1
|
Raja A, Ganta V. Synthetic Antiangiogenic Vascular Endothelial Growth Factor-A Splice Variant Revascularizes Ischemic Muscle in Peripheral Artery Disease. J Am Heart Assoc 2024; 13:e034304. [PMID: 39392159 PMCID: PMC11935576 DOI: 10.1161/jaha.124.034304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 08/27/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Alternative splicing in the eighth exon C-terminus of VEGF-A (vascular endothelial growth factor-A) results in the formation of proangiogenic VEGF165a and antiangiogenic VEGF165b isoforms. The only known difference between these 2 isoform families is a 6-amino acid switch from CDKPRR (in VEGF165a) to SLTRKD (in VEGF165b). We have recently shown that VEGF165b can induce VEGFR2-activation but fails to induce VEGFR1 (VEGF receptor 1)-activation. The molecular mechanisms that regulate VEGF165b's ability toward differential VEGFR2 versus VEGFR1 activation/inhibition are not yet clear. METHODS AND RESULTS Hypoxia serum starvation was used as an in vitro peripheral artery disease model. Unilateral single ligation of the femoral artery was used as a preclinical peripheral artery disease model. VEGFR1 activating ligands have 2 arginine (RR) residues in their eighth exon C-terminus, that were replaced by lysine-aspartic acid (KD) in VEGF165b. A synthetic anti-angiogenic VEGF165b splice variant in which the KD residues were switched to RR (VEGF165bKD→RR) activated both VEGFR1- and VEGFR2-signaling pathways to induce ischemic-endothelial cell angiogenic capacity in vitro and enhance perfusion recovery in a severe experimental-peripheral artery disease model significantly higher than VEGF165a. Phosphoproteome arrays showed that the therapeutic efficacy of VEGF165bKD→RR over VEGF165a is due to its ability to induce P38-activation in ischemic endothelial cells. CONCLUSIONS Our data shows that the KD residues regulate VEGF165b's VEGFR1 inhibitory property but not VEGFR2. Switching these KD residues to RR resulted in the formation of a synthetic/recombinant VEGF165bKD→RR isoform that has the ability to activate both VEGFR1- and VEGFR2-signaling and induce ischemic-endothelial cell angiogenic and proliferative capacity that matched the angiogenic requirement necessary to achieve perfusion recovery in a severe experimental-peripheral artery disease model.
Collapse
Affiliation(s)
- Adarshini Raja
- Medical College of GeorgiaAugusta UniversityAugustaGAUSA
| | - Vijay Ganta
- Vascular Biology Center and Department of MedicineAugusta UniversityAugustaGAUSA
| |
Collapse
|
2
|
Britzen-Laurent N, Weidinger C, Stürzl M. Contribution of Blood Vessel Activation, Remodeling and Barrier Function to Inflammatory Bowel Diseases. Int J Mol Sci 2023; 24:ijms24065517. [PMID: 36982601 PMCID: PMC10051397 DOI: 10.3390/ijms24065517] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Inflammatory bowel diseases (IBDs) consist of a group of chronic inflammatory disorders with a complex etiology, which represent a clinical challenge due to their often therapy-refractory nature. In IBD, inflammation of the intestinal mucosa is characterized by strong and sustained leukocyte infiltration, resulting in the loss of epithelial barrier function and subsequent tissue destruction. This is accompanied by the activation and the massive remodeling of mucosal micro-vessels. The role of the gut vasculature in the induction and perpetuation of mucosal inflammation is receiving increasing recognition. While the vascular barrier is considered to offer protection against bacterial translocation and sepsis after the breakdown of the epithelial barrier, endothelium activation and angiogenesis are thought to promote inflammation. The present review examines the respective pathological contributions of the different phenotypical changes observed in the microvascular endothelium during IBD, and provides an overview of potential vessel-specific targeted therapy options for the treatment of IBD.
Collapse
Affiliation(s)
- Nathalie Britzen-Laurent
- Division of Surgical Research, Department of Surgery, Translational Research Center, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054 Erlangen, Germany
- Correspondence:
| | - Carl Weidinger
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, 12203 Berlin, Germany
| | - Michael Stürzl
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054 Erlangen, Germany
- Division of Molecular and Experimental Surgery, Translational Research Center, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| |
Collapse
|
3
|
Onyenwoke RU, Leung T, Huang X, Parker D, Shipman JG, Alhadyan SK, Sivaraman V. An assessment of vaping-induced inflammation and toxicity: A feasibility study using a 2-stage zebrafish and mouse platform. Food Chem Toxicol 2022; 163:112923. [PMID: 35318090 PMCID: PMC9018621 DOI: 10.1016/j.fct.2022.112923] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/03/2022] [Accepted: 03/13/2022] [Indexed: 11/29/2022]
Abstract
It is currently understood that tobacco smoking is a major cause of pulmonary disease due to pulmonary/lung inflammation. However, due to a highly dynamic market place and an abundance of diverse products, less is known about the effects of e-cigarette (E-cig) use on the lung. In addition, varieties of E-cig liquids (e-liquids), which deliver nicotine and numerous flavor chemicals into the lungs, now number in the 1000s. Thus, a critical need exists for safety evaluations of these E-cig products. Herein, we employed a "2-stage in vivo screening platform" (zebrafish to mouse) to assess the safety profiles of e-liquids. Using the zebrafish, we collected embryo survival data after e-liquid exposure as well as neutrophil migration data, a key hallmark for a pro-inflammatory response. Our data indicate that certain e-liquids induce an inflammatory response in our zebrafish model and that e-liquid exposure alone results in pro-inflammatory lung responses in our C57BL/6J model, data collected from lung staining and ELISA analysis, respectively, in the mouse. Thus, our platform can be used as an initial assessment to ascertain the safety profiles of e-liquid using acute inflammatory responses (zebrafish, Stage 1) as our initial metric followed by chronic studies (C57BL/6J, Stage 2).
Collapse
Affiliation(s)
- Rob U Onyenwoke
- Biomanufacturing Research Institute and Technology Enterprise (BRITE), North Carolina Central University, Durham, NC, 27707, USA; Department of Pharmaceutical Sciences, North Carolina Central University, Durham, NC, 27707, USA
| | - TinChung Leung
- The Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, North Carolina Research Campus, Kannapolis, NC, 28081, USA; Department of Biological & Biomedical Sciences, North Carolina Central University, Durham, NC, 27707, USA
| | - Xiaoyan Huang
- The Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, North Carolina Research Campus, Kannapolis, NC, 28081, USA
| | - De'Jana Parker
- Department of Biological & Biomedical Sciences, North Carolina Central University, Durham, NC, 27707, USA
| | - Jeffrey G Shipman
- Department of Biological & Biomedical Sciences, North Carolina Central University, Durham, NC, 27707, USA
| | - Shatha K Alhadyan
- Department of Pharmaceutical Sciences, North Carolina Central University, Durham, NC, 27707, USA
| | - Vijay Sivaraman
- Department of Biological & Biomedical Sciences, North Carolina Central University, Durham, NC, 27707, USA.
| |
Collapse
|
4
|
Bozkurt MF, Bhaya MN, Dibekoğlu C, Akat A, Ateş U, Erbaş O. Mesenchymal stem cells have ameliorative effect on the colitis model via Nrf2/HO-1 pathway. Acta Cir Bras 2022; 37:e370704. [PMID: 36228298 PMCID: PMC9553072 DOI: 10.1590/acb370704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/20/2022] [Indexed: 11/22/2022] Open
Abstract
Purpose: To evaluate the ameliorative effect of mesenchymal stem cells (MSCs) on acetic acid colitis model via Nrf2/HO-1 pathway in rats. Methods: In this study, 30 rats were divided into three groups. Acute colitis was induced by rectal administration of 4% solution of acetic acid. MSCs were injected intraperitoneally in the treatment group. Results: Increased levels of tumor necrosis factor-α (TNF-α), pentraxin-3, and malondialdehyde (MDA) in colitis group were revealed biochemically. Increased level of TNF-α and decreased levels of Nrf2 and interleukin-10 (IL-10) were observed in rectum tissues. Increased fibrous tissue proliferation, vascularization and inflammatory cell infiltration were described in the colitis group. Significant improvement was observed in MSCs treated group histopathologically. Increased immunopositivity of TNF-α, vascular endothelial growth factor (VEGF) and CD68 markers was observed in the colitis group cells, and decreased level of this positivity was observed in MSCs treated group. Conclusions: Biochemical, histopathological and immunohistochemical results strongly support the ameliorative effect of MSCs against acetic induced colitis model via Nrf2/HO-1 pathway in rats.
Collapse
Affiliation(s)
| | | | | | - Ayberk Akat
- Stembio Cell and Tissue Technologies Inc, Turkey
| | - Utku Ateş
- Stembio Cell and Tissue Technologies Inc, Turkey
| | | |
Collapse
|
5
|
Stürzl M, Kunz M, Krug SM, Naschberger E. Angiocrine Regulation of Epithelial Barrier Integrity in Inflammatory Bowel Disease. Front Med (Lausanne) 2021; 8:643607. [PMID: 34409045 PMCID: PMC8365087 DOI: 10.3389/fmed.2021.643607] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 07/07/2021] [Indexed: 12/16/2022] Open
Abstract
Inflammatory bowel disease describes chronic inflammatory disorders. The incidence of the disease is rising. A major step in disease development is the breakdown of the epithelial cell barrier. Numerous blood vessels are directly located underneath this barrier. Diseased tissues are heavily vascularized and blood vessels significantly contribute to disease progression. The gut-vascular barrier (GVB) is an additional barrier controlling the entry of substances into the portal circulation and to the liver after passing the first epithelial barrier. The presence of the GVB rises the question, whether the vascular and endothelial barriers may communicate bi-directionally in the regulation of selective barrier permeability. Communication from epithelial to endothelial cells is well-accepted. In contrast, little is known on the respective backwards communication. Only recently, perfusion-independent angiocrine functions of endothelial cells were recognized in a way that endothelial cells release specific soluble factors that may directly act on the epithelial barrier. This review discusses the putative involvement of angiocrine inter-barrier communication in the pathogenesis of IBD.
Collapse
Affiliation(s)
- Michael Stürzl
- Division of Molecular and Experimental Surgery, Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander University (FAU) of Erlangen-Nürnberg, Erlangen, Germany
| | - Meik Kunz
- Chair of Medical Informatics, Friedrich-Alexander-University (FAU) of Erlangen-Nürnberg, Erlangen, and Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
| | - Susanne M. Krug
- Clinical Physiology/Nutritional Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Elisabeth Naschberger
- Division of Molecular and Experimental Surgery, Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander University (FAU) of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
6
|
Dailey W, Shunemann R, Yang F, Moore M, Knapp A, Chen P, Deshpande M, Metcalf B, Tompkins Q, Guzman AE, Felisky J, Mitton KP. Differences in activation of intracellular signaling in primary human retinal endothelial cells between isoforms of VEGFA 165. Mol Vis 2021; 27:191-205. [PMID: 33953532 PMCID: PMC8092446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/26/2021] [Indexed: 11/18/2022] Open
Abstract
Purpose There are reports that a b-isoform of vascular endothelial growth factor-A 165 (VEGFA165b) is predominant in normal human vitreous, switching to the a-isoform (VEGFA165a) in the vitreous of some diseased eyes. Although these isoforms appear to have a different ability to activate the VEGF receptor 2 (VEGFR2) in various endothelial cells, the nature of their ability to activate intracellular signaling pathways is not fully characterized, especially in retinal endothelial cells. We determined their activation potential for two key intracellular signaling pathways (MAPK, AKT) over complete dose-response curves and compared potential effects on the expression of several VEGFA165 target genes in primary human retinal microvascular endothelial cells (HRMECs). Methods To determine full dose-response curves for the activation of MAPK (ERK1/2), AKT, and VEGFR2, direct in-cell western assays were developed using primary HRMECs. Potential differences in dose-response effects on gene expression markers related to endothelial cell and leukocyte adhesion (ICAM1, VCAM1, and SELE) and tight junctions (CLDN5 and OCLN) were tested with quantitative PCR. Results Activation dose-response analysis revealed much stronger activation of MAPK, AKT, and VEGFR2 by the a-isoform at lower doses. MAPK activation in primary HRMECs displayed a sigmoidal dose-response to a range of VEGFA 165 a concentrations spanning 10-250 pM, which shifted higher into the 100-5,000 pM range with VEGFA 165 b. Similar maximum activation of MAPK was achieved by both isoforms at high concentrations. Maximum activation of AKT by VEGFA 165 b was only half of the maximum activation from VEGFA 165 a. At a lower intermediate dose, where VEGFA 165 a activated intracellular signaling stronger than VEGFA 165 b, the changes in VEGFA target gene expression were generally greater with VEGFA 165 a. Conclusions In primary HRMECs, VEGFA 165 a could maximally activate MAPK and AKT at lower concentrations where VEGFA 165 b had relatively little effect. The timing for maximum activation of MAPK was similar for the isoforms, which is different from that reported for non-retinal endothelial cells. Although differences in VEGFA 165 a and VEGFA 165 b are limited to the sequence of their six C-terminal six amino acids, this results in a large difference in their ability to activate at least two key intracellular signaling pathways and VEGF-target gene expression in primary human retinal endothelial cells.
Collapse
|
7
|
Tanideh N, Jamshidzadeh A, Ghanbari Saghesloo A, Rahmanifar F, Mokhtari M, Koohi-Hosseinabadi O, Omidi M, Najibi A. Effects of hydroalcoholic extract of Ziziphus jujuba on acetic acid induced ulcerative colitis in male rat (Rattus norvegicus). JOURNAL OF COLOPROCTOLOGY 2021. [DOI: 10.1016/j.jcol.2016.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Abstract
Objective To investigate the effects of hydroalcoholic extract of Ziziphus jujuba on the histopathological, tissue oxidative stress and inflammation plus to antioxidant pathways of colon tissue in rat with induced Ulcerative colitis.
Materials and methods Ulcerative colitis was induced in 80 rats those divided into 8 equal groups. Group 1 and 2 were negative controls receiving 1 mL/day of normal saline in enema and oral; group 3 and 4 as positive control 1 and 2 received 10 mg/kg of intra-colonic asacol and oral mesalazine; groups 5 and 6 received 20% and 40% of hydroalcoholic extract of Z. jujuba trans-rectally; group 7 and 8 received 1500 and 3000 mg/kg of hydroalcoholic extract of Z. jujuba orally, respectively. After 7 days, animals were evaluated for colon tissue histopathology, levels of malondialdehyde and IL-1β, and activities of superoxide dismutase, glutathione peroxidase and myeloperoxidase in colon tissue.
Results Hydroalcoholic extract of Z. jujuba in both forms of trans-rectal and oral administration especially in the higher doses could result into a more healing effect in damaged colonic tissue, more reduce glutathione peroxidase and IL-1β level. Also, these two doses (gel 40% and oral 3000 mg/kg) could more decrease the myeloperoxidase activity and stimulate superoxide dismutase and glutathione peroxidase activities. Also, gel 40% in transrectal administration was more potent than administration 3000 mg/kg in oral.
Conclusion The results of the present study indicated that Z. jujube may be considered as a treatment of choice for Ulcerative colitis especially in gel form and also in dose-dependent pattern.
Collapse
Affiliation(s)
- Nader Tanideh
- Shiraz University of Medical Sciences, Stem Cell and Transgenic Technology Research Center, Shiraz, Iran
- Shiraz University of Medical Sciences, School of Medicine, Department of Pharmacology, Shiraz, Iran
| | - Akram Jamshidzadeh
- Shiraz University of Medical Sciences, School of Pharmacy, Department of Pharmacology Toxicology, Shiraz, Iran
| | - Ali Ghanbari Saghesloo
- Shiraz University of Medical Sciences, School of Pharmacy, Department of Pharmacology Toxicology, Shiraz, Iran
| | - Farhad Rahmanifar
- Shiraz University, School of Veterinary Medicine, Department of Anatomy, Shiraz, Iran
| | - Maral Mokhtari
- Shiraz University of Medical Sciences, School of Medicine, Department of Pathology, Shiraz, Iran
| | - Omid Koohi-Hosseinabadi
- Shiraz University of Medical Sciences, Center of Comparative and Experimental Medicine, Shiraz, Iran
| | - Mahmood Omidi
- Shiraz University of Medical Sciences, School of Pharmacy, Department of Pharmacology Toxicology, Shiraz, Iran
| | - Asma Najibi
- Shiraz University of Medical Sciences, School of Pharmacy, Department of Pharmacology Toxicology, Shiraz, Iran
| |
Collapse
|
8
|
Zhang C, Chen H, He Q, Luo Y, He A, Tao A, Yan J. Fibrinogen/AKT/Microfilament Axis Promotes Colitis by Enhancing Vascular Permeability. Cell Mol Gastroenterol Hepatol 2020; 11:683-696. [PMID: 33075564 PMCID: PMC7843406 DOI: 10.1016/j.jcmgh.2020.10.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/14/2020] [Accepted: 10/14/2020] [Indexed: 12/10/2022]
Abstract
BACKGROUND & AIMS Increased vascular permeability (VP) has been indicated to play an important role in the pathogenesis of inflammatory bowel disease (IBD). However, the pathological causes of increased intestinal VP in IBD remain largely unknown. METHOD Fibrinogen level was measured in dextran sulphate sodium (DSS)-induced colitis and patients with ulcerative colitis. Gly-Pro-Arg-Pro acetate (GPRP), an Fg inhibitor, was used to detect the effect of Fg inhibition on the pathogenesis of DSS-induced colitis, as indicated by tissue damage, cytokine release and inflammatory cell infiltration. Miles assay was used to detect vascular permeability. RESULTS Through tandem mass tag-based quantitative proteomics, fibrinogen (Fg) was found to be upregulated in the colon of DSS-treated mice, which was consistent with increased Fg level in colon sample of patients with ulcerative colitis. Gly-Pro-Arg-Pro acetate (GPRP), an Fg inhibitor, significantly alleviated DSS-induced colitis as indicated by improvement of body weight loss and mortality. GPRP decreased colonic inflammation and VP in DSS-treated mice. In vivo, Fg enhanced VP as indicated by Miles assay, which was significantly inhibited by GRPR, AKT (serine/threonine kinase 1) inhibitors and low doses of Jasplakinolide which induced actin polymerization, while was dramatically enhanced by Cytochalasin D (an actin polymerization inhibitor). Moreover, activation of AKT was found in vessels of DSS-treated mice. In vitro, Fg induced activation of AKT and depolymerization of microfilament and promoted cell-to-cell disaggregation. Furthermore, inhibition of AKT decreased Fg-induced microfilament depolymerization. CONCLUSIONS Our findings highlight the importance of Fg in regulating colitis by modulation of VP via activating AKT and subsequent depolymerization of microfilament and suggest Fg as an attractive target for anti-colitis treatment.
Collapse
Affiliation(s)
- Chong Zhang
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China,Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Guilin Medical University, Guilin, China
| | - Honglv Chen
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Qiaoling He
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yiqin Luo
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Andong He
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Ailin Tao
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China,Ailin Tao, PhD, The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou 510260, China. fax: 86-020-34153520.
| | - Jie Yan
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China,Correspondence Address correspondence to: Jie Yan, PhD, The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, 195 Dongfengxi Street, Yuexiu District, Guangzhou 510260, China. fax: 86-020-34153520
| |
Collapse
|
9
|
Gastrointestinal disorders-induced pain. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2019.100580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Langer V, Vivi E, Regensburger D, Winkler TH, Waldner MJ, Rath T, Schmid B, Skottke L, Lee S, Jeon NL, Wohlfahrt T, Kramer V, Tripal P, Schumann M, Kersting S, Handtrack C, Geppert CI, Suchowski K, Adams RH, Becker C, Ramming A, Naschberger E, Britzen-Laurent N, Stürzl M. IFN-γ drives inflammatory bowel disease pathogenesis through VE-cadherin-directed vascular barrier disruption. J Clin Invest 2019; 129:4691-4707. [PMID: 31566580 PMCID: PMC6819119 DOI: 10.1172/jci124884] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 08/01/2019] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disorder with rising incidence. Diseased tissues are heavily vascularized. Surprisingly, the pathogenic impact of the vasculature in IBD and the underlying regulatory mechanisms remain largely unknown. IFN-γ is a major cytokine in IBD pathogenesis, but in the context of the disease, it is almost exclusively its immune-modulatory and epithelial cell-directed functions that have been considered. Recent studies by our group demonstrated that IFN-γ also exerts potent effects on blood vessels. Based on these considerations, we analyzed the vessel-directed pathogenic functions of IFN-γ and found that it drives IBD pathogenesis through vascular barrier disruption. Specifically, we show that inhibition of the IFN-γ response in vessels by endothelial-specific knockout of IFN-γ receptor 2 ameliorates experimentally induced colitis in mice. IFN-γ acts pathogenic by causing a breakdown of the vascular barrier through disruption of the adherens junction protein VE-cadherin. Notably, intestinal vascular barrier dysfunction was also confirmed in human IBD patients, supporting the clinical relevance of our findings. Treatment with imatinib restored VE-cadherin/adherens junctions, inhibited vascular permeability, and significantly reduced colonic inflammation in experimental colitis. Our findings inaugurate the pathogenic impact of IFN-γ-mediated intestinal vessel activation in IBD and open new avenues for vascular-directed treatment of this disease.
Collapse
Affiliation(s)
- Victoria Langer
- Division of Molecular and Experimental Surgery, Translational Research Center, Department of Surgery, University Medical Center Erlangen
| | - Eugenia Vivi
- Division of Molecular and Experimental Surgery, Translational Research Center, Department of Surgery, University Medical Center Erlangen
| | - Daniela Regensburger
- Division of Molecular and Experimental Surgery, Translational Research Center, Department of Surgery, University Medical Center Erlangen
| | - Thomas H. Winkler
- Division of Genetics, Nikolaus-Fiebiger-Center of Molecular Medicine
| | - Maximilian J. Waldner
- Department of Medicine 1, Gastroenterology, Pneumology and Endocrinology, University Medical Center Erlangen, and
| | - Timo Rath
- Department of Medicine 1, Gastroenterology, Pneumology and Endocrinology, University Medical Center Erlangen, and
| | - Benjamin Schmid
- Optical Imaging Centre, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Lisa Skottke
- Division of Molecular and Experimental Surgery, Translational Research Center, Department of Surgery, University Medical Center Erlangen
| | - Somin Lee
- Program for Bioengineering, School of Engineering, Seoul National University, Seoul, Republic of Korea
| | - Noo Li Jeon
- Program for Bioengineering, School of Engineering, Seoul National University, Seoul, Republic of Korea
| | - Thomas Wohlfahrt
- Department of Internal Medicine 3, Rheumatology and Immunology, University Medical Center Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Viktoria Kramer
- Department of Medicine 1, Gastroenterology, Pneumology and Endocrinology, University Medical Center Erlangen, and
| | - Philipp Tripal
- Optical Imaging Centre, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Michael Schumann
- Medical Clinic I, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | | | - Carol I. Geppert
- Institute of Pathology, University Medical Center Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Karina Suchowski
- Discovery Oncology, Pharmaceutical Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| | - Ralf H. Adams
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Christoph Becker
- Department of Medicine 1, Gastroenterology, Pneumology and Endocrinology, University Medical Center Erlangen, and
| | - Andreas Ramming
- Department of Internal Medicine 3, Rheumatology and Immunology, University Medical Center Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Elisabeth Naschberger
- Division of Molecular and Experimental Surgery, Translational Research Center, Department of Surgery, University Medical Center Erlangen
| | - Nathalie Britzen-Laurent
- Division of Molecular and Experimental Surgery, Translational Research Center, Department of Surgery, University Medical Center Erlangen
| | - Michael Stürzl
- Division of Molecular and Experimental Surgery, Translational Research Center, Department of Surgery, University Medical Center Erlangen
| |
Collapse
|
11
|
Silva I, Pinto R, Mateus V. Preclinical Study in Vivo for New Pharmacological Approaches in Inflammatory Bowel Disease: A Systematic Review of Chronic Model of TNBS-Induced Colitis. J Clin Med 2019; 8:jcm8101574. [PMID: 31581545 PMCID: PMC6832474 DOI: 10.3390/jcm8101574] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 09/19/2019] [Accepted: 09/25/2019] [Indexed: 12/14/2022] Open
Abstract
The preclinical studies in vivo provide means of characterizing physiologic interactions when our understanding of such processes is insufficient to allow replacement with in vitro systems and play a pivotal role in the development of a novel therapeutic drug cure. Chemically induced colitis models are relatively easy and rapid to develop. The 2,4,6-trinitrobenzenesulfonic acid (TNBS) colitis model is one of the main models in the experimental studies of inflammatory bowel disease (IBD) since inflammation induced by TNBS mimics several features of Crohn’s disease. This review aims to summarize the existing literature and discuss different protocols for the induction of chronic model of TNBS-induced colitis. We searched MEDLINE via Pubmed platform for studies published through December 2018, using MeSH terms (Crohn Disease.kw) OR (Inflammatory Bowel Diseases.kw) OR (Colitis, Ulcerative.kw) AND (trinitrobenzenesulfonic acid.kw) AND (disease models, animal.kw) AND (mice.all). The inclusion criteria were original articles, preclinical studies in vivo using mice, chronic model of colitis, and TNBS as the inducer of colitis and articles published in English. Chronic TNBS-induced colitis is made with multiple TNBS intrarectal administrations in an average dose of 1.2 mg using a volume lower than 150 μL in 50% ethanol. The strains mostly used are Balb/c and C57BL/6 with 5–6 weeks. To characterize the preclinical model the parameters more used include body weight, stool consistency and morbidity, inflammatory biomarkers like interferon (IFN)-γ, myeloperoxidase (MPO), tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-10, presence of ulcers, thickness or hyperemia in the colon, and histological evaluation of the inflammation. Experimental chronic colitis is induced by multiple rectal instillations of TNBS increasing doses in ethanol using Balb/c and C57BL/6 mice.
Collapse
Affiliation(s)
- Inês Silva
- H&TRC–Health and Technology Research Center, ESTeSL–Lisbon School of Health Technology, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal;
- iMed.ULisboa, Faculdade de Farmácia, Universidade de Lisboa, 1990-096 Lisboa, Portugal;
| | - Rui Pinto
- iMed.ULisboa, Faculdade de Farmácia, Universidade de Lisboa, 1990-096 Lisboa, Portugal;
- JCS, Dr. Joaquim Chaves, Laboratório de Análises Clínicas, Miraflores, 1495-069 Algés, Portugal
| | - Vanessa Mateus
- H&TRC–Health and Technology Research Center, ESTeSL–Lisbon School of Health Technology, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal;
- iMed.ULisboa, Faculdade de Farmácia, Universidade de Lisboa, 1990-096 Lisboa, Portugal;
- Correspondence: ; Tel.: +351-218-980-400; Fax: +351-218-980-460
| |
Collapse
|
12
|
Systematic large-scale meta-analysis identifies miRNA-429/200a/b and miRNA-141/200c clusters as biomarkers for necrotizing enterocolitis in newborn. Biosci Rep 2019; 39:BSR20191503. [PMID: 31383782 PMCID: PMC6757181 DOI: 10.1042/bsr20191503] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/18/2019] [Accepted: 08/01/2019] [Indexed: 12/14/2022] Open
Abstract
Necrotizing enterocolitis (NEC) is a critical neonatal disease with a high mortality. The possibility that miRNAs may play an important role in NEC has raised great attention. Hence, the present study identified biomarkers that affected NEC in newborn progression through miRNA and gene expression profile analysis. miRNA chip GSE68054 and gene chip GSE46619 of NEC in newborn were analyzed to screen out differentially expressed miRNA and differentially expressed genes (DEGs). Next, target genes of differentially expressed miRNA were predicted, and differentially expressed miRNA-DEG regulatory network was constructed to select key miRNAs. After gene ontology and kyoto encyclopedia of genes and genomes enrichment analysis on target genes of key miRNAs, the target genes enriched in pathways were extracted to establish differentially expressed miRNA-DEG-disease gene network for gene interaction analysis. Targetting relationship between miRNAs and target genes was verified. A total of 15 miRNAs were differentially expressed in NEC in newborn, amongst which miR-429/200a/b and miR-141/200c clusters were poorly expressed and might play a significant role in NEC in newborn. Besides, target genes of miR-429/200a/b and miR-141/200c clusters were enriched in 11 signaling pathways. Vascular endothelial growth factor (VEGFA), E-selectin (SELE), kinase insert domain receptor (KDR), fms-related tyrosine kinase 1 (FLT1), and hepatocyte growth factor (HGF) were highly expressed in NEC in newborn, which were negatively regulated by miR-429/200a/b and miR-141/200c clusters and shared close association with disease genes. miR-429/200a/b and miR-141/200c clusters are poorly expressed while their target genes (VEGFA, SELE, KDR, FLT1, and HGF) are highly expressed in NEC in newborn, which might be identified as important biomarkers for this disease.
Collapse
|
13
|
Dynamic gut microbiome changes following regional intestinal lymphatic obstruction in primates. ACTA ACUST UNITED AC 2019; 26:253-261. [PMID: 31301989 DOI: 10.1016/j.pathophys.2019.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/24/2019] [Accepted: 06/26/2019] [Indexed: 12/15/2022]
Abstract
The pathogenesis of inflammatory bowel disease (IBD) has been linked with lymphostasis, but whether and how lymphatic obstruction might disturb the intestinal microbiome in the setting of Crohn's Disease (CD) is currently unknown. We employed a new model of CD in African Green monkeys, termed 'ATLAS' (African green monkey truncation of lymphatics with obstruction and sclerosis), to evaluate how gut lymphatic obstruction alters the intestinal microbiome at 7, 21 and 61 days. Remarkable changes in several microbial sub- groupings within the gut microbiome were observed at 7 days post-ATLAS compared to controls including increased abundance of Prevotellaceae and Bacteroidetes-Prevotella-Porphyromonas (BPP), which may contribute to disease activity in this model of gut injury. To the best of our knowledge, these findings represent the first report linking lymphatic structural/gut functional changes with alterations in the gut microbiome as they may relate to the pathophysiology of CD.
Collapse
|
14
|
Wang Y, Gu Y, Fang K, Mao K, Dou J, Fan H, Zhou C, Wang H. Lactobacillus acidophilus and Clostridium butyricum ameliorate colitis in murine by strengthening the gut barrier function and decreasing inflammatory factors. Benef Microbes 2018; 9:775-787. [PMID: 30014710 DOI: 10.3920/bm2017.0035] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ulcerative colitis is a type of chronic inflammation present in the intestines for which the aetiology is not yet clear. The current therapies for ulcerative colitis cannot be considered to be long-term management strategies due to their significant side effects. Therefore, it is essential to identify an alternative therapeutic strategy for ulcerative colitis. The present study focused on the evaluation of the anti-inflammatory activities of Lactobacillus acidophilus CGMCC 7282 and Clostridium butyricum CGMCC 7281. The roles of both single and combination of L. acidophilus CGMCC 7282 and C. butyricum CGMCC 7281 in ulcerative colitis were investigated in 2,4,6-trinitrobenzenesulfonic acid-induced acute colitis (Th1-type colitis) in Sprague-Dawley rats and oxazolone-induced chronic colitis (Th2-type colitis) in BALB/c mice. The in vivo studies showed that the administration of L. acidophilus CGMCC 7282, C. butyricum CGMCC 7281 and L. acidophilus CGMCC 7282 plus C. butyricum CGMCC 7281 could reduce the Th1-type colitis as well as the Th2-type colitis, and the combination of the two strains exhibited the most notable effects, as indicated by the reduced mortality rates, the suppressed disease activity indices, the improved body weights, the reduced colon weight/colon length and colon weight/body weight ratios, and the improved gross anatomic characteristics and histological features (ameliorations of neutrophil infiltration and ulceration in the colon). It was found that the alterations of the gut microbiome, the barrier function changing and the selected inflammation-related cytokines are observed in the ulcerative colitis rats/mice treated with L. acidophilus CGMCC 7282 and C. butyricum CGMCC 7281. The combination of L. acidophilus CGMCC 7282 plus C. butyricum CGMCC 7281 also exerted a stronger anti-inflammatory effect than either of the single strains alone in vitro. These findings provide evidence that the administration of L. acidophilus CGMCC 7282 plus C. butyricum CGMCC 7281 may be a promising therapy for ulcerative colitis.
Collapse
Affiliation(s)
- Y Wang
- 1 Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - Y Gu
- 2 State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu 210009, China P.R
| | - K Fang
- 2 State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu 210009, China P.R
| | - K Mao
- 2 State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu 210009, China P.R
| | - J Dou
- 2 State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu 210009, China P.R
| | - H Fan
- 2 State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu 210009, China P.R
| | - C Zhou
- 2 State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu 210009, China P.R
| | - H Wang
- 2 State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu 210009, China P.R
| |
Collapse
|
15
|
Almeer RS, Mahmoud SM, Amin HK, Abdel Moneim AE. Ziziphus spina-christi fruit extract suppresses oxidative stress and p38 MAPK expression in ulcerative colitis in rats via induction of Nrf2 and HO-1 expression. Food Chem Toxicol 2018; 115:49-62. [PMID: 29518435 DOI: 10.1016/j.fct.2018.03.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 02/09/2018] [Accepted: 03/02/2018] [Indexed: 12/31/2022]
Abstract
In this study, we aimed to evaluate the anti-inflammatory and protective effects of Ziziphus spina-christi fruit extract (ZFE) against acetic acid (AcOH)-induced colitis in rats. Before a single AcOH instillation, ZFE (100, 200, and 400 mg/kg/day) was administered for 5 days by oral gavage. Pretreatment with ZFE at different doses suppressed the spread of inflammation and inhibited mucosal damage; in addition, it reduced ulcer size and mitigated colitis markers. Administration of ZFE (400 mg/kg) resulted in a greater reduction of inflammatory colonic injury than that after reference drug, mesalazine (MLZ), administration. In addition, ZFE not only histopathologically ameliorated AcOH-induced colitis but also restored the balance between the oxidants and antioxidants. Furthermore, ZFE effectively modulated the mRNA expression of redox-sensitive transcription factors, such as nuclear factor (erythroid-derived 2)-like 2 and heme oxygenase-1, downregulated the expression of p38 mitogen-activated protein kinase, and upregulated that of vascular endothelial growth factor A and interleukin-1β in AcOH-induced colitis in rats. In conclusion, our results suggested that ZFE could prevent the development of chronic experimental colitis in rats; therefore, it could be considered as an alternative and/or additive therapeutic approach for the management of inflammatory bowel disease.
Collapse
Affiliation(s)
- Rafa S Almeer
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia.
| | - Sahar M Mahmoud
- Department of Zoology, Faculty of Science, Cairo University, Egypt.
| | - Hatem K Amin
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Cairo, Egypt.
| | - Ahmed E Abdel Moneim
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt.
| |
Collapse
|
16
|
Rehal S, Stephens M, Roizes S, Liao S, von der Weid PY. Acute small intestinal inflammation results in persistent lymphatic alterations. Am J Physiol Gastrointest Liver Physiol 2018; 314:G408-G417. [PMID: 29351397 DOI: 10.1152/ajpgi.00340.2017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Inflammatory bowel disease (IBD) has a complex pathophysiology with limited treatments. Structural and functional changes in the intestinal lymphatic system have been associated with the disease, with increased risk of IBD occurrence linked to a history of acute intestinal injury. To examine the potential role of the lymphatic system in inflammation recurrence, we evaluated morphological and functional changes in mouse mucosal and mesenteric lymphatic vessels, and within the mesenteric lymph nodes during acute ileitis caused by a 7-day treatment with dextran sodium sulfate (DSS). We monitored whether the changes persisted during a 14-day recovery period and determined their potential consequences on dendritic cell (DC) trafficking between the mucosa and lymphoid tissues. DSS administration was associated with marked lymphatic abnormalities and dysfunctions exemplified by lymphangiectasia and lymphangiogenesis in the ileal mucosa and mesentery, increased mesenteric lymphatic vessel leakage, and lymphadenopathy. Lymphangiogenesis and lymphadenopathy were still evident after recovery from intestinal inflammation and correlated with higher numbers of DCs in mucosal and lymphatic tissues. Specifically, a deficit in CD103+ DCs observed during acute DSS in the lamina propria was reversed and further enhanced during recovery. We concluded that an acute intestinal insult caused alterations of the mesenteric lymphatic system, including lymphangiogenesis, which persisted after resolution of inflammation. These morphological and functional changes could compromise DC function and movement, increasing susceptibility to further gastrointestinal disease. Elucidation of the changes in mesenteric and intestinal lymphatic function should offer key insights for new therapeutic strategies in gastrointestinal disorders such as IBD. NEW & NOTEWORTHY Lymphatic integrity plays a critical role in small intestinal homeostasis. Acute intestinal insult in a mouse model of acute ileitis causes morphological and functional changes in mesenteric and intestinal lymphatic vessels. While some of the changes significantly regressed during inflammation resolution, others persisted, including lymphangiogenesis and altered dendritic cell function and movement, potentially increasing susceptibility to the recurrence of gastrointestinal inflammation.
Collapse
Affiliation(s)
- Sonia Rehal
- Inflammation Research Network and Smooth Muscle Research Group, Snyder Institute for Chronic Diseases, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary , Calgary, Alberta , Canada
| | - Matthew Stephens
- Inflammation Research Network and Smooth Muscle Research Group, Snyder Institute for Chronic Diseases, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary , Calgary, Alberta , Canada
| | - Simon Roizes
- Inflammation Research Network and Smooth Muscle Research Group, Snyder Institute for Chronic Diseases, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary , Calgary, Alberta , Canada
| | - Shan Liao
- Inflammation Research Network and Smooth Muscle Research Group, Snyder Institute for Chronic Diseases, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary , Calgary, Alberta , Canada
| | - Pierre-Yves von der Weid
- Inflammation Research Network and Smooth Muscle Research Group, Snyder Institute for Chronic Diseases, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary , Calgary, Alberta , Canada
| |
Collapse
|
17
|
Lyons J, Brubaker DK, Ghazi PC, Baldwin KR, Edwards A, Boukhali M, Strasser SD, Suarez-Lopez L, Lin YJ, Yajnik V, Kissil JL, Haas W, Lauffenburger DA, Haigis KM. Integrated in vivo multiomics analysis identifies p21-activated kinase signaling as a driver of colitis. Sci Signal 2018; 11:eaan3580. [PMID: 29487189 PMCID: PMC6719711 DOI: 10.1126/scisignal.aan3580] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Inflammatory bowel disease (IBD) is a chronic disorder of the gastrointestinal tract that has limited treatment options. To gain insight into the pathogenesis of chronic colonic inflammation (colitis), we performed a multiomics analysis that integrated RNA microarray, total protein mass spectrometry (MS), and phosphoprotein MS measurements from a mouse model of the disease. Because we collected all three types of data from individual samples, we tracked information flow from RNA to protein to phosphoprotein and identified signaling molecules that were coordinately or discordantly regulated and pathways that had complex regulation in vivo. For example, the genes encoding acute-phase proteins were expressed in the liver, but the proteins were detected by MS in the colon during inflammation. We also ascertained the types of data that best described particular facets of chronic inflammation. Using gene set enrichment analysis and trans-omics coexpression network analysis, we found that each data set provided a distinct viewpoint on the molecular pathogenesis of colitis. Combining human transcriptomic data with the mouse multiomics data implicated increased p21-activated kinase (Pak) signaling as a driver of colitis. Chemical inhibition of Pak1 and Pak2 with FRAX597 suppressed active colitis in mice. These studies provide translational insights into the mechanisms contributing to colitis and identify Pak as a potential therapeutic target in IBD.
Collapse
Affiliation(s)
- Jesse Lyons
- Cancer Research Institute and Department of Medicine, Beth-Israel Deaconess Medical Center, Boston, MA 02215, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Douglas K Brubaker
- Cancer Research Institute and Department of Medicine, Beth-Israel Deaconess Medical Center, Boston, MA 02215, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Phaedra C Ghazi
- Cancer Research Institute and Department of Medicine, Beth-Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Katherine R Baldwin
- Cancer Research Institute and Department of Medicine, Beth-Israel Deaconess Medical Center, Boston, MA 02215, USA
- Department of Pediatric Gastroenterology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Amanda Edwards
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Myriam Boukhali
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Samantha Dale Strasser
- Cancer Research Institute and Department of Medicine, Beth-Israel Deaconess Medical Center, Boston, MA 02215, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Lucia Suarez-Lopez
- Cancer Research Institute and Department of Medicine, Beth-Israel Deaconess Medical Center, Boston, MA 02215, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yi-Jang Lin
- Cancer Research Institute and Department of Medicine, Beth-Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Vijay Yajnik
- Department of Medicine, Division of Gastroenterology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Joseph L Kissil
- Department of Cancer Biology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Wilhelm Haas
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Douglas A Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kevin M Haigis
- Cancer Research Institute and Department of Medicine, Beth-Israel Deaconess Medical Center, Boston, MA 02215, USA.
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Harvard Digestive Disease Center, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
18
|
Corbo C, Cromer WE, Molinaro R, Toledano Furman NE, Hartman KA, De Rosa E, Boada C, Wang X, Zawieja DC, Agostini M, Salvatore F, Abraham BP, Tasciotti E. Engineered biomimetic nanovesicles show intrinsic anti-inflammatory properties for the treatment of inflammatory bowel diseases. NANOSCALE 2017; 9:14581-14591. [PMID: 28932838 DOI: 10.1039/c7nr04734g] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Inflammatory bowel disease (IBD), which includes Crohn's disease and ulcerative colitis, is a chronic inflammatory condition of the gastrointestinal (GI) tract. Currently, it is treated with immunosuppressant or biologics that often induce severe adverse effects. Thus, there is an urgent clinical need for more specific treatments. To provide a valid therapeutic tool for IBD therapy, in this work we developed biomimetic nanovesicles by manipulating leukocyte membranes to exploit mechanisms of T-cell recruitment during inflammation. A subset of T-lymphocytes participates in homing to inflamed tissue in the gastrointestinal tract by overexpressing the α4β7 integrin, which is responsible for binding to its receptor on the endothelial membrane, the mucosal addressin cell adhesion molecule 1. Based on this principle, we engineered biomimetic vesicles, referred to as specialized leukosomes (SLKs), which are leukocyte-like carriers 'doped' with the α4β7 integrin over-induced in purified immune cells. We tested SLKs in an in vivo murine model of IBD induced by treatment with dextran sulfate sodium. Notably, treatment of IBD mice with SLKs allowed us to observe a reduction of inflammation (favorable modulation of both pro- and anti-inflammatory genes, as well as reduction of immune cells infiltration into the colon tissue), and a consequent enhanced intestinal repair (low epithelial damage). In this study, we demonstrate that biological-derived nanoparticles can be used not only as naturally targeted drug delivery systems, but also as nano-therapeutics endowed with intrinsic anti-inflammatory properties.
Collapse
Affiliation(s)
- Claudia Corbo
- Center for Biomimetic Medicine, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, Texas 77002, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Jeon EJ, Davaatseren M, Hwang JT, Park JH, Hur HJ, Lee AS, Sung MJ. Effect of Oral Administration of 3,3'-Diindolylmethane on Dextran Sodium Sulfate-Induced Acute Colitis in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:7702-7709. [PMID: 27700072 DOI: 10.1021/acs.jafc.6b02604] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In patients with inflammatory bowel disease (IBD), inflammation is induced and maintained by lymphangiogenesis and angiogenesis. 3,3'-Diindolylmethane (DIM) is a natural product formed in acidic conditions from indole-3-carbinol in cruciferous vegetables, and it is known for its chemotherapeutic activity. This study evaluated DIM's effects on angiogenesis, lymphangiogenesis, and inflammation in a mouse colitis model. Experimental colitis was induced in mice by administering 3% dextran sulfate sodium (DSS) via drinking water. DIM remarkably attenuated the clinical signs and histological characteristics in mice with DSS-induced colitis. DIM suppressed neutrophil infiltration and pro-inflammatory cytokines. Moreover, it significantly suppressed the expression of vascular endothelial growth factor (VEGF)-A and VEGF receptor (VEGFR)-2, indicating that the mechanism may be related to the repression of pro-angiogenesis activity. DIM also remarkably suppressed the expression of VEGF-C, VEGF-D, VEGFR-3, and angiopoietin-2; thus, the mechanism may also be related to the suppression of lymphangiogenesis. Therefore, DIM is a possible treatment option for inflammation of the intestine and associated angiogenesis and lymphangiogenesis.
Collapse
Affiliation(s)
- Eun-Joo Jeon
- Research Division Emerging Innovative Technology, Korea Food Research Institute , Songnam, Keongki, Republic of Korea
| | - Munkhtugs Davaatseren
- Department of Food Science and Technology, Chung-ang University , Ansung, Keongki, Republic of Korea
| | - Jin-Taek Hwang
- Research Division Emerging Innovative Technology, Korea Food Research Institute , Songnam, Keongki, Republic of Korea
- Food Biotechnology, University of Science and Technology , Daejeon, Republic of Korea
| | - Jae Ho Park
- Research Division Emerging Innovative Technology, Korea Food Research Institute , Songnam, Keongki, Republic of Korea
- Food Biotechnology, University of Science and Technology , Daejeon, Republic of Korea
| | - Haeng Jeon Hur
- Research Division Emerging Innovative Technology, Korea Food Research Institute , Songnam, Keongki, Republic of Korea
| | - Ae Sin Lee
- Research Division Emerging Innovative Technology, Korea Food Research Institute , Songnam, Keongki, Republic of Korea
| | - Mi Jeong Sung
- Research Division Emerging Innovative Technology, Korea Food Research Institute , Songnam, Keongki, Republic of Korea
- Food Biotechnology, University of Science and Technology , Daejeon, Republic of Korea
| |
Collapse
|
20
|
Sato H, Higashiyama M, Hozumi H, Sato S, Furuhashi H, Takajo T, Maruta K, Yasutake Y, Narimatsu K, Yoshikawa K, Kurihara C, Okada Y, Watanabe C, Komoto S, Tomita K, Nagao S, Miura S, Hokari R. Platelet interaction with lymphatics aggravates intestinal inflammation by suppressing lymphangiogenesis. Am J Physiol Gastrointest Liver Physiol 2016; 311:G276-85. [PMID: 27313177 DOI: 10.1152/ajpgi.00455.2015] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 06/08/2016] [Indexed: 01/31/2023]
Abstract
Lymphatic failure is a histopathological feature of inflammatory bowel disease (IBD). Recent studies show that interaction between platelets and podoplanin on lymphatic endothelial cells (LECs) suppresses lymphangiogenesis. We aimed to investigate the role of platelets in the inflammatory process of colitis, which is likely to be through modulation of lymphangiogenesis. Lymphangiogenesis in colonic mucosal specimens from patients with IBD was investigated by studying mRNA expression of lymphangiogenic factors and histologically by examining lymphatic vessel (LV) densities. Involvement of lymphangiogenesis in intestinal inflammation was studied by administering VEGF-receptor 3 (VEGF-R3) inhibitors to the mouse model of colitis using dextran sulfate sodium and evaluating platelet migration to LVs. The inhibitory effect of platelets on lymphangiogenesis was investigated in vivo by administering antiplatelet antibody to the colitis mouse model and in vitro by coculturing platelets with lymphatic endothelial cells. Although mRNA expressions of lymphangiogenic factors such as VEGF-R3 and podoplanin were significantly increased in the inflamed mucosa of patients with IBD compared with those with quiescent mucosa, there was no difference in LV density between them. In the colitis model, VEGF-R3 inhibition resulted in aggravated colitis, decreased lymphatic density, and increased platelet migration to LVs. Administration of an antiplatelet antibody increased LV densities and significantly ameliorated colitis. Coculture with platelets inhibited proliferation of LECs in vitro. Our data suggest that despite elevated lymphangiogenic factors during colonic inflammation, platelet migration to LVs resulted in suppressed lymphangiogenesis, leading to aggravation of colitis by blocking the clearance of inflammatory cells. Modulating the interaction between platelets and LVs could be a new therapeutic means for treating IBD.
Collapse
Affiliation(s)
- Hirokazu Sato
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan; and
| | - Masaaki Higashiyama
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan; and
| | - Hideaki Hozumi
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan; and
| | - Shingo Sato
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan; and
| | - Hirotaka Furuhashi
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan; and
| | - Takeshi Takajo
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan; and
| | - Koji Maruta
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan; and
| | - Yuichi Yasutake
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan; and
| | - Kazuyuki Narimatsu
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan; and
| | - Kenichi Yoshikawa
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan; and
| | - Chie Kurihara
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan; and
| | - Yoshikiyo Okada
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan; and
| | - Chikako Watanabe
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan; and
| | - Shunsuke Komoto
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan; and
| | - Kengo Tomita
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan; and
| | - Shigeaki Nagao
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan; and
| | | | - Ryota Hokari
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan; and
| |
Collapse
|
21
|
Britzen-Laurent N, Herrmann C, Naschberger E, Croner RS, Stürzl M. Pathophysiological role of guanylate-binding proteins in gastrointestinal diseases. World J Gastroenterol 2016; 22:6434-6443. [PMID: 27605879 PMCID: PMC4968125 DOI: 10.3748/wjg.v22.i28.6434] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/25/2016] [Accepted: 06/13/2016] [Indexed: 02/06/2023] Open
Abstract
Guanylate-binding proteins (GBPs) are interferon-stimulated factors involved in the defense against cellular pathogens and inflammation. These proteins, particularly GBP-1, the most prominent member of the family, have been established as reliable markers of interferon-γ-activated cells in various diseases, including colorectal carcinoma (CRC) and inflammatory bowel diseases (IBDs). In CRC, GBP-1 expression is associated with a Th1-dominated angiostatic micromilieu and is correlated with a better outcome. Inhibition of tumor growth by GBP-1 is the result of its strong anti-angiogenic activity as well as its direct anti-tumorigenic effect on tumor cells. In IBD, GBP-1 mediates the anti-proliferative effects of interferon-γ on intestinal epithelial cells. In addition, it plays a protective role on the mucosa by preventing cell apoptosis, by inhibiting angiogenesis and by regulating the T-cell receptor signaling. These functions rely to a large extent on the ability of GBP-1 to interact with and remodel the actin cytoskeleton.
Collapse
|
22
|
Granger DN, Holm L, Kvietys P. The Gastrointestinal Circulation: Physiology and Pathophysiology. Compr Physiol 2016; 5:1541-83. [PMID: 26140727 DOI: 10.1002/cphy.c150007] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The gastrointestinal (GI) circulation receives a large fraction of cardiac output and this increases following ingestion of a meal. While blood flow regulation is not the intense phenomenon noted in other vascular beds, the combined responses of blood flow, and capillary oxygen exchange help ensure a level of tissue oxygenation that is commensurate with organ metabolism and function. This is evidenced in the vascular responses of the stomach to increased acid production and in intestine during periods of enhanced nutrient absorption. Complimenting the metabolic vasoregulation is a strong myogenic response that contributes to basal vascular tone and to the responses elicited by changes in intravascular pressure. The GI circulation also contributes to a mucosal defense mechanism that protects against excessive damage to the epithelial lining following ingestion of toxins and/or noxious agents. Profound reductions in GI blood flow are evidenced in certain physiological (strenuous exercise) and pathological (hemorrhage) conditions, while some disease states (e.g., chronic portal hypertension) are associated with a hyperdynamic circulation. The sacrificial nature of GI blood flow is essential for ensuring adequate perfusion of vital organs during periods of whole body stress. The restoration of blood flow (reperfusion) to GI organs following ischemia elicits an exaggerated tissue injury response that reflects the potential of this organ system to generate reactive oxygen species and to mount an inflammatory response. Human and animal studies of inflammatory bowel disease have also revealed a contribution of the vasculature to the initiation and perpetuation of the tissue inflammation and associated injury response.
Collapse
Affiliation(s)
- D Neil Granger
- Department of Molecular and Cellular Physiology, LSU Health Science Center-Shreveport, Shreveport, Louisiana, USA
| | - Lena Holm
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Peter Kvietys
- Department of Physiological Sciences, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|
23
|
Angiogenesis in Inflammatory Bowel Disease. Int J Inflam 2015; 2015:970890. [PMID: 26839731 PMCID: PMC4709626 DOI: 10.1155/2015/970890] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/07/2015] [Accepted: 12/08/2015] [Indexed: 12/24/2022] Open
Abstract
Angiogenesis is an important component of pathogenesis of inflammatory bowel disease (IBD). Chronic inflammation and angiogenesis are two closely related processes. Chronic intestinal inflammation is dependent on angiogenesis and this angiogenesis is modulated by immune system in IBD. Angiogenesis is a very complex process which includes multiple cell types, growth factors, cytokines, adhesion molecules, and signal transduction. Lymphangiogenesis is a new research area in the pathogenesis of IBD. While angiogenesis supports inflammation via leukocyte migration, carrying oxygen and nutrients, on the other hand, it has a major role in wound healing. Angiogenic molecules look like perfect targets for the treatment of IBD, but they have risk for serious side effects because of their nature.
Collapse
|
24
|
Interferon Gamma Counteracts the Angiogenic Switch and Induces Vascular Permeability in Dextran Sulfate Sodium Colitis in Mice. Inflamm Bowel Dis 2015; 21:2360-71. [PMID: 26164664 DOI: 10.1097/mib.0000000000000490] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Interferon (IFN)-γ is a central pathogenesis factor in inflammatory bowel disease (IBD) with pleiotropic effects on many different cell types. However, as yet, the immune modulatory functions of IFN-γ in IBD have been predominantly investigated. Based on previous studies showing that IFN-γ acts antiangiogenic in colorectal carcinoma, we investigated the effects of IFN-γ on the vascular system in IBD. METHODS Colon tissues of patients with IBD and dextran sulfate sodium-induced colitis in mice were subjected to immunohistochemistry, quantitative real-time polymerase chain reactions, and in situ hybridization to quantify cell activation, angiogenesis, and immune responses. Vascular structure and permeability in mice were analyzed by ultramicroscopy and in vivo confocal laser endomicroscopy. RESULTS We showed a significantly increased blood vessel density in IBD and dextran sulfate sodium colitis. In mice, this was associated with a disorganized blood vessel structure and profound vascular leakage. As compared with genes associated with angiogenesis, genes associated with inflammatory cell activation including IFN-γ were more strongly upregulated in colitis tissues. IFN-γ exerted direct effects on endothelial cells in IBD tissues in vivo, as indicated by the expression of IFN-γ-induced guanylate binding protein 1 (GBP-1). Neutralization of IFN-γ in the acute dextran sulfate sodium colitis model demonstrated that this cytokine exerts endogenous angiostatic activity in IBD and contributes to increased vascular permeability. CONCLUSIONS The dissection of the pleiotropic activities of IFN-γ in IBD provides new insights to the pathological functions of this cytokine and may be of high relevance for the optimization of combination therapy approaches.
Collapse
|
25
|
Colonic Insult Impairs Lymph Flow, Increases Cellular Content of the Lymph, Alters Local Lymphatic Microenvironment, and Leads to Sustained Inflammation in the Rat Ileum. Inflamm Bowel Dis 2015; 21:1553-63. [PMID: 25939039 PMCID: PMC4466086 DOI: 10.1097/mib.0000000000000402] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Lymphatic dysfunction has been linked to inflammation since the 1930s. Lymphatic function in the gut and mesentery is grossly underexplored in models of inflammatory bowel disease despite the use of lymphatic occlusion in early models of inflammatory bowel disease. Activation of the innate and adaptive immune system is a hallmark of TNBS-induced inflammation and is linked to disruption of the intrinsic lymph pump. Recent identification of crosstalk between lymphatic vessel resident immune cells and regulation of lymphatic vessel contractility underscore the importance of the timing of lymphatic dysfunction during tissue inflammation in response to TNBS. METHODS To evaluate lymphatic function in TNBS induced inflammation, lymph was collected and flow measured from mesenteric lymphatics. Cellularity and cytokine profile of the lymph was also measured. Histopathology was performed to determine severity of injury and immunofluorescent staining of the mesentery was done to evaluate changes in the population of immune cells that reside near and on gastro-intestinal collecting lymphatics. RESULTS Lymph transport fell 24 hours after TNBS administration and began recovering at 72 hours. Significant reduction of lymph flow preceded significant increase in histopathological score and occurred simultaneously with increased myeloperoxidase activity. These changes were preceded by increased MHCII cells surrounding mesenteric lymphatics leading to an altered lymphatic environment that would favor dysfunction. CONCLUSIONS Alterations in environmental factors that effect lymphatic function occur before the development of gross GI inflammation. Reduced lymphatic function in TNBS-mediated inflammation is likely an early factor in the development of injury and that recovery of function is associated with resolution of inflammation.
Collapse
|
26
|
Saijo H, Tatsumi N, Arihiro S, Kato T, Okabe M, Tajiri H, Hashimoto H. Microangiopathy triggers, and inducible nitric oxide synthase exacerbates dextran sulfate sodium-induced colitis. J Transl Med 2015; 95:728-48. [PMID: 25938626 DOI: 10.1038/labinvest.2015.60] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 03/07/2015] [Accepted: 03/31/2015] [Indexed: 02/08/2023] Open
Abstract
Ulcerative colitis (UC) is a representative clinical manifestation of inflammatory bowel disease that causes chronic gastrointestinal tract inflammation. Dextran sulfate sodium (DSS)-induced colitis mice have been used to investigate UC pathogenesis, and in this UC model, disturbance and impairment of the mucosal epithelium have been reported to cause colitis. However, how DSS sporadically breaks down the epithelium remains unclear. In this study, we focused on the colonic microcirculation and myenteric neurons of DSS-induced colitis. Moreover, we examined the potential of myenteric neurons as a target to prevent exacerbation of colitis. Fluorescent angiographic and histopathological studies revealed that DSS administration elicited blood vessel disruption before epithelial disorders appeared. Ischemic conditions in the lamina propria induced inducible nitric oxide synthase (iNOS) expression in myenteric neurons as colitis aggravated. When neuronal activity was inhibited with butylscopolamine, neuronal iNOS expression decreased, and the exacerbation of colitis was prevented. These results suggested that DSS-induced colitis was triggered by microcirculatory disturbance in the mucosa, and that excessive neuronal excitation aggravated colitis. During remission periods of human UC, endoscopic inspection of the colonic microcirculation may enable the early detection of disease recurrence, and inhibition of neuronal iNOS expression may prevent the disease from worsening.
Collapse
Affiliation(s)
- Hiroki Saijo
- 1] Department of Anatomy, The Jikei University School of Medicine, Tokyo, Japan [2] Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Norifumi Tatsumi
- Department of Anatomy, The Jikei University School of Medicine, Tokyo, Japan
| | - Seiji Arihiro
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Tomohiro Kato
- Department of Endoscopy, The Jikei University School of Medicine, Tokyo, Japan
| | - Masataka Okabe
- Department of Anatomy, The Jikei University School of Medicine, Tokyo, Japan
| | - Hisao Tajiri
- 1] Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan [2] Department of Endoscopy, The Jikei University School of Medicine, Tokyo, Japan
| | - Hisashi Hashimoto
- Department of Anatomy, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
27
|
Sun J, Zhang H, Guan L, Zhou H, Sun M. Alpha-lipoic acid attenuates trinitrobenzene sulfonic acid-induced ulcerative colitis in mice. Int J Clin Exp Med 2015; 8:358-367. [PMID: 25785006 PMCID: PMC4358461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 12/31/2014] [Indexed: 06/04/2023]
Abstract
Ulcerative colitis (UC), characterized by inflammation, oxidative stress, and increased intestinal epithelial cell apoptosis, is an immunologically mediated chronic intestinal disorder. The present study was aimed at investigating the protective effects of alpha-lipoic acid (ALA) against trinitrobenzene sulfonic acid (TNBS)-induced UC and the underlying mechanism. ALA of 80 mg/kg bw/day was administered by gastric gavage to mice for 7 days after TNBS-induced UC. Our data indicated that ALA effectively facilitated recovery of pathologic changes in the colon, as evidenced by a significant increase of body weight, decrease of colon mass index and histopathological score. Furthermore, ALA significantly inhibited TNBS-induced apoptosis, which partly due to up-regulation of Bcl-2 expression, reduction of Bax expression and caspase-3, caspase-9 activity. ALA reduced malondialdehyde (MDA), nitric oxide (NO), and inducible nitric oxide synthase (iNOS) levels, and restored superoxide dismutase (SOD) activity and glutathione (GSH) content in colon tissues from TNBS-challenged mice. Additionally, phosphorylation of extracellular signal regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 kinase (p38) in colon tissues were significantly inhibited by ALA treatment. In summary, we demonstrate that ALA has protective properties against TNBS-induced UC through anti-apoptosis, anti-oxidant actions, and mitogen-activated protein kinase (MAPK) signaling pathway. Our present findings suggest a therapeutic potential of ALA in UC.
Collapse
Affiliation(s)
- Jing Sun
- Department of Gastroenterology, The First Affiliated Hospital of China Medical UniversityShenyang 110001, People’s Republic of China
| | - Huijing Zhang
- Department of Endoscopy, The First Affiliated Hospital of China Medical UniversityShenyang 110001, People’s Republic of China
| | - Lin Guan
- Department of Gastroenterology, The First Affiliated Hospital of China Medical UniversityShenyang 110001, People’s Republic of China
| | - Huan Zhou
- Department of Endoscopy, The First Affiliated Hospital of China Medical UniversityShenyang 110001, People’s Republic of China
| | - Mingjun Sun
- Department of Gastroenterology, The First Affiliated Hospital of China Medical UniversityShenyang 110001, People’s Republic of China
| |
Collapse
|
28
|
Bakirtzi K, West G, Fiocchi C, Law IKM, Iliopoulos D, Pothoulakis C. The neurotensin-HIF-1α-VEGFα axis orchestrates hypoxia, colonic inflammation, and intestinal angiogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:3405-14. [PMID: 25307345 DOI: 10.1016/j.ajpath.2014.08.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 07/25/2014] [Accepted: 08/05/2014] [Indexed: 01/14/2023]
Abstract
The expression of neurotensin (NT) and its receptor (NTR1) is up-regulated in experimental colitis and inflammatory bowel disease; NT/NTR1 interactions regulate gut inflammation. During active inflammation, metabolic shifts toward hypoxia lead to the activation of hypoxia-inducible factor (HIF)-1, which enhances vascular endothelial growth factor (VEGF) expression, promoting angiogenesis. We hypothesized that NT/NTR1 signaling regulates intestinal manifestations of hypoxia and angiogenesis by promoting HIF-1 transcriptional activity and VEGFα expression in experimental colitis. We studied NTR1 signaling in colitis-associated angiogenesis using 2,4,6-trinitrobenzenesulfonic acid-treated wild-type and NTR1-knockout mice. The effects of NT on HIF-1α and VEGFα were assessed on human colonic epithelial cells overexpressing NTR1 (NCM460-NTR1) and human intestinal microvascular-endothelial cells. NTR1-knockout mice had reduced microvascular density and mucosal integrity score compared with wild-type mice after 2,4,6-trinitrobenzenesulfonic acid treatment. VEGFα mRNA levels were increased in NCM460-NTR1 cells treated with 10(-7) mol/L NT, at 1 and 6 hours post-treatment. NT exposure in NCM460-NTR1 cells caused stabilization, nuclear translocation, and transcriptional activity of HIF-1α in a diacylglycerol kinase-dependent manner. NT did not stimulate tube formation in isolated human intestinal macrovascular endothelial cells but did so in human intestinal macrovascular endothelial cells cocultured with NCM460-NTR1 cells. Our results demonstrate the importance of an NTR1-HIF-1α-VEGFα axis in intestinal angiogenic responses and in the pathophysiology of colitis and inflammatory bowel disease.
Collapse
Affiliation(s)
- Kyriaki Bakirtzi
- Inflammatory Bowel Disease Center, Division of Digestive Diseases, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| | - Gail West
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio; Department of Gastroenterology and Hepatology, Digestive Disease Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Claudio Fiocchi
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio; Department of Gastroenterology and Hepatology, Digestive Disease Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Ivy Ka Man Law
- Inflammatory Bowel Disease Center, Division of Digestive Diseases, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| | - Dimitrios Iliopoulos
- Department of Cancer Immunology & AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Charalabos Pothoulakis
- Inflammatory Bowel Disease Center, Division of Digestive Diseases, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California.
| |
Collapse
|
29
|
Kasztelan-Szczerbinska B, Surdacka A, Slomka M, Rolinski J, Celinski K, Cichoz-Lach H, Madro A, Szczerbinski M. Angiogenesis-related biomarkers in patients with alcoholic liver disease: their association with liver disease complications and outcome. Mediators Inflamm 2014; 2014:673032. [PMID: 24959006 PMCID: PMC4052180 DOI: 10.1155/2014/673032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 05/06/2014] [Indexed: 12/17/2022] Open
Abstract
Angiogenesis is believed to be implicated in the pathogenesis of alcoholic liver disease (ALD). We aimed to explore the usefulness and accuracy of plasma angiogenic biomarkers for noninvasive evaluation of the severity of liver failure and ALD outcome. One hundred and forty-seven patients with ALD were prospectively enrolled and assessed based on their (1) gender, (2) age, (3) severity of liver dysfunction according to the Child-Turcotte-Pugh and MELD scores, and (4) the presence of ALD complications. Plasma levels of vascular endothelial growth factor (VEGF-A) and angiopoietins 1 and 2 (Ang1 and Ang2) were investigated using ELISAs. Multivariable logistic regression was applied in order to select independent predictors of advanced liver dysfunction and the disease complications. Significantly higher concentrations of Ang2 and VEGF-A in ALD patients as compared to controls were found. There was no difference in Ang1 levels in both groups. A positive correlation of Ang2 levels with INR (Rho 0.66; P < 0.0001) and its inverse correlation with plasma albumin levels (Rho -0.62; P < 0.0001) were found. High Ang2 concentrations turned out to be an independent predictor of severe liver dysfunction, as well as hepatic encephalopathy and renal impairment. Ang2 possessed the highest diagnostic and prognostic potential among three studied angiogenesis-related molecules.
Collapse
Affiliation(s)
- Beata Kasztelan-Szczerbinska
- Department of Gastroenterology with Endoscopy Unit, Medical University of Lublin, 8 Jaczewski Street, 20-954 Lublin, Poland
| | - Agata Surdacka
- Department of Clinical Immunology, Medical University of Lublin, 4A Chodzki Street, 20-093 Lublin, Poland
| | - Maria Slomka
- Department of Gastroenterology with Endoscopy Unit, Medical University of Lublin, 8 Jaczewski Street, 20-954 Lublin, Poland
| | - Jacek Rolinski
- Department of Clinical Immunology, Medical University of Lublin, 4A Chodzki Street, 20-093 Lublin, Poland
| | - Krzysztof Celinski
- Department of Gastroenterology with Endoscopy Unit, Medical University of Lublin, 8 Jaczewski Street, 20-954 Lublin, Poland
| | - Halina Cichoz-Lach
- Department of Gastroenterology with Endoscopy Unit, Medical University of Lublin, 8 Jaczewski Street, 20-954 Lublin, Poland
| | - Agnieszka Madro
- Department of Gastroenterology with Endoscopy Unit, Medical University of Lublin, 8 Jaczewski Street, 20-954 Lublin, Poland
| | - Mariusz Szczerbinski
- Department of Gastroenterology with Endoscopy Unit, Medical University of Lublin, 8 Jaczewski Street, 20-954 Lublin, Poland
| |
Collapse
|
30
|
Gkouskou KK, Deligianni C, Tsatsanis C, Eliopoulos AG. The gut microbiota in mouse models of inflammatory bowel disease. Front Cell Infect Microbiol 2014; 4:28. [PMID: 24616886 PMCID: PMC3937555 DOI: 10.3389/fcimb.2014.00028] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 02/14/2014] [Indexed: 12/14/2022] Open
Abstract
The intestine and the intestinal immune system have evolved through a symbiotic homeostasis under which a highly diverse microbial flora is maintained in the gastrointestinal tract while pathogenic bacteria are recognized and eliminated. Disruption of the balance between the immune system and the gut microbiota results in the development of multiple pathologies in humans. Inflammatory bowel diseases (IBD) have been associated with alterations in the composition of intestinal flora but whether these changes are causal or result of inflammation is still under dispute. Various chemical and genetic models of IBD have been developed and utilized to elucidate the complex relationship between intestinal epithelium, immune system and the gut microbiota. In this review we describe some of the most commonly used mouse models of colitis and Crohn's disease (CD) and summarize the current knowledge of how changes in microbiota composition may affect intestinal disease pathogenesis. The pursuit of gut-microbiota interactions will no doubt continue to provide invaluable insight into the complex biology of IBD.
Collapse
Affiliation(s)
- Kalliopi K Gkouskou
- Molecular and Cellular Biology Laboratory, Division of Basic Sciences, University of Crete Medical School Heraklion, Greece ; Laboratory of Translational Medicine and Experimental Therapeutics, University of Crete Medical School Heraklion, Greece
| | - Chrysoula Deligianni
- Department of Clinical Chemistry, University of Crete Medical School Heraklion, Greece
| | - Christos Tsatsanis
- Department of Clinical Chemistry, University of Crete Medical School Heraklion, Greece
| | - Aristides G Eliopoulos
- Molecular and Cellular Biology Laboratory, Division of Basic Sciences, University of Crete Medical School Heraklion, Greece ; Laboratory of Translational Medicine and Experimental Therapeutics, University of Crete Medical School Heraklion, Greece ; Laboratory of Cancer Biology, Institute of Molecular Biology and Biotechnology-FORTH Heraklion, Greece
| |
Collapse
|
31
|
Sang LX, Chang B, Dai C, Gao N, Liu WX, Jiang M. Heat-killed VSL#3 ameliorates dextran sulfate sodium (DSS)-induced acute experimental colitis in rats. Int J Mol Sci 2013; 15:15-28. [PMID: 24451125 PMCID: PMC3907795 DOI: 10.3390/ijms15010015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 12/09/2013] [Accepted: 12/10/2013] [Indexed: 12/12/2022] Open
Abstract
To determine the effects of heat-killed VSL#3 (B. breve, B. longum and B. infantis; L. plantarum, L. bulgaricus, L. casei and L. acidophilus; S. salivarius subsp. thermophilus) therapy in the dextran sulfate sodium (DSS)-induced acute experimental colitis in rats. Acute experimental colitis was induced in rats by 5% DSS and freely drink for seven days. Beginning on Day 8, rats underwent gavage once daily for seven days with heat-killed probiotic VSL#3 (0.6 g/kg/day), colonic damage was evaluated histologically and biochemically seven days after gavage. Expression of inflammatory related mediators (STAT3, P-STAT3) and cytokines (IL-6, IL-23, TGFβ) in colonic tissue were detected. The results revealed that heat-killed and live VSL#3 have identical anti-inflammatory properties by the assessed DAI (disease activity index), colon length, histological tissue and MPO activity. Heat-killed and live VSL#3 results in reduced IL-6, IL-23, TGFβ, STAT3 and P-STAT3 expression in colonic tissue. Heat-killed and live VSL#3 have showed the similar anti-inflammatory activity by inhibiting IL-6/STAT3 pathway in the DSS-induced acute experimental colitis in rats.
Collapse
Affiliation(s)
- Li-Xuan Sang
- Department of Cadre Ward II, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, China.
| | - Bing Chang
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, China.
| | - Cong Dai
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, China.
| | - Nan Gao
- Department of Cadre Ward II, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, China.
| | - Wei-Xin Liu
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, China.
| | - Min Jiang
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, China.
| |
Collapse
|