1
|
Shin HE, Won CW, Kim M. Circulating small non-coding RNA profiling for identification of older adults with low muscle strength and physical performance: A preliminary study. Exp Gerontol 2024; 197:112598. [PMID: 39343252 DOI: 10.1016/j.exger.2024.112598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/16/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Small non-coding RNAs (ncRNAs) have recently emerged as potential biomarkers of sarcopenia. However, previous studies have rarely explored the association of small ncRNAs with sarcopenic components, especially muscle strength and physical performance. We aimed to examine circulating small ncRNA profiles to detect low muscle strength and physical performance in older adults. METHODS Ninety-eight older adults were randomly selected from Korean Frailty and Aging Cohort Study and classified into the "Normal," "Low muscle strength (MS) only," "Low physical performance (PP) only," and "Low MS and PP" groups by Asian Working Group for Sarcopenia 2019 criteria. We used high-throughput sequencing to delineate small ncRNA profiles in plasma. Differentially expressed small ncRNAs were analyzed to reveal distinct patterns based on muscle strength and physical performance status. RESULTS In "Low MS and PP" group, 119 miRNAs, 86 piRNAs, 92 snoRNAs, 106 snRNAs, and 15 tRNAs were differentially expressed compared to "Normal" group (p < 0.05). After Benjamini-Hochberg adjustment, 39 miRNAs, 2 piRNAs, 75 snoRNAs, 48 snRNAs, and 15 tRNAs showed differential expression in "Low MS and PP" group compared to than "Normal" group (adjusted p < 0.05). No significant differences were observed in comparisons between the other groups (adjusted p > 0.05). CONCLUSION The expression of circulating small ncRNAs were comprehensively characterized, revealing distinct signatures in older adults with both low muscle strength and physical performance compared to normal individuals. Although preliminary, this characterization can advance small ncRNA research on age-related declines in muscle strength and physical performance by providing foundational data for further investigation.
Collapse
Affiliation(s)
- Hyung Eun Shin
- Department of Orthopaedics, Emory Musculoskeletal Institute, Emory University School of Medicine, Atlanta, GA 30329, USA; Department of Health Sciences and Technology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Chang Won Won
- Elderly Frailty Research Center, Department of Family Medicine, College of Medicine, Kyung Hee University, Kyung Hee University Medical Center, Seoul 02447, Republic of Korea
| | - Miji Kim
- Department of Health Sciences and Technology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
2
|
Masoomian B, Dalvin LA, Riazi-Esfahani H, Ghassemi F, Azizkhani M, Mirghorbani M, Khorrami-Nejad M, Sajjadi Z, Kaliki S, Sagoo MS, Al Harby L, Al-Jamal RT, Kivelä TT, Giblin M, Lim LAS, Shields CL. Pediatric ocular melanoma: a collaborative multicenter study and meta-analysis. J AAPOS 2023; 27:316-324. [PMID: 37949393 DOI: 10.1016/j.jaapos.2023.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/30/2023] [Accepted: 08/24/2023] [Indexed: 11/12/2023]
Abstract
PURPOSE To investigate clinical manifestations and prognoses in pediatric patients (≤12 years old) with ocular melanoma. METHODS This was a retrospective, multicenter cohort study with individual participant data (IPD) meta-analysis pooling available published cases, and unpublished cases from an international collaboration of seven ocular oncology centers. RESULTS There were 133 eyes of 133 pediatric patients with choroidal or ciliary body (n = 66 [50%]), iris (n = 33 [25%]), conjunctival (n = 26 [19%]), and eyelid (n = 8 [6%]) melanoma. Overall, the mean patient age at presentation was 7 years (median, 8; range, 1-12 years), with 63 males (49%). The mean age by tumor site was 6.50 ± 3.90, 7.44 ± 3.57, 9.12 ± 2.61, and 5.63 ± 2.38 years, for choroid/ciliary body, iris, conjunctiva, and eyelid melanoma, respectively (P = 0.001). Association with ocular melanocytosis was seen in 15%, 11%, 4%, and 0%, respectively (P = 0.01). Frequency of ocular melanoma family history did not vary by tumor site (7%, 17%, 9% and 12%, resp. [P = 0.26]). After mean follow-up of 74, 85, 50, and 105 months (P = 0.65), metastasis was seen in 12%, 9%, 19%, and 13% of choroid/ciliary body, iris, conjunctiva, and eyelid melanoma, respectively. Death was reported in 5%, 3%, 8%, and 0%, respectively, with survival analysis indicating higher mortality in choroidal/ciliary body and conjunctival melanoma patients. CONCLUSIONS Ocular melanoma in the pediatric population is rare, with unique clinical features and outcomes. Iris melanoma accounts for about one-third of pediatric uveal melanoma cases.
Collapse
Affiliation(s)
- Babak Masoomian
- Ocular Oncology Service, Farabi Eye Hospital Research Center, Tehran university of medical sciences, Tehran, Iran; Ocular Oncology Service, Wills Eye Hospital, Thomas Jefferson University, Philadelphia, Pennsylvania.
| | - Lauren A Dalvin
- Department of Ophthalmology, Mayo Clinic, Rochester, Minnesota
| | - Hamid Riazi-Esfahani
- Ocular Oncology Service, Farabi Eye Hospital Research Center, Tehran university of medical sciences, Tehran, Iran
| | - Fariba Ghassemi
- Ocular Oncology Service, Farabi Eye Hospital Research Center, Tehran university of medical sciences, Tehran, Iran
| | - Momeneh Azizkhani
- Ocular Oncology Service, Farabi Eye Hospital Research Center, Tehran university of medical sciences, Tehran, Iran
| | - Masoud Mirghorbani
- Ocular Oncology Service, Farabi Eye Hospital Research Center, Tehran university of medical sciences, Tehran, Iran
| | - Masoud Khorrami-Nejad
- Ocular Oncology Service, Farabi Eye Hospital Research Center, Tehran university of medical sciences, Tehran, Iran
| | - Zaynab Sajjadi
- Ocular Oncology Service, Wills Eye Hospital, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Swathi Kaliki
- The Operation Eyesight Universal Institute for Eye Cancer, LV Prasad Eye Institute, Hyderabad, Telangana, India
| | - Mandeep S Sagoo
- Ocular Oncology Service, St Bartholomew's and Moorfields Eye Hospital, London, United Kingdom and NIHR Biomedical Research Centre for Ophthalmology at Moorfields Eye Hospital and UCL Institute of Ophthalmology, London, United Kingdom
| | - Lamis Al Harby
- Ocular Oncology Service, St Bartholomew's and Moorfields Eye Hospital, London, United Kingdom and NIHR Biomedical Research Centre for Ophthalmology at Moorfields Eye Hospital and UCL Institute of Ophthalmology, London, United Kingdom
| | - Rana'a T Al-Jamal
- Ocular Oncology Service, Department of Ophthalmology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Tero T Kivelä
- Ocular Oncology Service, Department of Ophthalmology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | | | | | - Carol L Shields
- Ocular Oncology Service, Wills Eye Hospital, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
3
|
Role of miRNA in Melanoma Development and Progression. Int J Mol Sci 2022; 24:ijms24010201. [PMID: 36613640 PMCID: PMC9820801 DOI: 10.3390/ijms24010201] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Melanoma is one of the most aggressive and progressive skin cancers. It develops from normal pigment-producing cells known as melanocytes, so it is important to know the mechanism behind such transformations. The study of metastasis mechanisms is crucial for a better understanding the biology of neoplastic cells. Metastasis of melanoma, or any type of cancer, is a multi-stage process in which the neoplastic cells leave the primary tumour, travel through the blood and/or lymphatic vessels, settle in distant organs and create secondary tumours. MicroRNA (miRNA) can participate in several steps of the metastatic process. This review presents the role of miRNA molecules in the development and progression as well as the immune response to melanoma.
Collapse
|
4
|
Elgeshy KM, Abdel Wahab AHA. The Role, Significance, and Association of MicroRNA-10a/b in Physiology of Cancer. Microrna 2022; 11:118-138. [PMID: 35616665 DOI: 10.2174/2211536611666220523104408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 03/21/2022] [Accepted: 04/04/2022] [Indexed: 01/01/2023]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that regulate the translation of mRNA and protein, mainly at the posttranscriptional level. Global expression profiling of miRNAs has demonstrated a broad spectrum of aberrations that correlated with several diseases, and miRNA- 10a and miRNA-10b were the first examined miRNAs to be involved in abnormal activities upon dysregulation, including many types of cancers and progressive diseases. It is expected that the same miRNAs behave inconsistently within different types of cancer. This review aims to provide a set of information about our updated understanding of miRNA-10a and miRNA-10b and their clinical significance, molecular targets, current research gaps, and possible future applications of such potent regulators.
Collapse
Affiliation(s)
- Khaled M Elgeshy
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Cairo, Egypt
| | | |
Collapse
|
5
|
Rouhanizadeh N, Mokhtari M, Hajialiasgar S. Investigation of microRNA-10b values for the discrimination of metastasis due to melanoma. JOURNAL OF RESEARCH IN MEDICAL SCIENCES 2021; 26:108. [PMID: 35126571 PMCID: PMC8765503 DOI: 10.4103/jrms.jrms_573_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/22/2020] [Accepted: 07/15/2021] [Indexed: 11/30/2022]
Abstract
Background: Melanoma is one of the most invasive cutaneous cancers with characteristics such as rapid progression and distant metastasis. The early diagnosis and staging of melanoma can help better manage the patients. The current study is aimed to assess the values of microRNA-10b (miRNA-10b) in the discrimination of metastatic melanomas. Materials and Methods: The current cross-sectional study has been conducted on forty patients diagnosed with melanoma since 2011. Cell culture of melanoma cell lines derived from the cancerous tissue, including WM115, BLM, K1735, WM793, and A375M, was cultured. In order to assess miRNA-10b levels, the real-time polymerase chain reaction was utilized. The absence (n = 20)/presence (n = 20) of metastasis was diagnosed with chest computed tomography or chest X-ray. The values of miRNA-10b for the discrimination of metastasis incidence were assessed. Results: The demographic characteristics, including age and gender of the metastatic and nonmetastatic patients, were similar (P > 0.05). The specimen cultures were positive for miRNA-10b in 14 (35%) of the metastatic cases versus 4 (20%) of the nonmetastatic ones (P = 0.004). The quantitative analysis of miR-2b revealed significantly higher levels in metastatic cases (−1.59 ± 1.13 in metastatic vs. −0.16 ± 0.67 in nonmetastatic cases; P = 0.001). The measured area under the curve for the value of miRNA-10b was 0.923 (P < 0.001; 95% confidence interval: 0.811–1) with sensitivity and specificity of 100% and 94.4%. Conclusion: Based on this study, metastatic melanoma was associated with elevated levels of miRNA-10b. This marker had the sensitivity and specificity of 100% and 94.4% for the discrimination of metastatic melanoma from nonmetastatic ones.
Collapse
|
6
|
Li K, Zhou Z, Li J, Xiang R. miR-146b Functions as an Oncogene in Oral Squamous Cell Carcinoma by Targeting HBP1. Technol Cancer Res Treat 2020; 19:1533033820959404. [PMID: 33327874 PMCID: PMC7750896 DOI: 10.1177/1533033820959404] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) represents more than 90% of all oral cancer and is the most common oral threat around the world. In this study, we examined the roles of miR-146b in OSCC cells. The miR-146b expression in OSCC tissues and cell lines was evaluated by quantitative real-time PCR (qRT-PCR). MTT assay was used to investigate the impact of miR-146b on the growth of OSCC cells in vitro. Transwell assay was utilized to analyze the effect of miR-146b on the migration and invasion of OSCC cells. Target prediction and luciferase assay were employed to demonstrate the interaction between miR-146b and HMG-Box Transcription Factor 1 (HBP1). Western blot was carried out to investigate the protein expressions of HBP1 related genes. miR-146b expression was significantly higher in OSCC tissues and cells compared with paired normal tissues and normal oral keratinocyte cells. Inhibition of miR-146b decreased cell proliferation, migration, and invasion of OSCC cells. Further studies found that HBP1 was a direct target of miR-146b. Co-inhibition of HBP1 reversed the suppressive impact of miR-146b inhibition on OSCC cell proliferation, migration, and invasion. In conclusion-ourresults reveal that miR-146b potentially regulates the proliferation, migration, and invasion of OSCC cells through binding and downregulating HBP1 expression in OSCC cells.
Collapse
Affiliation(s)
- Kui Li
- Department of Stomatology, Guangyuan Central Hospital, Guangyuan, Sichuan Province, China
| | - Zheng Zhou
- Department of stomatology, Xiangyang Stomatological Hospital, Xiangyang City, Hubei Province, China
| | - Ju Li
- Department of stomatology, First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan Province, China
| | - Rui Xiang
- Department of prosthodontics, WuXi Stomatology Hospital, Jiangsu Province, China
| |
Collapse
|
7
|
Zamanian-Daryoush M, Lindner DJ, Buffa J, Gopalan B, Na J, Hazen SL, DiDonato JA. Apolipoprotein A-I anti-tumor activity targets cancer cell metabolism. Oncotarget 2020; 11:1777-1796. [PMID: 32477466 PMCID: PMC7233810 DOI: 10.18632/oncotarget.27590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 04/10/2020] [Indexed: 02/07/2023] Open
Abstract
Previously, we reported apolipoprotein A-I (apoA-I), the major protein component of high-density lipoprotein (HDL), has potent anti-melanoma activity. We used DNA microarray and bioinformatics to interrogate gene expression profiles of tumors from apoA-I expressing (A-I Tg+/-) versus apoA-I-null (A-I KO) animals to gain insights into mechanisms of apoA-I tumor protection. Differential expression analyses of 11 distinct tumors per group with > 1.2-fold cut-off and a false discovery rate adjusted p < 0.05, identified 176 significant transcripts (71 upregulated and 105 downregulated in A-I Tg+/- versus A-I KO group). Bioinformatic analyses identified the mevalonate and de novo serine/glycine synthesis pathways as potential targets for apoA-I anti-tumor activity. Relative to A-I KO, day 7 B16F10L melanoma tumor homografts from A-I Tg+/- exhibited reduced expression of mevalonate-5-pyrophosphate decarboxylase (Mvd), a key enzyme targeted in cancer therapy, along with a number of key genes in the sterol synthesis arm of the mevalonate pathway. Phosphoglycerate dehydrogenase (Phgdh), the first enzyme branching off glycolysis into the de novo serine synthesis pathway, was the most repressed transcript in tumors from A-I Tg+/-. We validated our mouse tumor studies by comparing the significant transcripts with adverse tumor markers previously identified in human melanoma and found 45% concordance. Our findings suggest apoA-I targets the mevalonate and serine synthesis pathways in melanoma cells in vivo, thus providing anti-tumor metabolic effects by inhibiting the flux of biomolecular building blocks for macromolecule synthesis that drive rapid tumor growth.
Collapse
Affiliation(s)
- Maryam Zamanian-Daryoush
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Daniel J. Lindner
- Taussig Cancer Institute, Cleveland Clinic, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Jennifer Buffa
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | | | - Jie Na
- Department of Health Science Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Stanley L. Hazen
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Joseph A. DiDonato
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
8
|
Torres R, Lang UE, Hejna M, Shelton SJ, Joseph NM, Shain AH, Yeh I, Wei ML, Oldham MC, Bastian BC, Judson-Torres RL. MicroRNA Ratios Distinguish Melanomas from Nevi. J Invest Dermatol 2020; 140:164-173.e7. [PMID: 31580842 PMCID: PMC6926155 DOI: 10.1016/j.jid.2019.06.126] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/27/2019] [Accepted: 06/04/2019] [Indexed: 12/27/2022]
Abstract
The use of microRNAs as biomarkers has been proposed for many diseases, including the diagnosis of melanoma. Although hundreds of microRNAs have been identified as differentially expressed in melanomas as compared to benign melanocytic lesions, a limited consensus has been achieved across studies, constraining the effective use of these potentially useful markers. In this study, we applied a machine learning-based pipeline to a dataset consisting of genetic features, clinical features, and next-generation microRNA sequencing from micro-dissected formalin-fixed paraffin embedded melanomas and their adjacent benign precursor nevi. We identified patient age and tumor cellularity as variables that frequently confound the measured expression of potentially diagnostic microRNAs. By employing the ratios of microRNAs that were either enriched or depleted in melanoma compared to the nevi as a normalization strategy, we developed a model that classified all the available published cohorts with an area under the receiver operating characteristic curve of 0.98. External validation on an independent cohort classified lesions with 81% sensitivity and 88% specificity and was uninfluenced by the tumor content of the sample or patient age.
Collapse
Affiliation(s)
- Rodrigo Torres
- Department of Dermatology, University of California, San Francisco, California, USA
| | - Ursula E Lang
- Department of Dermatology, University of California, San Francisco, California, USA; Department of Pathology, University of California, San Francisco, California, USA
| | - Miroslav Hejna
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Samuel J Shelton
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Nancy M Joseph
- Department of Pathology, University of California, San Francisco, California, USA
| | - A Hunter Shain
- Department of Dermatology, University of California, San Francisco, California, USA
| | - Iwei Yeh
- Department of Dermatology, University of California, San Francisco, California, USA; Department of Pathology, University of California, San Francisco, California, USA
| | - Maria L Wei
- Department of Dermatology, University of California, San Francisco, California, USA; San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
| | - Michael C Oldham
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Boris C Bastian
- Department of Dermatology, University of California, San Francisco, California, USA; Department of Pathology, University of California, San Francisco, California, USA
| | - Robert L Judson-Torres
- Department of Dermatology, University of California, San Francisco, California, USA; Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA; Department of Dermatology, University of Utah School of Medicine, Salt Lake City, Utah, USA.
| |
Collapse
|
9
|
Abstract
Adolescent and young adult (AYA) patients with cancer have not attained the same improvements in overall survival as either younger children or older adults. One possible reason for this disparity may be that the AYA cancers exhibit unique biologic characteristics, resulting in differences in clinical and treatment resistance behaviors. Our current understanding of the unique biological/genomic characteristics of AYA cancers is limited. However, there has been some progress that has provided clues about the biology of AYA cancers. We here review the latest findings in the area of AYA cancer biology and discuss what is required to advance the field for the more effective treatment of this patient population.
Collapse
|
10
|
Hu ZQ, Rao CL, Tang ML, zhang Y, Lu XX, Chen JG, Mao C, Deng L, Li Q, Mao XH. Rab32 GTPase, as a direct target of miR-30b/c, controls the intracellular survival of Burkholderia pseudomallei by regulating phagosome maturation. PLoS Pathog 2019; 15:e1007879. [PMID: 31199852 PMCID: PMC6594657 DOI: 10.1371/journal.ppat.1007879] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 06/26/2019] [Accepted: 05/30/2019] [Indexed: 02/06/2023] Open
Abstract
Burkholderia pseudomallei is a gram-negative, facultative intracellular bacterium, which causes a disease known as melioidosis. Professional phagocytes represent a crucial first line of innate defense against invading pathogens. Uptake of pathogens by these cells involves the formation of a phagosome that matures by fusing with early and late endocytic vesicles, resulting in killing of ingested microbes. Host Rab GTPases are central regulators of vesicular trafficking following pathogen phagocytosis. However, it is unclear how Rab GTPases interact with B. pseudomallei to regulate the transport and maturation of bacterial-containing phagosomes. Here, we showed that the host Rab32 plays an important role in mediating antimicrobial activity by promoting phagosome maturation at an early phase of infection with B. pseudomallei. And we demonstrated that the expression level of Rab32 is increased through the downregulation of the synthesis of miR-30b/30c in B. pseudomallei infected macrophages. Subsequently, we showed that B. pseudomallei resides temporarily in Rab32-positive compartments with late endocytic features. And Rab32 enhances phagosome acidification and promotes the fusion of B. pseudomallei-containing phagosomes with lysosomes to activate cathepsin D, resulting in restricted intracellular growth of B. pseudomallei. Additionally, Rab32 mediates phagosome maturation depending on its guanosine triphosphate/guanosine diphosphate (GTP/GDP) binding state. Finally, we report the previously unrecognized role of miR-30b/30c in regulating B. pseudomallei-containing phagosome maturation by targeting Rab32 in macrophages. Altogether, we provide a novel insight into the host immune-regulated cellular pathway against B. pseudomallei infection is partially dependent on Rab32 trafficking pathway, which regulates phagosome maturation and enhances the killing of this bacterium in macrophages.
Collapse
Affiliation(s)
- Zhi-qiang Hu
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory & Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Cheng-long Rao
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory & Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Meng-ling Tang
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory & Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yu zhang
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory & Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiao-xue Lu
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory & Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jian-gao Chen
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory & Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Chan Mao
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory & Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Ling Deng
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory & Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Qian Li
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory & Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xu-hu Mao
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory & Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
11
|
Gajos-Michniewicz A, Czyz M. Role of miRNAs in Melanoma Metastasis. Cancers (Basel) 2019; 11:E326. [PMID: 30866509 PMCID: PMC6468614 DOI: 10.3390/cancers11030326] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/28/2019] [Accepted: 03/02/2019] [Indexed: 12/16/2022] Open
Abstract
Tumour metastasis is a multistep process. Melanoma is a highly aggressive cancer and metastasis accounts for the majority of patient deaths. microRNAs (miRNAs) are non-coding RNAs that affect the expression of their target genes. When aberrantly expressed they contribute to the development of melanoma. While miRNAs can act locally in the cell where they are synthesized, they can also influence the phenotype of neighboring melanoma cells or execute their function in the direct tumour microenvironment by modulating ECM (extracellular matrix) and the activity of fibroblasts, endothelial cells, and immune cells. miRNAs are involved in all stages of melanoma metastasis, including intravasation into the lumina of vessels, survival during circulation in cardiovascular or lymphatic systems, extravasation, and formation of the pre-metastatic niche in distant organs. miRNAs contribute to metabolic alterations that provide a selective advantage during melanoma progression. They play an important role in the development of drug resistance, including resistance to targeted therapies and immunotherapies. Distinct profiles of miRNA expression are detected at each step of melanoma development. Since miRNAs can be detected in liquid biopsies, they are considered biomarkers of early disease stages or response to treatment. This review summarizes recent findings regarding the role of miRNAs in melanoma metastasis.
Collapse
Affiliation(s)
- Anna Gajos-Michniewicz
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215 Lodz, Poland.
| | - Malgorzata Czyz
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215 Lodz, Poland.
| |
Collapse
|
12
|
Ushio N, Rahman MM, Maemura T, Lai YC, Iwanaga T, Kawaguchi H, Miyoshi N, Momoi Y, Miura N. Identification of dysregulated microRNAs in canine malignant melanoma. Oncol Lett 2018; 17:1080-1088. [PMID: 30655868 PMCID: PMC6313064 DOI: 10.3892/ol.2018.9692] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 09/27/2018] [Indexed: 12/29/2022] Open
Abstract
Inhibiting aberrantly upregulated microRNAs (miR/miRNAs) has emerged as a novel focus for therapeutic intervention in human melanoma. Thus, identifying upregulated miRNAs is essential for identifying additional melanoma-associated therapeutic targets. In the present study, microarray-based miRNA profiling of canine malignant melanoma (CMM) tissue obtained from the oral cavity was performed and differential expression was confirmed by a reverse transcription-quantitative polymerase chain reaction (RT-qPCR). An analysis of the microarray data revealed 17 dysregulated miRNAs; 5 were upregulated and 12 were downregulated. RT-qPCR analysis was performed for 2 upregulated (miR-204 and miR-383), 3 downregulated (miR-122, miR-143 and miR-205) and 6 additional oncogenic miRNAs (oncomiRs; miR-16, miR-21, miR-29b, miR-92a, miR-125b and miR-222). The expression levels of seven of the miRNAs, miR-16, miR-21, miR-29b, miR-122, miR-125b, miR-204 and miR-383 were significantly upregulated; however, the expression of miR-205 was downregulated in CMM tissues compared with normal oral tissues. The microarray and RT-qPCR analyses validated the upregulation of two potential oncomiRs miR-204 and miR-383. The present study additionally constructed a protein interaction network and a miRNA-target regulatory interaction network using STRING and Cytoscape. In the proposed network, cyclin dependent kinase 2 was a target for miR-383, sirtuin 1 and tumor protein p53 were targets for miR-204 and ATR serine/threonine kinase was a target for both. It was concluded that miR-383 and miR-204 were potential oncomiRs that may be involved in regulating melanoma development by evading DNA repair and apoptosis.
Collapse
Affiliation(s)
- Norio Ushio
- Department of Clinical Veterinary Science, United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi 753-8511, Japan
| | - Md Mahfuzur Rahman
- Department of Clinical Veterinary Science, United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi 753-8511, Japan
| | - Tadashi Maemura
- Kagoshima University Veterinary Teaching Hospital, Joint Faculty of Veterinary Medicine, Kagoshima University, Korimoto, Kagoshima 890-0065, Japan
| | - Yu-Chang Lai
- Department of Clinical Veterinary Science, United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi 753-8511, Japan.,Kagoshima University Veterinary Teaching Hospital, Joint Faculty of Veterinary Medicine, Kagoshima University, Korimoto, Kagoshima 890-0065, Japan
| | - Tomoko Iwanaga
- Kagoshima University Veterinary Teaching Hospital, Joint Faculty of Veterinary Medicine, Kagoshima University, Korimoto, Kagoshima 890-0065, Japan
| | - Hiroaki Kawaguchi
- Department of Hygiene and Health Promotion Medicine, Graduate School of Medicine and Dental Sciences, Kagoshima University, Korimoto, Kagoshima 890-0065, Japan
| | - Noriaki Miyoshi
- Department of Veterinary Histopathology, Joint Faculty of Veterinary Medicine, Kagoshima University, Korimoto, Kagoshima 890-0065, Japan
| | - Yasuyuki Momoi
- Department of Veterinary Diagnostic Imaging, Joint Faculty of Veterinary Medicine, Kagoshima University, Korimoto, Kagoshima 890-0065, Japan
| | - Naoki Miura
- Department of Clinical Veterinary Science, United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi 753-8511, Japan.,Kagoshima University Veterinary Teaching Hospital, Joint Faculty of Veterinary Medicine, Kagoshima University, Korimoto, Kagoshima 890-0065, Japan
| |
Collapse
|
13
|
Abstract
Although microRNAs (miRNAs) have emerged as potent mediators of melanoma development and progression, a precise understanding of their oncogenic role remains unclear. In this study, we analysed formalin-fixed and paraffin-embedded tissues from two separate melanoma cohorts and from a series of benign melanocytic nevi. Using three different quantification methods [array analysis, quantitative PCR (qPCR) and in-situ hybridization (ISH) quantified by digital image analysis], we found considerable miRNA dysregulation in tumours. Using array analysis, samples mainly clustered according to their biological group (benign vs. malignant) and 77 miRNAs differed significantly between nevi and melanoma samples. Increase of miR-21 and miR-142, and decrease of miR-125b, miR-211, miR-101 and miR-513c in the melanomas were verified in both cohorts using qPCR, whereas the decrease of miR-205 observed with array analysis could not be confirmed using qPCR. ISH with digital quantification showed expression of miR-21 and miR-125b in the melanocytic lesions. miR-21 ISH was increased in melanomas, whereas quantification of miR-125b showed uniform ISH expression across nevi and melanomas. Our results support the important involvement of different miRNAs in melanoma biology and may serve as solid basics for further miRNA investigations in melanoma formalin-fixed and paraffin-embedded tissue. In particular, there is increased expression of miR-21 in melanomas compared with benign nevi.
Collapse
|
14
|
Yu X, Zheng H, Chan MTV, Wu WKK. NOVA1 acts as an oncogene in melanoma via regulating FOXO3a expression. J Cell Mol Med 2018; 22:2622-2630. [PMID: 29498217 PMCID: PMC5908123 DOI: 10.1111/jcmm.13527] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 11/29/2017] [Indexed: 12/13/2022] Open
Abstract
Increasing studies have suggested that dysregulation of RNA‐binding proteins (RBPs) contributes to cancer progression. Neuro‐oncological ventral antigen 1 (NOVA1) is a novel RBP and plays an important role in tumour development. However, the expression and role of NOVA1 in melanoma remain unknown. In this study, we indicated that NOVA1 expression was up‐regulated in melanoma samples and cell lines. Moreover, we demonstrated that knockdown of NOVA1 suppressed melanoma cell proliferation, migration and invasion in both A375 and A875 cell lines. In addition, we showed that suppressed expression of NOVA1 enhanced forkhead box O3a (FOXO3a) expression while inhibited AKT expression in melanoma cell. Furthermore, we demonstrated that inhibited expression of FoxO3A rescued NOVA1‐mediated cell proliferation, migration and invasion in melanoma cell line A375. These results suggested that NOVA1 acted as an oncogene in the development of melanoma partly through regulating FoxO3A expression.
Collapse
Affiliation(s)
- Xin Yu
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Heyi Zheng
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Matthew T V Chan
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong City, Hong Kong
| | - William K K Wu
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong City, Hong Kong.,State Key Laboratory of Digestive Disease, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong City, Hong Kong
| |
Collapse
|
15
|
Jahanbani I, Al-Abdallah A, Ali RH, Al-Brahim N, Mojiminiyi O. Discriminatory miRNAs for the Management of Papillary Thyroid Carcinoma and Noninvasive Follicular Thyroid Neoplasms with Papillary-Like Nuclear Features. Thyroid 2018; 28:319-327. [PMID: 29378472 DOI: 10.1089/thy.2017.0127] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Papillary thyroid carcinoma (PTC) variants have several overlapping clinical and pathological features. The World Health Organization recently published a new classification of thyroid tumors containing significant revisions. Encapsulated papillary thyroid carcinoma (EPTC) has been recognized as a distinctive variant of PTC. The noninvasive encapsulated follicular variant of PTC has been reclassified as noninvasive follicular thyroid neoplasms with papillary-like nuclear features (NIFTP). Different neoplasms are associated with different outcomes and require different clinical management. The objective of this study was to explore the miRNA expression patterns specific for classic PTC (cPTC), EPTC, follicular variant of PTC, and NIFTP in order to identify biomarkers of diagnostic and prognostic utility aiming for better clinical decisions. METHODS The expression of 84 miRNAs was determined by quantitative real-time polymerase chain reaction in 113 thyroid tissues of PTC (classic, encapsulated, and follicular), NIFTP, and hyperplasia lesions. Expression of the same miRNAs was tested in pre- and postoperative whole-blood samples. RESULTS Several miRNAs were differentially expressed in the different groups. Expression profile of miRNAs in the tissue was similarly reflected in the circulation. Receiver operating characteristic curve analysis showed that miR-7-5p, miR-222-3p, and miR-146b-5p can discriminate between the different groups with high sensitivity and specificity. Downregulation of miR-144-3p, miR-15a-5p, miR-20a-5p, miR-32-5p miR-142-5p, miR-143-3p, and miR-20b-5p is associated with aggressive behavior in cPTC. Circulating miR-146b-5p, miR-222-3p, miR-155-5p, and miR-378a-3p are potential diagnostic and follow up biomarkers for PTC. CONCLUSION Downregulation of miR-7-5p discriminates NIFTP from hyperplasia. Upregulation of miR-222-3p discriminates follicular variant of PTC from NIFTP. High levels of miR-146b-5p distinctively characterize cPTC. These miRNAs are useful biomarkers in the diagnosis of PTC and NIFTP, and help to avoid unnecessary thyroidectomy and improve clinical management.
Collapse
Affiliation(s)
- Iman Jahanbani
- 1 Department of Pathology, Faculty of Medicine, Kuwait University , Safat, Kuwait
| | - Abeer Al-Abdallah
- 1 Department of Pathology, Faculty of Medicine, Kuwait University , Safat, Kuwait
| | - Rola H Ali
- 1 Department of Pathology, Faculty of Medicine, Kuwait University , Safat, Kuwait
| | - Nabeel Al-Brahim
- 2 Department of Pathology, Farwaniya Hospital , Kuwait City, Kuwait
| | - Olusegun Mojiminiyi
- 1 Department of Pathology, Faculty of Medicine, Kuwait University , Safat, Kuwait
| |
Collapse
|
16
|
Hosseini SM, Soltani BM, Tavallaei M, Mowla SJ, Tafsiri E, Bagheri A, Khorshid HRK. Clinically Significant Dysregulation of hsa-miR-30d-5p and hsa-let-7b Expression in Patients with Surgically Resected Non-Small Cell Lung Cancer. Avicenna J Med Biotechnol 2018; 10:98-104. [PMID: 29849986 PMCID: PMC5960066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND The cyclin E2 (CYCE2) is an important regulator in the progression and development of NSCLC, and its ectopic expression promoted the proliferation, invasion, and migration in several tumors, including Non-Small Cell Lung Cancer (NSCLC). However, the upregulation of CYCE2 in NSCLC cells suggested that it has a key role in tumorigenicity. In addition, the RAS family proteins as oncoproteins were activated in many major tumor types and its suitability as the therapeutic target in NSCLC was proposed. Considering the crucial role of microRNAs, it was hypothesized that altered expression of hsa-miR-30d-5p and hsa-let-7b might provide a reliable diagnostic tumor marker for diagnosis of NSCLC. METHOD Real-time RT-PCR approach could evaluate the expression alteration of hsa-miR-30d-5p and hsa-let-7b and it was related to the surgically resected tissue of 24 lung cancer patients and 10 non-cancerous patients. The miRNAs expression was associated with clinicopathological features of the patients. RESULTS Hsa-miR-30d showed a significant downregulation (p=0.0382) in resected tissue of NSCLC patients compared with control group. Its expression level could differentiate different stages of malignancies from each other. The ROC curve analysis gave it an AUC=0.73 (p=0.037) which was a good score as a reliable biomarker. In contrast, hsa-let-7b was significantly overexpressed in tumor samples (p=0.03). Interestingly, our findings revealed a significant association of hsa-let-7b in adenocarcinoma tumors, compared to Squamous Cell Carcinomas (SCC) (p<0.05). Also, analysis of ROC curve of hsa-let-7b (AUC=0.74, p-value=0.042) suggests that it could be as a suitable biomarker for NSCLC. CONCLUSION Together, these results suggest a possible tumor suppressor role for hsa-miR-30d in lung tumor progression and initiation. Moreover, upregulation of hsa-let-7b was associated with the tumor type.
Collapse
Affiliation(s)
- Sayed Mostafa Hosseini
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bahram Mohammad Soltani
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran,Corresponding author: Bahram Mohammad Soltani, Ph.D., Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran Tel: +98 21 82883464 Fax: +98 21 82884717 E-mail:
| | - Mahmoud Tavallaei
- Human Genetic Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Seyed Javad Mowla
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Elham Tafsiri
- Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Abouzar Bagheri
- Department of Clinical Biochemistry and Genetics, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | | |
Collapse
|
17
|
Bai M, Zhang H, Si L, Yu N, Zeng A, Zhao R. Upregulation of Serum miR-10b Is Associated with Poor Prognosis in Patients with Melanoma. J Cancer 2017; 8:2487-2491. [PMID: 28900486 PMCID: PMC5595078 DOI: 10.7150/jca.18824] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 02/19/2017] [Indexed: 12/30/2022] Open
Abstract
Aberrant expression of microRNAs (miRNAs) are believed to play a central role in the initiation and development of cancer. The aim of our study was to determine the clinical significance of serum miR-10b in melanoma. A total of 85 and 30 serum samples were obtained from patients with melanoma and healthy volunteers respectively. qRT-PCR was performed to evaluate the expression level of miR-10b in the melanoma cell lines and the serum samples from the participants. Then the clinical significance of serum miR-10b was further determined. Our results showed that the expression level of miR-10b was significantly increased in metastasis melanoma cells and melanoma patients compared to their respective controls. In addition, serum miR-10b expression level was able to discriminate melanoma patients from healthy volunteers as well differentiate melanoma patients at different clinical stage with high accuracy. Moreover, upregulation of serum miR-10b was positively associated with enhanced lymph node metastasis, advanced clinical stage and a shortened survival rate. Finally serum miR-10b was an independent prognostic factor for melanoma. Collectively, our study suggests that serum miR-10b level is upregulated in melanoma and associated with poor prognosis. It may be used as a potential prognostic biomarker for melanoma.
Collapse
Affiliation(s)
- Ming Bai
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Hailin Zhang
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Loubin Si
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Nanze Yu
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Ang Zeng
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Ru Zhao
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
18
|
Circulating miRNAs in Pediatric Pulmonary Hypertension Show Promise as Biomarkers of Vascular Function. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:4957147. [PMID: 28819545 PMCID: PMC5551515 DOI: 10.1155/2017/4957147] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 04/18/2017] [Accepted: 05/04/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND/OBJECTIVES The objective of this study was to evaluate the utility of circulating miRNAs as biomarkers of vascular function in pediatric pulmonary hypertension. METHOD Fourteen pediatric pulmonary arterial hypertension patients underwent simultaneous right heart catheterization (RHC) and blood biochemical analysis. Univariate and stepwise multivariate linear regression was used to identify and correlate measures of reactive and resistive afterload with circulating miRNA levels. Furthermore, circulating miRNA candidates that classified patients according to a 20% decrease in resistive afterload in response to oxygen (O2) or inhaled nitric oxide (iNO) were identified using receiver-operating curves. RESULTS Thirty-two circulating miRNAs correlated with the pulmonary vascular resistance index (PVRi), pulmonary arterial distensibility, and PVRi decrease in response to O2 and/or iNO. Multivariate models, combining the predictive capability of multiple promising miRNA candidates, revealed a good correlation with resistive (r = 0.97, P2-tailed < 0.0001) and reactive (r = 0.86, P2-tailed < 0.005) afterloads. Bland-Altman plots showed that 95% of the differences between multivariate models and RHC would fall within 0.13 (mmHg-min/L)m2 and 0.0085/mmHg for resistive and reactive afterloads, respectively. Circulating miR-663 proved to be a good classifier for vascular responsiveness to acute O2 and iNO challenges. CONCLUSION This study suggests that circulating miRNAs may be biomarkers to phenotype vascular function in pediatric PAH.
Collapse
|
19
|
Danielson KM, Rubio R, Abderazzaq F, Das S, Wang YE. High Throughput Sequencing of Extracellular RNA from Human Plasma. PLoS One 2017; 12:e0164644. [PMID: 28060806 PMCID: PMC5218574 DOI: 10.1371/journal.pone.0164644] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 09/28/2016] [Indexed: 01/03/2023] Open
Abstract
The presence and relative stability of extracellular RNAs (exRNAs) in biofluids has led to an emerging recognition of their promise as ‘liquid biopsies’ for diseases. Most prior studies on discovery of exRNAs as disease-specific biomarkers have focused on microRNAs (miRNAs) using technologies such as qRT-PCR and microarrays. The recent application of next-generation sequencing to discovery of exRNA biomarkers has revealed the presence of potential novel miRNAs as well as other RNA species such as tRNAs, snoRNAs, piRNAs and lncRNAs in biofluids. At the same time, the use of RNA sequencing for biofluids poses unique challenges, including low amounts of input RNAs, the presence of exRNAs in different compartments with varying degrees of vulnerability to isolation techniques, and the high abundance of specific RNA species (thereby limiting the sensitivity of detection of less abundant species). Moreover, discovery in human diseases often relies on archival biospecimens of varying age and limiting amounts of samples. In this study, we have tested RNA isolation methods to optimize profiling exRNAs by RNA sequencing in individuals without any known diseases. Our findings are consistent with other recent studies that detect microRNAs and ribosomal RNAs as the major exRNA species in plasma. Similar to other recent studies, we found that the landscape of biofluid microRNA transcriptome is dominated by several abundant microRNAs that appear to comprise conserved extracellular miRNAs. There is reasonable correlation of sets of conserved miRNAs across biological replicates, and even across other data sets obtained at different investigative sites. Conversely, the detection of less abundant miRNAs is far more dependent on the exact methodology of RNA isolation and profiling. This study highlights the challenges in detecting and quantifying less abundant plasma miRNAs in health and disease using RNA sequencing platforms.
Collapse
Affiliation(s)
- Kirsty M. Danielson
- Cardiovascular Institute, Massachusetts General Hospital, Boston, MA, United States of America
| | - Renee Rubio
- Center for Cancer Computational Biology, Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA, United States of America
| | - Fieda Abderazzaq
- Center for Cancer Computational Biology, Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA, United States of America
| | - Saumya Das
- Cardiovascular Institute, Massachusetts General Hospital, Boston, MA, United States of America
- * E-mail: (YEW); (SD)
| | - Yaoyu E. Wang
- Center for Cancer Computational Biology, Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA, United States of America
- * E-mail: (YEW); (SD)
| |
Collapse
|
20
|
Tricoli JV, Bleyer A, Anninga J, Barr R. The Biology of AYA Cancers. CANCER IN ADOLESCENTS AND YOUNG ADULTS 2017. [DOI: 10.1007/978-3-319-33679-4_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
21
|
Andrews MC, Cursons J, Hurley DG, Anaka M, Cebon JS, Behren A, Crampin EJ. Systems analysis identifies miR-29b regulation of invasiveness in melanoma. Mol Cancer 2016; 15:72. [PMID: 27852308 PMCID: PMC5112703 DOI: 10.1186/s12943-016-0554-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 10/31/2016] [Indexed: 02/08/2023] Open
Abstract
Background In many cancers, microRNAs (miRs) contribute to metastatic progression by modulating phenotypic reprogramming processes such as epithelial-mesenchymal plasticity. This can be driven by miRs targeting multiple mRNA transcripts, inducing regulated changes across large sets of genes. The miR-target databases TargetScan and DIANA-microT predict putative relationships by examining sequence complementarity between miRs and mRNAs. However, it remains a challenge to identify which miR-mRNA interactions are active at endogenous expression levels, and of biological consequence. Methods We developed a workflow to integrate TargetScan and DIANA-microT predictions into the analysis of data-driven associations calculated from transcript abundance (RNASeq) data, specifically the mutual information and Pearson’s correlation metrics. We use this workflow to identify putative relationships of miR-mediated mRNA repression with strong support from both lines of evidence. Applying this approach systematically to a large, published collection of unique melanoma cell lines – the Ludwig Melbourne melanoma (LM-MEL) cell line panel – we identified putative miR-mRNA interactions that may contribute to invasiveness. This guided the selection of interactions of interest for further in vitro validation studies. Results Several miR-mRNA regulatory relationships supported by TargetScan and DIANA-microT demonstrated differential activity across cell lines of varying matrigel invasiveness. Strong negative statistical associations for these putative regulatory relationships were consistent with target mRNA inhibition by the miR, and suggest that differential activity of such miR-mRNA relationships contribute to differences in melanoma invasiveness. Many of these relationships were reflected across the skin cutaneous melanoma TCGA dataset, indicating that these observations also show graded activity across clinical samples. Several of these miRs are implicated in cancer progression (miR-211, -340, -125b, −221, and -29b). The specific role for miR-29b-3p in melanoma has not been well studied. We experimentally validated the predicted miR-29b-3p regulation of LAMC1 and PPIC and LASP1, and show that dysregulation of miR-29b-3p or these mRNA targets can influence cellular invasiveness in vitro. Conclusions This analytic strategy provides a comprehensive, systems-level approach to identify miR-mRNA regulation in high-throughput cancer data, identifies novel putative interactions with functional phenotypic relevance, and can be used to direct experimental resources for subsequent experimental validation. Computational scripts are available: http://github.com/uomsystemsbiology/LMMEL-miR-miner Electronic supplementary material The online version of this article (doi:10.1186/s12943-016-0554-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Miles C Andrews
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia.,Ludwig Institute for Cancer Research, Melbourne-Austin Branch, Cancer Immunobiology Laboratory, Heidelberg, VIC, 3084, Australia.,School of Cancer Medicine, La Trobe University, Heidelberg, VIC, 3084, Australia.,Department of Medicine, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Joseph Cursons
- Systems Biology Laboratory, University of Melbourne, Parkville, VIC, 3010, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science, University of Melbourne, Parkville, VIC, 3010, Australia.,School of Mathematics and Statistics, University of Melbourne, Parkville, VIC, 3010, Australia.,Centre for Systems Genomics, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Daniel G Hurley
- Systems Biology Laboratory, University of Melbourne, Parkville, VIC, 3010, Australia.,School of Mathematics and Statistics, University of Melbourne, Parkville, VIC, 3010, Australia.,Centre for Systems Genomics, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Matthew Anaka
- Ludwig Institute for Cancer Research, Melbourne-Austin Branch, Cancer Immunobiology Laboratory, Heidelberg, VIC, 3084, Australia.,Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Jonathan S Cebon
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia. .,Ludwig Institute for Cancer Research, Melbourne-Austin Branch, Cancer Immunobiology Laboratory, Heidelberg, VIC, 3084, Australia. .,School of Cancer Medicine, La Trobe University, Heidelberg, VIC, 3084, Australia. .,Department of Medicine, University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Andreas Behren
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia. .,Ludwig Institute for Cancer Research, Melbourne-Austin Branch, Cancer Immunobiology Laboratory, Heidelberg, VIC, 3084, Australia. .,School of Cancer Medicine, La Trobe University, Heidelberg, VIC, 3084, Australia.
| | - Edmund J Crampin
- Department of Medicine, University of Melbourne, Parkville, VIC, 3010, Australia. .,Systems Biology Laboratory, University of Melbourne, Parkville, VIC, 3010, Australia. .,ARC Centre of Excellence in Convergent Bio-Nano Science, University of Melbourne, Parkville, VIC, 3010, Australia. .,School of Mathematics and Statistics, University of Melbourne, Parkville, VIC, 3010, Australia. .,Centre for Systems Genomics, University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
22
|
miRNA expression patterns in normal breast tissue and invasive breast cancers of BRCA1 and BRCA2 germ-line mutation carriers. Oncotarget 2016; 6:32115-37. [PMID: 26378051 PMCID: PMC4741663 DOI: 10.18632/oncotarget.5617] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 08/13/2015] [Indexed: 12/11/2022] Open
Abstract
miRNA deregulation has been found to promote carcinogenesis. Little is known about miRNA deregulation in hereditary breast tumors as no miRNA expression profiling studies have been performed in normal breast tissue of BRCA1 and BRCA2 mutation carriers. miRNA profiles of 17 BRCA1- and 9 BRCA2-associated breast carcinomas were analyzed using microarrays. Normal breast tissues from BRCA1 and BRCA2 mutation carriers (both n = 5) and non-mutation carriers (n = 10) were also included. Candidate miRNAs were validated by qRT-PCR. Breast carcinomas showed extensive miRNA alteration compared to normal breast tissues in BRCA1 and BRCA2 mutation carriers. Moreover, normal breast tissue from BRCA1 mutation carriers already showed miRNA alterations compared to non-mutation carriers. Chromosomal distribution analysis showed several hotspots containing down- or up-regulated miRNAs. Pathway analysis yielded many similarities between the BRCA1 and BRCA2 axes with miRNAs involved in cell cycle regulation, proliferation and apoptosis. Lesser known pathways were also affected, including cellular movement and protein trafficking. This study provides a comprehensive insight into the potential role of miRNA deregulation in BRCA1/2-associated breast carcinogenesis. The observed extensive miRNA deregulation is likely the result of genome-wide effects of chromosomal instability caused by impaired BRCA1 or BRCA2 function. This study's results also suggest the existence of common pathways driving breast carcinogenesis in both BRCA1 and BRCA2 germ-line mutation carriers.
Collapse
|
23
|
Latchana N, del Campo SEM, Grignol VP, Clark JR, Albert SP, Zhang J, Wei L, Aldrink JH, Nicol KK, Ranalli MA, Peters SB, Gru A, Trihka P, Payne PRO, Howard JH, Carson WE. Classification of Indeterminate Melanocytic Lesions by MicroRNA Profiling. Ann Surg Oncol 2016; 24:347-354. [DOI: 10.1245/s10434-016-5476-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Indexed: 11/18/2022]
|
24
|
Lorimer PD, White RL, Walsh K, Han Y, Kirks RC, Symanowski J, Forster MR, Sarantou T, Salo JC, Hill JS. Pediatric and Adolescent Melanoma: A National Cancer Data Base Update. Ann Surg Oncol 2016; 23:4058-4066. [PMID: 27364504 DOI: 10.1245/s10434-016-5349-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Indexed: 12/27/2022]
Abstract
BACKGROUND Studies suggest that the biology of pediatric and adolescent melanoma differs from that of adult disease. We report the largest series to date examining the natural history of pediatric and adolescent melanoma. We aim to elucidate the natural history of pediatric and adolescent melanoma and to examine the appropriateness of diagnostic and therapeutic modalities developed for adults and that are currently being used in children. METHODS A retrospective cohort study was conducted of patients with an index diagnosis of cutaneous non-metastatic melanoma from 1998 to 2011 using the National Cancer Data Base (NCDB; n = 420,416). Three age-based cohorts were analyzed: 1-10 years (pediatric), 11-20 years (adolescent), and ≥21 years (adult). Multivariate analyses were used to identify factors associated with overall survival (OS). RESULTS Pediatric melanoma patients have longer OS than their adolescent (hazard ratio [HR] 0.50, 95 % CI 0.25-0.98) and adult counterparts (HR 0.11, 95 % CI 0.06-0.21). Adolescents have longer OS than adults. No difference was found in OS in pediatric patients who are node-positive versus node-negative. In pediatric patients, sentinel lymph node biopsy and completion lymph node dissection are not associated with increased OS. In adolescents, nodal positivity is a significant negative prognostic indicator (HR 4.82, 95 % CI 3.38-6.87). CONCLUSIONS Age-based differences in melanoma outcomes warrant different considerations for diagnostic and therapeutic approaches in each group in order to maximize quality of life while minimizing complications and costs. Prospective, multicenter studies should evaluate the role of diagnostic procedures for pediatric patients.
Collapse
Affiliation(s)
- Patrick D Lorimer
- Department of Surgery, Carolinas Medical Center, Levine Cancer Institute, Charlotte, NC, USA
| | - Richard L White
- Department of Surgery, Carolinas Medical Center, Levine Cancer Institute, Charlotte, NC, USA
| | - Kendall Walsh
- Department of Surgery, Carolinas Medical Center, Levine Cancer Institute, Charlotte, NC, USA
| | - Yimei Han
- Department of Biostatistics, Carolinas Medical Center, Levine Cancer Institute, Charlotte, NC, USA
| | - Russell C Kirks
- Department of Surgery, Carolinas Medical Center, Levine Cancer Institute, Charlotte, NC, USA
| | - James Symanowski
- Department of Biostatistics, Carolinas Medical Center, Levine Cancer Institute, Charlotte, NC, USA
| | - Meghan R Forster
- Department of Surgery, Carolinas Medical Center, Levine Cancer Institute, Charlotte, NC, USA
| | - Terry Sarantou
- Department of Surgery, Carolinas Medical Center, Levine Cancer Institute, Charlotte, NC, USA
| | - Jonathan C Salo
- Department of Surgery, Carolinas Medical Center, Levine Cancer Institute, Charlotte, NC, USA
| | - Joshua S Hill
- Department of Surgery, Carolinas Medical Center, Levine Cancer Institute, Charlotte, NC, USA.
| |
Collapse
|
25
|
Ding M, Lin B, Li T, Liu Y, Li Y, Zhou X, Miao M, Gu J, Pan H, Yang F, Li T, Liu XY, Li R. A dual yet opposite growth-regulating function of miR-204 and its target XRN1 in prostate adenocarcinoma cells and neuroendocrine-like prostate cancer cells. Oncotarget 2016; 6:7686-700. [PMID: 25797256 PMCID: PMC4480709 DOI: 10.18632/oncotarget.3480] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Accepted: 02/03/2015] [Indexed: 12/01/2022] Open
Abstract
Androgen deprivation therapy in prostate cancer (PCa) causes neuroendocrine differentiation (NED) of prostatic adenocarcinomas (PAC) cells, leading to recurrence of PCa. Androgen-responsive genes involved in PCa progression including NED remain largely unknown. Here we demonstrated the importance of androgen receptor (AR)-microRNA-204 (miR-204)-XRN1 axis in PCa cell lines and the rat ventral prostate. Androgens downregulate miR-204, resulting in induction of XRN1 (5′-3′ exoribonuclease 1), which we identified as a miR-204 target. miR-204 acts as a tumor suppressor in two PAC cell lines (LNCaP and 22Rv1) and as an oncomiR in two neuroendocrine-like prostate cancer (NEPC) cell lines (PC-3 and CL1). Importantly, overexpression of miR-204 and knockdown of XRN1 inhibited AR expression in PCa cells. Repression of miR-34a, a known AR-targeting miRNA, contributes AR expression by XRN1. Thus we revealed the AR-miR-204-XRN1-miR-34a positive feedback loop and a dual function of miR-204/XRN1 axis in prostate cancer.
Collapse
Affiliation(s)
- Miao Ding
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China.,WHO Collaborating Center for Research in Human Reproduction, Shanghai, China.,Key Laboratory of Contraceptive Drugs and Devices of NPFPC, Shanghai Institute of Planned Parenthood Research, Shanghai, China
| | - Biaoyang Lin
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Department of Urology, University of Washington, Seattle, WA, USA
| | - Tao Li
- Department of Urology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuanyuan Liu
- WHO Collaborating Center for Research in Human Reproduction, Shanghai, China.,Key Laboratory of Contraceptive Drugs and Devices of NPFPC, Shanghai Institute of Planned Parenthood Research, Shanghai, China
| | - Yuhua Li
- WHO Collaborating Center for Research in Human Reproduction, Shanghai, China.,Key Laboratory of Contraceptive Drugs and Devices of NPFPC, Shanghai Institute of Planned Parenthood Research, Shanghai, China
| | - Xiaoyu Zhou
- WHO Collaborating Center for Research in Human Reproduction, Shanghai, China.,Key Laboratory of Contraceptive Drugs and Devices of NPFPC, Shanghai Institute of Planned Parenthood Research, Shanghai, China
| | - Maohua Miao
- WHO Collaborating Center for Research in Human Reproduction, Shanghai, China.,Key Laboratory of Contraceptive Drugs and Devices of NPFPC, Shanghai Institute of Planned Parenthood Research, Shanghai, China
| | - Jinfa Gu
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Hongjie Pan
- WHO Collaborating Center for Research in Human Reproduction, Shanghai, China.,Key Laboratory of Contraceptive Drugs and Devices of NPFPC, Shanghai Institute of Planned Parenthood Research, Shanghai, China
| | - Fen Yang
- WHO Collaborating Center for Research in Human Reproduction, Shanghai, China.,Key Laboratory of Contraceptive Drugs and Devices of NPFPC, Shanghai Institute of Planned Parenthood Research, Shanghai, China
| | - Tianqi Li
- WHO Collaborating Center for Research in Human Reproduction, Shanghai, China.,Key Laboratory of Contraceptive Drugs and Devices of NPFPC, Shanghai Institute of Planned Parenthood Research, Shanghai, China
| | - Xin Yuan Liu
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Runsheng Li
- WHO Collaborating Center for Research in Human Reproduction, Shanghai, China.,Key Laboratory of Contraceptive Drugs and Devices of NPFPC, Shanghai Institute of Planned Parenthood Research, Shanghai, China.,The Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.,Institute of Reproduction and Development, Fudan University, Shanghai, China
| |
Collapse
|
26
|
Yu H, Yang W. MiR-211 is epigenetically regulated by DNMT1 mediated methylation and inhibits EMT of melanoma cells by targeting RAB22A. Biochem Biophys Res Commun 2016; 476:400-405. [PMID: 27237979 DOI: 10.1016/j.bbrc.2016.05.133] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 05/25/2016] [Indexed: 10/21/2022]
Abstract
MiR-211 has strong inhibitive effects on melanoma cell growth, invasion and metastasis. However, how it is downregulated and whether other genes are involved its downstream regulation in melanoma are not clear. In this study, we firstly verified the expression of miR-211 in melanoma cell lines and observed that its downregulation is associated with increased DNMT1 expression. By performing qRT-PCR and MSP analysis, we confirmed that DNMT1 is negatively correlated with miR-211 expression and can modulate DNA methylation in the promoter region of miR-211. By performing bioinformatics analysis, we found that RAB22A is a possible target of miR-211, which has two broadly conversed binding sites with miR-211 in the 3'UTR. Following dual luciferase assay, qRT-PCR and western blot analysis confirmed the direct binding between miR-211 and RAB22A and the suppressive effect of miR-211 on RAB22A expression. Knockdown of RAB22A increased epithelial properties and impaired mesenchymal properties of the melanoma cells, suggesting that miR-211 modulates epithelial mesenchymal transition (EMT) of melanoma cells via downregulating RAB22A. In summary, the present study firstly demonstrated that DNMT1 mediated promoter methylation is a mechanism of miRNA suppression in melanoma and revealed a new tumor suppressor role of the miR-211 by targeting RAB22A in melanoma. The DNMT1/miR-211/RAB22A axis provides a novel insight into the pathogenesis of melanoma, particularly in the EMT process.
Collapse
Affiliation(s)
- Haizhou Yu
- Department of Burn and Plastic Surgery, Yancheng First People's Hospital, Yancheng, 224005, China
| | - Weixi Yang
- Department of Burn and Plastic Surgery, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, 223300, China.
| |
Collapse
|
27
|
Fomeshi MR, Ebrahimi M, Mowla SJ, Khosravani P, Firouzi J, Khayatzadeh H. Evaluation of the expressions pattern of miR-10b, 21, 200c, 373 and 520c to find the correlation between epithelial-to-mesenchymal transition and melanoma stem cell potential in isolated cancer stem cells. Cell Mol Biol Lett 2016. [PMID: 26208390 DOI: 10.1515/cmble-2015-0025] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Small non-coding RNAs named microRNAs (miRNAs) modulate some functions and signaling pathways in skin epithelial cells and melanocytes. They also function as oncogenes or tumor suppressors in malignancies and tumor metastasis. We investigated the expression patterns of miRNAs, including miR-10b, 21, 200c, 373 and 520c, which regulate epithelial-to-mesenchymal transition (EMT) and metastasis in isolated cancer stem cells (CSCs) and non- CSCs. Six melanoma cell lines were tested for the expressions of stem cell markers. Melanoma stem cells were enriched via fluorescence-activated cell sorting (FACS) using the CD133 cell surface marker or spheroid culture. They were then characterized based on colony and sphere formation, and the expressions of stemness and EMT regulator genes and their invasion potential were assessed using real-time qRT-PCR and invasion assay. Our results indicate that cells enriched via sphere formation expressed all the stemness-related genes and had an enhanced number of colonies, spheres and invaded cells compared to cells enriched using the CD133 cell surface marker. Moreover, miRNAs controlling metastasis increased in the melanospheres. This may be related to the involvement of CSCs in the metastatic process. However, this must be further confirmed through the application of knockdown experiments. The results show that sphere formation is a useful method for enriching melanoma stem cells. Melanospheres were found to upregulate miR-10b, 21, 200c, 373 and 520c, so we suggest that they may control both metastasis and stemness potential.
Collapse
|
28
|
Yoruker EE, Terzioglu D, Teksoz S, Uslu FE, Gezer U, Dalay N. MicroRNA Expression Profiles in Papillary Thyroid Carcinoma, Benign Thyroid Nodules and Healthy Controls. J Cancer 2016; 7:803-9. [PMID: 27162538 PMCID: PMC4860796 DOI: 10.7150/jca.13898] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 03/13/2016] [Indexed: 11/05/2022] Open
Abstract
MicroRNAs (miRNAs) represent a class of short endogenous non-coding RNAs that negatively regulate gene expression at the post-transcriptional level in many biological processes, including proliferation, differentiation, stress response and apoptosis. In this study we analyzed a set of seven miRNA molecules in sera of patients with papillary thyroid cancer, multinodular goiter and healthy controls to identify miRNA molecules that may have utility as markers for PTC. MiR-21 serum levels in the preoperative PTC and MG groups were significantly higher than the control group. Likewise, postoperative levels of miR-151-5p, miR-221 and miR-222 were significantly lower in patients with PTC. When serum miRNA levels were evaluated according to stage, postoperative levels of miR-151-5p and miR-222 were significantly lower in patients with advanced stages of the disease. The miRNA levels were also found associated with the size of the primary tumor. Our data imply that specific miRNA molecules which are differentially expressed in thyroid tumors may play role in the development of papillary thyroid carcinoma.
Collapse
Affiliation(s)
- Ebru Esin Yoruker
- 1. Oncology Institute, Department of Basic Oncology, Istanbul University, Istanbul, Turkey
| | - Duygu Terzioglu
- 2. Cerrahpasa Faculty of Medicine, Department of Biochemistry, Istanbul University, Istanbul, Turkey
| | - Serkan Teksoz
- 3. Cerrahpasa Faculty of Medicine, Department of Surgery, Istanbul University, Istanbul, Turkey
| | - Fatma Ezel Uslu
- 2. Cerrahpasa Faculty of Medicine, Department of Biochemistry, Istanbul University, Istanbul, Turkey
| | - Ugur Gezer
- 1. Oncology Institute, Department of Basic Oncology, Istanbul University, Istanbul, Turkey
| | - Nejat Dalay
- 1. Oncology Institute, Department of Basic Oncology, Istanbul University, Istanbul, Turkey
| |
Collapse
|
29
|
Wang X, Zhao F, He X, Wang J, Zhang Y, Zhang H, Ni Y, Sun J, Wang X, Dou J. Combining TGF-β1 knockdown and miR200c administration to optimize antitumor efficacy of B16F10/GPI-IL-21 vaccine. Oncotarget 2016; 6:12493-504. [PMID: 25895132 PMCID: PMC4494953 DOI: 10.18632/oncotarget.3722] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 03/05/2015] [Indexed: 11/26/2022] Open
Abstract
TGF-β1 secreted abundantly by tumors cells as well as present in the local microenvironment promotes neoplasm invasion and metastasis by triggering the epithelial to mesenchymal transition (EMT). MiR200c has been shown to suppress EMT and to regulate the cellular epithelial and interstitial state conversion, whereas the tumor vaccines are intended to specifically initiate or amplify a host response against evolving tumor cells. Our study aimed at optimizing the antitumor effects of the B16F10/glycosylphosphatidylinositol-interleukin 21 (B16F10/GPI-IL-21) tumor vaccine on melanoma bearing mice by combining the TGF-β1 knockdown and the administration of miR200c agomir. The mice were subcutaneously vaccinated with inactivated B16F10/GPI-IL-21 vaccine and challenged by B16F10 cells transfected with shTGF-β1 (B16F10/shTGF-β1 cells) or B16F10/shTGF-β1 cells with the administration of miR200c agomir. The later combination showed that, when compared with the mice in the control group that received no vaccination, vaccinated mice significantly increased NK and CTL activities, enhanced levels of IFN-γ, and reduced expression of TGF-β1, N-cadherin, Vimentin, Gli1/2, P-Smad2/3 and others involved in promoting expression of EMT-related molecules in tumor areas, and inhibited the melanoma metastasis in lungs and lymph nodes. Altogether, our findings demonstrate that this synergistic anti-cancer regimen effectively induces strong immune response and diminishes the melanoma progression.
Collapse
Affiliation(s)
- Xiaoying Wang
- Department of Pathogenic Biology and Immunology, School of Medicine & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, China
| | - Fengshu Zhao
- Department of Pathogenic Biology and Immunology, School of Medicine & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, China
| | - Xiangfeng He
- Department of Pathogenic Biology and Immunology, School of Medicine & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, China.,Department of Medical Oncology, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Jing Wang
- Department of Gynecology and Obstetrics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Ying Zhang
- Department of Pathogenic Biology and Immunology, School of Medicine & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, China
| | - Hongyi Zhang
- Department of Pathogenic Biology and Immunology, School of Medicine & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, China
| | - Yaoyao Ni
- Department of Pathogenic Biology and Immunology, School of Medicine & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, China
| | - Jianan Sun
- Department of Pathogenic Biology and Immunology, School of Medicine & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, China
| | - Xiaobing Wang
- Department of Center for Experiment Animal, School of Medicine, Southeast University, Nanjing, China
| | - Jun Dou
- Department of Pathogenic Biology and Immunology, School of Medicine & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, China
| |
Collapse
|
30
|
Reinforcing B16F10/GPI-IL-21 vaccine efficacy against melanoma by injecting mice with shZEB1 plasmid or miR200c agomir. Biomed Pharmacother 2016; 80:136-144. [PMID: 27133050 DOI: 10.1016/j.biopha.2016.03.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 03/13/2016] [Accepted: 03/13/2016] [Indexed: 12/13/2022] Open
Abstract
In this study, we hypothesized that the inhibition of epithelial to mesenchymal transition (EMT) program by knockdown of Zinc-finger E-box binding homeobox 1 (ZEB1) or administration of miR200c agomir would strengthen the B16F10 cells transfected with GPI-anchored IL-21 (B16F10/GPI-IL-21) vaccine efficacy in inhibiting the melanoma metastasis. Our findings from the current study indicated that, when compared with the mice immunized with the B16F10/GPI-IL-21 vaccine alone, the mice immunized with B16F10/GPI-IL-21 vaccine combined with injection of shZEB1 plasmid or miR200c agomir not only meaningfully inhibited EMT of melanoma, reduced the EMT characteristic molecular expression in tumor tissues, but also significantly decreased the Treg cells and TGF-β1, enhanced the cytotoxicities of NK cells and cytotoxic T lymphocytes and the IFN-γ level. Furthermore, the immunotherapeutic combination resulted in inhibiting the melanoma growth and lung metastasis. Our study demonstrated that using the B16F10/GPI-IL-21 vaccine in combination with the down-regulated ZEB1 or miR200c administration effectively elicited anti-tumor immunity and reduced melanoma metastasis by inhibiting the EMT program in the B16F10 melanoma-bearing mice.
Collapse
|
31
|
Tricoli JV, Blair DG, Anders CK, Bleyer WA, Boardman LA, Khan J, Kummar S, Hayes-Lattin B, Hunger SP, Merchant M, Seibel NL, Thurin M, Willman CL. Biologic and clinical characteristics of adolescent and young adult cancers: Acute lymphoblastic leukemia, colorectal cancer, breast cancer, melanoma, and sarcoma. Cancer 2016; 122:1017-28. [PMID: 26849082 DOI: 10.1002/cncr.29871] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 12/03/2015] [Accepted: 12/04/2015] [Indexed: 01/20/2023]
Abstract
Adolescent and young adult (AYA) patients with cancer have not attained the same improvements in overall survival as either younger children or older adults. One possible reason for this disparity may be that the AYA cancers exhibit unique biologic characteristics, resulting in differences in clinical and treatment resistance behaviors. This report from the biologic component of the jointly sponsored National Cancer Institute and LiveStrong Foundation workshop entitled "Next Steps in Adolescent and Young Adult Oncology" summarizes the current status of biologic and translational research progress for 5 AYA cancers; colorectal cancer breast cancer, acute lymphoblastic leukemia, melanoma, and sarcoma. Conclusions from this meeting included the need for basic biologic, genomic, and model development for AYA cancers as well as translational research studies to elucidate any fundamental differences between pediatric, AYA, and adult cancers. The biologic questions for future research are whether there are mutational or signaling pathway differences (for example, between adult and AYA colorectal cancer) that can be clinically exploited to develop novel therapies for treating AYA cancers and to develop companion diagnostics.
Collapse
Affiliation(s)
- James V Tricoli
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, Maryland
| | - Donald G Blair
- Division of Cancer Biology, National Cancer Institute, Rockville, Maryland
| | - Carey K Anders
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - W Archie Bleyer
- Division of Hematology and Medical Oncology, Oregon Health and Science University, Portland, Oregon
| | - Lisa A Boardman
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Javed Khan
- Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Shivaani Kummar
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, Maryland
| | - Brandon Hayes-Lattin
- Division of Hematology and Medical Oncology, Oregon Health and Science University, Portland, Oregon
| | - Stephen P Hunger
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Melinda Merchant
- Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Nita L Seibel
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, Maryland
| | - Magdalena Thurin
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, Maryland
| | | |
Collapse
|
32
|
Smith AW, Seibel NL, Lewis DR, Albritton KH, Blair DF, Blanke CD, Bleyer WA, Freyer DR, Geiger AM, Hayes-Lattin B, Tricoli JV, Wagner LI, Zebrack BJ. Next steps for adolescent and young adult oncology workshop: An update on progress and recommendations for the future. Cancer 2016; 122:988-99. [PMID: 26849003 DOI: 10.1002/cncr.29870] [Citation(s) in RCA: 162] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 09/18/2015] [Accepted: 09/21/2015] [Indexed: 12/14/2022]
Abstract
Each year, 70,000 adolescents and young adults (AYAs) between ages 15 and 39 years in the United States are diagnosed with cancer. In 2006, a National Cancer Institute (NCI) Progress Review Group (PRG) examined the state of science associated with cancer among AYAs. To assess the impact of the PRG and examine the current state of AYA oncology research, the NCI, with support from the LIVESTRONG Foundation, sponsored a workshop entitled "Next Steps in Adolescent and Young Adult Oncology" on September 16 and 17, 2013, in Bethesda, Maryland. This report summarizes the findings from the workshop, opportunities to leverage existing data, and suggestions for future research priorities. Multidisciplinary teams that include basic scientists, epidemiologists, trialists, biostatisticians, clinicians, behavioral scientists, and health services researchers will be essential for future advances for AYAs with cancer.
Collapse
Affiliation(s)
- Ashley Wilder Smith
- Division of Cancer Control and Population Sciences, National Cancer Institute, Bethesda, Maryland
| | - Nita L Seibel
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, Maryland
| | - Denise R Lewis
- Division of Cancer Control and Population Sciences, National Cancer Institute, Bethesda, Maryland
| | - Karen H Albritton
- Cook Children's Medical Center and University of North Texas Health Science Center, Houston, Texas
| | - Donald F Blair
- Division of Cancer Biology, National Cancer Institute, Bethesda, Maryland
| | - Charles D Blanke
- Division of Hematology and Medical Oncology, Oregon Health and Science University, Portland, Oregon
| | - W Archie Bleyer
- Radiation Medicine Department, Oregon Health and Science University, Portland, Oregon
| | - David R Freyer
- Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Ann M Geiger
- Division of Cancer Control and Population Sciences, National Cancer Institute, Bethesda, Maryland
| | - Brandon Hayes-Lattin
- Division of Hematology and Medical Oncology, Oregon Health and Science University, Portland, Oregon
| | - James V Tricoli
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, Maryland
| | - Lynne I Wagner
- Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | | |
Collapse
|
33
|
Saldanha G, Elshaw S, Sachs P, Alharbi H, Shah P, Jothi A, Pringle JH. microRNA-10b is a prognostic biomarker for melanoma. Mod Pathol 2016; 29:112-21. [PMID: 26743475 DOI: 10.1038/modpathol.2015.149] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 11/16/2015] [Indexed: 01/14/2023]
Abstract
Malignant melanoma is an aggressive form of skin cancer. Recently, drug therapy of advanced disease has been revolutionized by new agents. More therapeutic options, coupled with the desire to extend treatment to the adjuvant setting mean that prognostic biomarkers that can be assayed from formalin-fixed paraffin-embedded clinical would be valuable. microRNAs have potential to fill this need. We analyzed 377 microRNAs in 79 primary melanomas and 32 metastases using a split sample discovery strategy. From a discovery analysis using 40 thick primary melanomas (20 cases with metastasis and 20 controls without metastasis at 5 years), microRNA expression was measured by quantitative RT-PCR (QRT-PCR). MiR-10b emerged as a candidate prognostic microRNA. This was confirmed in an independent validation set of thick primary melanomas (20 cases with metastasis and 19 controls without metastasis at 5 years). In the combined discovery and validation cohorts (n=79), miR-10b expression showed a 3.7-fold increase in expression between cases and controls (P=0.005) and showed a trend of increasing expression between primary melanomas and their matched metastases (P<0.001). In situ hybridization showed expression was in melanoma cells and correlated with expression measured by QRT-PCR (P=0.0005). We used the combined discovery and validation samples to verify the prognostic value of additional candidate microRNAs identified from other studies, and proceeded to analyze miR-200b. We demonstrated that miR-10b and miR-200b showed independent prognostic value (P=0.002 and 0.047, respectively) in multivariable analysis alongside known clinico-pathological prognostic features (eg, Breslow thickness) using a Cox proportional hazards regression model. Furthermore, the addition of these microRNAs to the clinico-pathological features led to an improved regression model with better identification of aggressive thick melanomas. Taken together, these data suggest that miR-10b is a new prognostic microRNA for melanoma and that there could be a place for microRNA analysis in stratifying melanoma for therapy.
Collapse
Affiliation(s)
- Gerald Saldanha
- Department of Cancer Studies, University of Leicester, Leicester, UK
- EMPATH, University Hospitals of Leicester, Leicester, UK
| | - Shona Elshaw
- Department of Cancer Studies, University of Leicester, Leicester, UK
| | - Parysatis Sachs
- Department of Cancer Studies, University of Leicester, Leicester, UK
| | - Hisham Alharbi
- Department of Cancer Studies, University of Leicester, Leicester, UK
| | - Prashant Shah
- Department of Cancer Studies, University of Leicester, Leicester, UK
| | - Ann Jothi
- Department of Cancer Studies, University of Leicester, Leicester, UK
| | - J Howard Pringle
- Department of Cancer Studies, University of Leicester, Leicester, UK
| |
Collapse
|
34
|
De Luca T, Pelosi A, Trisciuoglio D, D'Aguanno S, Desideri M, Farini V, Di Martile M, Bellei B, Tupone MG, Candiloro A, Regazzo G, Rizzo MG, Del Bufalo D. miR-211 and MITF modulation by Bcl-2 protein in melanoma cells. Mol Carcinog 2015; 55:2304-2312. [PMID: 26599548 DOI: 10.1002/mc.22437] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/16/2015] [Accepted: 11/03/2015] [Indexed: 11/08/2022]
Abstract
Melanoma, the most lethal form of skin cancer, is frequently associated with alterations in several genes, among which the Bcl-2 oncogene plays an important role in progression, chemosensitivity and angiogenesis. Also microRNA (miRNA) are emerging as modulators of melanoma development and progression, and among them, miR-211, located within the melastatin-1/TRPM1 (transient receptor potential cation channel, subfamily M, member 1 protein) gene, is prevalently expressed in the melanocyte lineage and acts as oncosuppressor. Using several human melanoma cell lines and their Bcl-2 stably overexpressing derivatives, we evaluated whether there was a correlation between expression of Bcl-2 and miR-211. Western blot analysis and quantitative real-time polymerase chain reaction demonstrated reduced expression of pri-miR-211, miR-211, TRPM1, and MLANA levels, after Bcl-2 overexpression, associated with increased expression of well-known miR-211 target genes. Overexpression of mature miR-211 in Bcl-2 overexpressing cells rescued Bcl-2 ability to increase cell migration. A decreased nuclear localization of microphthalmia-associated transcription factor (MITF), a co-regulator of both miR-211 and TRPM1, and a reduced MITF recruitment at the TRPM1 and MLANA promoters were also evidenced in Bcl-2 overexpressing cells by immunofluorescence and chromatin immunoprecipitation experiments, respectively. Reduction of Bcl-2 expression by small interference RNA confirmed the ability of Bcl-2 to modulate miR-211 and TRPM1 expression. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Teresa De Luca
- Experimental Chemotherapy Laboratory, Regina Elena National Cancer Institute, Rome, Italy
| | - Andrea Pelosi
- Molecular Oncogenesis Laboratory, Regina Elena National Cancer Institute, Rome, Italy
| | - Daniela Trisciuoglio
- Experimental Chemotherapy Laboratory, Regina Elena National Cancer Institute, Rome, Italy
| | - Simona D'Aguanno
- Experimental Chemotherapy Laboratory, Regina Elena National Cancer Institute, Rome, Italy
| | - Marianna Desideri
- Experimental Chemotherapy Laboratory, Regina Elena National Cancer Institute, Rome, Italy
| | - Valentina Farini
- Experimental Chemotherapy Laboratory, Regina Elena National Cancer Institute, Rome, Italy
| | - Marta Di Martile
- Experimental Chemotherapy Laboratory, Regina Elena National Cancer Institute, Rome, Italy
| | - Barbara Bellei
- Laboratory of Cutaneous Physiopathology, San Gallicano Dermatologic Institute, Rome, Italy
| | - Maria Grazia Tupone
- Experimental Chemotherapy Laboratory, Regina Elena National Cancer Institute, Rome, Italy
| | - Antonio Candiloro
- Experimental Chemotherapy Laboratory, Regina Elena National Cancer Institute, Rome, Italy
| | - Giulia Regazzo
- Molecular Oncogenesis Laboratory, Regina Elena National Cancer Institute, Rome, Italy
| | - Maria Giulia Rizzo
- Molecular Oncogenesis Laboratory, Regina Elena National Cancer Institute, Rome, Italy
| | - Donatella Del Bufalo
- Experimental Chemotherapy Laboratory, Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
35
|
Abstract
Melanoma, one of the most virulent forms of human malignancy, is the primary cause of mortality from cancers arising from the skin. The prognosis of metastatic melanoma remains dismal despite targeted therapeutic regimens that exploit our growing understanding of cancer immunology and genetic mutations that drive oncogenic cell signaling pathways in cancer. Epigenetic mechanisms, including DNA methylation/demethylation, histone modifications and noncoding RNAs recently have been shown to play critical roles in melanoma pathogenesis. Current evidence indicates that imbalance of DNA methylation and demethylation, dysregulation of histone modification and chromatin remodeling, and altered translational control by noncoding RNAs contribute to melanoma tumorigenesis. Here, we summarize the most recent insights relating to epigenetic markers, focusing on diagnostic potential as well as novel therapeutic approaches for more effective treatment of advanced melanoma.
Collapse
Affiliation(s)
- Weimin Guo
- Program in Dermatopathology, Department of Pathology, Brigham & Women's Hospital, Harvard Medical School, 221 Longwood Ave. EBRC 401, Boston, MA 02115, USA
| | - Ting Xu
- Program in Dermatopathology, Department of Pathology, Brigham & Women's Hospital, Harvard Medical School, 221 Longwood Ave. EBRC 401, Boston, MA 02115, USA
| | - Jonathan J Lee
- Program in Dermatopathology, Department of Pathology, Brigham & Women's Hospital, Harvard Medical School, 221 Longwood Ave. EBRC 401, Boston, MA 02115, USA
| | - George F Murphy
- Program in Dermatopathology, Department of Pathology, Brigham & Women's Hospital, Harvard Medical School, 221 Longwood Ave. EBRC 401, Boston, MA 02115, USA
| | - Christine G Lian
- Program in Dermatopathology, Department of Pathology, Brigham & Women's Hospital, Harvard Medical School, 221 Longwood Ave. EBRC 401, Boston, MA 02115, USA
| |
Collapse
|
36
|
Sarkar D, Leung EY, Baguley BC, Finlay GJ, Askarian-Amiri ME. Epigenetic regulation in human melanoma: past and future. Epigenetics 2015; 10:103-21. [PMID: 25587943 PMCID: PMC4622872 DOI: 10.1080/15592294.2014.1003746] [Citation(s) in RCA: 216] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The development and progression of melanoma have been attributed to independent or combined genetic and epigenetic events. There has been remarkable progress in understanding melanoma pathogenesis in terms of genetic alterations. However, recent studies have revealed a complex involvement of epigenetic mechanisms in the regulation of gene expression, including methylation, chromatin modification and remodeling, and the diverse activities of non-coding RNAs. The roles of gene methylation and miRNAs have been relatively well studied in melanoma, but other studies have shown that changes in chromatin status and in the differential expression of long non-coding RNAs can lead to altered regulation of key genes. Taken together, they affect the functioning of signaling pathways that influence each other, intersect, and form networks in which local perturbations disturb the activity of the whole system. Here, we focus on how epigenetic events intertwine with these pathways and contribute to the molecular pathogenesis of melanoma.
Collapse
Key Words
- 5hmC, 5-hydroxymethylcytosine
- 5mC, 5-methylcytosine
- ACE, angiotensin converting enzyme
- ANCR, anti-differentiation non-coding RNA
- ANRIL, antisense noncoding RNA in INK4 locus
- ASK1, apoptosis signal-regulating kinase 1
- ATRA, all-trans retinoic acid
- BANCR, BRAF-activated non-coding RNA
- BCL-2, B-cell lymphoma 2
- BRAF, B-Raf proto-oncogene, serine/threonine kinase
- BRG1, ATP-dependent helicase SMARCA4
- CAF-1, chromatin assembly factor-1
- CBX7, chromobox homolog 7
- CCND1, cyclin D1
- CD28, cluster of differentiation 28
- CDK, cyclin-dependent kinase
- CDKN2A/B, cyclin-dependent kinase inhibitor 2A/B
- CHD8, chromodomain-helicase DNA-binding protein 8
- CREB, cAMP response element-binding protein
- CUDR, cancer upregulated drug resistant
- Cdc6, cell division cycle 6
- DNA methylation/demethylation
- DNMT, DNA methyltransferase
- EMT, epithelial-mesenchymal transition
- ERK, extracellular signal-regulated kinase
- EZH2, enhancer of zeste homolog 2
- GPCRs, G-protein coupled receptors
- GSK3a, glycogen synthase kinase 3 α
- GWAS, genome-wide association study
- HDAC, histone deacetylase
- HOTAIR, HOX antisense intergenic RNA
- IAP, inhibitor of apoptosis
- IDH2, isocitrate dehydrogenase
- IFN, interferon, interleukin 23
- JNK, Jun N-terminal kinase
- Jak/STAT, Janus kinase/signal transducer and activator of transcription
- MAFG, v-maf avian musculoaponeurotic fibrosarcoma oncogene homolog G
- MALAT1, metastasis-associated lung adenocarcinoma transcript 1
- MAPK, mitogen-activated protein kinase
- MC1R, melanocortin-1 receptor
- MGMT, O6-methylguanine-DNA methyltransferase
- MIF, macrophage migration inhibitory factor
- MITF, microphthalmia-associated transcription factor
- MRE, miRNA recognition element
- MeCP2, methyl CpG binding protein 2
- NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells
- NOD, nucleotide-binding and oligomerization domain
- PBX, pre-B-cell leukemia homeobox
- PEDF, pigment epithelium derived factor
- PI3K, phosphatidylinositol-4, 5-bisphosphate 3-kinase
- PIB5PA, phosphatidylinositol-4, 5-biphosphate 5-phosphatase A
- PKA, protein kinase A
- PRC, polycomb repressor complex
- PSF, PTB associated splicing factor
- PTB, polypyrimidine tract-binding
- PTEN, phosphatase and tensin homolog
- RARB, retinoic acid receptor-β2
- RASSF1A, Ras association domain family 1A
- SETDB1, SET Domain, bifurcated 1
- SPRY4, Sprouty 4
- STAU1, Staufen1
- SWI/SNF, SWItch/Sucrose Non-Fermentable
- TCR, T-cell receptor
- TET, ten eleven translocase
- TGF β, transforming growth factor β
- TINCR, tissue differentiation-inducing non-protein coding RNA
- TOR, target of rapamycin
- TP53, tumor protein 53
- TRAF6, TNF receptor-associated factor 6
- UCA1, urothelial carcinoma-associated 1
- ceRNA, competitive endogenous RNAs
- chromatin modification
- chromatin remodeling
- epigenetics
- gene regulation
- lncRNA, long ncRNA
- melanoma
- miRNA, micro RNA
- ncRNA, non-coding RNA
- ncRNAs
- p14ARF, p14 alternative reading frame
- p16INK4a, p16 inhibitor of CDK4
- pRB, retinoblastoma protein
- snoRNA, small nucleolar RNA
- α-MSHm, α-melanocyte stimulating hormone
Collapse
Affiliation(s)
- Debina Sarkar
- a Auckland Cancer Society Research Center ; University of Auckland ; Auckland , New Zealand
| | | | | | | | | |
Collapse
|
37
|
Zhao F, He X, Wang Y, Shi F, Wu D, Pan M, Li M, Wu S, Wang X, Dou J. Decrease of ZEB1 expression inhibits the B16F10 cancer stem-like properties. Biosci Trends 2015; 9:325-34. [DOI: 10.5582/bst.2015.01106] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Fengshu Zhao
- Department of Pathogenic Biology and Immunology, School of Medicine, Southeast University
| | - Xiangfeng He
- Department of Medical Oncology, Affiliated Tumor Hospital of Nantong University
| | - Yaqing Wang
- Department of Pathogenic Biology and Immunology, School of Medicine, Southeast University
| | - Fangfang Shi
- Department of Pathogenic Biology and Immunology, School of Medicine, Southeast University
| | - Di Wu
- Department of Pathogenic Biology and Immunology, School of Medicine, Southeast University
| | - Meng Pan
- Department of Pathogenic Biology and Immunology, School of Medicine, Southeast University
| | - Miao Li
- Department of Pathogenic Biology and Immunology, School of Medicine, Southeast University
| | - Songyan Wu
- Department of Pathogenic Biology and Immunology, School of Medicine, Southeast University
| | - Xiaoying Wang
- Department of Pathogenic Biology and Immunology, School of Medicine, Southeast University
| | - Jun Dou
- Department of Pathogenic Biology and Immunology, School of Medicine, Southeast University
| |
Collapse
|
38
|
Sharma T, Hamilton R, Mandal CC. miR-214: a potential biomarker and therapeutic for different cancers. Future Oncol 2015; 11:349-63. [DOI: 10.2217/fon.14.193] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
39
|
Abstract
Melanoma has traditionally been associated with limited treatment options, and as such, biomarkers such as histopathologic staging and serum lactate dehydrogenase focused on prognosis. The development of effective treatment options shifted the search to biomarkers for predicting response and resistance to therapy, an arguably more critical goal. Specific genetic alterations (e.g., BRAFV600 and KIT mutations) predict response to molecularly targeted agents and are routinely used in clinical practice. Other promising biomarkers include T-cell characteristics (the circulating and tumor microenvironment), tumor expression of PD-L1, circulating DNA, circulating tumor cells and miRNAs. In this article, we discuss the status of the currently used and experimental tumor- and blood-based biomarkers for melanoma prognosis and response to targeted and immune therapies.
Collapse
Affiliation(s)
- Douglas B Johnson
- Department of Medicine, Division of Hematology/Oncology, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt University Medical Center, 2220 Pierce Avenue, 777 Preston Research building, Nashville, TN 37232, USA.,Department of Medicine, Division of Hematology/Oncology, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt University Medical Center, 2220 Pierce Avenue, 777 Preston Research building, Nashville, TN 37232, USA
| | - Ryan J Sullivan
- Department of Medicine, Division of Hematology/Oncology Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA.,Department of Medicine, Division of Hematology/Oncology Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| |
Collapse
|
40
|
Aftab MN, Dinger ME, Perera RJ. The role of microRNAs and long non-coding RNAs in the pathology, diagnosis, and management of melanoma. Arch Biochem Biophys 2014; 563:60-70. [PMID: 25065585 PMCID: PMC4221535 DOI: 10.1016/j.abb.2014.07.022] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 07/14/2014] [Accepted: 07/17/2014] [Indexed: 12/21/2022]
Abstract
Melanoma is frequently lethal and its global incidence is steadily increasing. Despite the rapid development of different modes of targeted treatment, durable clinical responses remain elusive. A complete understanding of the molecular mechanisms that drive melanomagenesis is required, both genetic and epigenetic, in order to improve prevention, diagnosis, and treatment. There is increased appreciation of the role of microRNAs (miRNAs) in melanoma biology, including in proliferation, cell cycle, migration, invasion, and immune evasion. Data are also emerging on the role of long non-coding RNAs (lncRNAs), such as SPRY4-IT1, BANCR, and HOTAIR, in melanomagenesis. Here we review the data on the miRNAs and lncRNAs implicated in melanoma biology. An overview of these studies will be useful for providing insights into mechanisms of melanoma development and the miRNAs and lncRNAs that might be useful biomarkers or future therapeutic targets.
Collapse
Affiliation(s)
- Muhammad Nauman Aftab
- Sanford-Burnham Medical Research Institute, Orlando, FL 32827, USA; Institute of Industrial Biotechnology, Government College University, Katchery Road, Lahore 54000, Pakistan
| | - Marcel E Dinger
- Garvan Institute of Medical Research and St Vincent's Clinical School, University of New South Wales, Darlinghurst NSW 2010, Australia
| | - Ranjan J Perera
- Sanford-Burnham Medical Research Institute, Orlando, FL 32827, USA.
| |
Collapse
|
41
|
Sana J, Radova L, Lakomy R, Kren L, Fadrus P, Smrcka M, Besse A, Nekvindova J, Hermanova M, Jancalek R, Svoboda M, Hajduch M, Slampa P, Vyzula R, Slaby O. Risk Score based on microRNA expression signature is independent prognostic classifier of glioblastoma patients. Carcinogenesis 2014; 35:2756-62. [PMID: 25322872 DOI: 10.1093/carcin/bgu212] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most malignant primary brain tumor. The prognosis of GBM patients varies considerably and the histopathological examination is not sufficient for individual risk estimation. MicroRNAs (miRNAs) are small, non-coding RNAs that function as post-transcriptional regulators of gene expression and were repeatedly proved to play important roles in pathogenesis of GBM. In our study, we performed global miRNA expression profiling of 58 glioblastoma tissue samples obtained during surgical resections and 10 non-tumor brain tissues. The subsequent analysis revealed 28 significantly deregulated miRNAs in GBM tissue, which were able to precisely classify all examined samples. Correlation with clinical data led to identification of six-miRNA signature significantly associated with progression free survival [hazard ratio (HR) 1.98, 95% confidence interval (CI) 1.33-2.94, P < 0.001] and overa+ll survival (HR 2.86, 95% CI 1.91-4.29, P < 0.001). O(6)-methylguanine-DNA methyltransferase methylation status was evaluated as reference method and Risk Score based on six-miRNA signature indicated significant superiority in prediction of clinical outcome in GBM patients. Multivariate Cox analysis indicated that the Risk Score based on six-miRNA signature is an independent prognostic classifier of GBM patients. We suggest that the Risk Score presents promising prognostic algorithm with potential for individualized treatment decisions in clinical management of GBM patients.
Collapse
Affiliation(s)
- Jiri Sana
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Brno 65653, Czech Republic, Faculty of Medicine, Masaryk University, Brno 62500, Czech Republic, Central European Institute of Technology, Masaryk University, Brno 62500, Czech Republic
| | - Lenka Radova
- Central European Institute of Technology, Masaryk University, Brno 62500, Czech Republic
| | - Radek Lakomy
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Brno 65653, Czech Republic, Faculty of Medicine, Masaryk University, Brno 62500, Czech Republic
| | - Leos Kren
- Faculty of Medicine, Masaryk University, Brno 62500, Czech Republic, Department of Pathology, University Hospital Brno, Brno 62500, Czech Republic
| | - Pavel Fadrus
- Faculty of Medicine, Masaryk University, Brno 62500, Czech Republic, Department of Neurosurgery, University Hospital Brno, Brno 62500, Czech Republic
| | - Martin Smrcka
- Faculty of Medicine, Masaryk University, Brno 62500, Czech Republic, Department of Neurosurgery, University Hospital Brno, Brno 62500, Czech Republic
| | - Andrej Besse
- Central European Institute of Technology, Masaryk University, Brno 62500, Czech Republic
| | - Jana Nekvindova
- Institute of Clinical Biochemistry and Diagnostics, Faculty of Medicine and Faculty Hospital in Hradec Kralove, Charles University, Hradec Kralove 50005, Czech Republic
| | - Marketa Hermanova
- Faculty of Medicine, Masaryk University, Brno 62500, Czech Republic, First Department of Pathological Anatomy, St. Anne's University Hospital, Brno 65691, Czech Republic
| | - Radim Jancalek
- Faculty of Medicine, Masaryk University, Brno 62500, Czech Republic, Department of Neurosurgery, St. Anne's University Hospital, Brno 65691, Czech Republic
| | - Marek Svoboda
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Brno 65653, Czech Republic, Faculty of Medicine, Masaryk University, Brno 62500, Czech Republic
| | - Marian Hajduch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc 77900, Czech Republic and
| | - Pavel Slampa
- Faculty of Medicine, Masaryk University, Brno 62500, Czech Republic, Department of Radiation Oncology, Masaryk Memorial Cancer Institute, Brno 65653, Czech Republic
| | - Rostislav Vyzula
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Brno 65653, Czech Republic, Faculty of Medicine, Masaryk University, Brno 62500, Czech Republic
| | - Ondrej Slaby
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Brno 65653, Czech Republic, Faculty of Medicine, Masaryk University, Brno 62500, Czech Republic, Central European Institute of Technology, Masaryk University, Brno 62500, Czech Republic,
| |
Collapse
|
42
|
Liu X, Duan B, Dong Y, He C, Zhou H, Sheng H, Gao H, Zhang X. MicroRNA-139-3p indicates a poor prognosis of colon cancer. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:8046-8052. [PMID: 25550849 PMCID: PMC4270559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 11/01/2014] [Indexed: 06/04/2023]
Abstract
MicroRNAs (miRNAs) play an important role in the regulation of gene expression and are involved in almost biological procession. Recently, miR-139-5p has been reported to be downregulated in some types of cancer, and inhibits cancer cell invasion and metastasis. However, there are few reports on the role of miR-139-3p in cancer. In this study, we examined the expression level of miR-139-3p in 63 pairs of colon cancer and adjacent paracancerous tissues using quantitative reverse transcription PCR. The levels of miR-139-3p in colon cancer tissues were significantly lower than those in adjacent noncancerous tissues. There was an inverse correlation between the level of miR-139-3p and patient's age. Lower level of miR-139-3p was significantly associated with poor overall survival, especially in patients with TNM stages I and II. In conclusion, miR-139-3p has potential as a prognostic biomarker for colon cancer. Further prospective studies are required to validate this result.
Collapse
Affiliation(s)
- Xiaojing Liu
- Department of Oncology, Subei People’s Hospital, Clinical Medical College of Yangzhou UniversityYangzhou, Jiangsu, China
| | - Bensong Duan
- Institute of Digestive Disease, Department of Gastroenterology, Tongji Hospital, Tongji UniversityShanghai, China
| | - Yuanyuan Dong
- Ministry of Education Engineering Research Center of Bioreactor and Pharmaceutical Development, Jilin Agricultural UniversityChangchun, Jilin, China
| | - Chengzhi He
- Institute of Digestive Disease, Department of Gastroenterology, Tongji Hospital, Tongji UniversityShanghai, China
| | - Hongmei Zhou
- CMC Biobank and Translational Medicine InstituteTaizhou, Jiangsu, China
- Shanghai Engineering Center for Molecular Medicine, National Engineering Center for Biochip at ShanghaiShanghai, China
| | - Haihui Sheng
- CMC Biobank and Translational Medicine InstituteTaizhou, Jiangsu, China
- Shanghai Engineering Center for Molecular Medicine, National Engineering Center for Biochip at ShanghaiShanghai, China
| | - Hengjun Gao
- Institute of Digestive Disease, Department of Gastroenterology, Tongji Hospital, Tongji UniversityShanghai, China
- Shanghai Engineering Center for Molecular Medicine, National Engineering Center for Biochip at ShanghaiShanghai, China
| | - Xizhi Zhang
- Department of Oncology, Subei People’s Hospital, Clinical Medical College of Yangzhou UniversityYangzhou, Jiangsu, China
| |
Collapse
|
43
|
Venturelli S, Sinnberg TW, Berger A, Noor S, Levesque MP, Böcker A, Niessner H, Lauer UM, Bitzer M, Garbe C, Busch C. Epigenetic impacts of ascorbate on human metastatic melanoma cells. Front Oncol 2014; 4:227. [PMID: 25202679 PMCID: PMC4142417 DOI: 10.3389/fonc.2014.00227] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 08/06/2014] [Indexed: 01/01/2023] Open
Abstract
In recent years, increasing evidence has emerged demonstrating that high-dose ascorbate bears cytotoxic effects on cancer cells in vitro and in vivo, making ascorbate a pro-oxidative drug that catalyzes hydrogen peroxide production in tissues instead of acting as a radical scavenger. This anticancer effect of ascorbate is hypoxia-inducible factor-1α- and O2-dependent. However, whether the intracellular mechanisms governing this effect are modulated by epigenetic phenomena remains unknown. We treated human melanoma cells with physiological (200 μM) or pharmacological (8 mM) ascorbate for 1 h to record the impact on DNA methyltransferase (DNMT)-activity, histone deacetylases (HDACs), and microRNA (miRNA) expression after 12 h. The results were analyzed with the MIRUMIR online tool that estimates the power of miRNA to serve as potential biomarkers to predict survival of cancer patients. FACS cell-cycle analyses showed that 8 mM ascorbate shifted BLM melanoma cells toward the sub-G1 fraction starting at 12 h after an initial primary G2/M arrest, indicative for secondary apoptosis induction. In pharmacological doses, ascorbate inhibited the DNMT activity in nuclear extracts of MeWo and BLM melanoma cells, but did not inhibit human HDAC enzymes of classes I, II, and IV. The expression of 151 miRNAs was altered 12 h after ascorbate treatment of BLM cells in physiological or pharmacological doses. Pharmacological doses up-regulated 32 miRNAs (≥4-fold) mainly involved in tumor suppression and drug resistance in our preliminary miRNA screening array. The most prominently up-regulated miRNAs correlated with a significantly increased overall survival of breast cancer or nasopharyngeal carcinoma patients of the MIRUMIR database with high expression of the respective miRNA. Our results suggest a possible epigenetic signature of pharmacological doses of ascorbate in human melanoma cells and support further pre-clinical and possibly even clinical evaluation of ascorbate for melanoma therapy.
Collapse
Affiliation(s)
- Sascha Venturelli
- Department of Internal Medicine I, Medical University Hospital , Tuebingen , Germany
| | - Tobias W Sinnberg
- Division of Dermatologic Oncology, Department of Dermatology and Allergology, University of Tuebingen , Tuebingen , Germany
| | - Alexander Berger
- Department of Internal Medicine I, Medical University Hospital , Tuebingen , Germany
| | - Seema Noor
- Division of Dermatologic Oncology, Department of Dermatology and Allergology, University of Tuebingen , Tuebingen , Germany
| | | | | | - Heike Niessner
- Division of Dermatologic Oncology, Department of Dermatology and Allergology, University of Tuebingen , Tuebingen , Germany
| | - Ulrich M Lauer
- Department of Internal Medicine I, Medical University Hospital , Tuebingen , Germany
| | - Michael Bitzer
- Department of Internal Medicine I, Medical University Hospital , Tuebingen , Germany
| | - Claus Garbe
- Division of Dermatologic Oncology, Department of Dermatology and Allergology, University of Tuebingen , Tuebingen , Germany
| | - Christian Busch
- Division of Dermatologic Oncology, Department of Dermatology and Allergology, University of Tuebingen , Tuebingen , Germany
| |
Collapse
|
44
|
Wang X, He X, Zhao F, Wang J, Zhang H, Shi F, Zhang Y, Cai K, Dou J. Regulation gene expression of miR200c and ZEB1 positively enhances effect of tumor vaccine B16F10/GPI-IL-21 on inhibition of melanoma growth and metastasis. J Transl Med 2014; 12:68. [PMID: 24625224 PMCID: PMC3995592 DOI: 10.1186/1479-5876-12-68] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Accepted: 03/04/2014] [Indexed: 12/21/2022] Open
Abstract
Background Genetically modified cells have been shown to be one of the most effective tumor vaccine strategies. However, in many cases, such as in melanoma, induction of a potent immune responses against the disease still remains a major challenge. Thus, novel strategies to reinforce tumor vaccine efficacy are needed. Using microRNA (miR) and Zinc-finger E-box binding homeobox (ZEB) have received much attention for potentially regulating tumor progression. To elicit a potent antitumor efficacy against melanoma, we used tumor vaccine in combination with miR200c overexpression or ZEB1 knockdown to assess the efficacy of treatment of murine melanoma. Methods B16F10 cell vaccine expressing interleukin 21 (IL-21) in the glycosylpho- sphatidylinositol (GPI)-anchored form (B16F10/GPI-IL-21) were developed. The vaccine was immunized into mice challenged by B16F10 cells or B16F10 cells stably transduced with lentiviral-miR200c (B16F10/miR200c) or transfected with the ZEB1-shRNA recombinant (B16F10/shZEB1) or the B16F10/GPI-IL-21 vaccine. The immune responses, tumorigenicity and lung metastasis in mice were evaluated, respectively. Results The vaccination with B16F10/GPI-IL-21 markedly increased the serum cytokine levels of IFN-γ, TNF-α, IL-4 and decreased TGF-β level as well as augmented the cytotoxicity of splenocytes in immunized mice compared with control mice. In addition, the tumor vaccine B16F10/GPI-IL-21 significantly inhibited the tumor growth and reduced counts of lung metastases in mice challenged by B16F10/GPI-IL-21, B16F10/shZEB1 and B16F10/miR200c respectively compared with the control mice challenged by B16F10 cells. The efficacy mechanisms may involve in reinforcing immune responses, increasing expression of miR200c, E-cadherin and SMAD-7 and decreasing expression of TGF-β, ZEB1, Vimentin and N-cadherin in tumor tissues from the immunized mice. Conclusions These results indicate that the tumor vaccine B16F10/GPI-IL-21 in combination with miR200c overexpression or ZEB1 knockdown effectively inhibited melanoma growth and metastasis a murine model. Such a strategy may, therefore, be used for the clinical trials.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jun Dou
- Department of Pathogenic Biology and Immunology of Medical School, Southeast University, Nanjing 210009, China.
| |
Collapse
|
45
|
Li J, Shan F, Xiong G, Wang JM, Wang WL, Xu X, Bai Y. Transcriptional regulation of miR-146b by C/EBPβ LAP2 in esophageal cancer cells. Biochem Biophys Res Commun 2014; 446:267-71. [PMID: 24589738 DOI: 10.1016/j.bbrc.2014.02.096] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 02/22/2014] [Indexed: 12/27/2022]
Abstract
Recent clinical study indicated that up-regulation of miR-146b was associated with poor overall survival of patients in esophageal squamous cell carcinoma. However, the underlying mechanism of miR-146b dysregulation remains to be explored. Here we report that miR-146b promotes cell proliferation and inhibits cell apoptosis in esophageal cancer cell lines. Mechanismly, two C/EBPβ binding motifs are located in the miR-146b promoter conserved region. Among the three isoforms of C/EBPβ, C/EBPβ LAP2 positively regulated miR-146b expression and increases miR-146b levels in a dose-dependent manner through transcription activation of miR-146b gene. Together, these results suggest a miR-146b regulatory mechanism involving C/EBPβ, which may contribute to the up-regulation of miR-146b in esophageal squamous cell carcinoma.
Collapse
Affiliation(s)
- Junxia Li
- Department of Medical Genetics, Third Military Medical University, Chongqing, People's Republic of China
| | - Fabo Shan
- Department of Pathophysiology and High Altitude Physiology, Third Military Medical University, Chongqing, People's Republic of China
| | - Gang Xiong
- Department of Thoracic and Cardiac Surgery, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Ju-Ming Wang
- Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Lin Wang
- Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Xueqing Xu
- Molecular Biology Center, State Key Laboratory of Trauma, Burn, and Combined Injury, Research Institute of Surgery and Daping Hospital, Third Military Medical University, Chongqing, People's Republic of China.
| | - Yun Bai
- Department of Medical Genetics, Third Military Medical University, Chongqing, People's Republic of China.
| |
Collapse
|
46
|
Dou J, He X, Liu Y, Wang Y, Zhao F, Wang X, Chen D, Shi F, Wang J. Effect of downregulation of ZEB1 on vimentin expression, tumour migration and tumourigenicity of melanoma B16F10 cells and CSCs. Cell Biol Int 2014; 38:452-61. [PMID: 24339410 DOI: 10.1002/cbin.10223] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 11/08/2013] [Indexed: 01/30/2023]
Affiliation(s)
- Jun Dou
- Department of Pathogenic Biology and Immunology of Medical School; Southeast University; Nanjing 210009 China
| | - Xiangfeng He
- Department of Pathogenic Biology and Immunology of Medical School; Southeast University; Nanjing 210009 China
- Department of Medical Oncology; Affiliated Tumor Hospital of Nantong University; Nantong 226361 China
| | - Yurong Liu
- Department of Pathogenic Biology and Immunology of Medical School; Southeast University; Nanjing 210009 China
| | - Yaqian Wang
- Department of Pathogenic Biology and Immunology of Medical School; Southeast University; Nanjing 210009 China
| | - Fengshu Zhao
- Department of Pathogenic Biology and Immunology of Medical School; Southeast University; Nanjing 210009 China
| | - Xiaoying Wang
- Department of Pathogenic Biology and Immunology of Medical School; Southeast University; Nanjing 210009 China
| | - Dengyu Chen
- Department of Pathogenic Biology and Immunology of Medical School; Southeast University; Nanjing 210009 China
| | - Fangfang Shi
- Department of Pathogenic Biology and Immunology of Medical School; Southeast University; Nanjing 210009 China
- Department of Oncology, Zhongda Hospital; Southeast University; Nanjing 210009 China
| | - Jing Wang
- Department of Gynecology & Obstetrics, Zhongda Hospital, Medical School; Southeast University; Nanjing 210009 China
| |
Collapse
|
47
|
Luo C, Weber CEM, Osen W, Bosserhoff AK, Eichmüller SB. The role of microRNAs in melanoma. Eur J Cell Biol 2014; 93:11-22. [PMID: 24602414 DOI: 10.1016/j.ejcb.2014.02.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 01/22/2014] [Accepted: 02/03/2014] [Indexed: 12/21/2022] Open
Abstract
Melanoma is the most dangerous form of skin cancer, being largely resistant to conventional therapies at advanced stages. Understanding the molecular mechanisms behind this disease might be the key for the development of novel therapeutic strategies. MicroRNAs (miRNAs) are small non-coding RNAs that post-transcriptionally control gene expression, thereby regulating various cellular signaling pathways involved in the initiation and progression of different cancer types, including melanoma. In this review, we summarize approaches for the identification of candidate miRNAs and their target genes and review the functions of miRNAs in melanoma. Finally, we highlight the recent progress in pre-clinical use of miRNAs as prognostic markers and therapeutic targets.
Collapse
Affiliation(s)
- Chonglin Luo
- Translational Immunology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| | - Claudia E M Weber
- Translational Immunology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Wolfram Osen
- Translational Immunology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | | | - Stefan B Eichmüller
- Translational Immunology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| |
Collapse
|
48
|
Zhou J, Liu R, Wang Y, Tang J, Tang S, Chen X, Xia K, Xiong W, Xu D, Wang S, He Q, Cao K. miR-199a-5p regulates the expression of metastasis-associated genes in B16F10 melanoma cells. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:7182-90. [PMID: 25400815 PMCID: PMC4230055 DOI: pmid/25400815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 09/10/2014] [Indexed: 02/05/2023]
Abstract
MicroRNAs are regulatory factors that play important roles in tumor development, invasion and metastasis. Previously, we showed that miR-199a is abnormally expressed in clinical melanoma specimens and expression was closely associated with clinical features of metastasis. However, the exact molecular mechanisms by which miR-199a-5p influences melanoma invasion and metastasis remains unclear. In this study, we investigated gene expression changes of metastasis-associated genes in B16F10 melanoma cells following targeted silencing or overexpression of miR-199a-5p, using mouse tumor metastasis PCR arrays. Comparison of gene expression changes in miR-199a-5p-silenced versus overexpressing cells identified a set of upregulated genes (> 2-fold) including Cd44, Cdh1, Cxcr4, Etv4, Fxyd5, Rpsa, Mmp3, Myc, Rb1, Tcf20, Hprt1, Actb1 and downregulated genes (> 2-fold) including Ctsk, Itga7 and Tnfsf10. Regulation of a subset of these genes (Myc, Tnfsf10 and Cd44) following miR-199a-5p silencing or overexpression was validated by reverse transcription-polymerase chain reaction (RT-PCR) and western blot. In conclusion, our study demonstrates that miR-199a-5p regulates melanoma metastasis-related genes, and may provide a basis for the development of novel, molecularly targeted drugs.
Collapse
Affiliation(s)
- Jianda Zhou
- Department of Plastic and Reconstructive Surgery, Third Xiangya Hospital, Central South UniversityChangsha, China
| | - Rui Liu
- Department of Plastic and Reconstructive Surgery, Third Xiangya Hospital, Central South UniversityChangsha, China
| | - Yang Wang
- Department of Plastic and Reconstructive Surgery, Third Xiangya Hospital, Central South UniversityChangsha, China
| | - Jingtian Tang
- Institute of Medical Physics and Engineering, Department of Engineering Physics, Tsinghua UniversityBeijing, China
| | - Shijie Tang
- Cleft Lip and Palate Treatment Center, Second Affiliated Hospital, Shantou University Medical CollegeShantou, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South UniversityChangsha, China
| | - Kun Xia
- State Key Laboratory of Medical Genetics, Central South UniversityChangsha, China
| | - Wei Xiong
- Cancer Research Institute, Key Laboratory of Carcinogenesis of Ministry of Health, Central South UniversityChangsha, China
| | - Dan Xu
- Department of Plastic and Reconstructive Surgery, Third Xiangya Hospital, Central South UniversityChangsha, China
| | - Shaohua Wang
- Department of Plastic and Reconstructive Surgery, Third Xiangya Hospital, Central South UniversityChangsha, China
| | - Quanyong He
- Department of Plastic and Reconstructive Surgery, Third Xiangya Hospital, Central South UniversityChangsha, China
| | - Ke Cao
- Department of Oncology, Third Xiangya Hospital, Central South UniversityChangsha, China
| |
Collapse
|
49
|
Averbook BJ, Lee SJ, Delman KA, Gow KW, Zager JS, Sondak VK, Messina JL, Sabel MS, Pittelkow MR, Ecker PM, Markovic SN, Swetter SM, Leachman SA, Testori A, Curiel-Lewandrowski C, Go RS, Jukic DM, Kirkwood JM. Pediatric melanoma: analysis of an international registry. Cancer 2013; 119:4012-9. [PMID: 24022819 PMCID: PMC4096292 DOI: 10.1002/cncr.28289] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 12/24/2012] [Accepted: 01/24/2013] [Indexed: 12/15/2022]
Abstract
BACKGROUND The management of pediatric melanoma (PM) has largely been extrapolated from adult data. However, the behavior of PM appears to differ from its adult counterparts. Therefore, an international PM registry was created and analyzed. METHODS Twelve institutions contributed deidentified clinicopathologic and outcome data for patients diagnosed with PM from 1953 through 2008. RESULTS Overall survival (OS) data were reported for 365 patients with invasive PM who had adequate follow-up data. The mean age of the patients was 16 years (range 1 year-21 years). The 10-year OS rate, 80.6%, tended to vary by patient age: 100% for those aged birth to 10 years, 69.7% for those aged > 10 years to 15 years, and 79.5% for those aged > 15 years to 20 years (P = .147). Patients with melanomas measuring ≤ 1 mm had a favorable prognosis (10-year OS rate of 97%), whereas survival was lower but similar for patients with melanomas measuring > 1 mm to 2 mm, > 2 mm to 4 mm, and > 4 mm (70%, 78%, and 80%, respectively; P = .0077). Ulceration and lymph node metastasis were found to be correlated with worse survival (P = .022 and P = .017, respectively). The 10-year OS rate was 94.1% for patients with American Joint Committee on Cancer stage I disease, 79.6% for those with stage II disease, and 77.1% for patients with stage III disease (P < .001). CONCLUSIONS Tumor thickness, ulceration, lymph node status, and stage were found to be significant predictors of survival in patients with PM, similar to adult melanoma. There is a trend toward increased survival in children aged ≤ 10 years versus adolescents aged > 10 years. Further analyses are needed to probe for potential biological and behavioral differences in pediatric versus adult melanoma.
Collapse
Affiliation(s)
- Bruce J. Averbook
- Department of Surgery, Division of Surgical Oncology, MetroHealth Medical Center, Cleveland, Ohio
- Department of Surgery, Case Western Reserve University, Cleveland, Ohio
| | - Sandra J. Lee
- Department of Biostatistics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Keith A. Delman
- Division of Surgical Oncology, Department of Surgery, Emory University School of Medicine, Atlanta, Georgia
| | | | - Jonathan S. Zager
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center, Tampa, Florida
- Department of Oncologic Sciences, University of South Florida Morsani College of Medicine, Tampa, Florida
| | - Vernon K. Sondak
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center, Tampa, Florida
- Department of Oncologic Sciences, University of South Florida Morsani College of Medicine, Tampa, Florida
| | - Jane L. Messina
- Department of Pathology, Cell Biology and Dermatology, University of South Florida Morsani College of Medicine, Tampa, Florida
- Department of Dermatology and Pathology, H. Lee Moffitt Cancer Center, Tampa, Florida
| | - Michael S. Sabel
- Department of Surgery, Division of Surgical Oncology, University of Michigan Medical Center, Ann Arbor, Michigan
| | | | | | | | - Susan M. Swetter
- Department of Dermatology, Stanford University Medical Center and VA Palo Alto Health Care System, Pigmented Cell and Melanoma Program, Stanford Cancer Institute, Palo Alto, California
| | - Sancy A. Leachman
- Melanoma and Cutaneous Oncology Program, Department of Dermatology, Huntsman Cancer Institute, Intermountain Healthcare, Salt Lake City, Utah
| | - Alessandro Testori
- Melanoma and Soft Tissue Sarcoma Division, European Institute of Oncology, Milan, Italy
| | - Clara Curiel-Lewandrowski
- Division of Dermatology, Department of Medicine, Department of Medicine, Pigmented Lesion Clinic and Multidisciplinary Cutaneous Oncology Program, University of Arizona Cancer Center Skin Cancer Institute, Tucson, Arizona
| | - Ronald S. Go
- Center for Cancer and Blood Disorders, Gundersen Health System, La Crosse, Wisconsin
| | - Drazen M. Jukic
- Departments of Dermatology and Pathology, Dermatopathology Fellowship Program, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - John M. Kirkwood
- Department of Medicine, Dermatology & Translational Science, University of Pittsburgh School of Medicine, Melanoma and Skin Cancer Program, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania
| |
Collapse
|
50
|
Wang HW, Hsieh TH, Huang SY, Chau GY, Tung CY, Su CW, Wu JC. Forfeited hepatogenesis program and increased embryonic stem cell traits in young hepatocellular carcinoma (HCC) comparing to elderly HCC. BMC Genomics 2013; 14:736. [PMID: 24160375 PMCID: PMC3826595 DOI: 10.1186/1471-2164-14-736] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 10/14/2013] [Indexed: 02/07/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) in young subjects is rare but more devastating. We hypothesize that genes and etiological pathways are unique to young HCC (yHCC; ≤40 years old at diagnosis) patients. We therefore compared the gene expression profiles between yHCCs and HCCs from elderly patients. Results All 44 young HCCs (≤40 years old at the diagnosis; 23 cases in the training set while another 21 in the validation cohort) were positive for serum hepatitis B surface antigen (HBsAg), but negative for antibodies to hepatitis C virus (anti-HCV). All 48 elderly (>40 years old; 38 in the training set while another 10 in the validation cohort) HCC patients enrolled were also serum HBsAg positive and anti-HCV negative. Comparative genomics analysis was further performed for elucidating enriched or suppressed biological activities in different HCC subtypes. The yHCC group showed more macroscopic venous invasions (60.9% vs. 10.5%, p < 0.001), fewer associated cirrhosis (17.4% vs. 63.2%, p < 0.001), and distinct profiles of expressed genes, especially those related to DNA replication and repair. yHCCs possessed increased embryonic stem cell (ESC) traits and were more dedifferentiated. A 309-gene signature was obtained from two training cohorts and validated in another independent data set. The ILF3 ESC gene, which was previously reported in poorly differentiated breast cancers and bladder carcinomas, was also present in yHCCs. Genes associated with HCC suppression, including AR and ADRA1A, were less abundant in yHCCs. ESC genes were also more enriched in advanced HCCs from elderly patients. Conclusion This study revealed the molecular makeup of yHCC and the link between ESC traits and HCC subtypes. Findings in elderly tumors, therefore, cannot be simply extrapolated to young patients, and yHCC should be treated differently.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jaw-Ching Wu
- Institute of Clinical Medicine, National Yang-Ming University, No, 201, Sec, 2, Shih-Pai Rd, Taipei, Taiwan.
| |
Collapse
|