1
|
Chen Z, He Y, Zhang J, Ge Q, Du T, Fan Z, Zhou J, Yang X, Shen B, Wei Z. Inhibition of HPSE/SDC-2 axis-induced epithelial-mesenchymal transition for treating IC/BPS. PLoS One 2025; 20:e0321730. [PMID: 40408331 PMCID: PMC12101628 DOI: 10.1371/journal.pone.0321730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 03/11/2025] [Indexed: 05/25/2025] Open
Abstract
Interstitial cystitis/bladder pain syndrome (IC/BPS) plagues patients and clinicians with its unclear etiology and pathogenesis, and ineffective treatments. Destruction of epithelial tissue and proliferation of interstitial tissue are typical pathological features of IC/BPS, in which epithelial-mesenchymal transition (EMT) may play an important role. Both the increased urination frequency observed in mice with acute cystitis induced by cyclophosphamide (CYP) and the disruption of the anti-leakage barrier in urothelial cells induced by LPS are associated with the occurrence of EMT. The expression of heparanase 1 (HPSE) and syndecan-2 (SDC-2) is up-regulated in the bladder mucosa of patients with IC, and both of them can promote the development of EMT. Improvement of lower urinary tract symptoms and restoration of the uroepithelial cell anti-leakage barrier in mice with CYP-induced cystitis after treatment with the HPSE inhibitor OGT2115 and inhibited the development of EMT. We then verified that HPSE binds to SDC-2 and that SDC-2 is a key intermediate protein in the pro-EMT role of HPSE, and that EMT was inhibited by knockdown of SDC-2. SDC-2 exerts its biological function by inhibiting the ubiquitinated degradation of TGF-βR1. Here we identified a novel mechanism by which the HPSE/ SDC-2 axis promotes EMT development and thus causes epithelial dysfunction and altered voiding behavior, providing a new direction for the treatment of IC/BPS.
Collapse
Affiliation(s)
- Zhengsen Chen
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Urology, The Second Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Yuting He
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Urology, The Second Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Junjie Zhang
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Urology, The Second Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Qingyu Ge
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Urology, The Second Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Tianpeng Du
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Urology, The Second Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Zongyao Fan
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Urology, The Second Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Junyl Zhou
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Urology, The Second Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Xin Yang
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Urology, The Second Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Baixin Shen
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Urology, The Second Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Zhongqing Wei
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Urology, The Second Clinical Medical College of Nanjing Medical University, Nanjing, China
| |
Collapse
|
2
|
Bruschi M, Granata S, Candiano G, Petretto A, Bartolucci M, Kajana X, Spinelli S, Verlato A, Provenzano M, Zaza G. Proteomic Changes Induced by the Immunosuppressant Everolimus in Human Podocytes. Int J Mol Sci 2024; 25:7336. [PMID: 39000447 PMCID: PMC11242170 DOI: 10.3390/ijms25137336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
mTOR inhibitors (mTOR-Is) may induce proteinuria in kidney transplant recipients through podocyte damage. However, the mechanism has only been partially defined. Total cell lysates and supernatants of immortalized human podocytes treated with different doses of everolimus (EVE) (10, 100, 200, and 500 nM) for 24 h were subjected to mass spectrometry-based proteomics. Support vector machine and partial least squares discriminant analysis were used for data analysis. The results were validated in urine samples from 28 kidney transplant recipients receiving EVE as part of their immunosuppressive therapy. We identified more than 7000 differentially expressed proteins involved in several pathways, including kinases, cell cycle regulation, epithelial-mesenchymal transition, and protein synthesis, according to gene ontology. Among these, after statistical analysis, 65 showed an expression level significantly and directly correlated with EVE dosage. Polo-Like Kinase 1 (PLK1) content was increased, whereas osteopontin (SPP1) content was reduced in podocytes and supernatants in a dose-dependent manner and significantly correlated with EVE dose (p < 0.0001, FDR < 5%). Similar results were obtained in the urine of kidney transplant patients. This study analyzed the impact of different doses of mTOR-Is on podocytes, helping to understand not only the biological basis of their therapeutic effects but also the possible mechanisms underlying proteinuria.
Collapse
Affiliation(s)
- Maurizio Bruschi
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (M.B.); (G.C.); (X.K.); (S.S.)
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy
| | - Simona Granata
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy;
| | - Giovanni Candiano
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (M.B.); (G.C.); (X.K.); (S.S.)
| | - Andrea Petretto
- Proteomics and Clinical Metabolomics Unit at the Core Facilities, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (A.P.); (M.B.)
| | - Martina Bartolucci
- Proteomics and Clinical Metabolomics Unit at the Core Facilities, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (A.P.); (M.B.)
| | - Xhuliana Kajana
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (M.B.); (G.C.); (X.K.); (S.S.)
| | - Sonia Spinelli
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (M.B.); (G.C.); (X.K.); (S.S.)
| | - Alberto Verlato
- Renal Unit, Department of Medicine, University Hospital of Verona, 37124 Verona, Italy;
| | - Michele Provenzano
- Nephrology, Dialysis and Transplantation Unit, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
| | - Gianluigi Zaza
- Nephrology, Dialysis and Transplantation Unit, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
| |
Collapse
|
3
|
Wang QL, Wang L, Li QY, Li HY, Lin L, Wei D, Xu JY, Luo XJ. Micafungin exerts antitumor effect on breast cancer and osteosarcoma through preventing EMT in tumor cells in an USP7/AKT/GSK-3β pathway-dependent manner. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:4447-4459. [PMID: 38108838 DOI: 10.1007/s00210-023-02903-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Breast cancer and osteosarcoma are common cancers in women and children, respectively, but ideal drugs for treating patients with breast cancer or osteosarcoma remain to be found. Micafungin is an antifungal drug with antitumor activity on leukemia. Based on the notion of drug repurposing, this study aims to evaluate the antitumor effects of micafungin on breast cancer and osteosarcoma in vitro and in vivo, and to elucidate the underlying mechanisms. Five breast cancer cell lines (MDA-MB-231, BT-549, SK-BR-3, MCF-7, and 4T1) and one osteosarcoma cell line (143B) were chosen for the in vitro studies. Micafungin exerted an inhibitory effect on the viability of all cell lines, and MCF-7 cells were most sensitive to micafungin among the breast cancer cell lines. In addition, micafungin showed an inhibitory effect on the proliferation, clone formation, and migration in MCF7 and 143B cells. The inhibitory effect of micafungin on the growth of breast cancer and osteosarcoma was further confirmed with xenograft tumor mouse models. To explore the underlying mechanisms, the effect of micafungin on epithelial-mesenchymal transition (EMT) was examined. As expected, the levels of matrix metalloproteinase 9 and vimentin in MCF-7 and 143B cells were notably reduced in the presence of micafungin, concomitant with the decreased levels of ubiquitin-specific protease 7 (USP7), p-AKT, and p-GSK-3β. Based on these observations, we conclude that micafungin exerts antitumor effect on breast cancer and osteosarcoma through preventing EMT in an USP7/AKT/GSK-3β pathway-dependent manner.
Collapse
Affiliation(s)
- Qian-Lin Wang
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
- Department of Laboratory Medicine, Changsha Blood Central, Changsha, 410005, China
| | - Li Wang
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Qiong-Yu Li
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Hui-Yin Li
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Ling Lin
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Dan Wei
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Jin-Yun Xu
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, 410013, China.
| | - Xiu-Ju Luo
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, 410013, China.
| |
Collapse
|
4
|
Lin CY, Wu KY, Chi LM, Tang YH, Huang HJ, Lai CH, Tsai CN, Tsai CL. Starvation-inactivated MTOR triggers cell migration via a ULK1-SH3PXD2A/TKS5-MMP14 pathway in ovarian carcinoma. Autophagy 2023; 19:3151-3168. [PMID: 37505094 PMCID: PMC10621272 DOI: 10.1080/15548627.2023.2239633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 07/18/2023] [Indexed: 07/29/2023] Open
Abstract
ABBREVIATIONS AMPK: AMP-activated protein kinase; CHX: cycloheximide; RAD001: everolimus; HBSS: Hanks' balanced salt solution; LC-MS/MS: liquid chromatography-mass spectrometry/mass spectrometry; MMP14: matrix metallopeptidase 14; MTOR: mechanistic target of rapamycin kinase; MAPK: mitogen-activated protein kinase; RB1CC1/FIP200: RB1 inducible coiled-coil 1; PtdIns3P: phosphatidylinositol-3-phosphate; PX: phox homology; SH3: Src homology 3; SH3PXD2A/TKS5: SH3 and PX domains 2A; SH3PXD2A-[6A]: S112A S142A S146A S147A S175A S348A mutant; ULK1: unc-51 like autophagy activating kinase 1.
Collapse
Affiliation(s)
- Chiao-Yun Lin
- Gynecologic Cancer Research Center, Chang Gung Memorial Hospital, Taoyuan City, Guishan District, Taiwan
| | - Kai-Yun Wu
- Gynecologic Cancer Research Center, Chang Gung Memorial Hospital, Taoyuan City, Guishan District, Taiwan
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Linkou Medical Center And Chang Gung University, Taoyuan City, Guishan District, Taiwan
| | - Lang-Ming Chi
- Molecular Medicine Research Center, Chang Gung University, Taoyuan City, Guishan District, Taiwan
| | - Yun-Hsin Tang
- Gynecologic Cancer Research Center, Chang Gung Memorial Hospital, Taoyuan City, Guishan District, Taiwan
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Linkou Medical Center And Chang Gung University, Taoyuan City, Guishan District, Taiwan
| | - Huei-Jean Huang
- Gynecologic Cancer Research Center, Chang Gung Memorial Hospital, Taoyuan City, Guishan District, Taiwan
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Linkou Medical Center And Chang Gung University, Taoyuan City, Guishan District, Taiwan
| | - Chyong-Huey Lai
- Gynecologic Cancer Research Center, Chang Gung Memorial Hospital, Taoyuan City, Guishan District, Taiwan
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Linkou Medical Center And Chang Gung University, Taoyuan City, Guishan District, Taiwan
| | - Chi-Neu Tsai
- Graduate Institute of Clinical Medical Science, Chang-Gung University, Taoyuan City, Guishan District, Taiwan
- Department of Surgery, New Taipei Municipal Tucheng Hospital, New Taipei City, Tucheng District, Taiwan
| | - Chia-Lung Tsai
- Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Taoyuan City, Guishan District, Taiwan
| |
Collapse
|
5
|
Vlodavsky I, Kayal Y, Hilwi M, Soboh S, Sanderson RD, Ilan N. Heparanase-A single protein with multiple enzymatic and nonenzymatic functions. PROTEOGLYCAN RESEARCH 2023; 1:e6. [PMID: 37547889 PMCID: PMC10398610 DOI: 10.1002/pgr2.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 08/08/2023]
Abstract
Heparanase (Hpa1) is expressed by tumor cells and cells of the tumor microenvironment and functions extracellularly to remodel the extracellular matrix (ECM) and regulate the bioavailability of ECM-bound factors, augmenting, among other effects, gene transcription, autophagy, exosome formation, and heparan sulfate (HS) turnover. Much of the impact of heparanase on tumor progression is related to its function in mediating tumor-host crosstalk, priming the tumor microenvironment to better support tumor growth, metastasis, and chemoresistance. The enzyme appears to fulfill some normal functions associated, for example, with vesicular traffic, lysosomal-based secretion, autophagy, HS turnover, and gene transcription. It activates cells of the innate immune system, promotes the formation of exosomes and autophagosomes, and stimulates signal transduction pathways via enzymatic and nonenzymatic activities. These effects dynamically impact multiple regulatory pathways that together drive tumor growth, dissemination, and drug resistance as well as inflammatory responses. The emerging premise is that heparanase expressed by tumor cells, immune cells, endothelial cells, and other cells of the tumor microenvironment is a key regulator of the aggressive phenotype of cancer, an important contributor to the poor outcome of cancer patients and a valid target for therapy. So far, however, antiheparanase-based therapy has not been implemented in the clinic. Unlike heparanase, heparanase-2 (Hpa2), a close homolog of heparanase (Hpa1), does not undergo proteolytic processing and hence lacks intrinsic HS-degrading activity, the hallmark of heparanase. Hpa2 retains the capacity to bind heparin/HS and exhibits an even higher affinity towards HS than heparanase, thus competing for HS binding and inhibiting heparanase enzymatic activity. It appears that Hpa2 functions as a natural inhibitor of Hpa1 regulates the expression of selected genes that maintain tissue hemostasis and normal function, and plays a protective role against cancer and inflammation, together emphasizing the significance of maintaining a proper balance between Hpa1 and Hpa2.
Collapse
Affiliation(s)
- Israel Vlodavsky
- Technion Integrated Cancer Center, TechnionRappaport Faculty of MedicineHaifaIsrael
| | - Yasmin Kayal
- Technion Integrated Cancer Center, TechnionRappaport Faculty of MedicineHaifaIsrael
| | - Maram Hilwi
- Technion Integrated Cancer Center, TechnionRappaport Faculty of MedicineHaifaIsrael
| | - Soaad Soboh
- Technion Integrated Cancer Center, TechnionRappaport Faculty of MedicineHaifaIsrael
| | - Ralph D. Sanderson
- Department of PathologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Neta Ilan
- Technion Integrated Cancer Center, TechnionRappaport Faculty of MedicineHaifaIsrael
| |
Collapse
|
6
|
Heparanase promotes endothelial-to-mesenchymal transition in diabetic glomerular endothelial cells through mediating ERK signaling. Cell Death Dis 2022; 8:67. [PMID: 35173145 PMCID: PMC8850459 DOI: 10.1038/s41420-022-00858-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 01/10/2022] [Accepted: 01/27/2022] [Indexed: 11/15/2022]
Abstract
Glomerular endothelial cells (GEnCs) dysfunction occurs at the early stage of diabetic nephropathy (DN). One of its characteristics is endothelial-to-mesenchymal transition (EndMT). Heparanase (HPSE) is the only known mammalian endoglycosidase capable of degrading heparin sulfates and has a prominent role in DN pathogenesis. However, whether HPSE induces EndMT of GEnCs remains unknown. This study aimed to determine the effect and potential mechanism of HPSE on GEnCs phenotype under high-glucose conditions. In the early development of streptozotocin (STZ)-induced diabetic mice, HPSE overexpression was positively correlated with renal injury and the number of GEnCs undergoing EndMT, which was characterized by loss of endothelial marker CD31 and gain of mesenchymal markers including α-SMA and Snail1/2 by double immunofluorescence staining. Bioinformatics analysis revealed a positive correlation between HPSE and ERK. The counts of double positive staining of CD31 and p-ERK1/2 was significantly increased in the glomeruli of STZ-induced diabetic mice compared with sham mice. In cultured GEnCs, high glucose dramatically upregulated the expressions of HPSE and p-ERK1/2, both of which were markedly blocked by HPSE siRNA. Furthermore, recombinant mouse HPSE (rmHPSE) promoted the expressions of mesenchymal markers and p-ERK1/2 in a dosage- and time-dependent manner. U0126, a specific MEK/ERK inhibitor, significantly inhibited either high glucose or rmHPSE-induced EndMT of GEnCs. These data indicate that high glucose induces EndMT of GEnCs at least partially through upregulating HPSE and that HPSE promotes EndMT of GEnCs via activating ERK signaling. This study improves understanding the crucial role of HPSE in DN development and progression.
Collapse
|
7
|
Granata S, Carratù P, Stallone G, Zaza G. mTOR-Inhibition and COVID-19 in Kidney Transplant Recipients: Focus on Pulmonary Fibrosis. Front Pharmacol 2021; 12:710543. [PMID: 34497515 PMCID: PMC8419255 DOI: 10.3389/fphar.2021.710543] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 08/11/2021] [Indexed: 12/24/2022] Open
Abstract
Kidney transplant recipients are at high risk of developing severe COVID-19 due to the coexistence of several transplant-related comorbidities (e.g., cardiovascular disease, diabetes) and chronic immunosuppression. As a consequence, a large part of SARS-CoV-2 infected patients have been managed with a reduction of immunosuppression. The mTOR-I, together with antimetabolites, have been often discontinued in order to minimize the risk of pulmonary toxicity and to antagonize pharmacological interaction with antiviral/anti-inflammatory drugs. However, at our opinion, this therapeutic strategy, although justified in kidney transplant recipients with severe COVID-19, should be carefully evaluated in asymptomatic/paucisymptomatic patients in order to avoid the onset of acute allograft rejections, to potentially exploit the mTOR-I antiviral properties, to reduce proliferation of conventional T lymphocytes (which could mitigate the cytokine storm) and to preserve Treg growth/activity which could reduce the risk of progression to severe disease. In this review, we discuss the current literature regarding the therapeutic potential of mTOR-Is in kidney transplant recipients with COVID-19 with a focus on pulmonary fibrosis.
Collapse
Affiliation(s)
- Simona Granata
- Renal Unit, Department of Medicine, University-Hospital of Verona, Verona, Italy
| | - Pierluigi Carratù
- Division of Internal Medicine, Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, "Aldo Moro" University of Bari, Bari, Italy
| | - Giovanni Stallone
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Science, University of Foggia, Foggia, Italy
| | - Gianluigi Zaza
- Renal Unit, Department of Medicine, University-Hospital of Verona, Verona, Italy
| |
Collapse
|
8
|
Granata S, Verlato A, Masola V, Carraro A, Santoro G, Sallustio F, Zaza G. High-dose Everolimus May Induce Pro-inflammatory/Fibrotic Transcriptomic Changes in Bronchial Epithelial Cells from Cystic Fibrosis Patients. CURRENT PHARMACOGENOMICS AND PERSONALIZED MEDICINE 2021; 18:91-106. [DOI: 10.2174/1875692118666210525150645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/24/2021] [Accepted: 03/31/2021] [Indexed: 05/14/2025]
Abstract
Background:Solid-organ transplantation is an available therapeutic option for Cystic Fibrosis (CF) patients without lung transplantation. However, the use of immunosuppressive agents may cause severe adverse events. In particular, patients treated with mTOR-inhibitors (mTOR-I) may aggravate pulmonary complications. It has been recently described that these drugs may induce Epithelial to Mesenchymal Transition (EMT) of the airway cells.Objective:The purpose of this study was to evaluate the effects of mTOR-I on primary bronchial epithelial cells carrying F508del.Materials and Methods:Human bronchial epithelial cells homozygous for F508del were treated with 5 and 100 nM EVE for 24 hours, and their RNA was extracted and hybridized to the Human HT-12 v3 Expression BeadChip (Illumina). The microarray results were validated by Real-Time PCR. The transepithelial resistance was measured by a Millicell-ERS ohmmeter.Results:High dosage EVE induced a significant up-regulation of 48 genes and a down-regulation of 14 genes. After pathway analysis by GSEA, we found that most of them were implicated in the inflammatory and pro-fibrotic pathways. Real-time PCR confirmed that 100 nM EVE was able to upregulate some identified genes (IL-1alpha, IL-8, Pim-1) as well as pro-fibrotic elements (alpha-SMA, connective tissue growth factor, and metalloproteinase-12). In addition, a high dosage of EVE was also able to reduce transepithelial resistance. In contrast, a lower level of EVE did not produce similar effects.Conclusion:Although performed in vitro, our study suggested that in solid organ transplant recipients with CF without a lung transplant, mTOR-I should be used at a low dosage to reduce its contribution to pulmonary inflammation and fibrosis.
Collapse
Affiliation(s)
- Simona Granata
- Renal Unit, Department of Medicine, University-Hospital of Verona, Verona, Italy
| | - Alberto Verlato
- Renal Unit, Department of Medicine, University-Hospital of Verona, Verona, Italy
| | - Valentina Masola
- Renal Unit, Department of Medicine, University-Hospital of Verona, Verona, Italy
| | - Amedeo Carraro
- General Surgery and Liver Transplant Unit, University and Hospital Trust of Verona, Verona, Italy
| | - Gloria Santoro
- Renal Unit, Department of Medicine, University-Hospital of Verona, Verona, Italy
| | - Fabio Sallustio
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari \'Aldo Moro\', Bari, Italy
| | - Gianluigi Zaza
- Renal Unit, Department of Medicine, University-Hospital of Verona, Verona, Italy
| |
Collapse
|
9
|
Hu Y, Wang M, Pan Y, Li Q, Xu L. Salvianolic acid B attenuates renal interstitial fibrosis by regulating the HPSE/SDC1 axis. Mol Med Rep 2020; 22:1325-1334. [PMID: 32626974 PMCID: PMC7339410 DOI: 10.3892/mmr.2020.11229] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 05/28/2020] [Indexed: 02/06/2023] Open
Abstract
Salvianolic acid B (Sal B) is one of the main water-soluble components of Salvia miltiorrhiza Bge. Numerous reports have demonstrated that it could exert significant renal-protective effects, but the underlying mechanism remains unclear. The present study demonstrated that Sal B could alleviate renal injury by regulating the heparanase/syndecan-1 (HPSE/SDC1) axis. In vivo, the serum creatinine, blood urea nitrogen, transforming growth factor-β1 (TGF-β1) and fibroblast growth factor-2 (FGF-2) levels, and the histopathological changes of mice kidneys were examined. Sal B could notably reduce the renal injury caused by left ureteral ligation. In vitro, Sal B downregulated the expression levels of HPSE/FGF-2/TGF-β1/α-smooth muscle actin and upregulated the expression levels of SDC1/E-cadherin in angiotensin II-stimulated HK-2 cells in a dose-dependent manner. In summary, to the best of the authors' knowledge, the present study provided evidence for the first time that Sal B could exert renal-protective effects via the inhibition of the HPSE/SDC1 axis, and these results suggest that the administration of Sal B may be a novel therapeutic strategy in treating renal interstitial fibrosis.
Collapse
Affiliation(s)
- Yang Hu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Man Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Yunzheng Pan
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Qingju Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Li Xu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| |
Collapse
|
10
|
Heparanase-The Message Comes in Different Flavors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1221:253-283. [DOI: 10.1007/978-3-030-34521-1_9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
11
|
Kidney allograft fibrosis: what we learned from latest translational research studies. J Nephrol 2020; 33:1201-1211. [PMID: 32193834 DOI: 10.1007/s40620-020-00726-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 03/12/2020] [Indexed: 02/07/2023]
Abstract
To add new molecular and pathogenetic insights into the biological machinery associated to kidney allograft fibrosis is a major research target in nephrology and organ transplant translational medicine. Interstitial fibrosis associated to tubular atrophy (IF/TA) is, in fact, an inevitable and progressive process that occurs in almost every type of chronic allograft injury (particularly in grafts from expanded criteria donors) characterized by profound remodeling and excessive production/deposition of fibrillar extracellular matrix (ECM) with a great clinical impact. IF/TA is detectable in more than 50% of kidney allografts at 2 years. However, although well studied, the complete cellular/biological network associated with IF/TA is only partially evaluated. In the last few years, then, thanks to the introduction of new biomolecular technologies, inflammation in scarred/fibrotic parenchyma areas (recently acknowledged by the BANFF classification) has been recognized as a pivotal element able to accelerate the onset and development of the allograft chronic damage. Therefore, in this review, we focused on some new pathogenetic elements involved in graft fibrosis (including epithelial/endothelial to mesenchymal transition, oxidative stress, activation of Wnt and Hedgehog signaling pathways, fatty acids oxidation and cellular senescence) that, in our opinion, could become in future good candidates as potential biomarkers and therapeutic targets.
Collapse
|
12
|
Shah S, Pocard M, Mirshahi M. Targeting the differentiation of gastric cancer cells (KATO‑III) downregulates epithelial‑mesenchymal and cancer stem cell markers. Oncol Rep 2019; 42:670-678. [PMID: 31233198 PMCID: PMC6609315 DOI: 10.3892/or.2019.7198] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 05/17/2019] [Indexed: 12/13/2022] Open
Abstract
The aim of the present study was to analyze the acquisition of the differentiated phenotype in the human gastric signet ring cell adenoma cancer KATO‑III cell line in vitro. The morphology of KATO‑III cells was explored by microcinematography. Different cytokines secreted by both adherent and non‑adherent KATO‑III cells into medium were observed. The cancer stem cell phenotypes were identified by reverse transcription‑quantitative polymerase chain reaction using primers (E‑Cad, Slug, Snail, vimentin, NANOG, NESTIN, OCT3/4 and C‑X‑C motif chemokine receptor 4) or antibodies [cluster of differentiation (CD)90 and CD117] by flow cytometry (FACS). The influence of the induction media for the differentiation of mesenchymal cells was studied through viability and proliferation assays, by evaluating gene expression and the expression of markers via FACS. Cell viability and cell cycle distribution were evaluated following the treatment of KATO‑III with acetyl salicylic acid and using the induction media as an inhibitor of epithelial‑mesenchymal transition (EMT) and heparanase. A total of 3 phenotypes of KATO‑III were observed (adherent, non‑adherent and cell cluster), which have internal potential for cell transition into one of the other phenotypes. KATO‑III was differentiated into adipocyte‑, chondrocyte‑, osteocyte‑ and neurocyte‑like cells by the induction media. Identification of the induced cells was conducted using cell dyes. Reduced mRNA expression of EMT‑associated molecules, stem cell markers and heparanase was observed with acetyl salicylic acid and induction media. An inhibitory effect of acetyl salicylic acid and the induction media was also noted in regard to cell proliferation. In addition, acetyl salicylic acid induced G0/G1 phase cell cycle arrest in KATO‑III cells. In conclusion, the induction of the differentiation of cancer stem cells into non‑proliferating cells offers the possibility for novel drug design to overcome the issues associated with metastasis, drug resistance and systemic toxicity with improved therapeutic efficacy.
Collapse
Affiliation(s)
- Shahid Shah
- University of Sorbonne Paris Cité-Paris 7, Lariboisière Hospital, INSERM U965, 75010 Paris, France
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Government College University, 38000 Faisalabad, Pakistan
| | - Marc Pocard
- University of Sorbonne Paris Cité-Paris 7, Lariboisière Hospital, INSERM U965, 75010 Paris, France
| | - Massoud Mirshahi
- University of Sorbonne Paris Cité-Paris 7, Lariboisière Hospital, INSERM U965, 75010 Paris, France
| |
Collapse
|
13
|
Kornakiewicz A, Czarnecka AM, Khan MI, Krasowski P, Kotrys AV, Szczylik C. Effect of Everolimus on Heterogenous Renal Cancer Cells Populations Including Renal Cancer Stem Cells. Stem Cell Rev Rep 2018; 14:385-397. [PMID: 29508215 DOI: 10.1007/s12015-018-9804-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The aim of this study was to compare effect of everolimus on growth of different renal cell carcinoma (RCC) populations and develop experimental design to measure the early response of everolimus in clear cell RCC (ccRCC) cell lines including renal cancer stem cells. Effect of everolimus on RCC cell lines which include primary (786-0) and metastatic (ACHN) RCC cell lines as well as heterogenous populations of tumor cells of different histological RCC subtypes (clear cell RCC and papillary RCC) was measured when treated with everolimus in the range of 1-9 µM. Gene expression profiling using microarray was performed to determine the early response to everolimus in ccRCC cell lines after optimizing concentration of drug. Gene Set Enrichment Analysis (GSEA) was done which mainly focused on basic genes related to mTOR, hormonal and metabolic pathways. Everolimus acts on RCC cells in a dose-dependent manner. In all examined cell lines IC50 dose was possible to calculate after the third day of treatment. In ccRCC lines (parental and stem cell) everolimus changes expression of mTOR complexes elements and elements of related pathways when treated with optimized doses of drug. Characteristic expression profile for ccRCC cells at an early exposure time to everolimus is to elucidate. Wevarie include some basic observations derived from data analysis in the context of mechanism of action of drug with a view to better understand biology of renal cancer cells.
Collapse
Affiliation(s)
- Anna Kornakiewicz
- Molecular Oncology Laboratory, Department of Oncology, Military Institute of Medicine, ul. Szaserów 128, 04-141, Warsaw, Poland. .,Postgraduate School of Molecular Medicine, Warsaw Medical University, Żwirki i Wigury 61, 02-091, Warsaw, Poland.
| | - Anna M Czarnecka
- Molecular Oncology Laboratory, Department of Oncology, Military Institute of Medicine, ul. Szaserów 128, 04-141, Warsaw, Poland
| | - Mohammed I Khan
- Molecular Oncology Laboratory, Department of Oncology, Military Institute of Medicine, ul. Szaserów 128, 04-141, Warsaw, Poland
| | - Paweł Krasowski
- Molecular Oncology Laboratory, Department of Oncology, Military Institute of Medicine, ul. Szaserów 128, 04-141, Warsaw, Poland
| | - Anna V Kotrys
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Laboratory of RNA Biology and Functional Genomics, Pawińskiego 5A, 02-106, Warsaw, Poland
| | - Cezary Szczylik
- Molecular Oncology Laboratory, Department of Oncology, Military Institute of Medicine, ul. Szaserów 128, 04-141, Warsaw, Poland.,Warsaw Medical University, Żwirki i Wigury 61, 02-091, Warsaw, Poland
| |
Collapse
|
14
|
Wu Y, Wang W, Peng XM, He Y, Xiong YX, Liang HF, Chu L, Zhang BX, Ding ZY, Chen XP. Rapamycin Upregulates Connective Tissue Growth Factor Expression in Hepatic Progenitor Cells Through TGF-β-Smad2 Dependent Signaling. Front Pharmacol 2018; 9:877. [PMID: 30135653 PMCID: PMC6092675 DOI: 10.3389/fphar.2018.00877] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 07/19/2018] [Indexed: 12/15/2022] Open
Abstract
Rapamycin (sirolimus) is a mTOR kinase inhibitor and is widely used as an immunosuppressive drug to prevent graft rejection in organ transplantation currently. However, some recent investigations have reported that it had profibrotic effect in the progression of organ fibrosis, and its precise role in the liver fibrosis is still poorly understood. Here we showed that rapamycin upregulated connective tissue growth factor (CTGF) expression at the transcriptional level in hepatic progenitor cells (HPCs). Using lentivirus-mediated small hairpin RNA (shRNA) we demonstrated that knockdown of mTOR, Raptor, or Rictor mimicked the effect of rapamycin treatment. Mechanistically, inhibition of mTOR activity with rapamycin resulted in a hyperactive PI3K-Akt pathway, whereas this activation inhibited the expression of CTGF in HPCs. Besides, rapamycin activated the TGF-β-Smad signaling, and TGF-β receptor type I (TGFβRI) serine/threonine kinase inhibitors completely blocked the effects of rapamycin on HPCs. Moreover, Smad2 was involved in the induction of CTGF through rapamycin-activated TGF-β-Smad signaling as knockdown completely blocked CTGF induction, while knockdown of Smad4 expression partially inhibited induction, whereas Smad3 knockdown had no effect. Rapamycin also induced ROS generation and latent TGF-β activation which contributed to TGF-β-Smad signaling. In conclusion, this study demonstrates that rapamycin upregulates CTGF in HPCs and suggests that rapamycin has potential fibrotic effect in liver.
Collapse
Affiliation(s)
- Yu Wu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Wang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang-mei Peng
- Department of Nephrology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi He
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi-xiao Xiong
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui-fang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Chu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bi-xiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ze-yang Ding
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-ping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
15
|
Granata S, Santoro G, Masola V, Tomei P, Sallustio F, Pontrelli P, Accetturo M, Antonucci N, Carratù P, Lupo A, Zaza G. In Vitro Identification of New Transcriptomic and miRNomic Profiles Associated with Pulmonary Fibrosis Induced by High Doses Everolimus: Looking for New Pathogenetic Markers and Therapeutic Targets. Int J Mol Sci 2018; 19:1250. [PMID: 29677166 PMCID: PMC5979287 DOI: 10.3390/ijms19041250] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 04/17/2018] [Accepted: 04/17/2018] [Indexed: 12/24/2022] Open
Abstract
The administration of Everolimus (EVE), a mTOR inhibitor used in transplantation and cancer, is often associated with adverse effects including pulmonary fibrosis. Although the underlying mechanism is not fully clarified, this condition could be in part caused by epithelial to mesenchymal transition (EMT) of airway cells. To improve our knowledge, primary bronchial epithelial cells (BE63/3) were treated with EVE (5 and 100 nM) for 24 h. EMT markers (α-SMA, vimentin, fibronectin) were measured by RT-PCR. Transepithelial resistance was measured by Millicell-ERS ohmmeter. mRNA and microRNA profiling were performed by Illumina and Agilent kit, respectively. Only high dose EVE increased EMT markers and reduced the transepithelial resistance of BE63/3. Bioinformatics showed 125 de-regulated genes that, according to enrichment analysis, were implicated in collagen synthesis/metabolism. Connective tissue growth factor (CTGF) was one of the higher up-regulated mRNA. Five nM EVE was ineffective on the pro-fibrotic machinery. Additionally, 3 miRNAs resulted hyper-expressed after 100 nM EVE and able to regulate 31 of the genes selected by the transcriptomic analysis (including CTGF). RT-PCR and western blot for MMP12 and CTGF validated high-throughput results. Our results revealed a complex biological network implicated in EVE-related pulmonary fibrosis and underlined new potential disease biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Simona Granata
- Renal Unit, Department of Medicine, University of Verona, Piazzale Stefani 1, 37126 Verona, Italy.
| | - Gloria Santoro
- Renal Unit, Department of Medicine, University of Verona, Piazzale Stefani 1, 37126 Verona, Italy.
| | - Valentina Masola
- Renal Unit, Department of Medicine, University of Verona, Piazzale Stefani 1, 37126 Verona, Italy.
| | - Paola Tomei
- Renal Unit, Department of Medicine, University of Verona, Piazzale Stefani 1, 37126 Verona, Italy.
| | - Fabio Sallustio
- Department of Emergency and Organ Transplantation, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124 Bari, Italy.
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124 Bari, Italy.
| | - Paola Pontrelli
- Department of Emergency and Organ Transplantation, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124 Bari, Italy.
| | - Matteo Accetturo
- Department of Emergency and Organ Transplantation, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124 Bari, Italy.
| | - Nadia Antonucci
- Renal Unit, Department of Medicine, University of Verona, Piazzale Stefani 1, 37126 Verona, Italy.
| | - Pierluigi Carratù
- Department of Respiratory Diseases, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124 Bari, Italy.
| | - Antonio Lupo
- Renal Unit, Department of Medicine, University of Verona, Piazzale Stefani 1, 37126 Verona, Italy.
| | - Gianluigi Zaza
- Renal Unit, Department of Medicine, University of Verona, Piazzale Stefani 1, 37126 Verona, Italy.
| |
Collapse
|
16
|
Masola V, Granata S, Bellin G, Gambaro G, Onisto M, Rugiu C, Lupo A, Zaza G. Specific heparanase inhibition reverses glucose-induced mesothelial-to-mesenchymal transition. Nephrol Dial Transplant 2018; 32:1145-1154. [PMID: 28064160 DOI: 10.1093/ndt/gfw403] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 10/10/2016] [Indexed: 01/19/2023] Open
Abstract
Background Epithelial-to-mesenchymal transition (EMT) of peritoneal mesothelial cells induced by high glucose (HG) levels is a major biological mechanism leading to myofibroblast accumulation in the omentum of patients on peritoneal dialysis (PD). Heparanase (HPSE), an endoglycosidase that cleaves heparan sulfate chains, is involved in the EMT of several cell lines, and may have a major role in this pro-fibrotic process potentially responsible for the failure of dialysis. Its specific inhibition may therefore plausibly minimize this pathological condition. Methods An in vitro study employing several biomolecular strategies was conducted to assess the role of HPSE in the HG-induced mesothelial EMT process, and to measure the effects of its specific inhibition by SST0001, a N-acetylated glycol-split heparin with a strong anti-HPSE activity. Rat mesothelial cells were grown for 6 days in HG (200 mM) culture medium with or without SST0001. Then EMT markers (VIM, α-SMA, TGF-β) and vascular endothelial growth factor (VEGF) (a factor involved in neoangiogenesis) were measured by real-time PCR and immunofluorescence/western blotting. As a functional analysis, trans-epithelial resistance (TER) and permeability to albumin were also measured in our in vitro model using a Millicell-ERS ohmmeter and a spectrophotometer, respectively. Results Our results showed that 200 mM of glucose induced a significant gene and protein up-regulation of VEGF and all EMT markers after 6 days of culture. Intriguingly, adding SST0001 on day 3 reversed these biological and cellular effects. HPSE inhibition also restored the normal TER and permeability lost during the HG treatment. Conclusion Taken together, our data confirm that HG can induce EMT of mesothelial cells, and that HPSE plays a central part in this process. Our findings also suggest that pharmacological HPSE inhibition could prove a valuable therapeutic tool for minimizing fibrosis and avoiding a rapid decline in the efficacy of dialysis in patients on PD, though clinical studies and/or trials would be needed to confirm the clinical utility of this treatment.
Collapse
Affiliation(s)
- Valentina Masola
- Renal Unit, Department of Medicine, Verona University Hospital, Verona, Italy
| | - Simona Granata
- Renal Unit, Department of Medicine, Verona University Hospital, Verona, Italy
| | - Gloria Bellin
- Renal Unit, Department of Medicine, Verona University Hospital, Verona, Italy
| | - Giovanni Gambaro
- Nephrology and Dialysis Division, Columbus-Gemelli Hospital, Catholic University School of Medicine, Rome, Italy
| | - Maurizio Onisto
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Carlo Rugiu
- Renal Unit, Department of Medicine, Verona University Hospital, Verona, Italy
| | - Antonio Lupo
- Renal Unit, Department of Medicine, Verona University Hospital, Verona, Italy
| | - Gianluigi Zaza
- Renal Unit, Department of Medicine, Verona University Hospital, Verona, Italy
| |
Collapse
|
17
|
|
18
|
Granata S, Dalla Gassa A, Carraro A, Brunelli M, Stallone G, Lupo A, Zaza G. Sirolimus and Everolimus Pathway: Reviewing Candidate Genes Influencing Their Intracellular Effects. Int J Mol Sci 2016; 17:ijms17050735. [PMID: 27187382 PMCID: PMC4881557 DOI: 10.3390/ijms17050735] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 04/21/2016] [Accepted: 05/06/2016] [Indexed: 02/07/2023] Open
Abstract
Sirolimus (SRL) and everolimus (EVR) are mammalian targets of rapamycin inhibitors (mTOR-I) largely employed in renal transplantation and oncology as immunosuppressive/antiproliferative agents. SRL was the first mTOR-I produced by the bacterium Streptomyces hygroscopicus and approved for several medical purposes. EVR, derived from SRL, contains a 2-hydroxy-ethyl chain in the 40th position that makes the drug more hydrophilic than SRL and increases oral bioavailability. Their main mechanism of action is the inhibition of the mTOR complex 1 and the regulation of factors involved in a several crucial cellular functions including: protein synthesis, regulation of angiogenesis, lipid biosynthesis, mitochondrial biogenesis and function, cell cycle, and autophagy. Most of the proteins/enzymes belonging to the aforementioned biological processes are encoded by numerous and tightly regulated genes. However, at the moment, the polygenic influence on SRL/EVR cellular effects is still not completely defined, and its comprehension represents a key challenge for researchers. Therefore, to obtain a complete picture of the cellular network connected to SRL/EVR, we decided to review major evidences available in the literature regarding the genetic influence on mTOR-I biology/pharmacology and to build, for the first time, a useful and specific “SRL/EVR genes-focused pathway”, possibly employable as a starting point for future in-depth research projects.
Collapse
Affiliation(s)
- Simona Granata
- Renal Unit, Department of Medicine, University/Hospital of Verona, 37126 Verona, Italy.
| | | | - Amedeo Carraro
- Liver Transplant Unit, Department of General Surgery and Odontoiatrics, University/Hospital of Verona, 37126 Verona, Italy.
| | - Matteo Brunelli
- Department of Pathology and Diagnostics, University of Verona, Azienda Ospedaliera Universitaria Integrata, 37126 Verona, Italy.
| | - Giovanni Stallone
- Nephrology, Dialysis and Transplantation Unit, University of Foggia, 71122 Foggia, Italy.
| | - Antonio Lupo
- Renal Unit, Department of Medicine, University/Hospital of Verona, 37126 Verona, Italy.
| | - Gianluigi Zaza
- Renal Unit, Department of Medicine, University/Hospital of Verona, 37126 Verona, Italy.
| |
Collapse
|
19
|
Tomei P, Masola V, Granata S, Bellin G, Carratù P, Ficial M, Ventura VA, Onisto M, Resta O, Gambaro G, Chilosi M, Lupo A, Zaza G. Everolimus-induced epithelial to mesenchymal transition (EMT) in bronchial/pulmonary cells: when the dosage does matter in transplantation. J Nephrol 2016; 29:881-891. [PMID: 27026415 DOI: 10.1007/s40620-016-0295-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 03/09/2016] [Indexed: 11/28/2022]
Abstract
BACKGROUND Everolimus (EVE) is a mammalian target of rapamycin inhibitor (mTOR-I) widely used in transplantation that may determine some severe adverse events, including pulmonary fibrosis. The pathogenic mechanism of mTOR-I-associated pulmonary toxicity is still unclear, but epithelial to mesenchymal transition (EMT) of bronchial/pulmonary cells may play a role. METHODS Three cell lines-human type II pneumocyte-derived A549, normal bronchial epithelial, and bronchial epithelial homozygous for the delta F508 cystic fibrosis-causing mutation-were treated with EVE or tacrolimus at different concentrations. Real-time polymerase chain reaction and immunofluorescence were used to evaluate mRNA and protein levels of EMT markers (alpha-SMA, vimentin, fibronectin). Subsequently, in 13 EVE- and 13 tacrolimus-treated patients we compared the rate of lung fibrosis, estimated by an arbitrary pulmonary fibrosis index score (PFIS). RESULTS Biomolecular experiments demonstrated that high doses of EVE (100 nM) up-regulated EMT markers in all cell lines at both gene- and protein level. High concentrations of EVE were also able to reduce the mRNA levels of epithelial markers (E-cadherin and ZO-1) and to induce the phosphorylation of AKT. In the in vivo part of the study, PFIS was significantly higher in the EVE-group than the tacrolimus-group (p = 0.03) and correlated with trough levels (R2 = 0.35). CONCLUSIONS Our data reveal, for the first time, a dose-dependent EVE-induced EMT in airway cells. They suggest that clinicians should employ, wherever possible, low dosages of mTOR-Is in transplant recipients, assessing periodically their pulmonary function.
Collapse
Affiliation(s)
- Paola Tomei
- Department of Medicine, Renal Unit, University of Verona, Piazzale A. Stefani 1, 37126, Verona, VR, Italy
| | - Valentina Masola
- Department of Medicine, Renal Unit, University of Verona, Piazzale A. Stefani 1, 37126, Verona, VR, Italy
| | - Simona Granata
- Department of Medicine, Renal Unit, University of Verona, Piazzale A. Stefani 1, 37126, Verona, VR, Italy
| | - Gloria Bellin
- Department of Medicine, Renal Unit, University of Verona, Piazzale A. Stefani 1, 37126, Verona, VR, Italy
| | | | - Miriam Ficial
- Department of Pathology and Diagnostic, Anatomic Pathology Section, University of Verona, Verona, Italy
| | | | - Maurizio Onisto
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Onofrio Resta
- Institute of Pulmonary Disease, University of Bari, Bari, Italy
| | - Giovanni Gambaro
- Division of Nephrology and Dialysis, School of Medicine Rome, Columbus-Gemelli Hospital Catholic University, Rome, Italy
| | - Marco Chilosi
- Department of Pathology and Diagnostic, Anatomic Pathology Section, University of Verona, Verona, Italy
| | - Antonio Lupo
- Department of Medicine, Renal Unit, University of Verona, Piazzale A. Stefani 1, 37126, Verona, VR, Italy
| | - Gianluigi Zaza
- Department of Medicine, Renal Unit, University of Verona, Piazzale A. Stefani 1, 37126, Verona, VR, Italy.
| |
Collapse
|
20
|
Das K, Chan XB, Epstein D, Te Teh B, Kim KM, Kim ST, Park SH, Kang WK, Rozen S, Lee J, Tan P. NanoString expression profiling identifies candidate biomarkers of RAD001 response in metastatic gastric cancer. ESMO Open 2016; 1:e000009. [PMID: 27843583 PMCID: PMC5070203 DOI: 10.1136/esmoopen-2015-000009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/15/2016] [Accepted: 01/19/2016] [Indexed: 12/25/2022] Open
Abstract
Background Gene expression profiling has contributed greatly to cancer research. However, expression-driven biomarker discovery in metastatic gastric cancer (mGC) remains unclear. A gene expression profile predicting RAD001 response in refractory GC was explored in this study. Methods Total RNA isolated from 54 tumour specimens from patients with mGC, prior to RAD001 treatment, was analysed via the NanoString nCounter gene expression assay. This assay targeted 477 genes representing 10 different GC-related oncogenic signalling and molecular subtype-specific expression signatures. Gene expression profiles were correlated with patient clinicopathological variables. Results NanoString data confirmed similar gene expression profiles previously identified by microarray analysis. Signature I with 3 GC subtypes (mesenchymal, metabolic and proliferative) showed approximately 90% concordance where the mesenchymal and proliferative subtypes were significantly associated with signet ring cell carcinoma and the WHO classified tubular adenocarcinoma GC, respectively (p=0.042). Single-gene-level correlations with patient clinicopathological variables showed strong associations between FHL1 expression (mesenchymal subtype) and signet ring cell carcinoma, and NEK2, OIP5, PRC1, TPX2 expression (proliferative subtype) with tubular adenocarcinoma (adjusted p<0.05). Increased BRCA2 (p=0.040) and MMP9 (p=0.045) expression was significantly associated with RAD001 good response and longer progression-free survival outcome (BRCA2, p=0.012, HR 0.370 95% CI (0.171 to 0.800); MMP9, p=0.010, HR 0.359 95% CI (0.166 to 0.779)). In contrast, increased BTC (p=0.035) expression was significantly associated with RAD001 poor response and poor progression-free survival (p=0.031, HR 2.336 95% CI (1.079 to 5.059) by univariate Cox regression analysis. Conclusions Microarray results are highly reproducible with NanoString nCounter gene expression profiling. Additionally, BRCA2 and MMP9 expression are potential predictive biomarkers for good response in RAD001-treated mGC.
Collapse
Affiliation(s)
- Kakoli Das
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School.
| | - Xiu Bin Chan
- Genome Institute of Singapore, Biopolis, Singapore
| | - David Epstein
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School
| | - Binan Te Teh
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School; Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Kyoung-Mee Kim
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Seung Tae Kim
- Department of Medicine, Division of Hematology-Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Se Hoon Park
- Department of Medicine, Division of Hematology-Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Won Ki Kang
- Department of Medicine, Division of Hematology-Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Steve Rozen
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School
| | - Jeeyun Lee
- Department of Medicine, Division of Hematology-Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Patrick Tan
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School; Genome Institute of Singapore, Biopolis, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore
| |
Collapse
|
21
|
EXP CLIN TRANSPLANTExp Clin Transplant 2015; 13. [DOI: 10.6002/ect.2015.0193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
22
|
Shyu HY, Ko CJ, Luo YC, Lin HY, Wu SR, Lan SW, Cheng TS, Hu SH, Lee MS. Ketamine Increases Permeability and Alters Epithelial Phenotype of Renal Distal Tubular Cells via a GSK-3β-Dependent Mechanism. J Cell Biochem 2015; 117:881-93. [PMID: 26365534 DOI: 10.1002/jcb.25372] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 09/10/2015] [Indexed: 12/25/2022]
Abstract
Ketamine, a dissociative anesthetic, is misused and abused worldwide as an illegal recreational drug. In addition to its neuropathic toxicity, ketamine abuse has numerous effects, including renal failure; however, the underlying mechanism is poorly understood. The process called epithelial phenotypic changes (EPCs) causes the loss of cell-cell adhesion and cell polarity in renal diseases, as well as the acquisition of migratory and invasive properties. Madin-Darby canine kidney cells, an in vitro cell model, were subjected to experimental manipulation to investigate whether ketamine could promote EPCs. Our data showed that ketamine dramatically decreased transepithelial electrical resistance and increased paracellular permeability and junction disruption, which were coupled to decreased levels of apical junctional proteins (ZO-1, occludin, and E-cadherin). Consistent with the downregulation of epithelial markers, the mesenchymal markers N-cadherin, fibronectin, and vimentin were markedly upregulated following ketamine stimulation. Of the E-cadherin repressor complexes tested, the mRNA levels of Snail, Slug, Twist, and ZEB1 were elevated. Moreover, ketamine significantly enhanced migration and invasion. Ketamine-mediated changes were at least partly caused by the inhibition of GSK-3β activity through Ser-9 phosphorylation by the PI3K/Akt pathway. Inhibiting PI3K/Akt with LY294002 reactivated GSK-3β and suppressed ketamine-enhanced permeability, EPCs, and motility. These findings were recapitulated by the inactivation of GSK-3β using the inhibitor 3F8. Taken together, these results provide evidence that ketamine induces renal distal tubular EPCs through the downregulation of several junction proteins, the upregulation of mesenchymal markers, the activation of Akt, and the inactivation of GSK-3β.
Collapse
Affiliation(s)
- Hsin-Yi Shyu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Division of Forensic Science, Bureau of Investigation, Ministry of Justice, New Taipei City, Taiwan
| | - Chun-Jung Ko
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Chen Luo
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsin-Ying Lin
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shang-Ru Wu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shao-Wei Lan
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tai-Shan Cheng
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shih-Hsiung Hu
- Division of Forensic Science, Bureau of Investigation, Ministry of Justice, New Taipei City, Taiwan
| | - Ming-Shyue Lee
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
23
|
Masola V, Carraro A, Zaza G, Bellin G, Montin U, Violi P, Lupo A, Tedeschi U. Epithelial to mesenchymal transition in the liver field: the double face of Everolimus in vitro. BMC Gastroenterol 2015; 15:118. [PMID: 26369804 PMCID: PMC4570634 DOI: 10.1186/s12876-015-0347-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 09/09/2015] [Indexed: 02/07/2023] Open
Abstract
Background Everolimus (EVE), a mammalian target of rapamycin inhibitor, has been proposed as liver transplant immunosuppressive drug, gaining wide interest also for the treatment of cancer. Although an appropriate tolerance, it may induce several adverse effects, such as fibro-interstitial pneumonitis due to the acquisition of activated myofibroblasts. The exact molecular mechanism associated with epithelial to mesenchymal transition (EMT) may be crucial also in the liver context. This work examines the role and the molecular mediators of EMT in hepatic stellate cell (HSC) and human liver cancer cells (HepG2) and the potential role of EVE to maintain the epithelial phenotype rather than to act as a potential initiators of EMT. Methods Real time-PCR and western blot have been used to assess the capability of EVE at low-therapeutic (10 nM) and high (100 nM) dose to induce an in vitro EMT in HSC and HepG2. Results Biomolecular experiments demonstrated that low concentration of EVE (10 nM) did not modify the gene expression of alpha-smooth muscle actin (α-SMA), Vimentin (VIM), Fibronectin (FN) in both HSC and HepG2 cells, whereas EVE at 100 nM induced a significant over-expression of all the three above-mentioned genes and an increment of α-SMA and FN protein levels. Additionally, 100 nM of EVE induced a significant phosphorylation of AKT and an up-regulation of TGF-β expression in HSC and HepG2 cells. Discussion Our data, although obtained in an in vitro model, revealed, for the first time, that high concentration of EVE may induce EMT in liver cells confirming previous published evidences obtained in renal cells. Additionally, they suggested that mTOR-I should be administered at the lowest dose able to maximize their important and specific therapeutic properties minimizing or avoiding fibrosis-related adverse effects. Conclusions In summary, if confirmed by additional studies, our results could be useful for researchers to standardize new therapeutic immunosuppressive and anticancer drugs protocols.
Collapse
Affiliation(s)
- Valentina Masola
- Deparment of Medicine, Renal Unit, University Hospital of Verona, 37126, Verona, Italy.
| | - Amedeo Carraro
- Department of General Surgery and Odontoiatrics, Liver Transplant Unit, University Hospital of Verona, 37126, Verona, Italy.
| | - Gianluigi Zaza
- Deparment of Medicine, Renal Unit, University Hospital of Verona, 37126, Verona, Italy.
| | - Gloria Bellin
- Deparment of Medicine, Renal Unit, University Hospital of Verona, 37126, Verona, Italy.
| | - Umberto Montin
- Department of General Surgery and Odontoiatrics, Liver Transplant Unit, University Hospital of Verona, 37126, Verona, Italy.
| | - Paola Violi
- Department of General Surgery and Odontoiatrics, Liver Transplant Unit, University Hospital of Verona, 37126, Verona, Italy.
| | - Antonio Lupo
- Deparment of Medicine, Renal Unit, University Hospital of Verona, 37126, Verona, Italy.
| | - Umberto Tedeschi
- Department of General Surgery and Odontoiatrics, Liver Transplant Unit, University Hospital of Verona, 37126, Verona, Italy.
| |
Collapse
|
24
|
Zaza G, Masola V, Granata S, Bellin G, Dalla Gassa A, Onisto M, Gambaro G, Lupo A. Sulodexide alone or in combination with low doses of everolimus inhibits the hypoxia-mediated epithelial to mesenchymal transition in human renal proximal tubular cells. J Nephrol 2015; 28:431-40. [DOI: 10.1007/s40620-015-0216-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 05/26/2015] [Indexed: 12/13/2022]
|
25
|
Zaza G, Granata S, Tomei P, Masola V, Gambaro G, Lupo A. mTOR inhibitors and renal allograft: Yin and Yang. J Nephrol 2014; 27:495-506. [PMID: 24804854 DOI: 10.1007/s40620-014-0103-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 04/22/2014] [Indexed: 02/06/2023]
Abstract
Mammalian target of rapamycin inhibitors (mTOR-I), everolimus and sirolimus, are immunosuppressive drugs extensively used in renal transplantation. Their main mechanism of action is the inhibition of cell signaling through the PI3 K/Akt/mTOR pathway. This interesting mechanism of action confers to these medications both great immunosuppressive potential and important anti-neoplastic properties. Although the clinical utility of this drug category, as with other antineoplastic/immunosuppressants, is clear, the use of mTOR-I commonly results in the development of several complications. In particular, these agents may determine severe renal toxicity that, as recent studies report, seems clearly correlated to dose and duration of drug use. The mTOR-I-induced renal allograft spectrum of toxicity includes the enhanced incidence of delayed graft function, nephrotoxicity in particular when co-administered with calcineurin inhibitors (CNI) and onset of proteinuria. The latter effect appears highly frequent in patients undergoing mTOR-I treatment and significantly associated with a rapid graft lost. The damage leading to this complication interests both the glomerular and tubular area. mTOR-I cause an inhibition of proliferation in podocytes and the epithelial-to-mesenchymal transition in tubular cells. Interestingly, all these side effects are mostly reversible and dose related. Therefore, it is unquestionable that these particular drugs should be administered at the lowest dose able to maintain relatively low trough levels, in order to maximize their important and specific therapeutic effects while minimizing or avoiding drug toxicities. Utilization of low dosages of mTOR-I should be encouraged not only in CNI-combined schemas, but also when administered alone in a CNI-free immunosuppressive protocol.
Collapse
Affiliation(s)
- Gianluigi Zaza
- Renal Unit, Department of Medicine, University-Hospital of Verona, Piazzale A. Stefani 1, 37126, Verona, VR, Italy,
| | | | | | | | | | | |
Collapse
|