Monitoring of ctDNA after treatment of the primary tumor allowed detection of metastatic disease earlier than 18F-labeled fluorodeoxyglucose positron emission tomography in two patients. Conclusion The presence of CTCs in localized UM can be used to ascertain prognostic SCNA, whereas ctDNA can be used to monitor patients for early signs of metastatic disease. This study paves the way for the analysis of CTCs and ctDNA as a liquid biopsy that will assist with treatment decisions in patients with UM.
Collapse
Affiliation(s)
- Aaron Beasley
- , , , , , , and , Edith Cowan University, Joondalup; , , , , , , , and , University of Western Australia, Crawley; and , Sir Charles Gairdner Hospital; , Lions Eye Institute, Nedlands; and , Royal Perth Hospital, Perth; , Perth Retina, West Leederville; and , , and Fiona Stanley Hospital, Murdoch, Western Australia, Australia
| | - Timothy Isaacs
- , , , , , , and , Edith Cowan University, Joondalup; , , , , , , , and , University of Western Australia, Crawley; and , Sir Charles Gairdner Hospital; , Lions Eye Institute, Nedlands; and , Royal Perth Hospital, Perth; , Perth Retina, West Leederville; and , , and Fiona Stanley Hospital, Murdoch, Western Australia, Australia
| | - Muhammad A Khattak
- , , , , , , and , Edith Cowan University, Joondalup; , , , , , , , and , University of Western Australia, Crawley; and , Sir Charles Gairdner Hospital; , Lions Eye Institute, Nedlands; and , Royal Perth Hospital, Perth; , Perth Retina, West Leederville; and , , and Fiona Stanley Hospital, Murdoch, Western Australia, Australia
| | - James B Freeman
- , , , , , , and , Edith Cowan University, Joondalup; , , , , , , , and , University of Western Australia, Crawley; and , Sir Charles Gairdner Hospital; , Lions Eye Institute, Nedlands; and , Royal Perth Hospital, Perth; , Perth Retina, West Leederville; and , , and Fiona Stanley Hospital, Murdoch, Western Australia, Australia
| | - Richard Allcock
- , , , , , , and , Edith Cowan University, Joondalup; , , , , , , , and , University of Western Australia, Crawley; and , Sir Charles Gairdner Hospital; , Lions Eye Institute, Nedlands; and , Royal Perth Hospital, Perth; , Perth Retina, West Leederville; and , , and Fiona Stanley Hospital, Murdoch, Western Australia, Australia
| | - Fred K Chen
- , , , , , , and , Edith Cowan University, Joondalup; , , , , , , , and , University of Western Australia, Crawley; and , Sir Charles Gairdner Hospital; , Lions Eye Institute, Nedlands; and , Royal Perth Hospital, Perth; , Perth Retina, West Leederville; and , , and Fiona Stanley Hospital, Murdoch, Western Australia, Australia
| | - Michelle R Pereira
- , , , , , , and , Edith Cowan University, Joondalup; , , , , , , , and , University of Western Australia, Crawley; and , Sir Charles Gairdner Hospital; , Lions Eye Institute, Nedlands; and , Royal Perth Hospital, Perth; , Perth Retina, West Leederville; and , , and Fiona Stanley Hospital, Murdoch, Western Australia, Australia
| | - Kyle Yau
- , , , , , , and , Edith Cowan University, Joondalup; , , , , , , , and , University of Western Australia, Crawley; and , Sir Charles Gairdner Hospital; , Lions Eye Institute, Nedlands; and , Royal Perth Hospital, Perth; , Perth Retina, West Leederville; and , , and Fiona Stanley Hospital, Murdoch, Western Australia, Australia
| | - Jaqueline Bentel
- , , , , , , and , Edith Cowan University, Joondalup; , , , , , , , and , University of Western Australia, Crawley; and , Sir Charles Gairdner Hospital; , Lions Eye Institute, Nedlands; and , Royal Perth Hospital, Perth; , Perth Retina, West Leederville; and , , and Fiona Stanley Hospital, Murdoch, Western Australia, Australia
| | - Tersia Vermeulen
- , , , , , , and , Edith Cowan University, Joondalup; , , , , , , , and , University of Western Australia, Crawley; and , Sir Charles Gairdner Hospital; , Lions Eye Institute, Nedlands; and , Royal Perth Hospital, Perth; , Perth Retina, West Leederville; and , , and Fiona Stanley Hospital, Murdoch, Western Australia, Australia
| | - Leslie Calapre
- , , , , , , and , Edith Cowan University, Joondalup; , , , , , , , and , University of Western Australia, Crawley; and , Sir Charles Gairdner Hospital; , Lions Eye Institute, Nedlands; and , Royal Perth Hospital, Perth; , Perth Retina, West Leederville; and , , and Fiona Stanley Hospital, Murdoch, Western Australia, Australia
| | - Michael Millward
- , , , , , , and , Edith Cowan University, Joondalup; , , , , , , , and , University of Western Australia, Crawley; and , Sir Charles Gairdner Hospital; , Lions Eye Institute, Nedlands; and , Royal Perth Hospital, Perth; , Perth Retina, West Leederville; and , , and Fiona Stanley Hospital, Murdoch, Western Australia, Australia
| | - Melanie R Ziman
- , , , , , , and , Edith Cowan University, Joondalup; , , , , , , , and , University of Western Australia, Crawley; and , Sir Charles Gairdner Hospital; , Lions Eye Institute, Nedlands; and , Royal Perth Hospital, Perth; , Perth Retina, West Leederville; and , , and Fiona Stanley Hospital, Murdoch, Western Australia, Australia
| | - Elin S Gray
- , , , , , , and , Edith Cowan University, Joondalup; , , , , , , , and , University of Western Australia, Crawley; and , Sir Charles Gairdner Hospital; , Lions Eye Institute, Nedlands; and , Royal Perth Hospital, Perth; , Perth Retina, West Leederville; and , , and Fiona Stanley Hospital, Murdoch, Western Australia, Australia
| |
Collapse
|
25
|
Tsao SCH, Wang J, Wang Y, Behren A, Cebon J, Trau M. Characterising the phenotypic evolution of circulating tumour cells during treatment. Nat Commun 2018; 9:1482. [PMID: 29662054 PMCID: PMC5902511 DOI: 10.1038/s41467-018-03725-8] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 03/08/2018] [Indexed: 12/30/2022] Open
Abstract
Real-time monitoring of cancer cells' phenotypic evolution during therapy can provide vital tumour biology information for treatment management. Circulating tumour cell (CTC) analysis has emerged as a useful monitoring tool, but its routine usage is restricted by either limited multiplexing capability or sensitivity. Here, we demonstrate the use of antibody-conjugated and Raman reporter-coated gold nanoparticles for simultaneous labelling and monitoring of multiple CTC surface markers (named as "cell signature"), without the need for isolating individual CTCs. We observe cell heterogeneity and phenotypic changes of melanoma cell lines during molecular targeted treatment. Furthermore, we follow the CTC signature changes of 10 stage-IV melanoma patients receiving immunological or molecular targeted therapies. Our technique maps the phenotypic evolution of patient CTCs sensitively and rapidly, and shows drug-resistant clones having different CTC signatures of potential clinical value. We believe our proposed method is of general interest in the CTC relevant research and translation fields.
Collapse
Affiliation(s)
- Simon Chang-Hao Tsao
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD, 4072, Australia.,Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia.,Department of Surgery, University of Melbourne, Austin Health, Heidelberg, VIC, 3084, Australia
| | - Jing Wang
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Yuling Wang
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD, 4072, Australia. .,Department of Molecular Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, 2109, Australia.
| | - Andreas Behren
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia.,School of Cancer Medicine, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Jonathan Cebon
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia.,Department of Surgery, University of Melbourne, Austin Health, Heidelberg, VIC, 3084, Australia.,School of Cancer Medicine, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Matt Trau
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD, 4072, Australia. .,School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
26
|
Eisenstein A, Gonzalez EC, Raghunathan R, Xu X, Wu M, McLean EO, McGee J, Ryu B, Alani RM. Emerging Biomarkers in Cutaneous Melanoma. Mol Diagn Ther 2018; 22:203-218. [PMID: 29411301 DOI: 10.1007/s40291-018-0318-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Earlier identification of aggressive melanoma remains a goal in the field of melanoma research. With new targeted and immune therapies that have revolutionized the care of patients with melanoma, the ability to predict progression and monitor or predict response to therapy has become the new focus of research into biomarkers in melanoma. In this review, promising biomarkers are highlighted. These biomarkers have been used to diagnose melanoma as well as predict progression to advanced disease and response to therapy. The biomarkers take various forms, including protein expression at the level of tissue, genetic mutations of cancer cells, and detection of circulating DNA. First, a brief description is provided about the conventional tissue markers used to stage melanoma, including tumor depth. Next, protein biomarkers, which provide both diagnostic and prognostic information, are described. This is followed by a discussion of important genetic mutations, microRNA, and epigenetic modifications that can provide therapeutic and prognostic material. Finally, emerging serologic biomarkers are reviewed, including circulating melanoma cells and exosomes. Overall the goal is to identify biomarkers that aid in the earlier identification and improved treatment of aggressive melanoma.
Collapse
Affiliation(s)
- Anna Eisenstein
- Department of Dermatology, Boston University School of Medicine, 609 Albany Street, Boston, MA, 02118, USA
| | - Estela Chen Gonzalez
- Department of Dermatology, Boston University School of Medicine, 609 Albany Street, Boston, MA, 02118, USA
| | - Rekha Raghunathan
- Department of Dermatology, Boston University School of Medicine, 609 Albany Street, Boston, MA, 02118, USA
| | - Xixi Xu
- Department of Dermatology, Boston University School of Medicine, 609 Albany Street, Boston, MA, 02118, USA
| | - Muzhou Wu
- Department of Dermatology, Boston University School of Medicine, 609 Albany Street, Boston, MA, 02118, USA
| | - Emily O McLean
- Department of Dermatology, Boston University School of Medicine, 609 Albany Street, Boston, MA, 02118, USA
| | - Jean McGee
- Department of Dermatology, Boston University School of Medicine, 609 Albany Street, Boston, MA, 02118, USA
| | - Byungwoo Ryu
- Department of Dermatology, Boston University School of Medicine, 609 Albany Street, Boston, MA, 02118, USA.
| | - Rhoda M Alani
- Department of Dermatology, Boston University School of Medicine, 609 Albany Street, Boston, MA, 02118, USA.
| |
Collapse
|
27
|
Marsavela G, Aya-Bonilla CA, Warkiani ME, Gray ES, Ziman M. Melanoma circulating tumor cells: Benefits and challenges required for clinical application. Cancer Lett 2018; 424:1-8. [PMID: 29548820 DOI: 10.1016/j.canlet.2018.03.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 02/01/2018] [Accepted: 03/09/2018] [Indexed: 02/07/2023]
Abstract
The implementation of novel therapeutic interventions has improved the survival rates of melanoma patients with metastatic disease. Nonetheless, only 33% of treated cases exhibit long term responses. Circulating tumor cell (CTC) measurements are currently of clinical value in breast, prostate and colorectal cancers. However, the clinical utility of melanoma CTCs (MelCTCs) is still unclear due to challenges that appear intrinsic to MelCTCs (i.e. rarity, heterogeneity) and a lack of standardization in their isolation, across research laboratories. Here, we review the latest developments, pinpoint the challenges in MelCTC isolation and address their potential role in melanoma management.
Collapse
Affiliation(s)
- G Marsavela
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| | - C A Aya-Bonilla
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia.
| | - M E Warkiani
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia; School of Biomedical Engineering, University of Technology Sydney, Sydney, Australia; Institute of Molecular Medicine, Sechenov First Moscow State University, Moscow, Russia
| | - E S Gray
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| | - M Ziman
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia; School of Pathology and Laboratory Medicine, University of Western Australia, Crawley, Australia
| |
Collapse
|
28
|
The Results of Stricter Inclusion Criteria in an Immunomagnetic Detection Study of Micrometastatic Cells in Bone Marrow of Uveal Melanoma Patients - Relevance for Dormancy. Pathol Oncol Res 2017; 25:255-262. [PMID: 29098521 DOI: 10.1007/s12253-017-0355-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 10/25/2017] [Indexed: 12/31/2022]
Abstract
Approximately 50% of uveal melanoma patients develop metastases. We want to evaluate the effect of stricter criteria on our data from our previous study correlating survival and bone marrow (BM) micrometastasis results using our immunomagnetic separation (IMS) method. Mononuclear cell fractions (MNC) isolated from BM were examined for tumour cells and the patients were classified as BM positive (BM+) or BM negative (BM-). The study originally included 328 consecutive patients with uveal melanoma from 1997 to 2006. The cohort was limited to 217 patients when we introduced cyto- or histopathological verification of melanoma cells in the patient as a main new criterion for inclusion. Tumour cells were found in BM-samples in 38.7% (95% CI, 32-45) at enrolment. Until the latest work-up 43.8% (95% CI, 38-50) of patients had developed melanoma metastases. After a minimum follow-up time of 8.5 years, 60.4% (95% CI, 54-66) of patients had died. The causes were: melanoma metastases 69.5%, another type of cancer 5.4% and non-cancerous causes 19.5%. Overall median survival was shorter for the BM- patients (11.3 years) (95% CI, 10-12) compared to the BM+ (16.5 years) (95% CI, 12-14), p = 0.04, log rank test. All-cause mortality and specific melanoma mortality estimated after 12 year follow-up showed a highly significant difference comparing BM- and BM+, p = 0.010 and p = 0,017, respectively. IMS yields a high fraction of BM+ samples due to micrometastasis at diagnosis and these cells appear to have a positive prognostic impact strengthening our previous report. The late recurrences support the concept of tumour dormancy.
Collapse
|
29
|
Borchers S, Maβlo C, Müller CA, Tahedl A, Volkind J, Nowak Y, Umansky V, Esterlechner J, Frank MH, Ganss C, Kluth MA, Utikal J. Detection of ABCB5 tumour antigen-specific CD8 + T cells in melanoma patients and implications for immunotherapy. Clin Exp Immunol 2017; 191:74-83. [PMID: 28940439 DOI: 10.1111/cei.13053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2017] [Indexed: 01/09/2023] Open
Abstract
ATP binding cassette subfamily B member 5 (ABCB5) has been identified as a tumour-initiating cell marker and is expressed in various malignancies, including melanoma. Moreover, treatment with anti-ABCB5 monoclonal antibodies has been shown to inhibit tumour growth in xenotransplantation models. Therefore, ABCB5 represents a potential target for cancer immunotherapy. However, cellular immune responses against ABCB5 in humans have not been described so far. Here, we investigated whether ABCB5-reactive T cells are present in human melanoma patients and tested the applicability of ABCB5-derived peptides for experimental induction of human T cell responses. Peripheral blood mononuclear cells (PBMNC) isolated from blood samples of melanoma patients (n = 40) were stimulated with ABCB5 peptides, followed by intracellular cytokine staining (ICS) for interferon (IFN)-γ and tumour necrosis factor (TNF)-α. To evaluate immunogenicity of ABCB5 peptides in naive healthy donors, CD8 T cells were co-cultured with ABCB5 antigen-loaded autologous dendritic cells (DC). ABCB5 reactivity in expanded T cells was assessed similarly by ICS. ABCB5-reactive CD8+ T cells were detected ex vivo in 19 of 29 patients, melanoma antigen recognised by T cells (MART-1)-reactive CD8+ T cells in six of 21 patients. In this small, heterogeneous cohort, reactivity against ABCB5 was significantly higher than against MART-1. It occurred significantly more often and independently of clinical characteristics. Reactivity against ABCB5 could be induced in 14 of 16 healthy donors in vitro by repeated stimulation with peptide-loaded autologous DC. As ABCB5-reactive CD8 T cells can be found in the peripheral blood of melanoma patients and an ABCB5-specific response can be induced in vitro in naive donors, ABCB5 could be a new target for immunotherapies in melanoma.
Collapse
Affiliation(s)
- S Borchers
- RHEACELL GmbH & Co. KG, Heidelberg, Germany
| | - C Maβlo
- RHEACELL GmbH & Co. KG, Heidelberg, Germany
| | | | - A Tahedl
- TICEBA GmbH, Heidelberg, Germany
| | | | - Y Nowak
- Skin Cancer Unit, German Cancer Research Center (DKFZ) and Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - V Umansky
- Skin Cancer Unit, German Cancer Research Center (DKFZ) and Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | | | - M H Frank
- Transplant Research Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.,School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia
| | - C Ganss
- RHEACELL GmbH & Co. KG, Heidelberg, Germany.,TICEBA GmbH, Heidelberg, Germany
| | - M A Kluth
- RHEACELL GmbH & Co. KG, Heidelberg, Germany.,TICEBA GmbH, Heidelberg, Germany
| | - J Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ) and Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| |
Collapse
|
30
|
Aya-Bonilla CA, Marsavela G, Freeman JB, Lomma C, Frank MH, Khattak MA, Meniawy TM, Millward M, Warkiani ME, Gray ES, Ziman M. Isolation and detection of circulating tumour cells from metastatic melanoma patients using a slanted spiral microfluidic device. Oncotarget 2017; 8:67355-67368. [PMID: 28978038 PMCID: PMC5620178 DOI: 10.18632/oncotarget.18641] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/22/2017] [Indexed: 12/16/2022] Open
Abstract
Circulating Tumour Cells (CTCs) are promising cancer biomarkers. Several methods have been developed to isolate CTCs from blood samples. However, the isolation of melanoma CTCs is very challenging as a result of their extraordinary heterogeneity, which has hindered their biological and clinical study. Thus, methods that isolate CTCs based on their physical properties, rather than surface marker expression, such as microfluidic devices, are greatly needed in melanoma. Here, we assessed the ability of the slanted spiral microfluidic device to isolate melanoma CTCs via label-free enrichment. We demonstrated that this device yields recovery rates of spiked melanoma cells of over 80% and 55%, after one or two rounds of enrichment, respectively. Concurrently, a two to three log reduction of white blood cells was achieved with one or two rounds of enrichment, respectively. We characterised the isolated CTCs using multimarker flow cytometry, immunocytochemistry and gene expression. The results demonstrated that CTCs from metastatic melanoma patients were highly heterogeneous and commonly expressed stem-like markers such as PAX3 and ABCB5. The implementation of the slanted microfluidic device for melanoma CTC isolation enables further understanding of the biology of melanoma metastasis for biomarker development and to inform future treatment approaches.
Collapse
Affiliation(s)
- Carlos A Aya-Bonilla
- School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia
| | - Gabriela Marsavela
- School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia
| | - James B Freeman
- School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia
| | - Chris Lomma
- Department of Health, Perth, Western Australia, Australia
| | - Markus H Frank
- School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia.,Transplantation Research Program, Boston Children's Hospital and Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Muhammad A Khattak
- Department of Medical Oncology, Fiona Stanley Hospital, Murdoch, Western Australia, Australia.,School of Medicine and Pharmacology, University of Western Australia, Crawley, Western Australia, Australia
| | - Tarek M Meniawy
- School of Medicine and Pharmacology, University of Western Australia, Crawley, Western Australia, Australia.,Department of Medical Oncology, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Michael Millward
- School of Medicine and Pharmacology, University of Western Australia, Crawley, Western Australia, Australia.,Department of Medical Oncology, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Majid E Warkiani
- School of Mechanical and Manufacturing Engineering, Australian Center for NanoMedicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Elin S Gray
- School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia
| | - Mel Ziman
- School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia.,School of Pathology and Laboratory Medicine, University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
31
|
Minimal residual disease in melanoma: circulating melanoma cells and predictive role of MCAM/MUC18/MelCAM/CD146. Cell Death Discov 2017; 3:17005. [PMID: 28280601 PMCID: PMC5337524 DOI: 10.1038/cddiscovery.2017.5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/20/2016] [Accepted: 01/01/2017] [Indexed: 12/11/2022] Open
Abstract
Circulating tumour cells (CTCs), identified in numerous cancers including melanoma, are unquestionably considered valuable and useful as diagnostic and prognostic markers. They can be detected at all melanoma stages and may persist long after treatment. A crucial step in metastatic processes is the intravascular invasion of neoplastic cells as circulating melanoma cells (CMCs). Only a small percentage of these released cells are efficient and capable of colonizing with a strong metastatic potential. CMCs' ability to survive in circulation express a variety of genes with continuous changes of signal pathways and proteins to escape immune surveillance. This makes it difficult to detect them; therefore, specific isolation, enrichment and characterization of CMC population could be useful to monitor disease status and patient clinical outcome. Overall and disease-free survival have been correlated with the presence of CMCs. Specific melanoma antigens, in particular MCAM (MUC18/MelCAM/CD146), could be a potentially useful tool to isolate CMCs as well as be a prognostic, predictive biomarker. These are the areas reviewed in the article.
Collapse
|
32
|
Arenberger P, Fialova A, Gkalpakiotis S, Pavlikova A, Puzanov I, Arenbergerova M. Melanoma antigens are biomarkers for ipilimumab response. J Eur Acad Dermatol Venereol 2016; 31:252-259. [PMID: 27557295 DOI: 10.1111/jdv.13940] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 06/29/2016] [Indexed: 11/27/2022]
Abstract
BACKGROUND Novel immunotherapy modalities significantly improve survival of patients with metastatic melanoma. However, CTLA-4-blocking monoclonal antibody ipilimumab is effective only in a small proportion of patients. Biomarkers for prediction of treatment response are indispensably needed. OBJECTIVE To determine the utility of multimarker detection of circulating melanoma cells as prognostic and pharmacodynamic biomarker in patients with metastatic melanoma treated with ipilimumab. METHODS Patients (n = 62) with metastatic melanoma in unresectable stage III or metastatic stage IV treated with ipilimumab were recruited prospectively. The values of four melanoma markers on circulating cells Melan-A, gp100, MAGE-3 and melanoma inhibitory antigen prior to the treatment and within the therapy were compared to the data collected at baseline - after the melanoma surgery. RESULTS The immunotherapy pretreatment marker level was found to be prognostic of overall survival; lower levels were linked to longer survival time. Moreover, longitudinal follow-up of melanoma markers in patients treated with ipilimumab correlates with therapy response. A decline of marker levels by >30% at week 6 (in 83% of the responding subjects) to week 9 (in all responders) of ipilimumab administration was associated with response to therapy. Elevation of the tumour markers during the treatment precedes clinical progression and gives an early warning of treatment failure. CONCLUSION Melanoma circulating cells hold potential as predictive and pharmacodynamic biomarker of immunotherapy.
Collapse
Affiliation(s)
- P Arenberger
- Department of Dermatovenereology, Third Faculty of Medicine, Charles University and Faculty Hospital of Kralovske Vinohrady, Prague, Czech Republic
| | - A Fialova
- Department of Dermatovenereology, Third Faculty of Medicine, Charles University and Faculty Hospital of Kralovske Vinohrady, Prague, Czech Republic
| | - S Gkalpakiotis
- Department of Dermatovenereology, Third Faculty of Medicine, Charles University and Faculty Hospital of Kralovske Vinohrady, Prague, Czech Republic
| | - A Pavlikova
- Institute for Laboratory Diagnostics, Faculty Hospital of Kralovske Vinohrady, Prague, Czech Republic
| | - I Puzanov
- Division of Hematology-Oncology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - M Arenbergerova
- Department of Dermatovenereology, Third Faculty of Medicine, Charles University and Faculty Hospital of Kralovske Vinohrady, Prague, Czech Republic
| |
Collapse
|
33
|
Khattak A. Liquid biopsies: advancing cancer research through drops of blood. Intern Med J 2016; 46:376-7. [DOI: 10.1111/imj.12996] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 10/07/2015] [Accepted: 10/14/2015] [Indexed: 11/30/2022]
Affiliation(s)
- A. Khattak
- Department of Medical Oncology; Fiona Stanely Hospital; Perth Western Australia Australia
| |
Collapse
|
34
|
Tsao SCH, Vaidyanathan R, Dey S, Carrascosa LG, Christophi C, Cebon J, Shiddiky MJA, Behren A, Trau M. Capture and On-chip analysis of Melanoma Cells Using Tunable Surface Shear forces. Sci Rep 2016; 6:19709. [PMID: 26815318 PMCID: PMC4728558 DOI: 10.1038/srep19709] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 12/11/2015] [Indexed: 12/16/2022] Open
Abstract
With new systemic therapies becoming available for metastatic melanoma such as BRAF and PD-1 inhibitors, there is an increasing demand for methods to assist with treatment selection and response monitoring. Quantification and characterisation of circulating melanoma cells (CMCs) has been regarded as an excellent non-invasive candidate but a sensitive and efficient tool to do these is lacking. Herein we demonstrate a microfluidic approach for melanoma cell capture and subsequent on-chip evaluation of BRAF mutation status. Our approach utilizes a recently discovered alternating current electrohydrodynamic (AC-EHD)-induced surface shear forces, referred to as nanoshearing. A key feature of nanoshearing is the ability to agitate fluid to encourage contact with surface-bound antibody for the cell capture whilst removing nonspecific cells from the surface. By adjusting the AC-EHD force to match the binding affinity of antibodies against the melanoma-associated chondroitin sulphate proteoglycan (MCSP), a commonly expressed melanoma antigen, this platform achieved an average recovery of 84.7% from biological samples. Subsequent staining with anti-BRAF(V600E) specific antibody enabled on-chip evaluation of BRAF(V600E) mutation status in melanoma cells. We believe that the ability of nanoshearing-based capture to enumerate melanoma cells and subsequent on-chip characterisation has the potential as a rapid screening tool while making treatment decisions.
Collapse
Affiliation(s)
- Simon Chang-Hao Tsao
- Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, 3084, Australia
- Department of Surgery – Austin Health, University of Melbourne, Heidelberg, Victoria, 3084, Australia
- Ludwig Institute for Cancer Research – Austin Health, Heidelberg, Victoria, 3084, Australia
| | - Ramanathan Vaidyanathan
- Centre for Personalised NanoMedicine, Australian Institute for Bioengineering and Nanotechnology, University of Queensland
| | - Shuvashis Dey
- Centre for Personalised NanoMedicine, Australian Institute for Bioengineering and Nanotechnology, University of Queensland
| | - Laura G. Carrascosa
- Centre for Personalised NanoMedicine, Australian Institute for Bioengineering and Nanotechnology, University of Queensland
| | - Christopher Christophi
- Department of Surgery – Austin Health, University of Melbourne, Heidelberg, Victoria, 3084, Australia
| | - Jonathan Cebon
- Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, 3084, Australia
- School of Cancer Medicine- La Trobe University, Melbourne, Victoria, 3086, Australia
- Ludwig Institute for Cancer Research – Austin Health, Heidelberg, Victoria, 3084, Australia
| | - Muhammad J. A. Shiddiky
- Centre for Personalised NanoMedicine, Australian Institute for Bioengineering and Nanotechnology, University of Queensland
| | - Andreas Behren
- Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, 3084, Australia
- School of Cancer Medicine- La Trobe University, Melbourne, Victoria, 3086, Australia
- Ludwig Institute for Cancer Research – Austin Health, Heidelberg, Victoria, 3084, Australia
| | - Matt Trau
- Centre for Personalised NanoMedicine, Australian Institute for Bioengineering and Nanotechnology, University of Queensland
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, 4072, Australia
| |
Collapse
|
35
|
Alberter B, Klein CA, Polzer B. Single-cell analysis of CTCs with diagnostic precision: opportunities and challenges for personalized medicine. Expert Rev Mol Diagn 2015; 16:25-38. [PMID: 26567956 DOI: 10.1586/14737159.2016.1121099] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The generation of variant cancer cells is the major cause of acquired resistance against systemic therapies and consequently, of our inability to cure advanced cancer patients. Circulating tumor cells are gaining increasing clinical attention because they may enable the monitoring cancer progression and adjustment of treatment. In recent years multiple technologies for enrichment, isolation as well as molecular and functional analysis of circulating tumor cells have been developed. Implementation of these technologies in standardized and automated workflows in clinical diagnostics could provide valuable information for real-time monitoring of cancer and eventually new therapeutic strategies for the benefit of patients.
Collapse
Affiliation(s)
- Barbara Alberter
- a Project Group "Personalized Tumor Therapy" , Fraunhofer Institute for Toxicology and Experimental Medicine , Regensburg , Germany
| | - Christoph A Klein
- a Project Group "Personalized Tumor Therapy" , Fraunhofer Institute for Toxicology and Experimental Medicine , Regensburg , Germany.,b Experimental Medicine and Therapy Research , University of Regensburg , Regensburg , Germany
| | - Bernhard Polzer
- a Project Group "Personalized Tumor Therapy" , Fraunhofer Institute for Toxicology and Experimental Medicine , Regensburg , Germany
| |
Collapse
|
36
|
Gray ES, Reid AL, Bowyer S, Calapre L, Siew K, Pearce R, Cowell L, Frank MH, Millward M, Ziman M. Circulating Melanoma Cell Subpopulations: Their Heterogeneity and Differential Responses to Treatment. J Invest Dermatol 2015; 135:2040-2048. [PMID: 25830652 PMCID: PMC4504811 DOI: 10.1038/jid.2015.127] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 03/10/2015] [Accepted: 03/19/2015] [Indexed: 12/12/2022]
Abstract
Metastatic melanoma is a highly heterogeneous tumor; thus, methods to analyze tumor-derived cells circulating in blood should address this diversity. Taking this into account, we analyzed, using multiparametric flow cytometry, the co-expression of the melanoma markers melanoma cell adhesion molecule and melanoma-associated chondroitin sulphate proteoglycan and the tumor-initiating markers ATP-binding cassette sub-family B member 5 (ABCB5), CD271, and receptor activator of NF-κβ (RANK) in individual circulating tumor cells (CTCs) from 40 late-stage (III-IV) and 16 early-stage (I-II) melanoma patients. CTCs were heterogeneous within and between patients, with limited co-expression between the five markers analyzed. Analysis of patient matched blood and metastatic tumors revealed that ABCB5 and RANK subpopulations are more common among CTCs than in the solid tumors, suggesting a preferential selection for these cells in circulation. Pairwise comparison of CTC subpopulations longitudinally before and 6-13 weeks after treatment initiation showed that the percentage of RANK(+) CTCs significantly increased in the patients undergoing targeted therapy (N=16, P<0.01). Moreover, the presence of ⩾5 RANK(+) CTCs in the blood of patients undergoing targeted therapies was prognostic of shorter progression-free survival (hazards ratio 8.73, 95% confidence interval 1.82-41.75, P<0.01). Taken together, our results provide evidence of the heterogeneity among CTC subpopulations in melanoma and the differential response of these subpopulations to targeted therapy.
Collapse
Affiliation(s)
- Elin S Gray
- School of Medical Sciences, Edith Cowan University, Perth, Washington, Australia.
| | - Anna L Reid
- School of Medical Sciences, Edith Cowan University, Perth, Washington, Australia
| | - Samantha Bowyer
- Department of Medical Oncology, Sir Charles Gairdner Hospital, Nedlands, Washington, Australia
| | - Leslie Calapre
- School of Medical Sciences, Edith Cowan University, Perth, Washington, Australia
| | - Kelvin Siew
- Department of Medical Oncology, Sir Charles Gairdner Hospital, Nedlands, Washington, Australia
| | - Robert Pearce
- School of Medical Sciences, Edith Cowan University, Perth, Washington, Australia
| | - Lester Cowell
- Level 1 Melanoma Skin Cancer Clinic, Fremantle, Washington, Australia
| | - Markus H Frank
- School of Medical Sciences, Edith Cowan University, Perth, Washington, Australia; Transplantation Research Program, Boston Children's Hospital and Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael Millward
- Department of Medical Oncology, Sir Charles Gairdner Hospital, Nedlands, Washington, Australia; School of Medicine and Pharmacology, University of Western Australia, Crawley, Washington, Australia
| | - Mel Ziman
- School of Medical Sciences, Edith Cowan University, Perth, Washington, Australia; School of Pathology and Laboratory Medicine, University of Western Australia, Crawley, Washington, Australia
| |
Collapse
|
37
|
Nicolosi PA, Dallatomasina A, Perris R. Theranostic impact of NG2/CSPG4 proteoglycan in cancer. Theranostics 2015; 5:530-44. [PMID: 25767619 PMCID: PMC4350014 DOI: 10.7150/thno.10824] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 12/03/2014] [Indexed: 12/27/2022] Open
Abstract
NG2/CSPG4 is an unusual cell-membrane integral proteoglycan widely recognized to be a prognostic factor, a valuable tool for ex vivo and non-invasive molecular diagnostics and, by virtue of its tight association with malignancy, a tantalizing therapeutic target in several tumour types. Although the biology behind its involvement in cancer progression needs to be better understood, implementation of NG2/CSPG4 in the routine clinical practice is attainable and has the potential to contribute to an improved individualized management of cancer patients. In this context, its polymorphic nature seems to be particularly valuable in the effort to standardize informative diagnostic procedures and consolidate forcible immunotherapeutic treatment strategies. We discuss here the underpinnings for this potential and highlight the benefits of taking advantage of the intra-tumour and inter-patient variability in the regulation of NG2/CSPG4 expression. We envision that NG2/CSPG4 may effectively be exploited in therapeutic interventions aimed at averting resistance to target therapy agents and at interfering with secondary lesion formation and/or tumour recurrence.
Collapse
|
38
|
Alegre E, Sammamed M, Fernández-Landázuri S, Zubiri L, González Á. Circulating biomarkers in malignant melanoma. Adv Clin Chem 2015; 69:47-89. [PMID: 25934359 DOI: 10.1016/bs.acc.2014.12.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Melanoma is an aggressive tumor with increasing incidence worldwide. Biomarkers are valuable tools to minimize the cost and improve efficacy of treatment of this deadly disease. Serological markers have not widely been introduced in routine clinical practice due to their insufficient diagnostic sensitivity and specificity. It is likely that the lack of objective responses with traditional treatment hinder biomarker research and development in melanoma. Recently, new drugs and therapies have, however, emerged in advanced melanoma with noticeable objective response ratio and survival. In this new scenario, serological tumor markers should be revisited. In addition, other potential circulating biomarkers such as cell-free DNA, exosomes, microRNA, and circulating tumor cells have also been identified. In this review, we summarize classical and emerging tumor markers and discuss their possible roles in emerging therapeutics.
Collapse
Affiliation(s)
- Estibaliz Alegre
- Laboratory of Biochemistry, University Clinic of Navarra, Pamplona, Spain
| | - Miguel Sammamed
- Centro de Investigación Médica Aplicada (CIMA), University of Navarra, Pamplona, Spain; Department of Oncology, University Clinic of Navarra, Pamplona, Spain
| | | | - Leyre Zubiri
- Department of Oncology, University Clinic of Navarra, Pamplona, Spain
| | - Álvaro González
- Laboratory of Biochemistry, University Clinic of Navarra, Pamplona, Spain.
| |
Collapse
|
39
|
Reid AL, Freeman JB, Millward M, Ziman M, Gray ES. Detection of BRAF-V600E and V600K in melanoma circulating tumour cells by droplet digital PCR. Clin Biochem 2014; 48:999-1002. [PMID: 25523300 DOI: 10.1016/j.clinbiochem.2014.12.007] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Revised: 12/03/2014] [Accepted: 12/06/2014] [Indexed: 01/04/2023]
Abstract
OBJECTIVES Defining the BRAF mutation status in metastatic melanoma patients is critical to selecting patients for therapeutic treatment with targeted therapies. Circulating tumour cells (CTCs) can provide an alternative source of contemporaneous tumour genetic material. However methodologies to analyse the presence of rare mutations in a background of wild-type DNA requires a detailed assessment. Here we evaluate the sensitivity of two technologies for cancer mutation detection and the suitability of whole genome amplified DNA as a template for the detection of BRAF-V600 mutations. DESIGN AND METHODS Serial dilutions of mutant BRAF-V600E DNA in wild-type DNA were tested using both competitive allele-specific PCR (castPCR) and droplet digital PCR (ddPCR), with and without previous whole genome amplification (WGA). Using immunomagnetic beads, we partially enriched CTCs from blood obtained from metastatic melanoma patients with confirmed BRAF mutation positive tumours and extracted RNA and DNA from the CTCs. We used RT-PCR of RNA to confirm the presence of melanoma cells in the CTC fraction then the DNAs of CTC positive fractions were WGA and tested for BRAF V600E or V600K mutations by ddPCRs. RESULTS WGA DNA produced lower than expected fractional abundances by castPCR analysis but not by ddPCR. Moreover, ddPCR was found to be 200 times more sensitive than castPCR and in combination with WGA produced the most concordant results, with a limit of detection of 0.0005%. BRAF-V600E or V600K mutated DNA was detected in 77% and 44%, respectively, of enriched CTC fractions from metastatic melanoma patients carrying the corresponding mutations. CONCLUSIONS Our results demonstrate that using ddPCR in combination with WGA DNA allows the detection with high sensitivity of cancer mutations in partially enriched CTC fractions.
Collapse
Affiliation(s)
- Anna L Reid
- School of Medical Sciences, Edith Cowan University, Perth, WA, Australia.
| | - James B Freeman
- School of Medical Sciences, Edith Cowan University, Perth, WA, Australia.
| | - Michael Millward
- School of Medicine and Pharmacology, University of Western Australia, Crawley, WA, Australia.
| | - Melanie Ziman
- School of Medical Sciences, Edith Cowan University, Perth, WA, Australia; School of Pathology and Laboratory Medicine, University of Western Australia, Crawley, WA, Australia.
| | - Elin S Gray
- School of Medical Sciences, Edith Cowan University, Perth, WA, Australia.
| |
Collapse
|
40
|
Klinac D, Gray ES, Freeman JB, Reid A, Bowyer S, Millward M, Ziman M. Monitoring changes in circulating tumour cells as a prognostic indicator of overall survival and treatment response in patients with metastatic melanoma. BMC Cancer 2014; 14:423. [PMID: 24915896 PMCID: PMC4060872 DOI: 10.1186/1471-2407-14-423] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 06/03/2014] [Indexed: 12/17/2022] Open
Abstract
Background New effective treatments for metastatic melanoma greatly improve survival in a proportion of patients. However biomarkers to identify patients that are more likely to benefit from a particular treatment are needed. We previously reported on a multimarker approach for the detection of heterogenous melanoma circulating tumour cells (CTCs). Here we evaluated the prognostic value of this multimarker quantification of CTCs and investigated whether changes in CTC levels during therapy can be used as a biomarker of treatment response and survival outcomes. Methods CTCs were captured by targeting the melanoma associated markers MCSP and MCAM as well as the melanoma stem cell markers ABCB5 and CD271. CTCs were quantified in 27 metastatic melanoma patients treated by surgery or with vemurafenib, ipilimumab or dacarbazine. Patients were enrolled prospectively and CTC counts performed at baseline (prior to treatment), during and after treatment. Results Baseline CTC numbers were not found to be prognostic of overall survival nor of progression free survival. However, a low baseline CTC number was associated with a rapid response to vemurafenib therapy. A decrease in CTCs after treatment initiation was associated with response to treatment and prolonged overall survival in vemurafenib treated patients. Conclusions Measuring changes in CTC numbers during treatment is useful for monitoring therapy response in melanoma patients and for providing prognostic information relating to overall survival. Further studies with larger sample sizes are required to confirm the utility of CTC quantification as a companion diagnostic for metastatic melanoma treatment.
Collapse
Affiliation(s)
| | - Elin S Gray
- School of Medical Sciences, Edith Cowan University (ECU), 270 Joondalup Drive, Joondalup, Perth, WA 6027, Australia.
| | | | | | | | | | | |
Collapse
|
41
|
Rodic S, Mihalcioiu C, Saleh RR. Detection methods of circulating tumor cells in cutaneous melanoma: a systematic review. Crit Rev Oncol Hematol 2014; 91:74-92. [PMID: 24530125 DOI: 10.1016/j.critrevonc.2014.01.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 01/06/2014] [Accepted: 01/14/2014] [Indexed: 12/25/2022] Open
Abstract
The vast majority of melanoma-related deaths are due to disseminated malignancy. Many treated patients who are clinically disease-free will go on to relapse. Therefore, new prognostic tools must be developed to better assess metastatic potential and assist in patient management. Circulating tumor cells are a widely studied metastatic biomarker with promising prognostic utility, as the shedding of cells from the primary tumor into peripheral blood is a necessary step in disease dissemination. An assortment of technologies and techniques has been developed to isolate and detect circulating melanoma cells (CMCs), but a standardized method is yet to be established. It is the aim of this study to systematically review the diverse enrichment and detection methods of circulating tumor cells in cutaneous melanoma. A literature search yielded 351 articles, of which 74 were deemed eligible according to inclusion criteria, the primary requirement being the reporting of patient CMC positivity status stratified by the stage of melanoma. Pertinent studies were used to evaluate the advantages and disadvantages of each method. Additionally, we calculated the sensitivity and specificity of seven common melanoma-associated markers based on the available literature.
Collapse
Affiliation(s)
- Stefan Rodic
- Division of Biology, McGill University, Montreal, Canada
| | - Catalin Mihalcioiu
- Division of Medical Oncology, McGill University Health Centre, Montreal, Canada
| | - Ramy R Saleh
- Division of Medical Oncology, McGill University Health Centre, Montreal, Canada.
| |
Collapse
|
42
|
Lee N, Barthel SR, Schatton T. Melanoma stem cells and metastasis: mimicking hematopoietic cell trafficking? J Transl Med 2014; 94:13-30. [PMID: 24126889 PMCID: PMC3941309 DOI: 10.1038/labinvest.2013.116] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 09/04/2013] [Accepted: 09/08/2013] [Indexed: 12/16/2022] Open
Abstract
Malignant melanoma is a highly metastatic cancer that bears responsibility for the majority of skin cancer-related deaths. Amidst the research efforts to better understand melanoma progression, there has been increasing evidence that hints at a role for a subpopulation of virulent cancer cells, termed malignant melanoma stem or initiating cells (MMICs), in metastasis formation. MMICs are characterized by their preferential ability to initiate and propagate tumor growth and their selective capacity for self-renewal and differentiation into less tumorigenic melanoma cells. The frequency of MMICs has been shown to correlate with poor clinical prognosis in melanoma. In addition, MMICs are enriched among circulating tumor cells in the peripheral blood of cancer patients, suggesting that MMICs may be a critical factor in the metastatic cascade. Although these links exist between MMICs and metastatic disease, the mechanisms by which MMICs may advance metastatic progression are only beginning to be elucidated. Recent studies have shown that MMICs express molecules critical for hematopoietic cell maintenance and trafficking, providing a possible explanation for how circulating MMICs could drive melanoma dissemination. We therefore propose that MMICs might fuel melanoma metastasis by exploiting homing mechanisms commonly utilized by hematopoietic cells. Here we review the biological properties of MMICs and the existing literature on their metastatic potential. We will discuss possible mechanisms by which MMICs might initiate metastases in the context of established knowledge of cancer stem cells in other cancers and of hematopoietic homing molecules, with a particular focus on selectins, integrins, chemokines and chemokine receptors known to be expressed by melanoma cells. Biological understanding of how these molecules might be utilized by MMICs to propel the metastatic cascade could critically impact the development of more effective therapies for advanced disease.
Collapse
Affiliation(s)
- Nayoung Lee
- Harvard Skin Disease Research Center, Department of Dermatology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Steven R. Barthel
- Harvard Skin Disease Research Center, Department of Dermatology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Tobias Schatton
- Harvard Skin Disease Research Center, Department of Dermatology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA,Transplantation Research Center, Children’s Hospital Boston, Harvard Medical School, Boston, MA, USA,To whom correspondence should be addressed: Tobias Schatton, Pharm.D., Ph.D., Department of Dermatology, Brigham and Women’s Hospital, Harvard Institutes of Medicine, Rm. 673B, 77 Avenue Louis Pasteur, Boston, MA 02115, USA;
| |
Collapse
|
43
|
Wang YN, Yamamoto Y, Furukawa F. Potential biomarkers for malignant melanoma. World J Dermatol 2013; 2:44-50. [DOI: 10.5314/wjd.v2.i4.44] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Revised: 08/14/2013] [Accepted: 09/04/2013] [Indexed: 02/06/2023] Open
Abstract
Melanoma is one of the most aggressive cancers and its high metastatic potential has a large impact on the number of melanoma deaths. The pathological diagnosis is still the gold standard for melanoma and immunohistochemistry plays an important role in discriminating between melanomas. Recently, emerging molecular knowledge may lead to further identification of clinically relevant biomarkers, such as S100B, MIA, TA-90IC, 5-S-CD, SPARC, CSPG4, HSP105, IMP3, KIF2A, miR-221, YKL-40, some cancer stem cells (CD133, Nestin, CD166, CD20, CD271) and some monoclonal antibodies (KBA62, PNL2), for malignant melanoma detection, risk stratification and prediction/prognosis. However, all of the current main markers have some shortcomings. For example, all markers have limitations in sensitivity and specificity, even the first-line marker, S100 protein. So, sometimes, many of the classification criteria that have been proposed show considerable overlap, making it difficult to categorize cases reproducibly, based on histopathological criteria alone. Besides that, the increased expression of some proteins in melanomas suggests that there are abnormal proteins synthesized due to the genetic pathway. Therefore, we expect that there will be more instrumental breakthroughs in the abnormal gene field, especially with respect to gene mutation. Ultimately, novel melanoma biomarkers could be found and gradually become targeted treatment strategies for a poor prognosis in advanced melanoma in the near future.
Collapse
|
44
|
Joshi P, Zborowski M, Triozzi PL. Circulating melanoma cells: scoping the target. Front Oncol 2013; 3:189. [PMID: 23964346 PMCID: PMC3740478 DOI: 10.3389/fonc.2013.00189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 07/07/2013] [Indexed: 01/05/2023] Open
Affiliation(s)
- Powrnima Joshi
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic Cleveland, OH, USA
| | | | | |
Collapse
|
45
|
Klinac D, Gray ES, Millward M, Ziman M. Advances in personalized targeted treatment of metastatic melanoma and non-invasive tumor monitoring. Front Oncol 2013; 3:54. [PMID: 23515890 PMCID: PMC3601325 DOI: 10.3389/fonc.2013.00054] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 02/28/2013] [Indexed: 12/19/2022] Open
Abstract
Despite extensive scientific progress in the melanoma field, treatment of advanced stage melanoma with chemotherapeutics and biotherapeutics has rarely provided response rates higher than 20%. In the past decade, targeted inhibitors have been developed for metastatic melanoma, leading to the advent of more personalized therapies of genetically characterized tumors. Here we review current melanoma treatments and emerging targeted molecular therapies. In particular we discuss the mutant BRAF inhibitors Vemurafenib and Dabrafenib, which markedly inhibit tumor growth and advance patients' overall survival. However this response is almost inevitably followed by complete tumor relapse due to drug resistance hampering the encouraging initial responses. Several mechanisms of resistance within and outside the MAPK pathway have now been uncovered and have paved the way for clinical trials of combination therapies to try and overcome tumor relapse. It is apparent that personalized treatment management will be required in this new era of targeted treatment. Circulating tumor cells (CTCs) provide an easily accessible means of monitoring patient relapse and several new approaches are available for the molecular characterization of CTCs. Thus CTCs provide a monitoring tool to evaluate treatment efficacy and early detection of drug resistance in real time. We detail here how advances in the molecular analysis of CTCs may provide insight into new avenues of approaching therapeutic options that would benefit personalized melanoma management.
Collapse
Affiliation(s)
- Dragana Klinac
- School of Medical Sciences, Edith Cowan UniversityPerth, WA, Australia
| | - Elin S. Gray
- School of Medical Sciences, Edith Cowan UniversityPerth, WA, Australia
| | - Michael Millward
- School of Medicine and Pharmacology, University of Western AustraliaCrawley, WA, Australia
| | - Mel Ziman
- School of Medical Sciences, Edith Cowan UniversityPerth, WA, Australia
- School of Pathology and Laboratory Medicine, University of Western AustraliaCrawley, WA, Australia
| |
Collapse
|