1
|
Mechanism of Viral Suppression among HIV Elite Controllers and Long-Term Nonprogressors in Nigeria and South Africa. Viruses 2022; 14:v14061270. [PMID: 35746741 PMCID: PMC9228396 DOI: 10.3390/v14061270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 12/30/2022] Open
Abstract
A subgroup among people living with HIV (PLHIV) experience viral suppression, sometimes to an undetectable level in the blood and/or are able to maintain a healthy CD4+ T-cell count without the influence of antiretroviral (ARV) therapy. One out of three hundred PLHIV fall into this category, and a large sample of this group can be found in areas with a high prevalence of HIV infection such as Nigeria and South Africa. Understanding the mechanism underpinning the nonprogressive phenotype in this subgroup may provide insights into the control of the global HIV epidemic. This work provides mechanisms of the elite control and nonprogressive phenotype among PLHIV in Nigeria and South Africa and identifies research gaps that will contribute to a better understanding on HIV controllers among PLHIV.
Collapse
|
2
|
Terahara K, Iwabuchi R, Tsunetsugu-Yokota Y. Perspectives on Non-BLT Humanized Mouse Models for Studying HIV Pathogenesis and Therapy. Viruses 2021; 13:v13050776. [PMID: 33924786 PMCID: PMC8145733 DOI: 10.3390/v13050776] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023] Open
Abstract
A variety of humanized mice, which are reconstituted only with human hematopoietic stem cells (HSC) or with fetal thymus and HSCs, have been developed and widely utilized as in vivo animal models of HIV-1 infection. The models represent some aspects of HIV-mediated pathogenesis in humans and are useful for the evaluation of therapeutic regimens. However, there are several limitations in these models, including their incomplete immune responses and poor distribution of human cells to the secondary lymphoid tissues. These limitations are common in many humanized mouse models and are critical issues that need to be addressed. As distinct defects exist in each model, we need to be cautious about the experimental design and interpretation of the outcomes obtained using humanized mice. Considering this point, we mainly characterize the current conventional humanized mouse reconstituted only with HSCs and describe past achievements in this area, as well as the potential contributions of the humanized mouse models for the study of HIV pathogenesis and therapy. We also discuss the use of various technologies to solve the current problems. Humanized mice will contribute not only to the pre-clinical evaluation of anti-HIV regimens, but also to a deeper understanding of basic aspects of HIV biology.
Collapse
Affiliation(s)
- Kazutaka Terahara
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; (K.T.); (R.I.)
| | - Ryutaro Iwabuchi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; (K.T.); (R.I.)
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo 162-8480, Japan
| | - Yasuko Tsunetsugu-Yokota
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; (K.T.); (R.I.)
- Department of Medical Technology, School of Human Sciences, Tokyo University of Technology, Tokyo 144-8535, Japan
- Correspondence: or ; Tel.: +81-3-6424-2223
| |
Collapse
|
3
|
Terahara K, Iwabuchi R, Iwaki R, Takahashi Y, Tsunetsugu-Yokota Y. Substantial induction of non-apoptotic CD4 T-cell death during the early phase of HIV-1 infection in a humanized mouse model. Microbes Infect 2020; 23:104767. [PMID: 33049386 DOI: 10.1016/j.micinf.2020.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 02/07/2023]
Abstract
Several mechanisms underline induction of CD4 T-cell death by human immunodeficiency virus (HIV) infection. For a long time, apoptosis was considered central to cell death involved in the depletion of CD4 T cells during HIV infection. However, which types of cell death are induced during the early phase of HIV infection in vivo remains unclear. In this study, CD4 T-cell death induced in early HIV infection was characterized using humanized mice challenged with CCR5-tropic (R5) or CXCR4-tropic (X4) HIV-1. Results showed that CD4 T-cell death was induced in the spleen 3 days post-challenge with both R5 and X4 HIV-1. Although cell death without caspase-1 and caspase-3/7 activation was preferentially observed, caspase-1+ pyroptosis was also significantly induced within the memory subpopulation by R5 or X4 HIV-1 and the naïve subpopulation by X4 HIV-1. In contrast, caspase-3/7+ apoptosis was not enhanced by either R5 or X4 HIV-1. Furthermore, phosphorylated mixed lineage kinase domain-like protein+ necroptosis was induced by only X4 HIV-1. These findings indicate that various types of non-apoptotic CD4 T-cell death, such as pyroptosis and necroptosis, are induced during the early phase of HIV infection in vivo.
Collapse
Affiliation(s)
- Kazutaka Terahara
- Department of Immunology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan.
| | - Ryutaro Iwabuchi
- Department of Immunology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan; Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsucho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Rieko Iwaki
- Department of Immunology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Yoshimasa Takahashi
- Department of Immunology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Yasuko Tsunetsugu-Yokota
- Department of Immunology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan; Department of Medical Technology, School of Human Sciences, Tokyo University of Technology, 5-23-22 Nishikamata, Ota-ku, Tokyo, 144-8535, Japan
| |
Collapse
|
4
|
Mouser EEIM, Pollakis G, Smits HH, Thomas J, Yazdanbakhsh M, de Jong EC, Paxton WA. Schistosoma mansoni soluble egg antigen (SEA) and recombinant Omega-1 modulate induced CD4+ T-lymphocyte responses and HIV-1 infection in vitro. PLoS Pathog 2019; 15:e1007924. [PMID: 31487324 PMCID: PMC6728022 DOI: 10.1371/journal.ppat.1007924] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 06/19/2019] [Indexed: 01/17/2023] Open
Abstract
Parasitic helminths evade, skew and dampen human immune responses through numerous mechanisms. Such effects will likely have consequences for HIV-1 transmission and disease progression. Here we analyzed the effects that soluble egg antigen (SEA) from Schistosoma mansoni had on modulating HIV-1 infection and cytokine/chemokine production in vitro. We determined that SEA, specifically through kappa-5, can potently bind to DC-SIGN and thereby blocks DC-SIGN mediated HIV-1 trans-infection (p<0.05) whilst not interfering with cis-infection. DCs exposed to SEA whilst maturing under Th2 promoting conditions, will upon co-culture with naïve T-cells induce a T-cell population that was less susceptible to HIV-1 R5 infection (p<0.05) compared to DCs unexposed to SEA, whereas HIV-1 X4 virus infection was unaffected. This was not observed for DCs exposed to SEA while maturing under Th1 or Th1/Th2 (Tmix) promoting conditions. All T-cell populations induced by SEA exposed DCs demonstrate a reduced capacity to produce IFN-γ and MIP-1β. The infection profile of T-cells infected with HIV-1 R5 was not associated with down-modulation of CCR5 cell surface expression. We further show that DCs maturing under Tmix conditions exposed to plant recombinant omega-1 protein (rω-1), which demonstrates similar functions to natural ω-1, induced T-cell populations that were less sensitive for HIV-1 R5 infection (p<0.05), but not for X4 virus infection. This inhibition associated again with a reduction in IFN-γ and MIP-1β expression, but additionally correlated with reduced CCR5 expression. We have shown that SEA parasite antigens and more specifically rω-1 can modulate HIV-1 infectivity with the potential to influence disease course in co-infected individuals. Parasitic helminths have developed a number of strategies to evade, skew and dampen human immune responses. Such effects will likely have consequences for HIV-1 transmission and disease progression. Here we analyzed the effect that soluble egg antigen (SEA) from Schistosoma mansoni had on HIV-1 infection in vitro. We determined that SEA, through kappa-5, can potently block DC-SIGN mediated HIV-1 trans-infection of CD4+ T-lymphocytes, but not block cis-infection. Dendritic cells (DC) exposed to SEA during maturation under Th2 skewing conditions, induce T-cell populations that are less susceptible to HIV-1 R5 infection compared to cells induced by unexposed DCs. HIV-1 X4 infection was unaffected. This restricted infection profile was not associated with down-modulation of CCR5 surface expression or observed differences in cytokine/chemokine production. Using recombinant omega-1, an abundant component of SEA, HIV-1 R5 infection was similarly inhibited with no effect on HIV-1 X4 infection levels. Hence SEA possesses antigens, namely omega-1, that can modulate HIV-1 infection and potentially influence disease course in co-infected individuals.
Collapse
Affiliation(s)
- Emily EIM Mouser
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Georgios Pollakis
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Department of Clinical Infection, Microbiology and Immunology (CIMI), Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Hermelijn H. Smits
- Department of Parasitology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Jordan Thomas
- Department of Clinical Infection, Microbiology and Immunology (CIMI), Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Maria Yazdanbakhsh
- Department of Parasitology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Esther C. de Jong
- Department of Cell Biology and Histology, Amsterdam UMC, Location Academic Medical Center, Amsterdam, the Netherlands
- Department of Experimental Immunology, Amsterdam UMC, Location Academic Medical Center, Amsterdam, the Netherlands
- * E-mail: (ECdJ); (WAP)
| | - William A. Paxton
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Department of Clinical Infection, Microbiology and Immunology (CIMI), Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
- * E-mail: (ECdJ); (WAP)
| |
Collapse
|
5
|
Terahara K, Iwabuchi R, Hosokawa M, Nishikawa Y, Takeyama H, Takahashi Y, Tsunetsugu-Yokota Y. A CCR5 + memory subset within HIV-1-infected primary resting CD4 + T cells is permissive for replication-competent, latently infected viruses in vitro. BMC Res Notes 2019; 12:242. [PMID: 31036079 PMCID: PMC6489248 DOI: 10.1186/s13104-019-4281-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 04/25/2019] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE Resting CD4+ T cells are major reservoirs of latent HIV-1 infection, and may be formed during the early phase of the infection. Although CCR5-tropic (R5) HIV-1 is highly transmissible during the early phase, newly infected individuals have usually been exposed to a mixture of R5 and CXCR4-tropic (X4) viruses, and X4 viral DNA is also detectable in the host. Our aim was to identify which subsets of resting CD4+ T cells contribute to forming the latent reservoir in the presence of both X4 and R5 viruses. RESULTS Primary resting CD4+ naïve T (TN) cells, CCR5- memory T (TM) cells, and CCR5+ TM cells isolated by flow cytometry were infected simultaneously with X4 and R5 HIV-1, which harbored different reporter genes, and were cultured in the resting condition. Flow cytometry at 3 days post-infection demonstrated that X4 HIV-1+ cells were present in all three subsets of cells, whereas R5 HIV-1+ cells were present preferentially in CCR5+ TM cells, but not in TN cells. Following CD3/CD28-mediated activation at 3 days post-infection, numbers of R5 HIV-1+ cells and X4 HIV-1+ cells increased significantly only in the CCR5+ TM subset, suggesting that it provides a major reservoir of replication-competent, latently infected viruses.
Collapse
Affiliation(s)
- Kazutaka Terahara
- Department of Immunology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan.
| | - Ryutaro Iwabuchi
- Department of Immunology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan.,Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan.,Computational Bio Big-Data Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Masahito Hosokawa
- Research Organization for Nano & Life Innovation, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo, 162-0041, Japan.,Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Yohei Nishikawa
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan.,Computational Bio Big-Data Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Haruko Takeyama
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan.,Computational Bio Big-Data Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan.,Research Organization for Nano & Life Innovation, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo, 162-0041, Japan.,Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Yoshimasa Takahashi
- Department of Immunology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Yasuko Tsunetsugu-Yokota
- Department of Immunology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan.,Department of Medical Technology, School of Human Sciences, Tokyo University of Technology, 5-23-22 Nishikamata, Ota-ku, Tokyo, 144-8535, Japan
| |
Collapse
|
6
|
Godinho-Santos A, Hance AJ, Gonçalves J, Mammano F. CIB1 and CIB2 are HIV-1 helper factors involved in viral entry. Sci Rep 2016; 6:30927. [PMID: 27489023 PMCID: PMC4973253 DOI: 10.1038/srep30927] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 07/05/2016] [Indexed: 01/05/2023] Open
Abstract
HIV-1 relies on the host-cell machinery to accomplish its replication cycle, and characterization of these helper factors contributes to a better understanding of HIV-host interactions and can identify potential novel antiviral targets. Here we explored the contribution of CIB2, previously identified by RNAi screening as a potential helper factor, and its homolog, CIB1. Knockdown of either CIB1 or CIB2 strongly impaired viral replication in Jurkat cells and in primary CD4+ T-lymphocytes, identifying these proteins as non-redundant helper factors. Knockdown of CIB1 and CIB2 impaired envelope-mediated viral entry for both for X4- and R5-tropic HIV-1, and both cell-free and cell-associated entry pathways were affected. In contrast, the level of CIB1 and CIB2 expression did not influence cell viability, cell proliferation, receptor-independent viral binding to the cell surface, or later steps in the viral replication cycle. CIB1 and CIB2 knockdown was found to reduce the expression of surface molecules implicated in HIV-1 infection, including CXCR4, CCR5 and integrin α4β7, suggesting at least one mechanism through which these proteins promote viral infection. Thus, this study identifies CIB1 and CIB2 as host helper factors for HIV-1 replication that are required for optimal receptor-mediated viral entry.
Collapse
Affiliation(s)
- Ana Godinho-Santos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal.,INSERM, U941, Paris, F-75010, France
| | - Allan J Hance
- INSERM, U941, Paris, F-75010, France.,Univ Paris Diderot, Sorbonne Paris Cité, F-75475, Paris, France
| | - João Gonçalves
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Fabrizio Mammano
- INSERM, U941, Paris, F-75010, France.,Univ Paris Diderot, Sorbonne Paris Cité, F-75475, Paris, France
| |
Collapse
|
7
|
Brugia malayi Antigen (BmA) Inhibits HIV-1 Trans-Infection but Neither BmA nor ES-62 Alter HIV-1 Infectivity of DC Induced CD4+ Th-Cells. PLoS One 2016; 11:e0146527. [PMID: 26808476 PMCID: PMC4726616 DOI: 10.1371/journal.pone.0146527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 12/19/2015] [Indexed: 11/19/2022] Open
Abstract
One of the hallmarks of HIV-1 disease is the association of heightened CD4+ T-cell activation with HIV-1 replication. Parasitic helminths including filarial nematodes have evolved numerous and complex mechanisms to skew, dampen and evade human immune responses suggesting that HIV-1 infection may be modulated in co-infected individuals. Here we studied the effects of two filarial nematode products, adult worm antigen from Brugia malayi (BmA) and excretory-secretory product 62 (ES-62) from Acanthocheilonema viteae on HIV-1 infection in vitro. Neither BmA nor ES-62 influenced HIV-1 replication in CD4+ enriched T-cells, with either a CCR5- or CXCR4-using virus. BmA, but not ES-62, had the capacity to bind the C-type lectin dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) thereby inhibiting HIV-1 trans-infection of CD4+ enriched T-cells. As for their effect on DCs, neither BmA nor ES-62 could enhance or inhibit DC maturation as determined by CD83, CD86 and HLA-DR expression, or the production of IL-6, IL-10, IL-12 and TNF-α. As expected, due to the unaltered DC phenotype, no differences were found in CD4+ T helper (Th) cell phenotypes induced by DCs treated with either BmA or ES-62. Moreover, the HIV-1 susceptibility of the Th-cell populations induced by BmA or ES-62 exposed DCs was unaffected for both CCR5- and CXCR4-using HIV-1 viruses. In conclusion, although BmA has the potential capacity to interfere with HIV-1 transmission or initial viral dissemination through preventing the virus from interacting with DCs, no differences in the Th-cell polarizing capacity of DCs exposed to BmA or ES-62 were observed. Neither antigenic source demonstrated beneficial or detrimental effects on the HIV-1 susceptibility of CD4+ Th-cells induced by exposed DCs.
Collapse
|
8
|
Nascimento-Brito S, Paulo Zukurov J, Maricato JT, Volpini AC, Salim ACM, Araújo FMG, Coimbra RS, Oliveira GC, Antoneli F, Janini LMR. HIV-1 Tropism Determines Different Mutation Profiles in Proviral DNA. PLoS One 2015; 10:e0139037. [PMID: 26413773 PMCID: PMC4587555 DOI: 10.1371/journal.pone.0139037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 09/07/2015] [Indexed: 01/19/2023] Open
Abstract
In order to establish new infections HIV-1 particles need to attach to receptors expressed on the cellular surface. HIV-1 particles interact with a cell membrane receptor known as CD4 and subsequently with another cell membrane molecule known as a co-receptor. Two major different co-receptors have been identified: C-C chemokine Receptor type 5 (CCR5) and C-X-C chemokine Receptor type 4 (CXCR4) Previous reports have demonstrated cellular modifications upon HIV-1 binding to its co-receptors including gene expression modulations. Here we investigated the effect of viral binding to either CCR5 or CXCR4 co-receptors on viral diversity after a single round of reverse transcription. CCR5 and CXCR4 pseudotyped viruses were used to infect non-stimulated and stimulated PBMCs and purified CD4 positive cells. We adopted the SOLiD methodology to sequence virtually the entire proviral DNA from all experimental infections. Infections with CCR5 and CXCR4 pseudotyped virus resulted in different patterns of genetic diversification. CCR5 virus infections produced extensive proviral diversity while in CXCR4 infections a more localized substitution process was observed. In addition, we present pioneering results of a recently developed method for the analysis of SOLiD generated sequencing data applicable to the study of viral quasi-species. Our findings demonstrate the feasibility of viral quasi-species evaluation by NGS methodologies. We presented for the first time strong evidence for a host cell driving mechanism acting on the HIV-1 genetic variability under the control of co-receptor stimulation. Additional investigations are needed to further clarify this question, which is relevant to viral diversification process and consequent disease progression.
Collapse
Affiliation(s)
- Sieberth Nascimento-Brito
- Departamento de Microbiologia e Imunologia Veterinária, Universidade Federal Rural do Rio de Janeiro (UFRRJ), Rio de Janeiro, Brazil
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | | | - Juliana T. Maricato
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Angela C. Volpini
- Genomics and Computational Biology Group, Research Center René Rachou (CPqRR), Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, Brazil
| | - Anna Christina M. Salim
- Genomics and Computational Biology Group, Research Center René Rachou (CPqRR), Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, Brazil
| | - Flávio M. G. Araújo
- Genomics and Computational Biology Group, Research Center René Rachou (CPqRR), Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, Brazil
| | - Roney S. Coimbra
- Biosystems Informatics Group, CPqRR, FIOCRUZ, Belo Horizonte, Brazil
| | - Guilherme C. Oliveira
- Genomics and Computational Biology Group, Research Center René Rachou (CPqRR), Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, Brazil
| | - Fernando Antoneli
- Departamento de Informática em Saúde, EPM, UNIFESP, São Paulo, Brazil
- Laboratório de Biocomplexidade e Genômica Evolutiva, EPM, UNIFESP, São Paulo, Brazil
| | - Luiz Mário R. Janini
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- Departamento de Medicina, EPM, UNIFESP, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
9
|
Curreli F, Kwon YD, Zhang H, Scacalossi D, Belov DS, Tikhonov AA, Andreev IA, Altieri A, Kurkin AV, Kwong PD, Debnath AK. Structure-Based Design of a Small Molecule CD4-Antagonist with Broad Spectrum Anti-HIV-1 Activity. J Med Chem 2015; 58:6909-6927. [PMID: 26301736 PMCID: PMC4676410 DOI: 10.1021/acs.jmedchem.5b00709] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Earlier we reported the discovery and design of NBD-556 and their analogs which demonstrated their potential as HIV-1 entry inhibitors. However, progress in developing these inhibitors has been stymied by their CD4-agonist properties, an unfavorable trait for use as drug. Here, we demonstrate the successful conversion of a full CD4-agonist (NBD-556) through a partial CD4-agonist (NBD-09027), to a full CD4-antagonist (NBD-11021) by structure-based modification of the critical oxalamide midregion, previously thought to be intolerant of modification. NBD-11021 showed unprecedented neutralization breath for this class of inhibitors, with pan-neutralization against a panel of 56 Env-pseudotyped HIV-1 representing diverse subtypes of clinical isolates (IC50 as low as 270 nM). The cocrystal structure of NBD-11021 complexed to a monomeric HIV-1 gp120 core revealed its detail binding characteristics. The study is expected to provide a framework for further development of NBD series as HIV-1 entry inhibitors for clinical application against AIDS.
Collapse
Affiliation(s)
- Francesca Curreli
- Laboratory of Molecular Modeling and Drug Design, Lindsey F. Kimball Research Institute, New York Blood Center, New York, New York 10065, United States
| | - Young Do Kwon
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Hongtao Zhang
- Laboratory of Molecular Modeling and Drug Design, Lindsey F. Kimball Research Institute, New York Blood Center, New York, New York 10065, United States
| | - Daniel Scacalossi
- Laboratory of Molecular Modeling and Drug Design, Lindsey F. Kimball Research Institute, New York Blood Center, New York, New York 10065, United States
| | - Dmitry S. Belov
- EDASA Scientific, Scientific Park, Moscow State University, Leninskie Gory, Bld.75, 77–101b, 119992 Moscow, Russia
| | - Artur A. Tikhonov
- EDASA Scientific, Scientific Park, Moscow State University, Leninskie Gory, Bld.75, 77–101b, 119992 Moscow, Russia
| | - Ivan A. Andreev
- EDASA Scientific, Scientific Park, Moscow State University, Leninskie Gory, Bld.75, 77–101b, 119992 Moscow, Russia
| | - Andrea Altieri
- EDASA Scientific, Scientific Park, Moscow State University, Leninskie Gory, Bld.75, 77–101b, 119992 Moscow, Russia
| | - Alexander V. Kurkin
- EDASA Scientific, Scientific Park, Moscow State University, Leninskie Gory, Bld.75, 77–101b, 119992 Moscow, Russia
| | - Peter D. Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Asim K. Debnath
- Laboratory of Molecular Modeling and Drug Design, Lindsey F. Kimball Research Institute, New York Blood Center, New York, New York 10065, United States
| |
Collapse
|
10
|
Dumas F, Preira P, Salomé L. Membrane organization of virus and target cell plays a role in HIV entry. Biochimie 2014; 107 Pt A:22-7. [PMID: 25193376 PMCID: PMC7126522 DOI: 10.1016/j.biochi.2014.08.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 08/22/2014] [Indexed: 01/08/2023]
Abstract
The initial steps of the Human Immunodeficiency Virus (HIV) replication cycle play a crucial role that arbitrates viral tropism and infection efficiency. Before the release of its genome into the host cell cytoplasm, viruses operate a complex sequence of events that take place at the plasma membrane of the target cell. The first step is the binding of the HIV protein envelope (Env) to the cellular receptor CD4. This triggers conformational changes of the gp120 viral protein that allow its interaction with a co-receptor that can be either CCR5 or CXCR4, defining the tropism of the virus entering the cell. This sequential interaction finally drives the fusion of the viral and host cell membrane or to the endocytosis of the viruses. Here, we discuss how the membrane composition and organization of both the virus and the target cell can affect these steps and thus influence the capability of the viruses to infect cells. An overview of lipid role in HIV infection is proposed. We discuss the influence of lipid composition on HIV early steps of infection. We discuss the role of membrane organization an dynamics in HIV entry.
Collapse
Affiliation(s)
- Fabrice Dumas
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), 205 route de Narbonne, F-31077 Toulouse, France; Université de Toulouse, UPS, IPBS, F-31077 Toulouse, France.
| | - Pascal Preira
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), 205 route de Narbonne, F-31077 Toulouse, France
| | - Laurence Salomé
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), 205 route de Narbonne, F-31077 Toulouse, France.
| |
Collapse
|
11
|
Reynolds JL, Law WC, Mahajan SD, Aalinkeel R, Nair B, Sykes DE, Yong KT, Hui R, Prasad PN, Schwartz SA. Nanoparticle based galectin-1 gene silencing, implications in methamphetamine regulation of HIV-1 infection in monocyte derived macrophages. J Neuroimmune Pharmacol 2012; 7:673-85. [PMID: 22689223 PMCID: PMC3419803 DOI: 10.1007/s11481-012-9379-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 06/03/2012] [Indexed: 12/22/2022]
Abstract
Galectin-1, an adhesion molecule, is expressed in macrophages and implicated in human immunodeficiency virus (HIV-1) viral adsorption. In this study, we investigated the effects of methamphetamine on galectin-1 production in human monocyte derived macrophages (MDM) and the role of galectin-1 in methamphetamine potentiation of HIV-1 infection. Herein we show that levels of galectin-1 gene and protein expression are significantly increased by methamphetamine. Furthermore, concomitant incubation of MDM with galectin-1 and methamphetamine facilitates HIV-1 infection compared to galectin-1 alone or methamphetamine alone. We utilized a nanotechnology approach that uses gold nanorod (GNR)-galectin-1 siRNA complexes (nanoplexes) to inhibit gene expression for galectin-1. Nanoplexes significantly silenced gene expression for galectin-1 and reversed the effects of methamphetamine on galectin-1 gene expression. Moreover, the effects of methamphetamine on HIV-1 infection were attenuated in the presence of the nanoplex in MDM.
Collapse
Affiliation(s)
- Jessica L Reynolds
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, State University of New York at Buffalo, Innovation Center, 640 Ellicott Street, Buffalo, NY 14203, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Morou AK, Porichis F, Krambovitis E, Sourvinos G, Spandidos DA, Zafiropoulos A. The HIV-1 gp120/V3 modifies the response of uninfected CD4 T cells to antigen presentation: mapping of the specific transcriptional signature. J Transl Med 2011; 9:160. [PMID: 21943198 PMCID: PMC3203262 DOI: 10.1186/1479-5876-9-160] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 09/24/2011] [Indexed: 12/02/2022] Open
Abstract
Background The asymptomatic phase of HIV-1 infection is characterized by a progressive depletion of uninfected peripheral effector/memory CD4+ T cells that subsequently leads to immune dysfunction and AIDS symptoms. We have previously demonstrated that the presence of specific gp120/V3 peptides during antigen presentation can modify the activation of normal T-cells leading to altered immune function. The aim of the present study was to map the specific transcriptional profile invoked by an HIV-1/V3 epitope in uninfected T cells during antigen presentation. Methods We exposed primary human peripheral blood monocytes to V3 lipopeptides using a liposome delivery system followed by a superantigen-mediated antigen presentation system. We then evaluated the changes in the T-cell transcriptional profile using oligonucleotide microarrays and performed Ingenuity Pathway Analysis (IPA) and DAVID analysis. The results were validated using realtime PCR, FACS, Western blotting and immunofluorescence. Results Our results revealed that the most highly modulated transcripts could almost entirely be categorized as related to the cell cycle or transcriptional regulation. The most statistically significant enriched categories and networks identified by IPA were associated with cell cycle, gene expression, immune response, infection mechanisms, cellular growth, proliferation and antigen presentation. Canonical pathways involved in energy and cell cycle regulation, and in the co-activation of T cells were also enriched. Conclusions Taken together, these results document a distinct transcriptional profile invoked by the HIV-1/V3 epitope. These data could be invaluable to determine the underlying mechanism by which HIV-1 epitopes interfere with uninfected CD4+ T-cell function causing hyper proliferation and AICD.
Collapse
Affiliation(s)
- Antigone K Morou
- Department of Virology, Medical School, University of Crete, Heraklion, Crete, Greece
| | | | | | | | | | | |
Collapse
|